wo 2018/052908 A1 | 0K 0000 OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3

Organization
=

International Bureau

(43) International Publication Date
22 March 2018 (22.03.2018)

(10) International Publication Number

WO 2018/052908 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2017/051196

(22) International Filing Date:
12 September 2017 (12.09.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/395,216 15 September 2016 (15.09.2016) US
15/700,862 11 September 2017 (11.09.2017) US

(71) Applicant: ORACLE INTERNATIONAL CORPO-
RATION [US/US]; 500 Oracle Parkway, M/S 50P7, Red-
wood Shores, California 94065 (US).

(72) Inventors: PARK, Hoyong; 1196 Osuna Place, San Jose,
California 95129 (US). GEISZTER, Gyorgy;, Hungary,
1029 Budapest, Magdolna Street 1, 1029 Budapest (HU).

(74) Agent: BENNETT, Jesse S. et al.; Kilpatrick Townsend
and Stockton, LLP, Mailstop: IP Docketing - 22, 1100
Peachtree Street, Suite 2800, Atlanta, Georgia 30309 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: GRAPH GENERATION FOR A DISTRIBUTED EVENT PROCESSING SYSTEM

EPN CONFIGURATION
FILE

OTHER FILES
308 312

QUERY CONFIGURATION FILE

Vs 300

EVENT PROCESSING
APPLICATION
304

APPLICATION DESIGN USER INTERFACE
306

USER DeviCE 302

COMMON APPLICATION COMMON APPLICATION
RUNTIME MODEL RUNTIME MODEL
GENERATOR OPTIMIZER

316 318

!

TARGET DAG GENERATOR 320

TARGET

RUNTIME DAG OF
COMPONENTS
322

REPRESENTATION OF
APPLICATION

324

APPLICATION PROCE!

SSING ENGINE 31

(57) Abstract: An event processing system for processing events in an event stream is disclosed. The system receives information
identifying an application and generates a common application runtime model of the application based on the information identifying
the application. The system converts the common application runtime model of the application into a first generic representation of
the application. The first generic representation of the application is executed in a first target event processing system of a plurality of
target event processing systems. The first generic representation of the application comprises a runtime Directed Acyclic Graph (DAG)
of components of the application. The system then transmits the first generic representation of the application to the first target event

TARGET EVENT STREAM
PROCESSING ENGINE
326

TARGET EVENT STREAM
PROCESSING ENGINE

TARGET EVENT STREAM
PROCESSING ENGINE
330

FIG. 3

processing system for execution by the first target event processing system.

[Continued on next page]

WO 2018/052908 A1 ||} 100000 N0 OO

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

WO 2018/052908 PCT/US2017/05119¢ EPATENT
Attorney Docket No.: 088325-1052426(177610PC)
Client Ref No. ORA170171-WO-PCT-2

GRAPH GENERATION FOR A BISTRIBUTED EVENT PROCESSING
SYSTEM

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] The present application claims the benefit and priority under 35 U S.C. 119(e) of
U.S. Provisional Application No. 62/395,210, filed September 15, 2016 entitied “FAST
SERIALIZATION OF TUPLE BATCHES,” and U.S. Non-Provisional Application No.
15/700,862, filed September 11, 2017 entitled “GRAPH GENERATION FOR A
DISTRIBUTED EVENT PROCESSING SYSTEM,” the entire contents of each are

incorporated herein by reference for all purposes.

[0002] This application is also related to Application Serial No. , filed on
the same day herewith, Attorney Docket No. 088325-1043334 (177600US) entitled “DATA
SERIALIZATION IN A DISTRIBUTED EVENT PROCESSING SYSTEM,” Application

Serial No. , filed on the same day herewith, Attorney Docket No. 088325~
1043336 (177620U8S) entitled “CLUSTERING EVENT PROCESSING ENGINES,”

Application Serial No. , filed on the same day herewith, and Attorney Docket
No. 088325-1043337 (177630US) entitled “DATA PARTITIONING AND PARALLELISM
IN A DISTRIBUTED EVENT PROCESSING SYSTEM.” The entire contents of each

application is hereby incorporated by reference as if fully set forth herein, under 35

U.S.C. §120.

BACKGROUND

[6003] In traditional database systems, data is stored in one or more databases usually in
the form of tables. The stored data is then queried and manipulated using a data management
language such as a structured query language (SQL). For example, a SQL guery may be
defined and executed to identify relevant data from the data stored in the database. A SQL
query is thus executed on a finite set of data stored in the database. Further, when a SQL
query is executed, it is executed once on the finite data set and produces a finite static result.

Databases are thus best equipped to run queries over finite stored data sets.

[00604] A number of modern applications and systems however generate data in the form of

continuous data or event streams instead of a finite data set. Examples of such applications

1

WO 2018/052908 PCT/US2017/051196

include but are not limited to sensor data applications, financial tickers, network performance
measuring tools {e.g. network monitoring and traffic management applications), clickstream
analysis tools, automobile traffic monitoring, and the like. Such applications have given rise
to a need for a new breed of applications that can process the data streams. For example, a

5 temperature sensor may be configured to send out temperature readings.

[80065] Managing and processing data for these types of event stream-based applications
involves building data management and querying capabilities with a strong temporal focus. A
different kind of querving mechanism is needed that comprises long-running queries over
continuous unbounded sets of data. While some vendors now offer product suites geared

10 towards event streams processing, these product offerings still lack the processing flexibility

required for handling today's event processing needs.

BRIEF SUMMARY

[0006] Techniques are provided (e.g., a method, a system, non-transitory computer-
readable medium storing code or instructions executable by one or more processors) for

15 processing events of an event stream. In an embodiment, an event processing system is
disclosed. The system is configured to recetve information 1dentifying an application and
generate a common application runtime model of the application based on the information
identifying the application. The system is configured to convert the common application
runtime model of the application into a first generic representation of the application. In

20 certain examples, the first generic representation of the application is configured to be
executed tn a first target event processing system of a plurality of target event processing
systems. In certain examples, the first generic representation of the application comprises a

runtime Dhrected Acyclic Graph (BAG) of components of the application,

[0007] In certain embodiments, the event processing system is configured to transmit the
25 first generic representation of the application to the first target event processing system for

execution by the first target event processing system.

[B008] In certain embodiments, the application is expressed as an Event Processing
Network (EPN) of components and the information identifying the application includes EPN

configuration information, query information, and rules associated with the application.

30 [8089] In certain embodiments, generating the common application runtime model for the

application comprises representing the application as a set of one or more configuration

30

WO 2018/052908 PCT/US2017/051196

blocks. In some examples, each configuration block represents an event bean with associated

metadata.

[6018] In certain embodiments, the set of one or more configuration blocks comprises at
{east one of an inbound socket event bean, an cutbound socket event bean, a continuous

query language (CQL) processor event bean, or one or more channel event beans.

[6011] TIu certain embodiments, converting the common application runtime model of the
application into the first generic representation of the application comprises converting one or
more configuration bocks represented in the common application runtime model of the

application into the runtime DAG of components of the application.

[6012] In certain embodiments, the event processing system is configured to convert the
common application runtime model of the application into a second generic representation of
the application for execution in a second target event processing system of the plurality of
target event processing systems. [n certain examples, the second target event processing

system is different from the first target event processing system,

[6013] In certain embodiments, converting the common application runtime model of the
application nto the second generic representation of the application comprises converting
one or more configuration bocks represented in the common runtime application model of the

application into a target representation of the application.

