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(57)【特許請求の範囲】
【請求項１】
　信号減衰の等方性拡散強調を引き起こす無線周波（ＲＦ）および勾配シーケンスから生
じる信号およびＭＲ画像の取得を含んで成る磁気共鳴（ＭＲ）および／またはＭＲ撮像の
方法であって、
　信号減衰の前記等方性拡散強調が、拡散テンソルＤのトレースに比例し、
　前記等方性拡散強調が、傾き角度ζ（ｔ）、方位角ψ（ｔ）およびマグニチュードによ
って定義される配向を有する１つの時間依存性デフェージング・ベクトルｑ（ｔ）によっ
て実現され、
　前記時間依存性デフェージング・ベクトルｑ（ｔ）の前記配向が、前記勾配パルス・シ
ーケンスの０≦ｔ≦エコー時間（ｔは時間を表す）の間に、総数で４つ以上の方向の間で
変化する磁気共鳴（ＭＲ）および／またはＭＲ撮像の方法。
【請求項２】
　前記等方性拡散強調が、前記拡散テンソルＤを回転させても不変であり、
　以下の数式が満足される請求項１に記載の磁気共鳴（ＭＲ）および／またはＭＲ撮像の
方法。
【数８０】
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　Ｆ（ｔ）は、前記デフェージング・ベクトルの時間依存性正規化マグニチュード、
【数８１】

は、時間依存性単位方向ベクトル
　ｔｄは、

【数８２】

で与えられる有効拡散時間、
【数８３】

は、等方性平均拡散率、
　ｔＥは、エコー時間
【請求項３】
　前記デフェージング・ベクトルの時間依存性正規化マグニチュードＦ（ｔ）が、ｔ＝０
からｔ＝ｔＥのエコー時間ｔＥの間、｜Ｆ（ｔ）｜≦１であり、時間０における前記デフ
ェージング・ベクトルの配向が、時間ｔＥにおける前記デフェージング・ベクトルの配向
と同じである、請求項１または２に記載の磁気共鳴（ＭＲ）および／またはＭＲ撮像の方
法。
【請求項４】
　前記時間依存性デフェージング・ベクトルｑ（ｔ）の前記配向が、少なくとも４つの配
向の間で、２πを係数とするψ（ｔ）が等間隔の値となるようにする、方位角ψ（ｔ）の
離散ステップで変化する、請求項１から３のいずれか一項に記載の磁気共鳴（ＭＲ）およ
び／またはＭＲ撮像の方法。
【請求項５】
　前記等方性拡散強調が、前記時間依存性デフェージング・ベクトルｑ（ｔ）が直円錐表
面に平行な配向の全範囲に及ぶように、かつ時間０における前記時間依存性デフェージン
グ・ベクトルｑ（ｔ）の配向が時間ｔＥにおける配向と同じになるように、方位角ψ（ｔ
）およびそのマグニチュードが時間の連続関数である、前記時間依存性デフェージング・
ベクトルｑ（ｔ）の連続スイープによって実現される、請求項１から３のいずれか一項に
記載の磁気共鳴（ＭＲ）および／またはＭＲ撮像の方法。
【請求項６】
　傾きζが、一定の時間に依存しない値になるように選択される、請求項５に記載の磁気
共鳴（ＭＲ）および／またはＭＲ撮像の方法。
【請求項７】
　傾きζが、
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【数８４】

となるように、いわゆるマジック角度になるように選択される、請求項６に記載の方法。
【請求項８】
　前記デフェージング・ベクトルの前記時間依存性正規化マグニチュードＦ（ｔ）が、時
間の調和関数として選択される、請求項３から７のいずれか一項に記載の磁気共鳴（ＭＲ
）および／またはＭＲ撮像の方法。
【請求項９】
　シングル・ショットで実行される、請求項１から８のいずれか一項に記載の磁気共鳴（
ＭＲ）および／またはＭＲ撮像の方法。
 