[0014] In certain embodiments, the event processing system is configured to transmit the
target representation of the application for execution by the second target event processing
system. In certain examples, the second target event processing system includes an event

processor system.

[0013] The techniques described above and below may be implemented in a number of
ways and in a number of contexts. Several example implementations and contexts are
provided with reference to the following figures, as described below in more detail. However,

the following implementations and contexts are but a few of many.

BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIG. 1 depicts aspects of an example event processing system architecture that

provides an environment by which an event processing application can be processed for

10

20

WO 2018/052908 PCT/US2017/051196

different execution environments, in accordance with an embodiment of the present

disclosure.

{00171 FIG. 2 15 a graphical representation of an Event Processing Network (EPN) for an

event processing application in accordance with an embodiment of the present disclosure.

[6018] FIG. 3 is a simplified block diagram illustrating the components of an application

processing engine, in accordance with an embodiment of the present disclosure.

16019] FIG. 4 1s an example of a representation of a ‘common application runtime model’
generated by the common application model generator, in accordance with an embodiment of

the present disclosure.

[0026] FIG. 515 an example of a runtime Directed Acyclic Graph (DAG) of components

generated by a DAG generator, in accordance with an embodiment of the present disclosure.

[6021] FIG. 61s a simplified high level diagram of an event processing system that may

incorporate an embodiment of the present disclosure.

[8622] FIG. 7 1s a block diagram illustrating the components of a distributed event

processing system, in accordance with an embodiment of the present disclosure.

[6623] FIG. 8 15 an example flow diagram of a process that describes a set of operations for
processing an event processing application to generate a common application runtime model

of the application, in accordance with one embodiment of the present disclosure.

[0024] FIG. 9 1s an example flow diagram of a process that describes a set of operations for
processing an event processing application to generate a common application runtime model

of the application, in accordance with another embodiment of the present disclosure.

[0025] FIG. 1015 a simplified block diagram illustrating the components of a distributed

event processing system, in accordance with an embodiment of the present disclosure,

[6026] FIG. 11 15 a high level data flow of a process for performing the serialization and
de-serialization of data in a Resilient Distnibuted Dataset (RDD)object, in accordance with an
embodiment of the present disclosure.

[0027] FIG. 12 is an example flow diagram of a process that describes a set of operations
by which data comprised in a batch of events can be serialized, in accordance with an

embodiment of the present disclosure.

30

WO 2018/052908 PCT/US2017/051196

[0028] FIG. 13A is an example flow diagram of a process that describes a set of operations
tor generating a set of serialized data values for a numeric attribute of an event, in accordance

with an embodiment of the present disclosure.

[602%9] FIG. 13B is an example flow diagram of a process that describes a set of operations
for generating a set of serialized data values for a numeric attribute of an event using the
precision reduction compression technique, in accordance with an embodiment of the present

disclosure.

[0036] FIG. 13C 1s an example flow diagram of a process that describes a set of operations
for generating a set of serialized data values for a numeric attribute of an event using the

regular compression technique, in accordance with an embodiment of the present disclosure.

[6031] FIG. 13D is an example flow diagram of a process that describes a set of operations
for generating a set of sertalized data values for a numeric attribute of an event using the
precision reduction value index compression technique, in accordance with an embodiment of

the present disclosure.

[6032] FIG. 14 15 an example flow diagram of a process that describes a set of operations to
generate a set of serialized data values for a non-numeric attribute of an event, in accordance

with an embodiment of the present disclosure.

[8633] FIG. 15 1s an example of the manner in which event stream data can be serialized
based on determining the data type of the attributes of the events in the event stream, in

accordance with an embodiment of the present disclosure.

[6034] FIG. 16 15 an example flow diagram of a process that describes a set of operations

by which data comprised in a batch of events can be de-serialized, in accordance with an

2

embodiment of the present disclosure.

[8035] FIG. 17 is an example flow diagram of a process that describes a set of operations to
generate a set of de-serialized data values for one or more attributes of events in a batch of

events, in accordance with an embodiment of the present disclosure.

[6036] FIG. 18 is an example flow diagram of a process describing a set of operations for
generating a set of de-serialized data values corresponding to a numeric attribute or a non-
numeric attribute of events in a baich of events using the value index compression, in

accordance with an embodiment of the present disclosure.

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

[8637] FIG. 19 1s an example flow diagram of a process describing a set of operations for
generating a set of de-serialized data values corresponding to a numeric attribute of events in
a batch of events using the precision reduction compression techunique, in accordance with an

embodiment of the present disclosure.

[0038] FIG. 20 1s an example flow diagram of a process describing a set of operations for
generating a set of de-serialized data values corresponding to a numeric attribute of events in

a batch of events, in accordance with an embodiment of the present disclosure.

[0039] FIG. 21 15 an example flow diagram of a process describing a set of operations for
generating a set of de-serialized data values corresponding to a numeric attribute of events in

a batch of events, in accordance with an embodiment of the present disclosure.

[0040] FIG. 22 1s a simplified block diagram illustrating the components of a distributed
event processing system configured for scheduling and managing multiple CEP engines, in

accordance with an embodiment of the present disclosure.

[6041] FIG. 23 15 an example flow diagram of a process describing a set of operations for
scheduling and managing multiple CEP engines, in accordance with an embodiment of the

present disclosure.

16042] FIG. 24 1s a simplified block diagram illustrating the components of a distributed
event processing system configured for data partitioning and parallelism, tn accordance with

an embodiment of the present disclosure.

[6043] FIG. 25 15 an example flow diagram of a process describing a set of operations for
automatically partitioning and parallelizing data using query clauses and object IDs, in

accordance with an embodiment of the present disclosure.

10044] FIG. 26 depicts a simphified diagram of a distributed systern for implementing an

embodiment of the present disclosure.

[0045] FIG. 27 is a simplified block diagram of one or more components of a system
environment by which services provided by one or more components of an embodiment
system may be offered as cloud services, in accordance with an embodiment of the present

disclosure.

16046] FIG. 28 dlustrates an example computer system that may be used to implement an

embodiment of the present disclosure.

(42
<

WO 2018/052908 PCT/US2017/051196

DETAILED DESCRIPTION

[0047] In the following description, various embodiments will be described. For purposes
of explanation, specific configurations and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be apparent to one skilled in the art
that the embodiments may be practiced without the specific details. Furthermore, well-known
features may be omitted or simplified in order not to obscure the embodiment being

described.

Overview of Complex FEvent Processing ({CEP)

10048] Complex Event Processing (CEP) provides a modular platforra for building
applications based on an event-driven architecture. At the heart of the CEP platform is the
Continuous Query Language (CQL), which allows applications to filter, query, and perform
pattern~-matching operations on streams of data using a declarative, SQL-like language.
Developers may use CQL in conjunction with a lightweight Java programming model to
write applications. Other platform modules include a feature-rich IDE, management console,

clustering, distributed caching, event repository, and monitoring, to name a few.

[0049] As event-driven architecture and complex event processing have become prominent
features of the enterprise computing landscape, more and more enterprises have begun to
build mission-critical applications using CEP technology. Today, mission-critical CEP
applications can be found in many different industries. For example, CEP technology is being
used in the power industry to make utilities more efficient by allowing then to react
instantaneously to changes in demand for electricity. CEP technology is being used in the
credit card industry to detect potentially fraudulent transactions as they occur in real time.
The list of mission-critical CEP applications continues to grow. The use of CEP technology
to butld misston-critical applications has led to a need for CEP applications to be made highly

avatlable and fault-tolerant.

16036] Today's Information Techuology (IT) environments generate continuous streams of
data for evervthing from monitoring financial markets and network performance, to business
process execution and tracking RFID tagged assets. CEP provides a rich, declarative
environment for developing event processing applications to improve the effectiveness of
husiness operations. CEP can process multiple event streams to detect patterns and trends in
real time and provide enterprises the necessary visibility to capitalize on emerging

opportunities or mitigate developing risks.

10

Ju—
(V4]

20

30

WO 2018/052908 PCT/US2017/051196

[8051] A continuous stream of data (also referred to as an event stream) may include a
stream of data or events that may be continuous or unbounded in nature with no explicit end.
Logically, an event or data stream may be a sequence of data elements (also referred to as
events), each data element having an associated timestarp. A continuous event stream may
be logically represented as a bag or set of elements (s, T), where "s" represents the data
portion, and "T" is in the time domain. The "s" portion is generally referred to as a tuple or

event. An event stream may thus be a sequence of time-stamped tuples or events.

[3052] In some aspects, the timestamps associated with events in a stream may equate (o a
clock time. In other examples, however, the time associated with events in an event stream
may be defined by the application domain and may vot correspond to clock time but may, for
example, be represented by sequence numbers instead. Accordingly, the time information
associated with an event in an event stream may be represented by a number, a timestamp, or
any other information that represents a notion of time. For a system receiving an input event
stream, the events arrive at the system in the order of increasing timestamps. There could be

more than one event with the same timestamp.

[0053] In some examples, an event in an event stream may represent an occurrence of some
worldly event (e g., when a temperature sensor changed value to a new value, when the price
of a stock symbol changed) and the time information associated with the event may indicate

when the worldly event represented by the data stream event occurred.

[6634] For events received via an event siream, the time information associated with an
event may be used to ensure that the events in the event stream arrive in the order of
increasing timestarnp values. This may enable events received in the event stream to be
ordered based upon their associated time information. In order to enable this ordering,
timestamps may be associated with events in an event stréam in a non-decreasing manner
such that a later-generated event has a later timestamp than an earlier-generated event. As
another example, if sequence numbers are being used as time information, then the sequence
nurmber associated with a later-generated event may be greater than the sequence number
associated with an earlier-generated event. In some examples, nmultiple events may be
associated with the same timestamp or sequence number, for example, when the worldly
events represented by the data stream events oceur at the same time. Events belonging to the
same event stream may generally be processed in the order imposed on the events by the

associated time information, with earlier events being processed prior to later events.

10

Ju—
(V4]

20

[\
(V4]

WO 2018/052908 PCT/US2017/051196

[8655] The time information (e.g., timestamps) associated with an event in an event stream
may be set by the source of the stream or alternatively may be set by the system receiving the
stream. For example, in certain embodiments, a heartbeat may be maintained on a system
receiving an event stream, and the time associated with an event may be based upon a time of
arrival of the event at the system as measured by the heartbeat. It is possible for two events in
an event stream to have the same time information. 1s to be noted that while timestamp
ordering requirement s specific to one event stream, events of different streams could be

arbitrarily interleaved.

[3056] An event stream has an associated schema "S," the schema comprising time
information and a set of one or more named attributes. All events that belong to a particular
event stream conform to the schema associated with that particular event stream.
Accordingly, tor an event stream (s, T), the event stream may have a schema 'S as
(<time_stamp>, <attribute{s)>), where <attributes™ represents the data portion of the schema
and can comprise one or more attributes. For example, the schema for a stock ticker event
stream may comprise attributes <stock symbol>, and <stock price>. Each event received via
such a stream will have a time stamp and the two attributes. For example, the stock ticker

event stream may receive the following events and associated timestamps:

(<timestamp N> <NVDA, 4>)
(<timestamp N+1> <ORCL,62>)
{(<timestamp N+2>, <PCAR.38>)
(<timestamp N+3>, <SPOT,53>)
(<timestamp N+4> <PDCO,44>)
(<timestamp_N+5>, <PTEN,50>)

[0057] In the above stream, for stream element (<timestamp N+1>, <ORCL . 62>), the
event is <ORCL,62> with attributes "stock symbol" and "stock value” The timestamp
associated with the stream element is "timestamp N+1." A continuous event stream is thus a

flow of events, each event having the same series of attributes.

[6038] As noted, a stream may be the principle source of data that COL gueries may act on.
A stream S may be a bag (also referred to as a “multi-set”) of elements (s, T), where “s” is in

the schema of § and “T7 1s 1n the time domain. Additionally, stream elements ray be tuple-

i

[

3

O

(V4]

D

n

8

WO 2018/052908 PCT/US2017/051196

timestamp pairs, which can be represented as a sequence of timestamped tuple insertions. In
other words, a stream may be a sequence of timestamped tuples. In some cases, there may be
more than one tuple with the same timestamp. In addition, the tuples of an input stream may
be requested to arrive at the system in order of increasing timestamps. Alternatively, a
relation (also referred to as a “time varying relation,” and not to be confused with “relational
data,” which may include data from a relational database) may be a mapping from the time
domain to an unbounded bag of tuples of the scherna R In some examples, a relation may be
an unordered, time-varving bag of tuples (i.e, an instantaneous relation). In some cases, at
each instance of time, a relation may be a bounded set. It can also be represented as a
sequence of timestamped tuples that may include insertions, deletes, and/or updates to
capture the changing state of the relation. Similar to streams, a relation may have a fixed
schema to which each tuple of the relation may conform. Further, as used herein, a
continuous query may generally be capable of processing data of (1.¢., queried against) a

stream and/or a relation. Additionally, the relation may reference data of the stream.

Event Processing Applications

[0059] The quantity and speed of both raw infrastructure and business events is
exponentially growing in IT environments. Whether it is streaming stock data for financial
services, streaming satellite data for the military or real-time vehicle- location data for
transportation and logistics businesses, companies in multiple industries must handle large
volumes of complex data in real-time. In addition, the explosion of mobile devices and the
ubiquity of high-speed connectivity adds to the explosion of mobile data. At the same time,
demand for business process agility and execution has also grown. These two trends have put
pressure on organizations to increase their capability to support event-driven architecture
patterns of implementation. Real-time event processing requires both the infrastructure and
the application development environment to execute on event processing requirements. These
requirements often include the need to scale from everyday use cases to extremely high
velocities of data and event throughput, potentially with latencies measured in microseconds
rather than seconds of response time. In addition, event processing applications must often

detect complex patterns in the flow of these events.

[006€¢] The Oracle Stream Analytics platform targets a wealth of industries and functional

areas. The following are some use cases:

10

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

[8061] Telecommunications: Ability to perform real-time call detail (CDR) record
monttoring and distributed denial of service attack detection.

{00621 Financial Services: Ability to capitalize on arbitrage opportunities that exist in
millisecond or microsecond windows. Ability to perform real-time risk analysis, monitoring

and reporting of financial securities trading and calculate foreign exchange prices.

16063] Transportation: Ability to create passenger alerts and detect baggage location in
case of flight discrepancies due to local or destination-city weather, ground crew operations,

airport security, etc.

[6064] Public Sector/Military: Ability to detect dispersed geographical enemy information,
abstract it, and decipher high probability of enemy attack. Ability to alert the most

appropriate resources to respond to an emergency.
[6063] Insurance: Ability to learn and to detect potentially fraudulent claims.