【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、信号減衰の等方性拡散強調を引き起こすＲＦおよび勾配シーケンスから生じ
る信号およびＭＲ画像を取得することを含む、磁気共鳴（ＭＲ）および／またはＭＲ撮像
の方法に関する。
【背景技術】
【０００２】
　ＮＭＲ（Ｃａｌｌａｇｈａｎ、　２０１１年、「Ｔｒａｎｓｌａｔｉｏｎａｌ　Ｄｙｎ
ａｍｉｃｓ　＆　Ｍａｇｎｅｔｉｃ　Ｒｅｓｏｎａｎｃｅ」（Ｏｘｆｏｒｄ、Ｏｘｆｏｒ
ｄ　Ｕｎｉｖｅｒｓｉｔｙ　Ｐｒｅｓｓ）、Ｐｒｉｃｅ、２００９年、「ＮＭＲ　Ｓｔｕ
ｄｉｅｓ　ｏｆ　Ｔｒａｎｓｌａｔｉｏｎａｌ　Ｍｏｔｉｏｎ」（Ｃａｍｂｒｉｄｇｅ、
Ｃａｍｂｒｉｄｇｅ　Ｕｎｉｖｅｒｓｉｔｙ　Ｐｒｅｓｓ））を用いて測定される分子自
己拡散は、広範囲の材料の水で満たされた細孔空間の形態を非侵襲的に研究するために使
用される。これらの材料としては、例えば岩石（Ｈｕｒｌｉｍａｎｎら、１９９４年、「
Ｒｅｓｔｒｉｃｔｅｄ　ｄｉｆｆｕｓｉｏｎ　ｉｎ　ｓｅｄｉｍｅｎｔａｒｙ　ｒｏｃｋ
ｓ．　Ｄｅｔｅｒｍｉｎａｔｉｏｎ　ｏｆ　ｓｕｒｆａｃｅ－ａｒｅａ－ｔｏ－ｖｏｌｕ
ｍｅ　ｒａｔｉｏ　ａｎｄ　ｓｕｒｆａｃｅ　ｒｅｌａｘｉｖｉｔｙ」、Ｊ　Ｍａｇｎ　
Ｒｅｓｏｎ　Ａ　１１１、１６９－１７８ページ）、エマルジョン（Ｔｏｐｇａａｒｄら
、２００２年、「Ｒｅｓｔｒｉｃｔｅｄ　ｓｅｌｆ－ｄｉｆｆｕｓｉｏｎ　ｏｆ　ｗａｔ
ｅｒ　ｉｎ　ａ　ｈｉｇｈｌｙ　ｃｏｎｃｅｎｔｒａｔｅｄ　Ｗ／Ｏ　ｅｍｕｌｓｉｏｎ
　ｓｔｕｄｉｅｄ　ｕｓｉｎｇ　ｍｏｄｕｌａｔｅｄ　ｇｒａｄｉｅｎｔ　ｓｐｉｎ－ｅ
ｃｈｏ　ＮＭＲ」、Ｊ　Ｍａｇｎ　Ｒｅｓｏｎ　１５６、１９５－２０１ページ）、およ
びチーズ（Ｍａｒｉｅｔｔｅら、２００２年「１Ｈ　ＮＭＲ　ｄｉｆｆｕｓｏｍｅｔｒｙ
　ｓｔｕｄｙ　ｏｆ　ｗａｔｅｒ　ｉｎ　ｃａｓｅｉｎ　ｄｉｓｐｅｒｓｉｏｎｓ　ａｎ
ｄ　ｇｅｌｓ」、Ｊ　Ａｇｒｉｃ　Ｆｏｏｄ　Ｃｈｅｍ　５０、４２９５－４３０２ペー
ジ）などがある。
【０００３】
　細孔構造の異方性により、水の自己拡散が異方性になる。この事実は、神経繊維が巨視
的な長さのスケールで優先的な方向を有する脳の白質の神経繊維の配向の３次元マッピン
グに利用される（Ｂａｓｓｅｒら、１９９４年、「ＭＲ　ｄｉｆｆｕｓｉｏｎ　ｔｅｎｓ
ｏｒ　ｓｐｅｃｔｒｏｓｃｏｐｙ　ａｎｄ　ｉｍａｇｉｎｇ」、Ｂｉｏｐｈｙｓ　Ｊ　６
６、２５９－２６７ページ、Ｂｅａｕｌｉｅｕ、２００２年、「Ｔｈｅ　ｂａｓｉｓ　ｏ
ｆ　ａｎｉｓｏｔｒｏｐｉｃ　ｗａｔｅｒ　ｄｉｆｆｕｓｉｏｎ　ｉｎ　ｔｈｅ　ｎｅｒ
ｖｏｕｓ　ｓｙｓｔｅｍ　－　ａ　ｔｅｃｈｎｉｃａｌ　ｒｅｖｉｅｗ」、ＮＭＲ　Ｂｉ
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ｏｍｅｄ　１５、４３５－４５５ページ、Ｍｏｓｅｌｅｙら、１９９１年、「Ａｎｉｓｏ
ｔｒｏｐｙ　ｉｎ　ｄｉｆｆｕｓｉｏｎ－ｗｅｉｇｈｔｅｄ　ＭＲＩ」、Ｍａｇｎ　Ｒｅ
ｓｏｎ　Ｍｅｄ　１９、３２１－３２６ページ）。巨視的な拡散異方性の程度は、無次元
の異方性度指標で定量化されることが多い（ＢａｓｓｅｒおよびＰｉｅｒｐａｏｌｉ、１
９９６年、「Ｍｉｃｒｏｓｔｒｕｃｔｕｒａｌ　ａｎｄ　ｐｈｙｓｉｏｌｏｇｉｃａｌ　
ｆｅａｔｕｒｅｓ　ｏｆ　ｔｉｓｓｕｅｓ　ｅｌｕｃｉｄａｔｅｄ　ｂｙ　ｑｕａｎｔｉ
ｔａｔｉｖｅ－ｄｉｆｆｕｓｉｏｎ－ｔｅｎｓｏｒ　ＭＲＩ」、Ｊ　Ｍａｇｎ　Ｒｅｓｏ
ｎ　Ｂ　１１１、　２０９－２１９ページ）。
【０００４】
　また、全体として等方性の材料における微視的な異方性は、当初は従来のシングルＰＧ
ＳＥ（パルス勾配スピン・エコー）技術のエコー減衰で観察される特徴的な曲率によって
（ＣａｌｌａｇｈａｎおよびＳｏｄｅｒｍａｎ、１９８３年、「Ｅｘａｍｉｎａｔｉｏｎ
　ｏｆ　ｔｈｅ　ｌａｍｅｌｌａｒ　ｐｈａｓｅ　ｏｆ　ａｅｒｏｓｏｌ　ＯＴ／ｗａｔ
ｅｒ　ｕｓｉｎｇ　ｐｕｌｓｅｄ　ｆｉｅｌｄ　ｇｒａｄｉｅｎｔ　ｎｕｃｌｅａｒ　ｍ
ａｇｎｅｔｉｃ　ｒｅｓｏｎａｎｃｅ」、Ｊ　Ｐｈｙｓ　Ｃｈｅｍ　８７、１７３７－１
７４４ページ、ＴｏｐｇａａｒｄおよびＳｏｄｅｒｍａｎ、２００２年、「Ｓｅｌｆ－ｄ
ｉｆｆｕｓｉｏｎ　ｉｎ　ｔｗｏ－　ａｎｄ　ｔｈｒｅｅ－ｄｉｍｅｎｓｉｏｎａｌ　ｐ
ｏｗｄｅｒｓ　ｏｆ　ａｎｉｓｏｔｒｏｐｉｃ　ｄｏｍａｉｎｓ：　Ａｎ　ＮＭＲ　ｓｔ
ｕｄｙ　ｏｆ　ｔｈｅ　ｄｉｆｆｕｓｉｏｎ　ｏｆ　ｗａｔｅｒ　ｉｎ　ｃｅｌｌｕｌｏ
ｓｅ　ａｎｄ　ｓｔａｒｃｈ」、Ｊ　Ｐｈｙｓ　Ｃｈｅｍ　Ｂ　１０６、１１８８７－１
１８９２ページ）、また最近ではＮＭＲ信号を２つの別個の期間にわたって変位について
符号化するダブルＰＧＳＥ手法を用いることによって（Ｍｉｔｒａ、１９９５年、「Ｍｕ
ｌｔｉｐｌｅ　ｗａｖｅ－ｖｅｃｔｏｒ　ｅｘｔｅｎｓｉｏｎ　ｏｆ　ｔｈｅ　ＮＭＲ　
ｐｕｌｓｅｄ－ｆｉｅｌｄ－ｇｒａｄｉｅｎｔ　ｓｐｉｎ－ｅｃｈｏ　ｄｉｆｆｕｓｉｏ
ｎ　ｍｅａｓｕｒｅｍｅｎｔ」、Ｐｈｙｓ　Ｒｅｖ　Ｂ　５１、１５０７４－１５０７８
ページ）、拡散ＮＭＲで検出することができる。微視的な異方性の存在は、変位符号化の
方向の間の角度を変化させるときに観察される特徴的な信号変調（Ｍｉｔｒａ、１９９５
年、「Ｍｕｌｔｉｐｌｅ　ｗａｖｅ－ｖｅｃｔｏｒ　ｅｘｔｅｎｓｉｏｎ　ｏｆ　ｔｈｅ
　ＮＭＲ　ｐｕｌｓｅｄ－ｆｉｅｌｄ－ｇｒａｄｉｅｎｔ　ｓｐｉｎ－ｅｃｈｏ　ｄｉｆ
ｆｕｓｉｏｎ　ｍｅａｓｕｒｅｍｅｎｔ」、Ｐｈｙｓ　Ｒｅｖ　Ｂ　５１、１５０７４－
１５０７８ページ、Ｓｈｅｍｅｓｈら、２０１１年、「Ｐｒｏｂｉｎｇ　Ｍｉｃｒｏｓｃ
ｏｐｉｃ　Ａｒｃｈｉｔｅｃｔｕｒｅ　ｏｆ　Ｏｐａｑｕｅ　Ｈｅｔｅｒｏｇｅｎｅｏｕ
ｓ　Ｓｙｓｔｅｍｓ　Ｕｓｉｎｇ　Ｄｏｕｂｌｅ－Ｐｕｌｓｅｄ－Ｆｉｅｌｄ－Ｇｒａｄ
ｉｅｎｔ　ＮＭＲ」、Ｊ　Ａｍ　Ｃｈｅｍ　Ｓｏｃ　１３３、６０２８－６０３５ページ
、および「Ｍｉｃｒｏｓｃｏｐｉｃ　ａｎｄ　Ｃｏｍｐａｒｔｍｅｎｔ　Ｓｈａｐｅ　Ａ
ｎｉｓｏｔｒｏｐｉｅｓ　ｉｎ　Ｇｒａｙ　ａｎｄ　Ｗｈｉｔｅ　Ｍａｔｔｅｒ　Ｒｅｖ
ｅａｌｅｄ　ｂｙ　Ａｎｇｕｌａｒ　Ｂｉｐｏｌａｒ　Ｄｏｕｂｌｅ－ＰＦＧ　ＭＲ」、
Ｍａｇｎ　Ｒｅｓｏｎ　Ｍｅｄ　６５、１２１６－１２２７ページ）によって、または２
次元相関手法（ＣａｌｌａｇｈａｎおよびＦｕｒｏ、２００４年、「Ｄｉｆｆｕｓｉｏｎ
－ｄｉｆｆｕｓｉｏｎ　ｃｏｒｒｅｌａｔｉｏｎ　ａｎｄ　ｅｘｃｈａｎｇｅ　ａｓ　ａ
　ｓｉｇｎａｔｕｒｅ　ｆｏｒ　ｌｏｃａｌ　ｏｒｄｅｒ　ａｎｄ　ｄｙｎａｍｉｃｓ」
、Ｊ　Ｃｈｅｍ　Ｐｈｙｓ　１２０、４０３２－４０３８ページ、Ｈｕｂｂａｒｄら、２
００５年、２００６年、「Ａ　ｓｔｕｄｙ　ｏｆ　ａｎｉｓｏｔｒｏｐｉｃ　ｗａｔｅｒ
　ｓｅｌｆ－ｄｉｆｆｕｓｉｏｎ　ａｎｄ　ｄｅｆｅｃｔｓ　ｉｎ　ｔｈｅ　ｌａｍｅｌ
ｌａｒ　ｍｅｓｏｐｈａｓｅ」、Ｌａｎｇｍｕｉｒ　２１、４３４０－４３４６ページ、
および「Ｏｒｉｅｎｔａｔｉｏｎａｌ　ａｎｉｓｏｔｒｏｐｙ　ｉｎ　ｐｏｌｙｄｏｍａ
ｉｎ　ｌａｍｅｌｌａｒ　ｐｈａｓｅ　ｏｆ　ａ　ｌｙｏｔｒｏｐｉｃ　ｌｉｑｕｉｄ　
ｃｒｙｓｔａｌ」、Ｌａｎｇｍｕｉｒ　２２、３９９９－４００３ページ）によって、共
線変位符号化および直交変位符号化（ＣａｌｌａｇｈａｎおよびＫｏｍｌｏｓｈ、２００
２年、「Ｌｏｃａｌｌｙ　ａｎｉｓｏｔｒｏｐｉｃ　ｍｏｔｉｏｎ　ｉｎ　ａ　ｍａｃｒ
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ｏｓｃｏｐｉｃａｌｌｙ　ｉｓｏｔｒｏｐｉｃ　ｓｙｓｔｅｍ：　ｄｉｓｐｌａｃｅｍｅ
ｎｔ　ｃｏｒｒｅｌａｔｉｏｎｓ　ｍｅａｓｕｒｅｄ　ｕｓｉｎｇ　ｄｏｕｂｌｅ　ｐｕ
ｌｓｅｄ　ｇｒａｄｉｅｎｔ　ｓｐｉｎ－ｅｃｈｏ　ＮＭＲ」、Ｍａｇｎ　Ｒｅｓｏｎ　
Ｃｈｅｍ　４０、Ｓ１５－Ｓ１９ページ、Ｋｏｍｌｏｓｈら、２００７年、「Ｄｅｔｅｃ
ｔｉｏｎ　ｏｆ　ｍｉｃｒｏｓｃｏｐｉｃ　ａｎｉｓｏｔｒｏｐｙ　ｉｎ　ｇｒａｙ　ｍ
ａｔｔｅｒ　ａｎｄ　ｉｎ　ｎｏｖｅｌ　ｔｉｓｓｕｅ　ｐｈａｎｔｏｍ　ｕｓｉｎｇ　
ｄｏｕｂｌｅ　Ｐｕｌｓｅｄ　Ｇｒａｄｉｅｎｔ　Ｓｐｉｎ　Ｅｃｈｏ　ＭＲ」、Ｊ　Ｍ
ａｇｎ　Ｒｅｓｏｎ　１８９、３８－４５ページ、Ｋｏｍｌｏｓｈら、２００８年、「Ｏ
ｂｓｅｒｖａｔｉｏｎ　ｏｆ　ｍｉｃｒｏｓｃｏｐｉｃ　ｄｉｆｆｕｓｉｏｎ　ａｎｉｓ
ｏｔｒｏｐｙ　ｉｎ　ｔｈｅ　ｓｐｉｎａｌ　ｃｏｒｄ　ｕｓｉｎｇ　ｄｏｕｂｌｅ－ｐ
ｕｌｓｅｄ　ｇｒａｄｉｅｎｔ　ｓｐｉｎ　ｅｃｈｏ　ＭＲＩ」、Ｍａｇｎ　Ｒｅｓｏｎ
　Ｍｅｄ　５９、８０３－８０９ページ）で得られたエコー減衰データを比較することに
よって、推測することができる。
【０００５】
　平均拡散率に注目した臨床用拡散ＭＲＩ実験の走査時間を短縮することを目的としたシ
ングル・ショット等方性拡散強調技術への関心が高まっている。平均拡散率は、拡散テン
ソルのトレースから決定することができるが、それにはいくつかの方向に拡散測定を行う
ことが必要である。臨床用ＭＲＩ（磁気共鳴撮像）およびＭＲＳ（磁気共鳴分光法）の状
況では、巨視的に異方性の材料の拡散テンソルのトレースを１回の実験で決定するために
、いくつかの異なる勾配変調方式が提案されている（ｄｅ　Ｇｒａａｆら、２００１年、
「Ｓｉｎｇｌｅ－Ｓｈｏｔ　Ｄｉｆｆｕｓｉｏｎ　Ｔｒａｃｅ　１Ｈ　ＮＭＲ　Ｓｐｅｃ
ｔｒｏｓｃｏｐｙ」、Ｍａｇｎ　Ｒｅｓｏｎ　Ｍｅｄ　４５、７４１－７４８ページ、Ｍ
ｏｒｉおよびｖａｎ　Ｚｉｊｌ、１９９５年、「Ｄｉｆｆｕｓｉｏｎ　ｗｅｉｇｈｔｉｎ
ｇ　ｂｙ　ｔｈｅ　ｔｒａｃｅ　ｏｆ　ｔｈｅ　ｄｉｆｆｕｓｉｏｎ　ｔｅｎｓｏｒ　ｗ
ｉｔｈｉｎ　ａ　ｓｉｎｇｌｅ　ｓｃａｎ」、Ｍａｇｎ　Ｒｅｓｏｎ　Ｍｅｄ　３３、４
１－５２ページ、Ｖａｌｅｔｔｅら、２０１２年、「Ａ　Ｎｅｗ　Ｓｅｑｕｅｎｃｅ　ｆ
ｏｒ　Ｓｉｎｇｌｅ－Ｓｈｏｔ　Ｄｉｆｆｕｓｉｏｎ－Ｗｅｉｇｈｔｅｄ　ＮＭＲ　Ｓｐ
ｅｃｔｒｏｓｃｏｐｙ　ｂｙ　ｔｈｅ　Ｔｒａｃｅ　ｏｆ　ｔｈｅ　Ｄｉｆｆｕｓｉｏｎ
　Ｔｅｎｓｏｒ」、Ｍａｇｎ　Ｒｅｓｏｎ　Ｍｅｄ　ｅａｒｌｙ　ｖｉｅｗ）。実際の方
式は様々であるが、有効勾配変調は、トリプルＰＧＳＥ実験と等価であることが多い。
【０００６】
　等方性拡散強調を実現するために上記の方式が必要とする長いエコー時間は、信号対雑
音レベルが低下するので、好ましくない。短いエコー時間が、微小異方性の短い特徴的な
長さスケールで等方性拡散強調を実現するための必要条件となることもある。さらに、上
記の技術は、デフェージング・ファクタをゼロからその最大値に素早く増大させ、シーケ
ンス中の各直交方向の拡散符号化時間の後で再びゼロまで減少させるのに、勾配パルスに
依拠している。このような手法では、ＭＲ（Ｉ）勾配機器に不要に高い性能要件が課され
ることがある。
【発明の概要】
【発明が解決しようとする課題】
【０００７】
　本発明の１つの目的は、等方性拡散強調を得るためのＭＲ（Ｉ）のシーケンスを使用す
るのに必要な時間を特に改善する方法であって、信号対雑音比も上記に開示した既知の方
法と比較して改善されている方法を提供することである。
【課題を解決するための手段】
【０００８】
　上記の目的は、信号減衰の等方性拡散強調を引き起こす無線周波（ＲＦ）および勾配シ
ーケンスから生じる信号およびＭＲ画像の取得を含んで成る磁気共鳴（ＭＲ）および／ま
たはＭＲ撮像の方法であって、信号減衰の等方性拡散強調が、拡散テンソルＤのトレース
に比例し、等方性拡散強調が、傾き角度ζ（ｔ）、方位角ψ（ｔ）およびマグニチュード
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によって定義される配向を有する１つの時間依存性デフェージング・ベクトルｑ（ｔ）に
よって実現され、時間依存性デフェージング・ベクトルｑ（ｔ）の配向が、前記勾配パル
ス・シーケンスの０≦ｔ≦エコー時間（ｔは時間を表す）の間に、総数で４つ以上の方向
の間で変化することによって達成される。
 