[8866] IT Systems: Ability to detect failed applications or servers in real-time and trigger

Corrective measures.

[0067] Supply Chain and Logistics: Ability to track shipments in real-time and detect and

report on potential delays in arrival.

Real Time Sireamineg & Event Processing Analviics

10068] With exploding data from increased number of connected devices, there ts an
increase in large volumes of dynamically changing data; not only the data moving within
organizations, but also outside the firewall. High-velocity data brings high value, especially
to volatile business processes. However, some of this data loses its operational valuein a
short time frame. Big Data allows the huxury of time in processing for actionable insight. Fast
Data, on the other hand, requires extracting the maximum value from highly dynamic and
strategic data. It requires processing much faster and facilitates taking timely action as close
to the generated data as possible. The Oracle Stream Analvtics platform delivers on Fast Data
with responsiveness. Oracle Edge Analytics pushes processing to the network edge,

correlating, filtering and analyzing data for actionable insight in real-time.

[0069] The Oracle Stream Analytics platform provides ability to join the incoming
streaming events with persisted data, thereby delivering contextually aware filtering,

correfation, aggregation and pattern matching. It delivers lightweight, out of the box adapters

1§

5

(98]
<

WO 2018/052908 PCT/US2017/051196

for common event sources. It also provides an easy-to-use adapter framework for custom
adapter development. With this platform, organizations can identify and anticipate
opportunities, and threats represented by seemingly unrelated events. Its incremental
processing paradigm can process events using a minimum amount of resources providing
extreme low latency processing. It also allows it to create extremely timely alerts, and detect

missing or delayed events immediately, such as the following:

[807¢] Correlated events: It event A happens, event B almost always follows within 2

seconds of it

{00711 Missing or Out-of-Sequence events: Events A, B, C should occur in order. Cis seen

immediately after A, without B.

[6072] Causal events: Weight of manufactured items is slowly trending lower or the
reading falls outside acceptable norms. This signals a potential problem or future

maintenance need.

106731 In addition to real-time event sourcing, the Oracle Stream Analytics platform design
environment and runtime execution supports standards-based, continuous query execution
across both event streams and persisted data stores like databases and high performance data
grids. This enables the platform to act as the heart of intelligence for systems needing
answers in microseconds or minutes to discern patterns and trends that would otherwise go
unnoticed. Event Processing use cases require the speed of in-memory processing with the
mathematical accuracy and reliability of standard database SQL. This platform queries listen
to incoming event streams and execute registered queries continuously, in-memory on each
eveunt, utilizing advanced, automated algorithms for query optimization. While based on an
in-memory execution model, however, this platform leverages standard ANSI SQL syntax for
query development, thus ensuring accuracy and extensibility of query construction. This
platform is fully compliant with the ANSIE SQL 99 standard and was one of the first products
avatlable in the industry to support ANSI SQL reviewed extensions to standard SQL for real-
time, continuous query pattern matching. The CQL engine optimizes the execution of queries
within a processor leaving the developer to focus more on business logic rather than

optimization,

[6074] The Oracle Stream Analytics platform aliows for both SQL and Java code to be

combined to deliver robust event processing applications. Leveraging standard industry

WO 2018/052908 PCT/US2017/051196

terminology to describe event sources, processors, and event output or sinks, this platform
provides a meta-data driven approach to defining and manipulating events within an
application. Its developers use a visual, directed- graph canvas and palette for application
design to quickly outline the flow of events and processing across both event and data

5 sources. Developing the flow through drag and drop modeling and configuration wizards, the
developer can then enter the appropriate metadata definitions to connect design to
implementation. When necessary or preferred, with one click, developers are then able to
drop into custom Java code development or use the Spring® framework directly to code

advanced concepts into their application.

10 [8073] Event driven applications are frequently characterized by the need to provide low
and deterministic latencies while handling extremely high rates of streaming input data. The
underpioning of the Oracle Stream Analytics platform 1s a lightweight Java container based
on an OSGi® backplane. It contains mature components from the WebLogic JEE application

server, such as security, logging and work management algorithms, but leverages those

Ju—
(V4]

services in a real-time event-processing environment. An integrated real-time kernel provides
unique services to optimize thread and memory management supported by a JMX framework
enabling the interaction with the container for performance and configuration. Web 2.0 rich
internet applications can communicate with the platform using the HTTP publish and
subscribe services, which enables them to subscribe to an application channel and have the
20 events pushed to the client. With a small footprint this platform is a lightweight, Java-based

container, that delivers faster time-to- production and lower total cost of ownership.
[6876] The Oracle Stream Analytics platform has the ability to handle millions of events
per second with microseconds of processing latencies on standard, commodity hardware or

optimally with Oracle Exalogic and its portfolio of other Engineered Systems. This is

[\
(V4]

achieved through a complete “top-down" layered solution, not only with a design focus on
high performance event processing use cases, but also a tight integration with enterprise-class
real-time processing infrastructure components. The platform architecture of performance-
oriented server clusters tocuses on reliability, fault tolerance and extreme flexibility with
tight integration into the Oracle Coherence technology and enables the enterprise to

30 predictably scale mission-critical applications across a data grid, ensuring continuous data

availability and transactional integrity.

13

U
(4]

20

30

WO 2018/052908 PCT/US2017/051196

[6677] In addition, this platform allows for deterministic processing, meaning the same
events can be fed into multiple servers or the same server at different rates achieving the
same results each time. This enables incredible advantages over systers that only rely on the

system clock of the running server.

[0078] The techniques described above and below may be implemented in a number of
ways and in a number of contexts. Several example implementations and contexts are
provided with reference to the following figures, as described below in more detail. However,

the following implementations and contexts are but a few of many.

Distributed Event Processins

[6079] In certain situations, users of an enterprise may wish to identify and respond to
significant events that occur within the enterprise quickly so that they can take immediate
action upon the identification of such events. For example, a user may wish to tdentify
significant events that relate to sales orders that have crossed a threshold within the
enterprise. In such a scenario, a user may submit one or more queries to a data store/data
warehouse and wish to view the results of a query in less than a few seconds rather than in
minutes or hours so that the user can take immediate action if an anomaly is detected. Real-
time data processing and data analytics may be used by enterprises to process event streams
n real-time for more reactive decision making and to take immediate action for those times

when acting within seconds or minutes is significant.

[6088] In accordance with an embodiment of the present disclosure, a distributed event
processing systern is disclosed that can process or query very large quantities of data
refatively quickly and in real-time using a combination of CEP and distributed event stream
processing. The distributed event processing system can perform real-time processing of data
streams by executing queries {e.g., CQL gueries} against the data streams {e.g., live feeds}
that are received continuously. The distributed event processing system can receive one ot
more continuous data streams, register a continuous query against the data streams, and
continuously execute the query as new data appears in the streams. Since this type of
continuous query is iong-running, the distributed event processing system can provide a

continuous stream of results to a user.

[0081] In certain embodiments, the disclosed distributed event processing system may be
configured to deploy and execute applications (e.g., event processing applications) by

distributing the execution of an application on a cluster of machines within the system. An

14

16

Ju—
(V4]

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

event processing application described herein may inchude a set of rules that may be
expressed in the form of continuous queries that are used to process input streams. A
continuous query may comprise instructions {(e.g., logic) that identify the processing to be
performed for received events including what events are to be selected as notable events and
output as results of the query processing. Continuous queries may typically perform filtering
and aggregation functions to discover and extract notable events from the input event
streams. An application can be configured to listen to one or more input event streams,
execute logic {e.g., a query)} for selecting one or more notable events from the one or more
input event streams, and output the selected notable events via one or more output event

streams.