【０００９】
　「時間依存性デフェージング・ベクトル」という表現は、デフェージング・ベクトルの
マグニチュード（大きさ）および方向の両方が時間依存性であることを意味する。本発明
の目的は、これらの既知の方法と比較して短いエコー時間を有する単一または複数のスピ
ン・エコー・パルス・シーケンスを用いて、等方性拡散強調を実現し、より高い信号対雑
音比を与え、微小異方性のより短い特徴的な長さスケールを有する系での等方性拡散強調
を可能にするものである。この新しいプロトコルの重要な特徴は、勾配システム・ハード
ウェアに課される要件がこれらの方法と比較して少ない、または同等である標準的な拡散
ＭＲ（Ｉ）機器で実施することができることである。
【００１０】
　本明細書に開示する等方性強調プロトコルを使用して、等方性拡散強調を有するデータ
を得ることができ、それにより最小の走査時間で高い精度（高い信号対雑音比）で平均拡
散率を決定することができる。このプロトコルは、様々なＮＭＲまたはＭＲＩ実験のビル
ディング・ブロックとして、例えば等方性拡散フィルタとして、使用することができる。
例えば、これは、分子交換測定（ＦＥＸＳＹ、ＦＥＸＩ）において、低域通過拡散フィル
タとして使用することもできる。また、多次元（２Ｄ、３Ｄ、…）相関実験において、等
方性拡散強調または信号フィルタリングを実現するために使用することもできる。例えば
、このプロトコルは、等方性拡散寄与と非等方性拡散寄与に相関があり、これらを逆ラプ
ラス変換によって解析して、様々な拡散成分（寄与）についての異方性の程度についての
情報を得る、拡散／拡散または拡散／緩和相関実験で使用することもできる。このプロト
コルを、その他のＮＭＲまたはＭＲＩ方法と組み合わせて使用することもできる。例えば
、このプロトコルを、拡散テンソルおよび／または拡散とがり測定と組み合わせて、形態
および微小異方性に関する追加の情報、ならびに異方性配向散乱に関する情報を与えるこ
とができる。このプロトコルを使用して、生体内での拡散テンソルおよび拡散とがり測定
の解釈を容易にし、強化することができる。例えば、このプロトコルは、異方性の程度に
ついての情報を与えることができ、また、とがりを様々な等方性拡散寄与および／または
異方性拡散寄与に帰することによってとがりテンソル測定で検出される多指数関数的信号
減衰についての情報を与えることができる。
【図面の簡単な説明】
【００１１】
【図１】本発明による等方性拡散強調の様々な勾配変調方式の例を示す図である。図中の
Ａは、正規化されたデフェージング・ベクトルの成分ｑｘ／｜ｑ｜（破線）、ｑｙ／｜ｑ
｜（点線）、およびｑｚ／｜ｑ｜（一点鎖線）、ならびにデフェージング・ベクトルの正
規化されたマグニチュードＦ（ｔ）（実線）を示す。図中のＢは、正規化された有効勾配
ベクトルの成分ｇｘ／｜ｇ｜（破線）、ｇｙ／｜ｇ｜（点線）、およびｇｚ／｜ｇ｜（一
点鎖線）を示す。図中のＣは、方位角の時間依存性を示す。図中のＤは、異方性拡散強調
項（１６）の進展を時間の関数として示す。数式（１６）の第１項は点線として示され、
第２項は一点鎖線として示され、第３項は実線として示され、第４項は破線として示され
る。
【図２】本発明による等方性拡散強調の様々な勾配変調方式の例を示す図である。図中の
Ａは、正規化されたデフェージング・ベクトルの成分ｑｘ／｜ｑ｜（破線）、ｑｙ／｜ｑ
｜（点線）、およびｑｚ／｜ｑ｜（一点鎖線）、ならびにデフェージング・ベクトルの正
規化されたマグニチュードＦ（ｔ）（実線）を示す。図中のＢは、正規化された有効勾配
ベクトルの成分ｇｘ／｜ｇ｜（破線）、ｇｙ／｜ｇ｜（点線）、およびｇｚ／｜ｇ｜（一
点鎖線）を示す。図中のＣは、方位角の時間依存性を示す。図中のＤは、異方性拡散強調



(7) JP 6280540 B2 2018.2.14

10

20

30

40

50

項（１６）の進展を時間の関数として示す。数式（１６）の第１項は点線として示され、
第２項は一点鎖線として示され、第３項は実線として示され、第４項は破線として示され
る。
【図３】本発明による等方性拡散強調の様々な勾配変調方式の例を示す図である。図中の
Ａは、正規化されたデフェージング・ベクトルの成分ｑｘ／｜ｑ｜（破線）、ｑｙ／｜ｑ
｜（点線）、およびｑｚ／｜ｑ｜（一点鎖線）、ならびにデフェージング・ベクトルの正
規化されたマグニチュードＦ（ｔ）（実線）を示す。図中のＢは、正規化された有効勾配
ベクトルの成分ｇｘ／｜ｇ｜（破線）、ｇｙ／｜ｇ｜（点線）、およびｇｚ／｜ｇ｜（一
点鎖線）を示す。図中のＣは、方位角の時間依存性を示す。図中のＤは、異方性拡散強調
項（１６）の進展を時間の関数として示す。数式（１６）の第１項は点線として示され、
第２項は一点鎖線として示され、第３項は実線として示され、第４項は破線として示され
る。
【図４】本発明による等方性拡散強調の様々な勾配変調方式の例を示す図である。図中の
Ａは、正規化されたデフェージング・ベクトルの成分ｑｘ／｜ｑ｜（破線）、ｑｙ／｜ｑ
｜（点線）、およびｑｚ／｜ｑ｜（一点鎖線）、ならびにデフェージング・ベクトルの正
規化されたマグニチュードＦ（ｔ）（実線）を示す。図中のＢは、正規化された有効勾配
ベクトルの成分ｇｘ／｜ｇ｜（破線）、ｇｙ／｜ｇ｜（点線）、およびｇｚ／｜ｇ｜（一
点鎖線）を示す。図中のＣは、方位角の時間依存性を示す。図中のＤは、異方性拡散強調
項（１６）の進展を時間の関数として示す。数式（１６）の第１項は点線として示され、
第２項は一点鎖線として示され、第３項は実線として示され、第４項は破線として示され
る。
【図５】本発明による等方性拡散強調の様々な勾配変調方式の例を示す図である。図中の
Ａは、正規化されたデフェージング・ベクトルの成分ｑｘ／｜ｑ｜（破線）、ｑｙ／｜ｑ
｜（点線）、およびｑｚ／｜ｑ｜（一点鎖線）、ならびにデフェージング・ベクトルの正
規化されたマグニチュードＦ（ｔ）（実線）を示す。図中のＢは、正規化された有効勾配
ベクトルの成分ｇｘ／｜ｇ｜（破線）、ｇｙ／｜ｇ｜（点線）、およびｇｚ／｜ｇ｜（一
点鎖線）を示す。図中のＣは、方位角の時間依存性を示す。図中のＤは、異方性拡散強調
項（１６）の進展を時間の関数として示す。数式（１６）の第１項は点線として示され、
第２項は一点鎖線として示され、第３項は実線として示され、第４項は破線として示され
る。
【図６】本発明による等方性拡散強調の様々な勾配変調方式の例を示す図である。図中の
Ａは、正規化されたデフェージング・ベクトルの成分ｑｘ／｜ｑ｜（破線）、ｑｙ／｜ｑ
｜（点線）、およびｑｚ／｜ｑ｜（一点鎖線）、ならびにデフェージング・ベクトルの正
規化されたマグニチュードＦ（ｔ）（実線）を示す。図中のＢは、正規化された有効勾配
ベクトルの成分ｇｘ／｜ｇ｜（破線）、ｇｙ／｜ｇ｜（点線）、およびｇｚ／｜ｇ｜（一
点鎖線）を示す。図中のＣは、方位角の時間依存性を示す。図中のＤは、異方性拡散強調
項（１６）の進展を時間の関数として示す。数式（１６）の第１項は点線として示され、
第２項は一点鎖線として示され、第３項は実線として示され、第４項は破線として示され
る。
【図７】様々な種類の材料についての等方性拡散強調（破線）および非等方性拡散強調（
実線）についてのｂに対する信号減衰を示す概略図である。図７Ａは、１Ｄまたは２Ｄの
曲線拡散を有する異方性材料の場合の信号減衰曲線を示す。これらの減衰曲線は、非等方
性拡散強調では多指数関数的であるが、等方性拡散強調では単一指数関数的である。等方
性拡散強調の減衰曲線と非等方性拡散強調の減衰曲線の間の偏差が、異方性の測度となる
。図７Ｂは、等方性拡散強調および非等方性拡散強調で同じ多指数関数的信号減衰曲線を
もたらすいくつかの見かけの拡散寄与を有する等方性材料の一例を示す図である。図７Ｃ
は、等方性拡散強調および非等方性拡散強調の両方で多指数関数的信号減衰をもたらす等
方性成分と異方性成分の混合を有する材料の一例を示す図であるが、等方性拡散強調の減
衰曲線と非等方性拡散強調の減衰曲線の間の偏差が異方性の測度となる。
【図８】様々な種類の材料についての解析の実験結果を示す図である。全ての図に、等方
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性拡散強調の実験結果（丸印）および非等方性拡散強調の実験結果（バツ印）が示してあ
る。自由等方性拡散を有するサンプル（図８Ａ）、制約等方性拡散を有するサンプル（図
８Ｂ）、および高い程度の異方性を有するサンプル（図８Ｃ）についての実験結果および
解析を示す。
【図９Ａ】開示する解析方法を用いて微視的な異方性の程度を推定するために拡散強調ｂ
の範囲の関数として系統偏差および精度を調査するためのモンテ・カルロ誤差解析を示す
図である。
【図９Ｂ】開示する解析方法を用いて微視的な異方性の程度を推定するために拡散強調ｂ
の範囲の関数として系統偏差および精度を調査するためのモンテ・カルロ誤差解析を示す
図である。
【発明を実施するための形態】
【００１２】
本発明の背景およびいくつかの具体的な実施形態の説明
　微視的な異方性系のスピン拡散が局所的にはガウス過程と考えることができ、したがっ
て拡散テンソルＤ（ｒ）で完全に記述することができるものと仮定すると、拡散符号化実
験中の複素横磁化ｍ（ｒ、ｔ）の進展は、Ｂｌｏｃｈ－Ｔｏｒｒｅｙ方程式によって与え
られる。なお、Ｂｌｏｃｈ－Ｔｏｒｒｅｙ方程式は、例えばパルス勾配スピン・エコー（
ＰＧＳＥ）、パルス勾配刺激エコー（ＰＧＳＴＥ）およびその他の変調勾配スピン・エコ
ー（ＭＧＳＥ）方式など、任意の拡散符号化方式に適用されることに留意されたい。一様
なスピン密度であるものと仮定し、緩和を無視すると、磁化進展は、
【数１】