[0082] For instance, an event processing application may comprise a word counting
application that counts a quantity of references to a particular word within a set of wput texts.
Such an application can include, for example, continuous queries that read a set of texts and
count the nurmber of times that each word appears in each text. The input text may contain,
tor example, short messages received in the stream from an on-line application, such as
Facebook® or Twitter®. As noted above, continuous queries may be configured using the
CQL language. For instance, to specify a word-counting task/operation to be performed in the
word counting streaming application, a user can write a CQL guery that can take a form such
as: FROM location GROUP BY word SELECT count. Such a query can gather all of the
sentences from the specified location, group the unique words from those sentences into

distinet groups, and then count the quantity of words in each group.

[0083] By distributing the execution of the application on a cluster of machines, the
disclosed distributed event processing system may be configured to provide results pertaining
to the execution of the application guickly and in real-time to a user. The distnibuted event
processing system may be configured to partition the data pertaining to the application into
separate computing nodes, and each computing node can be maintained as a separate fileon a
separate computing machine. Each such machine can be configured to execute a query in the
application in parallel with the other machines relative to the data maintained on that

machine,

Efficient DAG Generation for a distributed event processing svsiem

[0084] In certain embodiments of the present disclosure, an application processing engine

tor processing information related to an application (e.g., an event processing application) is

5

10

Ju—
(V4]

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

disclosed. The application processing engine is configured to recetve information identifving
the event processing application. In certain examples, the event processing application is
expressed as an Event Processing Network (EPN) of components and the information
identifying the event processing application information includes information related to the
various components {(e.g., adapter, processer, stream, or gvent beans) of the gvent processing
application. For instance, the information identityving the event processing application may
include configuration information, query information, and other types of information related

to the application.

[6085] In certain embodiments, the application processing engine may be configured to
process the information identifying the application and generate a ‘common application
runtime model” of the application. As described herein, a ‘common application runtime
model” of the application 1s a representation of the application as a set of one or more
configuration blocks, where each configuration block represents a processing stage with
associated metadata describing the application. The application processing engine may be
contigured to convert the ‘common application runtime model’” of the application into one or
more generic representations of the application. The application processing engine may then
be configured to cause the execution of the one or more generic representations of the
application 1n different execution (runtime} environments supported by different target event

processing sysiems,

[0086] The generation of the ‘common application runtime model” in accordance with
embodiments of the present disclosure enables the execution of a generic representation of
the application in different physical execution (runtime) environments without the developer
(e.g., a user) of the application having to re-write the application code to suit a particular
physical execution (runtime) environment of the target engine prior to its execution in the

target engine.

[0087] The techniques described above may be implemented in a number of ways and in a
number of contexts. Several example implementations and contexis are provided with
reference to FIGS. 1-9 below which describe additional details of the manner in which the
disclosed distributed event processing system may perform operations refated to the

deployment, processing, and execution of event processing applications.

[0088] FIG. 1 depicts aspects of an example event processing system architecture 100 that

provides an environment by which an event processing application can be processed for

10

Ju—
(V4]

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

different execution environments, in accordance with an embodiment of the present
disclosure. In an embodiment, the architecture (event processing system) 100 includes an
application processing engine 110 communicatively connected to one or more user devices

102 via a network 108.

[0089] Network 108 may facilitate communications and exchange of data between user
devices 102 and the application processing engine. Network 108 may be any type of network
tamiliar to those skilled in the art that can support data communications using any of a variety
of commercially-available protocols, including without limitation TCP/IP, SNA, IPX,
AppleTalk, and the like. Merely by way of example, network 108 can be a local area network
(AN} such as an Ethernet network, a Token-Ring network and/or the like, a wide-area
network, a virtual network, including without limitation a virtual private network (VPN}, the
Internet, an intranet, an extranet, a public switched telephone network (PSTN), an infra-red
network, a wireless network (e.g., a network operating under any of the IEEE 802.1X suite of
protocols, the Bluetooth protocol known in the art, and/or any other wireless protocol), and/or

any combination of these and/or other networks.

[009¢] The user devices 102 may be general purpose personal computers (including, by
way of example, personal computers and/or laptop computers running various versions of
Microsoft Windows and/or Apple Macintosh operating systems), cell phones or PDAs
(running software such as Microsoft Windows Mobile and being Internet, e-mail, SMS,
Blackberry, or other communication protocol enabled), workstation computers running any of
a variety of commercially-available UNIX or UNIX-like operating systems {including
without limitation the variety of GNU/Linux operating systems), or any other computing
device. For example, the user devices 102 may be any other electronic device, such as a thin-
client computer, Internet-enabled gaming system, and/or personal messaging device, capable
of communicating over a network {e.g., network 108}, Although example system
environment 100 is shown with one user device, any number of user and/or client computing

devices may be supported, in other embodiments.

[6091] In certain embodiments, the application processing engine 110 may be configured to
process an event processing application for execution in ditferent runtime environments. In
certain examples, an event processing application may be generated by a user of a user device
102, For instance, a user 102 may build an application (e.g., an event processing application}

using a client application 104{e.g., a browser) in the user device using an application design

10

Ju—
(V4]

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

user interface 106 provided by the client application 104, As noted above, an event
processing application may include a set of rules {(e.g., expressed in the form of continuous
queries) that are used to process input streams of data coming from an event source. The
event source may include a variety of data sources such as a monitoring device, a financial
services company, or a motor vehicle. Using the data, the event processing application might
identify and respond to patterns, look for extraordinary events and alert other applications, or

do soroe other work that requires immediate action based on quickly changing data.

[6092] The application processing engine 110 may comprise one or more computers and/or
servers which may be general purpose computers, specialized server computers (including,
by way of example, PC servers, UNIX servers, mid-range servers, mainframe computers,
rack-mounted servers, etc.), server farms, server clusters, or any other appropriate
arrangement and/or combination. The computing devices that make up the application
processing engine 110 may run any of operating systems or a variety of additional server
applications and/or mid-tier applications, including HTTP servers, FTP servers, CGI servers,
Fava servers, database servers, and the like. Example database servers include without

limitation those commercially available from Oracle, Microsoft, Sybase, IBM and the like.

{00931 In certain embodiments, the application processing engine 110 may be configured to
receive an application (e.g., an event processing application) as described above from the user
device 102 and process the information in the application to generate a ‘common application
runtime model” of the application. As noted above, a ‘common application runtime model” of
the application 1s a representation of the application as a set of one or more configuration
blocks, wherein each configuration block represents an event bean with associated metadata
describing the application. The application processing engine 110 may be configured to
convert the ‘common application runtime model” of the application into one or more generic
representations of the application. In certain embodiments, the application processing engine
110 may then be configured to cause the execution of the more generic representations of the
application 1n different execution (runtime) environments supported by different target event

processing systems.

[6094] In certain embodiments, the application processing engine 110 may include a
common application runtime model generator 112, a common application runtime model
optimizer 114, and a target DAG generator 116. These components may be implemented in

hardware, firmware, software, or combinations thereof. The common application runtime

I8

WO 2018/052908 PCT/US2017/051196

model generator 112 may be configured to generate the ‘common application runtime model’
tor the application based on the information associated with the application. The common
application runtime model optimizer 114 may be configured to optimize the ‘common
application runtime model” to generate an optimized common application runtime model for
5 the application. The target DAG generator 116 may be configured to convert the optimized
common application runtime model into one or more generic representations of the
application that can be executed by one of the target event stream processing engines
{(systems). The operations performed by components 112, 114, and 116 of the application

processing engine 110 are discussed in detail in relation to FIG. 2 below.