で与えられる。ここで、γは、磁気回転比、ｇ（ｔ）は、時間依存性有効磁場勾配ベクト
ルである。ＮＭＲ信号は、巨視的な横磁化
【数２】

に比例する。
【００１３】
　実験中に、各スピンが、一意的な拡散テンソルＤによって特徴付けられる領域に閉じ込
められる場合には、巨視的な磁化は、異なるＤを有する全ての領域の寄与の重ね合わせで
ある。したがって、それぞれの巨視的な磁化寄与の進展は、一定かつ一様なＤを用いて数
式（１）および（２）を解くことによって得ることができる。エコー時間ｔＥにおける信
号マグニチュード寄与は、
【数３】

で与えられる。ここで、Ｉ０は、拡散符号化を行わない信号であり、ｇ＝０であり、ｑ（
ｔ）は、間隔０＜ｔ＜ｔＥについて定義される時間依存性デフェージング・ベクトル
【数４】
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ドｑ、時間依存性正規化マグニチュード｜Ｆ（ｔ）｜≦１、および時間依存性単位方向ベ
クトル
【数５】

を用いて表される。なお、スピン・エコー実験では、有効勾配ｇ（ｔ）は、シーケンス中
の奇数番目の各１８０度無線周波（ＲＦ）パルスの後の勾配マグニチュード反転の影響を
含むことに留意されたい。数式（３）は、エコー形成の条件ｑ（ｔＥ）＝０が満たされて
いるものと仮定しており、これはＦ（ｔＥ）＝０であることを意味する。一般には、ＮＭ
Ｒパルス・シーケンス中には、いくつかのエコーがある可能性がある。
【００１４】
　エコー・マグニチュード（３）は、拡散強調行列を用いて書き換えることができる。
【数６】

【数７】

時間依存性波形Ｆ（ｔ）２の積分は、スピン・エコー実験における任意の拡散符号化方式
の有効拡散時間ｔｄを定義する。
【数８】

【００１５】
　以下、シングル・エコー・シーケンスでも、勾配変調ｇ（ｔ）を、Ｄが回転しても不変
な等方性拡散強調を生じるように設計することができる、すなわちエコー減衰が等方性平
均拡散率
【数９】

に比例することを実証する。
【００１６】
　上に開示された内容に鑑みて、本発明の１つの具体的な実施形態によれば、等方性拡散
強調は、拡散テンソルＤが回転しても不変である。
【００１７】
　本発明によれば、このような形態のデフェージング・ベクトル

【数１０】

を探す。このデフェージング・ベクトルでは、Ｄが回転しても
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【数１１】

は不変である。拡散テンソルＤがその等方性寄与
【数１２】

（Ｉは恒等行列）と異方性寄与すなわち偏差テンソルＤＡの和として表現され、
【数１３】

となる場合には、等方性拡散強調は、条件
【数１４】

が満たされるときに達成される。
【００１８】
　球座標では、単位ベクトル

【数１５】

は、傾きζおよび方位角ψによって、
【数１６】

と表現される。拡散テンソルの対称性Ｄ＝ＤＴは、
【数１７】

を与え、あるいは球座標では、
【数１８】

で表される。数式（１３）は、
【数１９】

と書き換えることができる。数式（１４）の第１項は、平均拡散率であるが、残りの項は
、デフェージング・ベクトル（４）の方向を定義する角度ζ（ｔ）およびψ（ｔ）にわた
って時間依存性である。さらに、数式（１４）の第２項は、ψとは無関係であるが、第３
項および第４項は、それぞれψおよび２ψの調和関数である（［１３］の数式（４）と比
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）の第２項、第３項および第４項の対応する積分が消えなければならない。数式（１４）
の第２項が積分時に消える条件が、角度ζ（ｔ）、すなわち時間に依存しない「マジック
角度」
【数２０】

の１つの可能な解につながる。
【００１９】
　定数ζｍを考慮すると、数式（１４）の第３項および第４項が積分時に消える条件は、
【数２１】

で与えられる。条件（１６）は、次のようにさらにコンパクトな複素形態に書き変えるこ
とができる。
【数２２】

これは、ｋ＝１、２で満足されなければならない。率
【数２３】

を導入すると、積分（１７）は、新たな変数τを用いて、次のように表すことができる。
【数２４】

なお、上の積分境界値がｔＥからｔｄに移動していることに留意されたい。条件（１８）
は、指数の周期がｔｄであるときに満たされるので、方位角の解は、０以外の任意の整数
ｎについて
【数２５】

である。方位角の時間依存性は、最終的には、
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【数２６】

で与えられる。このように、等方性拡散強調方式は、正規化マグニチュードＦ（ｔ）と角
度ζｍ（１５）およびψ（ｔ）（２０）にわたる連続配向スイープとを有するデフェージ
ング・ベクトルｑ（ｔ）によって決まる。なお、等方性強調は、Ｄが回転しても不変であ
るので、ベクトルｑ（ｔ）の配向と、したがって有効勾配ｇ（ｔ）の配向とは、特定の実
験条件に最もよく適するように実験室系に対して任意にずらすことができることに留意さ
れたい。
【００２０】
　上記のことから理解されるように、さらに別の具体的な実施形態によれば、等方性拡散
強調は、時間依存性デフェージング・ベクトルｑ（ｔ）の連続スイープによって達成され
、ここで、方位角ψ（ｔ）およびそのマグニチュードは時間の連続関数であり、時間依存
性デフェージング・ベクトルｑ（ｔ）が直円錐表面に平行な配向の全範囲に及ぶように、
また時間０における時間依存性デフェージング・ベクトルｑ（ｔ）の配向が時間ｔＥにお
ける配向と同じになるようになっている。さらに、さらに別の実施形態によれば、傾きζ
は、一定の時間に依存しない値、すなわちいわゆるマジック角度になるように選択され、

【数２７】

となるようになっている。なお、本発明による方法は、条件（１０）が満足される限り、
ζが時間依存性になるように選択されるように実行することもできるが、それは好ましい
実施態様ではないことに留意されたい。
【００２１】
　上記の開示は、本発明の１つの具体的な実施形態によれば、拡散強調シーケンス中のデ
カルト座標系におけるデフェージング・ベクトルの配向は、円錐の開口が２＊ζｍ（マジ
ック角度の２倍）である直円錐表面に平行な配向の全範囲に及び、時間０におけるデフェ
ージング・ベクトルの配向は、時間ｔＥにおけるデフェージング・ベクトルの配向と同じ
、すなわちψ（ｔＥ）－ψ（０）＝２＊π＊ｎ（ｎは整数（正または負、ただし０ではな
い））であり、デフェージング・ベクトルの絶対マグニチュードｑ＊Ｆ（ｔ）は時間０お
よび時間ｔＥでゼロであることを示唆している。したがって、１つの具体的な実施形態に
よれば、デフェージング・ベクトルの時間依存性正規化マグニチュードＦ（ｔ）は、ｔ＝
０からｔ＝ｔＥのエコー時間ｔＥの間、｜Ｆ（ｔ）｜≦１であり、時間０におけるデフェ
ージング・ベクトルの配向は、時間ｔＥにおけるデフェージング・ベクトルの配向と同じ
である。
【００２２】
　上記の開示を参照すると、マジック角度の概念は、現在ＭＲの他の種類の方法でも使用
されていると言える。例えば、米国特許出願第２００８１１６８８９号には、磁気共鳴解
析の方法、実際にはマジック角度技術を示唆するＭＲＩ分光法が開示されている。より高
い分光解像度を得る（異方性磁化率の拡幅を減少させる）ためには、米国特許出願第２０
０８１１６８８９号に開示されているようにマジック角度の周りで回転させることが必要
である。この方法は、拡散強調とは関係がない。本発明によれば、デフェージング・ベク
トルをマジック角度の周りで回転させて等方性拡散強調を実現することができるので、本
発明は、米国特許出願２００８１１６８８９号に記載されるようにマジック角度の周りで
磁場またはサンプルを回転させることとは関わりがない。
【００２３】
　本発明によれば等方性強調は、少なくとも４つの配向にわたるｑ（ｔ）ベクトル・ステ
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ップの間で、２πを係数とするψ（ｔ）が等間隔の値となるようにする、方位角ψ（ｔ）
の離散ステップを有するｑ変調によっても達成することができる。マグニチュードＦ（ｔ
）が等方性強調の条件（１０、１６）を満たすように調整されていれば、ψが一定となる
時間間隔の連続順序および長さの選択は任意である。
【００２４】
　本発明の具体的な実施態様および実施形態
　パルスの短いパルス勾配スピン・エコー（ＰＧＳＥ）シーケンスは、本発明による等方
性強調方式の最も簡単な実施態様を与える。ＰＧＳＥでは、約０およびｔＥの時点におけ
る短い勾配パルスによって、デフェージング・ベクトルのマグニチュードが、約０の時点
で瞬間的にその最大値をとり、時間ｔＥで消滅する。正規化マグニチュードは、この場合
には、ｔｄ＝ｔＥであれば、間隔０＜ｔ＜ｔＥでは単純にＦ（ｔ）＝１で与えられ、それ
以外の間隔では０となる。方位角（２０）の最も簡単な選択肢は、ｎ＝１およびψ（０）
＝０とし、したがって
【数２８】

としたときのものである。デフェージング・ベクトルは、
【数２９】

で与えられる。
【数３０】

から計算される対応する有効勾配は、

【数３１】

である。ここで、δ（ｔ）は、ディラックのδ関数である。ｙ軸の周りに

【数３２】

だけ回転させると、
【数３３】

となる。数式（２４）および（２５）の有効勾配は、概念的には、２つの項の和
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　ｇ（ｔ）＝ｇＰＧＳＥ（ｔ）＋ｇｉｓｏ（ｔ）　（２６）
として分離することができる。第１項ｇＰＧＳＥは、通常のＰＧＳＥ２パルス・シーケン
スの有効勾配を表し、第２項ｇｉｓｏは、等方性強調を達成するために加えることができ
る有効勾配変調であることから「イソ・パルス（ｉｓｏ－ｐｕｌｓｅ）」と呼ばれること
もある。
【００２５】
　上記から分かるように、本発明の１つの具体的な実施形態によれば、この方法はシング
ル・ショットで実行され、単一のショットは単一のＭＲ励起を意味するものと理解される
べきである。
【００２６】
　解析
　以下、上記に開示した方法の後に実行することができる提案する解析方法を開示する。
【００２７】
　異方性度（ＦＡ）は、確立した拡散ＭＲＩの異方性の測度である。ＦＡは、固有値λ１

、λ２およびλ３を有する拡散テンソルの不変式として表される。
【数３４】

通常の拡散ＭＲＩの実験では、ボクセル平均異方性しか検出することはできない。ボクセ
ル以下の微視的な異方性は、主拡散軸のランダム分布によって平均化されることが多い。
ここで、微視的な異方性を定量化する新たなパラメータを導入して、それを拡散ＮＭＲに
よってどのように決定することができるかを示す。
【００２８】
　微小異方性の程度に関する情報は、等方性強調を行う場合と行わない場合のエコー減衰
曲線Ｅ（ｂ）＝Ｉ（ｂ）／Ｉ０を比較することによって得ることができる。一般に、拡散
実験では、多指数関数的エコー減衰が観察される。多指数関数的減衰は、例えば非ガウス
拡散を有する制約拡散などの等方性拡散の寄与によるものであることもあるが、主拡散軸
の配向が変化する複数の異方性領域が存在することによるものであることもある。Ｅ（ｂ
）の逆ラプラス変換は、等方性寄与と異方性寄与が場合により重複することもある見かけ
の拡散係数Ｐ（Ｄ）の分布を与える。ただし、等方性強調拡散の実験では、単一指数関数
的減衰からの偏差が主に等方性寄与から生じることが予想される。
【００２９】
　実際には、拡散強調ｂは、単一指数関数的減衰からの初期偏差しか観察されない可能性
がある低ｂレジームに限定されることが多い。このような挙動は、とがり係数Ｋ（Ｊｅｎ
ｓｅｎ、Ｊ．Ｈ．およびＨｅｌｐｅｒｎ、Ｊ．Ａ．（２０１０年）「ＭＲＩ　ｑｕａｎｔ
ｉｆｉｃａｔｉｏｎ　ｏｆ　ｎｏｎ－Ｇａｕｓｓｉａｎ　ｗａｔｅｒ　ｄｉｆｆｕｓｉｏ
ｎ　ｂｙ　ｋｕｒｔｏｓｉｓ　ａｎａｌｙｓｉｓ」、ＮＭＲ　Ｂｉｏｍｅｄ　２３、６９
８－７１０ページ）を用いて定量化することができる。

【数３５】

数式（２８）の第２項は、分布Ｐ（Ｄ）の２次中心モーメントで表すことができる。
【００３０】
　Ｐ（Ｄ）が、
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【数３６】

と正規化されているとすると、正規化エコー信号は、ラプラス変換で与えられる。
【数３７】

Ｐ（Ｄ）の分布は、平均値
【数３８】

および中心モーメント
【数３９】

によって完全に決定される。
【００３１】
　２次中心モーメントは、分散μ２＝σ２を与え、３次中心モーメントμ３は、分布Ｐ（
Ｄ）の歪度または非対称性を与える。一方、エコー強度は、次のようにキュムラント展開
（Ｆｒｉｓｋｅｎ、Ｂ．（２００１年）、「Ｒｅｖｉｓｉｔｉｎｇ　ｔｈｅ　ｍｅｔｈｏ
ｄ　ｏｆ　ｃｕｍｕｌａｎｔｓ　ｆｏｒ　ｔｈｅ　ａｎａｌｙｓｉｓ　ｏｆ　ｄｙｎａｍ
ｉｃ　ｌｉｇｈｔ－ｓｃａｔｔｅｒｉｎｇ　ｄａｔａ」、Ａｐｐｌ　Ｏｐｔｉｃｓ　４０
）として表すことができる。
【数４０】

したがって、単一指数関数的減衰からの１次偏差は、Ｐ（Ｄ）の分散によって与えられる
。
【００３２】
　軸対称性を有する拡散テンソル、すなわちλ１＝Ｄ‖かつλ２＝λ３＝Ｄ⊥と、テンソ
ルの主拡散軸の配向の等方性分布とを仮定すると、エコー信号Ｅ（ｂ）およびそれに対応
する分布Ｐ（Ｄ）は、単純な形式で書くことができる。シングルＰＧＳＥ実験の場合には
、単一の拡散符号化方向を用いて、この分布は、
【数４１】

で与えられ、その平均および分散は、

【数４２】

および
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である。シングルＰＧＳＥのエコー減衰は、
【数４４】

で与えられる。
【００３３】
　直交する符号化勾配を有するダブルＰＧＳＥでは、分布Ｐ（Ｄ）は、
【数４５】

で与えられ、シングルＰＧＳＥの場合と同じ平均値を有するが、分散は小さく、
【数４６】

である。シングルＰＧＳＥの場合と同様に、ダブルＰＧＳＥでも、エコー減衰は、多成分
減衰を呈する。
【数４７】

ランダムに配向する異方性領域では、非等方性拡散強調は、拡散係数の比較的広い分布を
もたらすが、ダブルＰＧＳＥで測定したときには、シングルＰＧＳＥの場合と比較して４
分の１に減少する。一方、等方性強調は、
【数４８】

をもたらし、
μ２＝０　（４１）
であり、単一指数関数的信号減衰は
【数４９】

である。
【００３４】
　分散μ２は、形態（３３）の関数をエコー減衰データのあてはめに適用することによっ
て推定することもできる。ただし、ランダムに配向する異方性領域の場合には、（３６）
のキュムラント展開の収束が遅いので、エコー減衰（３６）を十分に記述するためにはい
くつかのキュムラントが必要になることもある。あるいは、分布（３４）を、ガンマ分布
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【数５０】