10 [80%3] In certain embodiments, the target event processing engines 118 may be configured
to receive the common application runtime model from the application processing engine 1190
and convert the information in the common application runtiroe model into a platform-
specific implementation of the application (i.e, a target event processing application 120)

that can be executed in the runtime {execution) environment provided by the target event

Ju—
(V4]

stream processing engines 118. The target event stream processing engines | 18 may then be
configured to continuously execute the target event processing applications 120 as new data
appears in the streams and provide a continuous stream of results to a user. The target event
stream processing engines 118 may perform the real-time processing of data streams by
executing one or more operations {e.g., CQL queries) defined in the target event processing
20 applications 120 against the data streams (e.g., live feeds) that are received continuously. For
example, the target event stream processing engines 118 can receive one or more continuous
data streams, register the target event processing applications 120 against the data streams,
and continuously execute one or more queries defined 1n the target event processing
applications 120 as new data appears in the streams. Since this type of continuous query is
25 long-running, the target event stream processing engines can provide a continuous stream of
results to a user. Additional operations performed by the target event stream processing

engines 118 1s discussed in detail in relation to FIG. 3.

16096] Iu certain embodiments, each target event stream processing engine 118 may
represent a particular physical execution environment for executing a target event processing
30 application. For instance, a first target event stream processing engine may include a first
event streaming platform that is configured to execute the target event processing application
in a first physical execution{runtime) environment, a second target event stream processing

engine may include a second event streaming platform that is configured to execute the

19

i

[\

3

O

(V4]

(V4]

n

8

WO 2018/052908 PCT/US2017/051196

application in a second physical execution{runtime) environment, a third target event stream
processing engine may include a third event streaming platform that is configured to execute
the application in a third physical execution{runtime) environment, and so on. The first,
second, and third event streaming platforms may be different from each other. For instance,
the first event streaming platform may represent an Uracle Event Processor (OEP) system
managed by Oracle®. The second event streaming platform may represent a first type of
distributed event processing platform, such as the Spark® framework, managed by the
Spark® system, and the third event streaming platform may represent a third type of
distributed event processing platform, such as the Flink® framework managed by the Flink®

system.

160971 FIG. 2 is a graphical representation of an Event Processing Network (EPN} 200 for
an event processing application in accordance with an embodiment of the present disclosure.
An event processing application may be expressed, in certain examples, as a network of
coraponents. Such a network of components 1s commonly referred to as the event processing
network (EPN} 200. The EPN 200 is a conceptual model for expressing event-based
interactions and event processing specifications among the components of an event
processing application. The components of an event processing application may include
adapters, streams, processors, business logic Plain Old Java Objects (POJOs), and beans.
Fach component in the EPN 200 has a role tn processing the data received via an event
stream. As noted above, the event processing network (EPN) 200 may include information
that describes these various components, how the components are connected together, event
types processed by the application, continuous query or logic for the selection of events used

by the application, business rules defined in the application, and so on.

[6098] In certain embodiments, a user of a user device 102 may generate the EPN 200 for
an event processing application using the application design user interface {e.g., 106}
provided by a chient application {e.g., 104) in the user device. In other embodiments, the user
may provide information that identifies the application via the application design user
interface. Such information may include, for instance, one or more continuous gueries
defined in the application, application parameters that specify a type of deployment of the
application, runtime configuration of application (¢.g., the number of executors to use,
parallelism parameters, the size of memory, the high availability parameters) and so on, and
the a client application may build and/or generate the EPN 200 for an event processing

application based on this information.

10

15

30

WO 2018/052908 PCT/US2017/051196

[6699] In certain embodiments, and as shown in FIG. 2, the EPN 200 for an event

processing application may be composed of the following component types:

(1) One or more adapters (202, 204) that interface directly to the input and output stream and
relation sources and sinks. Adapters are configured to understand the input and cutput stream
protocol, and are responsible for converting the event data into a normalized form that can be
queried by an application processor. Adapters may forward the normalized event data into
channels or output streams and relation sinks. Event adapters may be defined for a variety of
data sources and sinks. In the embodiment shown in FIG, 2, the adapters include a

StreamOrRelationSourcel Adapter 202 and a StreamOrRelationSource? Adapter 204,

(2} One or more channels (200, 208, 210) that act as event processing endpoints. Among
other things, channels are responsible for queuing event data until the event processing agent

can act upon it.

{(2) One or more application processors {or event processing agents) 212 are configured to
consume normalized event data from a channel, process it using queries to select notable

events, and forward {or copy) the selected notable events to an output channel 210,

{4} One or more beans 214, 216, and 218 are configured to listen to the output channel 220,
and are triggered by the insertion of a new event into the output channe] 220. In some
embodiments, this user code 15 a plain-old-Java-object (PGJO). The user application can
make use of a set of external services, such as JMS, Web services, and file writers, to forward

the generated events to external event sinks.

(5) Event beans 214, 216, and 218 may be registered to listen to the output channel 220, and
are triggered by the insertion of a new event into the output chansel. In some embodiments,
this user code may use the Oracle CEP event bean API so that the bean can be managed by

Oracle CEP.

[0106] In one embodiment, an event adapter (202, 204) provides event data to an input
channel (206, 208). The input channel (206, 208) is connected to a CQL processor (212)
associated with one or more CQL queries that operate on the events offered by the input
channel (2006, 208}. The CQL processor (212} is connected to an output channel (220} to

which query results are written.

[0101] In some embodiments, an assembly file may be provided for an event processing

application describing the various components of the event processing application, how the

16

Ju—
(V4]

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

components are connected together, and event types processed by the application. Separate
configuration files may be provided for specifying the continuous guery or logic for selection
of events. In certain embodiments, the information in an event processing application may be
assembled using the Spring® XML framework. As will be described in greater detail below,
this approach enables applications to be easily integrated with existing Spring® beans, and
other light-weight programming frameworks that are based upon a dependency injection
mechanism. For example, the assembly file can be a custom extension of a Spring®
framework context XML configuration file so that the event server can leverage Spring’s®
Inversion of Control {IoC) container in its entirely, thus allowing a user to seamlessly use

Spring® beans in the assembly of an EPN.

[0102] FIG. 3 is a simplified block diagram 300 illustrating the components of an
application processing engine, in accordance with an embodiment of the present disclosure.
In certain embodiments, the application processing engine 314 may be configured to receive
information that identifies an event processing application {e.g, 304) from a user of user
device 302 and generate a common runtime application model based on this information. As
noted above, an event processing application 304 can be generated by a user of the user
device 302 using an application design user interface 306 provided by a client application

{(e.g., 104) in the user device.

[0103] In some examples, information identifying an application may include information
that describes the various components (e.g., adapter, processer, stream, or event bean) of the
application. This information may include, for instance, configuration information, query
information, and other types of information. Configuration information roay include, for
instance, information that describes the various components of the event processing
application, how the components are connected together, and event types processed by the
application. For example, configuration information may include information that describes
the event processing application as a network of components (i.e, the EPN 200). Query
information may include information specifying the continuous query or logic for selection of
events by the application. Other types of information may include Plain Old Java Objects
(PGIO) and business rules defined in the application.

[0104] In certain examples, the information identifying an application can be specified in

configuration files. For example, each component in the EPN 200 of an event processing

application 304 can have an associated configuration file. In other examples, the information

[
[\~

10

Ju—
(V4]

20

30

WO 2018/052908 PCT/US2017/051196

in the application 304 can be represented in a single configuration file that includes the
information for all the components in the application. In one implementation, the
configuration files can be expressed as regular XML documents whose structure 1s defined
using standard XML schema based on a configuration schema defined by the common

runtime model

[0165] In certain examples, the information identifving an application can be specified
using various configuration files such as an EPN configuration file, a query configuration
file, and other files. An example of an EPN configuration file and a query configuration file
for an event processing application is illustrated below. In the illustrated example, the event
processing application is an order event processing application 304 configured to recetve and
process a continuous stream of events, wherein each event represents an order for an item
sold by a company. Each order in the order event stream may comprise attributes such as an
order identifier, an order status, and an order amount related to an item. An example of an
EPN configuration tile 308 for the event processing application 304 15 illustrated below. The
EPN configuration file 308 comprises a sequence of sub-elements, where each sub-element
comprises the configuration information for an event processing component in the event

processing application.

PN Configuration File

<wlevs event-type-repository>

<wlevs event-type type-name="OrderEvent">
<wlevs:properties>

<wlevs:property name="orderld" type="int" />
<wlevs:property name="status" type="char" />
<wlevs:property name="amount" type="1t" />
</wlevs properties>

</wlevs event-type>

<fwlevs eveni-type-repository™>

2

<wlevs:adapter id="socketAdapter” provider="socket” /> <wlevs:.channel
id="orders" event-type="OrderEvent" >

<wlevs:listener ref="orderProcessor"/>

<wlevs:source ref=" socketAdapter "/>

</wlevs:channel>

16

Ju—
(V4]

30

WO 2018/052908 PCT/US2017/051196

.

agrderProcessor ¥ />

—

<wlevs:processor id

<wlevs:channel id="otutputChannel" event-type=" OrderEvent “>
<wlevs:iistener ref="outputAdapter"/>

<wlevs:source ref=" orderProcessor "/>
</whevs:channel>

<wlevs:adapter id="outputAdapter” provider="stdout” />

[0186] An example of a query configuration file 310 for the event processing application
304 is illustrated below. The query configuration file 310 specifies one or more continuous

queries or logic for the selection of events in the event processing application.

Ouery Confizuration File

<Processor

<name>orderProcessor</name>

<rules>

<query id="helloworldRule"> <I[CDATA]

select status, count(*) from orders group by status
1>

</query>

[0167] In certain embodiments, the application processing engine 314 may be configured to
generate a ‘common application runtime model” for the application (e.g., 304) based on the
configuration information, the query information, and the other information specified in the
EPN configuration file 308, the query configuration file 310, and the other files 312. The
‘common application runtime model” may then be converted into one or more generic
representations of the application by the target DAG generator 320 for execution in different
physical execution (runtime) environrents supported by different target event stream
processing engines 226, 228, and 230. The generation of the ‘common application runtime
model” enables the execution of a generic representation of the application in different

physical execution {runtime} environments without the developer (e.g., a user) of the

WO 2018/052908 PCT/US2017/051196

application having to re~write the application code to suit a particular physical execution
(runtime) environment of the target engine prior to its execution in the target engine. The
cominon application runtime model is independent to the physical execution environment.
The plattorm independent abstraction allows the syster to generate the DAG and codes for

5 the physical execution environment easily.

[0108] In certain embodiments, the generation of the ‘common application runtime model’
by the application processing engine 314 may include representing the application as a set of
one or more event beans with associated configuration information. Additional details of the
manner in which the application processing engine 314 may represent the ‘common

10 application runtime model” as a set of event beans is described 1n detail below.

[0109] In certain embodiments, the application processing engine 314 includes a common
application runtime model generator 316, 2 common application runtime model optimizer
318, and a target DAG generator 320, The common application runtime mode] generator 316
is configured to generate a ‘common application runtime model’ for the application, based on

15 the information identifying the application specitied in the EPN configuration file 308, the
query configuration file 310, and the other files 312 In certain embodiments, the generation
of the *common application runtime model” by the common application runtime model
generator 316 involves loading the EPN configuration file 308, the query configuration file
310, and the other files 312 into memory using an EPN loader implemented using the

20 Spring® application framework. The result is a set of Spring® beans connected by Spring’s®
inversion of control injection. The common application runtime model generator 316 is then
configured to parse the EPN configuration file 308 using an XML parser such as JAXB (Java
Architecture for XML Binding) and set the parsed configuration file to each associated bean

in the EPN network. In certain examples, each parsed configuration block or fite will have an

[\
(V4]

identifier so that the block or file can find the event bean and set the configuration block or
file to the event bean. Thus, in an embodiment, generating the ‘coramon application runtime
maodel” for the application comprises representing the application as a set of one or more
configuration blocks, wherein each configuration block represents a Spring® event bean with
associated metadata. An example of the representation of the ‘common application runtime
30 model’ 1s shown in FIG. 4. In certain examples, the ‘common application runtime model’

maintains metadata about the components of an event processing application without any

processing logic in it.

10

Ju—
(V4]

30

WO 2018/052908 PCT/US2017/051196

[0116] FIG. 4 depicts an example of a representation of a “common application runtime
model’ 400 generated by the common application model generator 316, in accordance with
an embodiment of the present disclosure. In an embodiment, the ‘common application
runtime model” 400 may be generated based on information identifyving the application {e.g ,
from the EPN configuration file 308, the query contfiguration file 310, and other files 312)
and may be represented as a set of one or more configuration blocks, wherein each
configuration block represents a Spring® event bean with associated metadata. In an
embodiment, the configuration blocks 402, 404, 4006, 408, and 410 in the common runtime

application model 400 may include the following information:

Socketinbound 402
host = “localhost”

port = 9999

Channel-1 404
tableName = “orders”
eventType = “OrderEvent”

relation = false

COL Processor 406

rule= “select status, count(*) from orders group by status”

Channel-2 408

eventType = “OrderBEvent”

StdoutOutbound 410

<no additional info>

[#111] Forinstance, in the configuration block 402, socket inbound represents the
“socketAdapter” adapter in the EPN, in the configuration block 404, channel- 1 represents the
“orders” channel in the EPN, in the configuration block 406, CQL processor represents the
“orderProcessor” processor in the EPN, in the configuration block 408, channel-2 represents
the “otutputChannel” channel in the EPN, and in the configuration block 410, socket

outbound 410 represents the “outputAdapter” adapter in the EPN.

b
jox}

WO 2018/052908 PCT/US2017/051196

[8112] As noted above, the representation of the event processing application as a
‘common application runtime model” 400 enables the application to be executed in different
target event stream processing engines (e.g., 326, 328, or 330} without the user having to re-
write the code of the application to suit the particular physical execution (runtime)

5 environment of the target engine, prior to its execution in the target engine.