で近似してもよい。ここで、αは、形状パラメータと呼ばれるものであり、βは、スケー
ル・パラメータと呼ばれるものである。ガンマ分布では、平均拡散率は、
【数５１】

で与えられ、分散は、μ２＝α・β２で与えられる。ガンマ分布は、効率的なあてはめ関
数である。これら２つのパラメータを用いると、等方性寄与および異方性寄与の両方を有
する広範囲の拡散分布をとらえることができる。ガンマ関数のラプラス変換は、単純な解
析形態をとるので好都合である。

【数５２】

【００３５】
　関数（４４）を等方性拡散強調エコー減衰にあてはめることによって得られる分散μ２
ｉｓｏは、等方性拡散寄与に関係する。これは、この分散が、純粋な微視的に異方性の系
では等方性強調で消滅することが予想されるからである（数式４１参照）。非等方性強調
データに同じあてはめ手続きを施すと、等方性寄与および異方性寄与の両方による分散μ

２が得られる。その差μ２－μ２
ｉｓｏは、全ての拡散寄与が等方性であると消滅するの

で、微小異方性の測度となる。一方、平均拡散率
【数５３】

は、等方性強調データおよび非等方性強調データの両方で同じになると予想される。した
がって、その差μ２－μ２

ｉｓｏは、数式（４４）を等方性強調データ・セットおよび非
等方性強調データ・セットにあてはめるときに、それぞれμ２

ｉｓｏおよびμ２をフリー
・フィット・パラメータとして用い、一方で共通のパラメータ
【数５４】

を両データ・セットのあてはめに使用することによって得られる。
【００３６】
　差μ２－μ２

ｉｓｏならびに
【数５５】

が、次のように、微視的な異方性度（μＦＡ）の新たな測度となる。
【数５６】
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μＦＡは、拡散が局所的に純粋に異方性であり、同じ固有値を有するランダムに配向する
軸対称な拡散テンソルによって決定されるときに、μＦＡの値が、確立されたＦＡの値に
対応するように定義される。数式（４５）は、μＦＡ＝ＦＡ（２７）と設定し、
【数５７】

と仮定し、固有値Ｄ‖およびＤ⊥を
【数５８】

およびμ２（数式３５参照）を用いて表すことによって得られる。１次元曲線拡散の場合
には、Ｄ‖＞＞Ｄ⊥であるときに、μＦＡ＝ＦＡ＝１となり、２次元曲線拡散の場合には
、Ｄ‖＜＜Ｄ⊥であるときに、

【数５９】

となる。
【００３７】
　数式（４５）の差μ２－μ２

ｉｓｏは、等方性拡散成分が存在するときでも微小異方性
の定量化が可能であることを保証する。例えば球状細胞など、非ガウス制約拡散によって
特徴付けられる等方性制約は、μ２およびμ２

ｉｓｏの両方を同じ量だけ相対的に増大さ
せ、それにより等方性寄与の量とは無関係な差μ２－μ２

ｉｓｏを提供するものと予想さ
れる。非ガウス寄与の量は、例えば、比
【数６０】

として定量化することもできる。
【００３８】
　有限配向散乱を有する異方性拡散では、すなわち局所拡散テンソルが完全にランダムな
配向ではないときには、

【数６１】

およびμ２－μ２
ｉｓｏは、非等方性拡散強調実験の勾配配向に依存することが予想され

る。さらに、勾配配向に依存し、非等方性拡散強調実験の初期エコー減衰で与えられる見
かけの拡散係数（ＡＤＣ）の分散、すなわちボリューム強調平均拡散率は、有限配向散乱
を示すことがある。したがって、等方性強調実験と組み合わせた、多指数関数的である可
能性がある減衰を検出するためのｂ値の範囲で実行される拡散テンソルおよび拡散とがり
テンソルの測定と同様のいくつかの方向で実行された非等方性強調実験は、微小異方性に
関する追加の情報ならびに異方性領域の配向散乱に関する情報を生じることが予想される
。
【００３９】
　数式（４４）は、適当な場合には、追加の項によって拡張することもできる。例えば、
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脳の脳脊髄液（ＣＳＦ）の明白な信号寄与の影響は、数式（４４）に等方性ＣＳＦ拡散率
Ｄ１を有する単一指数関数項を追加することによって記述することができる。
【数６２】

ここで、ｆは、追加信号寄与のフラクション（ｆｒａｃｔｉｏｎ）である。数式（４４）
の代わりに数式（４６）を使用して、実験データをあてはめることもできる。
【００４０】
　数式（４６）に示される拡張あてはめモデルを適用した場合には、平均拡散率
【数６３】

、追加拡散寄与（ｆ）、および追加寄与の拡散率（Ｄ１）は、等方性拡散強調データと非
等方性拡散強調データとで等しくなるように制約される。
【００４１】
　この方法は、数式（４６）のように、上記の段落で述べた解析に適用される数式（４４
）の追加の項を使用することを含むことができる。数式（４６）は、２つの追加パラメー
タ、すなわち追加拡散寄与のフラクション（ｆ）および追加寄与の拡散率（Ｄ１）を含む
。このような例の１つとしては、人間の脳から得られるデータの解析が挙げられ、その場
合には、数式（４６）の追加項は、脳脊髄液（ＣＳＦ）から得られる信号に割り当てるこ
とができる。数式（４６）のパラメータ
【数６４】

は、この場合には、組織中の平均拡散率に割り当てられ、パラメータＤ１は、ＣＳＦの拡
散率に割り当てられることになる。このように、等方性拡散強調を使用して、ＣＳＦの寄
与のない脳組織の平均拡散率を得ることができる
【００４２】
　さらに、非等方性強調信号と等方性強調信号の比、またはそれらの対数から、異方性に
関する有益な情報を得ることができる。例えば、中間的なｂ値における非等方性強調信号
と等方性強調信号の比を使用して、軸索突起による拡散制約効果による人間の脳組織にお
ける径方向（Ｄ⊥）拡散率と軸方向（Ｄ‖）拡散率の差を推定することもできる。これら
の信号の比から微視的な異方性に関する情報を抽出することは、例えばＣＳＦによる高い
拡散率を有する等方性成分がより高いｂ値において抑制されるので、有利であることがあ
る。このような信号比またはそこから得られる任意のパラメータを使用して、ＭＲＩのパ
ラメータ・マップを生成する、またはＭＲ画像コントラストを生成することもできる。
【００４３】
図面の詳細な説明
　図１から図６は、本発明による等方性拡散強調の様々な勾配変調方式の例を示す図であ
る。図１から図６の全ての図において、以下が成立する。すなわち、Ａ）正規化デフェー
ジング・マグニチュードＦ（ｔ）（実線）、正規化デフェージング・ベクトルの成分ｑｘ

／｜ｑ｜（破線）、ｑｙ／｜ｑ｜（点線）、およびｑｚ／｜ｑ｜（一点鎖線）。Ｂ）方位
角ψ（ｔ）。Ｃ）正規化有効勾配ベクトルの成分ｇｘ／｜ｇ｜（破線）、ｇｙ／｜ｇ｜（
点線）、およびｇｚ／｜ｇ｜（一点鎖線）。なお、１８０°ＲＦパルスをｔ＝ｔＥ／２で
使用した場合には、実際のハードウェア生成勾配は、時間ｔ＞ｔＥ／２ではＣ）に示した
ものと比較して反転されることに留意されたい。D）数式（１６）による異方性強調寄与
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は時間の関数であり、数式（１６）の第１項は点線として示され、第２項は一点鎖線とし
て示され、第３項は実線として示され、第４項は破線として示される。提案されている様
々な勾配変調方式は、最初にデフェージング・マグニチュード変調Ｆ（ｔ）を選択した後
に、対応する時間依存性方位角ψ（ｔ）を計算し、その後、デフェージング・ベクトルお
よび勾配ベクトルの様々な成分を計算することによって構成されていた。この特定の例で
は、時間に依存しないマジック角度ζｍおよび実験室軸の配向の選択により、有効勾配ベ
クトルおよびデフェージング・ベクトルのｚ成分が、それぞれ｜ｇ（ｔ）｜およびＦ（ｔ
）に比例することに留意されたい。このことは、非等方性拡散強調のｚ勾配が等方性拡散
強調のｚ勾配より
【数６５】

倍大きい場合には、３つの方向全ての勾配を利用する等方性拡散強調実験と、ｚ方向の勾
配しか利用しない非等方性拡散強調実験とで、等価な拡散強調値ｂを実現することができ
ることを示している。
【００４４】
　第１の例は、ほぼ一定のＦ（ｔ）＝１を有するＰＧＳＥシーケンス、すなわち拡散符号
化間隔の最初と最後の短いｚ勾配パルス（ｇｚ／｜ｇ｜）を示す。勾配シーケンスは、ｘ
方向には正弦波勾配変調によって、またｙ方向には余弦波変調で増強されて、等方性拡散
強調を実現する。なお、通常のＰＧＳＥ拡散実験と同様に、非等方性拡散強調は、ｘ勾配
およびｙ勾配がアクティブでないときに実現されることに留意されたい。この例では、１
８０°再収束ＲＦパルスを使用するときには、勾配変調は、間隔０＜ｔ＜ｔＥ／２および
ｔＥ／２＜ｔ＜ｔＥで同じになり、これは、例えば分光解像度を実現する応用分野など多
くの応用分野で好ましい実施態様である。これは、勾配生成機器に非対称性が生じる可能
性があるので有利であることもある。ただし、短い勾配パルスを使用すること、ならびに
励起後、および１８０°ＲＦパルスを印加する場合にはその印加後に、余弦波勾配成分を
その最大値まで素早く増大させ、１８０°ＲＦパルスを印加する場合にはその前にその値
を素早くゼロまで減少させる必要があることが、応用分野によっては不利な実施態様とな
ることもある。
【００４５】
　第２の例は、ｚ方向に長い勾配パルスを有するＰＧＳＥ、または等方性拡散強調のため
にｘ方向およびｙ方向に勾配変調で増強された、一定のｚ勾配（磁石の漂遊磁場によって
得ることができる）のスピン・エコー実験としてみることができる。第１の例と同様に、
この場合も、勾配成分のいくつかを素早く増大させ、消滅させる必要がある場合があるこ
とが、不利となることがある。さらに、第１の例とは異なり、いくつかの勾配成分の変調
は、間隔０＜ｔ＜ｔＥ／２およびｔＥ／２＜ｔ＜ｔＥで同じにならない。
【００４６】
　以上および以下の説明に関しては、本発明によればマルチ・エコーの変形形態も言うま
でもなく可能であることに言及すべきである。そうすれば、場合により、流れ／動きの補
償および勾配生成機器において生じうる非対称性の補償に有利になる可能性もある。
【００４７】
　例３から６では、全ての勾配成分およびデフェージング成分に高調波勾配変調を利用し
ている。これらの例は、用いるデフェージング・マグニチュードの変化がより漸進的であ
ることにより、最初の２つの例と比較して有利であることがある。ただし、これらの例で
は、間隔０＜ｔ＜ｔＥ／２およびｔＥ／２＜ｔ＜ｔＥでいくつ間勾配成分の変調が同じで
なくなってしまう。例３から５ではＲＦパルスの印加の直後および直前に勾配成分のいく
つかを素早く増大および消滅させる必要があることがあるが、この状況は、第６の例では
、全ての勾配成分が好都合に時間０、ｔＥ／２、およびｔＥで消滅するので、より好まし
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い。上記から理解されるように、本発明の１つの具体的な実施形態によれば、時間依存性
正規化マグニチュードＦ（ｔ）は、時間の調和関数として選択される。ただし、図１およ
び図２から分かるように、これは、当てはまらない場合には不可欠なものではないことに
留意されたい。
【００４８】
　図７Ａから図７Ｃには、様々な種類の材料について、等方性拡散強調および非等方性拡
散強調についてのｂに対する信号減衰を示す概略図が示してある。図７では、以下が成立
する。すなわち、Ａ）実線は、１Ｄおよび２Ｄの曲線拡散（例えばそれぞれ逆六方相Ｈ２
（チューブ）およびラメラ相Ｌα（平面）の拡散）の非等方性拡散強調実験における減衰
を表す。破線は、等方性拡散強調を有する対応する減衰である。等方性強調の初期減衰
【数６６】

は、非等方性拡散強調の場合と同じである。Ｂ）７０％が自由等方性拡散、３０％が制約
等方性拡散である系の減衰。この場合には、等方性拡散強調および非等方性拡散強調によ
り、ｂ範囲全体で同じ信号減衰が得られる。Ｃ）７０％が異方性拡散（２Ｄ）、３０％が
制約等方性拡散である系の減衰。実線は、非等方性拡散強調に対応し、破線は、等方性拡
散強調に対応する。初期減衰は、等方性拡散強調と非等方性拡散強調で同じであり、より
高いｂ値での減衰の間の偏差により、異方性の程度が明らかになる。
【００４９】
　図８Ａから図８Ｃには、様々な種類の材料についての微視的な異方性の解析の実験結果
が示してある。示してあるのは、等方性拡散強調（丸印）および非等方性拡散強調（バツ
印）の
【数６７】

に対する正規化信号減衰である。実線は、等方性強調データおよび非等方性強調データで
初期減衰（破線で示す）が等しいという制約下での実験データへの数式（４４）の最適な
あてはめを表す。全ての実験は、２５℃で行われた。全ての実験において、信号強度は、
水ピークの積分によって得た。Ａ）自由水。等方性拡散強調および非等方性拡散強調によ
り得られたデータが重なり合い、単一指数関数的信号減衰を生じる。この解析は、
　
【数６８】

およびμＦＡ＝０を与える。Ｂ）制約水拡散を有する水道水中のパン酵母（Ｊａｓｔｂｏ
ｌａｇｅｔ　ＡＢ、スウェーデン）から得た酵母菌細胞のサスペンション。等方性拡散強
調および非等方性拡散強調により得られたデータが重なり合い、多指数関数的信号減衰を
生じる。この解析は、
【数６９】

およびμＦＡ＝０を与える。Ｃ）逆六方相に対応する極めて高い微視的な異方性を有する
プルロニック系界面活性剤Ｅ５Ｐ６８Ｅ６で構成された液晶材料中の水の拡散。等方性拡
散強調および非等方性拡散強調により得られたデータが、より高いｂ値で発散し、非等方
性拡散強調の場合には多指数関数的信号減衰を生じ、等方性拡散強調の場合には単一指数
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関数的信号減衰を生じる。この解析は、
【数７０】

およびμＦＡ＝１．０を与える。
【００５０】
　図９Ａおよび図９Ｂには、モンテ・カルロ誤差解析の結果が、上記の開示による１Ｄ（
点）および２Ｄ（丸）の曲線拡散について推定されたパラメータ

【数７１】

（図３Ａ）およびμＦＡ（図３Ｂ）の系統偏差および精度を示している。対応する標準偏
差値を有する

【数７２】

（図３Ａ）と表示される正確な値
【数７３】

に対する推定平均拡散率の比と、対応する標準偏差を有する推定μＦＡ値（図３Ｂ）とが
、信号対雑音レベルが３０である場合の最大減衰率
【数７４】

の関数として、それぞれ点／丸および誤差バーで示してある。
【００５１】
　μＦＡの推定では、ｂ値の最適な選択が重要である。ｂ値の最適範囲を調査するために
、図９Ａおよび図９Ｂに示すモンテ・カルロ誤差解析が実行されている。エコー信号は、
ランダムに配向された領域を有する１Ｄおよび２Ｄの曲線拡散の場合に０からｂｍａｘの
間の１６個の等間隔のｂ値の関数として生成した。上限のｂｍａｘを変化させ、減衰率

【数７５】

は、１Ｄの場合と２Ｄの場合で同じになるように選択した。信号は、非強調信号に対して
決定した一定の信号対雑音比ＳＮＲ＝３０を有するライス・ノイズを受けた。等方性強調
減衰データおよび非等方性強調減衰データを、本明細書に述べるプロトコルで解析して、
パラメータ

【数７６】

およびμＦＡを得た。この解析を、所与のＳＮＲを有する様々なシミュレート・ノイズ信
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点／丸および誤差バーとして示す推定
【数７７】

およびμＦＡの平均および標準偏差が得られる。
【００５２】
　拡散強調ｂの最適範囲は、μＦＡの解析の確度と精度の兼ね合いによって与えられ、平
均拡散率に依存する。使用する最大ｂ値が

【数７８】

未満である場合には、μＦＡは、過小評価される傾向があり、
【数７９】

より大きい最大ｂ値では、μＦＡは、過大評価される傾向がある。一方、特にｂの最大値
が小さすぎると、ノイズに対する感度が高くなることにより、μＦＡの確度が損なわれる
。図９Ｂを参照されたい。

【図１】

【図２】

【図３】

【図４】
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【図６】

【図７】

【図８】

【図９Ａ】

【図９Ｂ】
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