[6113] Returning to the discussion of FIG. 3, in certain embodiments, the common
application runtime model generated by the common application runtime model generator
316 may further be optimized by the common application runtime model optimizer 318. The
optimization of the common application runtime model (e.g., 400) may include, for instance,
10 combining multiple stages within a configuration block into a single stage (e.g. combining
multiple continuous queries into a single optimized continuous query} or breaking a single
stage into multiple stages for parallel processing {(e.g breaking a continuous guery into
multiple continuous queries that can perform map and reduce operations). For instance, the

consecutive queries without repartitioning can be combined into a single CQL stage with a

Ju—
(V4]

single CQL Process. For example, two stages “select * from orders where
orderStatus="open’” and “select count(*) from orders group by orderld” can be combined
into a single COQL stage with “select count(*) from orders group by orderld where
orderStatus="open”. The optimizer can also break a single stage into multiple stages in order
to maximize the scalability. For example, the fully-stateful query stage, “select count{*) from
20 orders” can be broken into two stages with partitioning, “select count(*) from order group by
orderld” and “select sura(*) from counts”. This enables the global count of events to be
processed with partial counts with partitioning and then the partial counts can be summed

into the global counts.

[6114] In certain embodiments, the target BAG generator 320 may be configured to

[\
(V4]

convert the optimized common application runtime model into one or more generic
representations of the application that can be executed by one of the target event stream
processing engines {326, 328, or 330}, For instance, the target DAG generator 320 may be
configured to convert the optimized common application runtime model into a runtime DAG
322 or a target representation of the application 324 depending on the target event stream

30 processing engine that the application will execute in. For instance, if the target event stream
processing engine {(e.g., 326} is an Oracle Event Processor (OEP) managed by Oracle®, then
the target DAG generator 320 may be configured to convert the configuration blocks in the

common application runtime model (or the optimized common application runtime model}

™D
]

10

Ju—
(V4]

20

WO 2018/052908 PCT/US2017/051196

into a target representation of the application 324 that will be executed by the target event
stream processing engine 326. The conversion may include, in certain embodiments, the
replication of the objects in the common application runtime model with appropriate beans
with the actual processing logic by the target DAG generator 320, For example, the metadata
of the CQL Processor bean in the common application runtime model may be copied to the
new instance of the event processing component {(e.g., CQL Processor) which runs the CQL
Engine to process the input events using the given query (e.g. copied from the CQL Processor

inn the common runtime application model}.

[0118] If, for example, the target event stream processing engine {e.g., 328} is a distributed
event processing platform managed by the Spark® distributed system, then the target DAG
generator 320 may be configured to convert the objects (configuration blocks) in the common
application runtime model {or the optimized common application runtime model) into a
runtime DAG of components 322 representing the application. An example of a runtime
DAG of components 322 generated by the target DAG generator is shown in FIG. 5. The
runtime DAG of components 322 is then converted into a target application {Spark® CQL
application} by the target event stream processing engine 328, An example of a target
application generated by the target event stream processing engine 328 for calculating the
number of orders grouped by order status for the order event processing application is shown

helow:

Exampie of g tareet anplication

Setup
1. val sparkConf = new SparkConf
2. wal s¢c = new SparkContext{sparkConf)
3. val cc = new CQLContext(sc, Seconds(1))

(4

Event Type, Stream Registration
4. val orderEvent = EventType{“orders”, Atiribute(“orderld” INT},
Autribute(“status”, CHAR), Attribute(“amount”, INT))
5. ccregisterEventType(orderEvent)
6. ccregisterStream{orderEvent)

L.oad Data
7. wval lines = ce.socketTextStream{“localhost”, 9999)
8. wval rows = lines.map{__sphit(","))
9. wal kv_orders = rows.map{r => (+(1), EventUtil.createTupleValue(orderEvent,
{0} tolnt, r(1), t{(2).tolnt))

Partition Data

W

10

15

20

36

WO 2018/052908 PCT/US2017/051196

10. val orders = rorders transform(rdd => rdd partitionBy{new
OrderPartitioner(numPartitions). map { case(k,v)=> v }

)

CQL Processing
11, val result = cc.cql{orders, “select status, count(*) from orders group by status”™)

Output
12. val sresult = result map(x => x mkString(“,"})
13. sresult. print

[0116] FIG. 515 an example of a runtime Directed Acyclic Graph (DAG) of components
500 generated by the target DAG generator, in accordance with an embodiment of the present
disclosure. In certain embodiments, and as noted above, the target DAG generator 320 may
be configured to convert the objects (402, 404, 406, 408, and 410} in the common application
runtime model {e.g., 400) into a runtime DAG of components 500 representing the
application when the execution (runtime) environment of the target applicationis a

distributed event processing system {e.g., the Spark® distributed event processing system).

[0117] In an embodiment, the runtime DAG of components includes the following
components, SocketText 502, Map-~1 504, Map-2 506, PartihonBy 508, CQL 510, Map-3
512, and Print 514, The Socketinbout 402 {(shown in FIG. 4} is converted to the SocketText
502, the Map-1 504, and the Map 506. The SocketText 502 component comprises line 7 in
the example of the target application shown above, which loads strings from socket . The
Map-1 504 component comprises line 8 in the example of the target application which
converts strings into comma separated values . The Map-2 506 component comprises line 9
in the example of the target application which converts the comma separated values to
Tuples. The CQL Processor 406 and Channel-1 404 is converted to the PartitionBy 508 and
the CQL 510. The PartitionBy 508 component comprises line 10 in the example of the target
application which creates a partitioning based on the group by criteria in the CQL. The COL
510 component comprises line 11 in the example of the target application which is the main
CQL processing stage. The Channel-2 408 and the StdoutOutbound 410 is converted to the
Map-3 512 and Print 51. The Map-3 512 component comprises line 12 in the example of the
target application which converts the Tuple to comma separated string and the Print 514
component comprises line 13 from the example of the target application which prints the

output strings to stdout console.

10

Ju—
(V4]

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

[0118] FIG. 6 depicts a simplified high level diagram of an event processing system 600
that may incorporate an embodiment of the present disclosure. In an embodiment, the event
processing system 600 may represent an Oracle Event Processor (OEP} system managed by
Oracle® Event processing system 600 may comprise one or more event sources {604, 606,
608}, an event processing service (EPS) 602 {also referred to as CQ Service 602) that is
configured to provide an environment for processing event streams, and one or more gvent
sinks (610, 612). The event sources generate event streams that are recetved by EPS 602, EPS

602 may receive one or more event streams from one or more event sources.

[0119] For example, as shown in FIG. 6, EPS 602 recetves a first input event stream 614
from event source 604, a second input event stream 616 from event source 606, and a third
event stream 018 from event source 608. One or more event processing applications (614,
616, and 618} may be deployed on and be executed by EPS 602, An event processing
application executed by EPS 602 may be configured to listen to one or more input event
strearms, process the events recetved via the one or more event streams based upon processing
logic that selects one or more events from the input event streams as notable events. The
notable events may then be sent to one or more event sinks (610, 612} in the form of one or
mote output event streams. For example, in FIG. 6, EPS 602 cutputs a first output event
strearn 620 to event sink 610, and a second output event stream 622 to event sink 612 In
certain embodiments, event sources, event processing applications, and event sinks are
decoupled from each other such that one can add or remove any of these components without

causing changes to the other components.

[0128] In one embodiment, EPS 602 may be implemented as a Java server comprising a
lightweight Java application container, such as one based upon Equinox OSGi, with shared
services. In some embodiments, EPS 602 may support ulira-high throughput and
microsecond latency for processing events, for example, by using JRockit Real Time. EPS
602 may also provide a development platform (e.g., a complete real time end-to-end Java
Event-Driven Architecture (EDA} development platform) including tools {e.g , Oracle CEP

Visualizer and Oracle CEP IDE) for developing event processing applications.

18121] An event processing application is configured to listen to one or more input event
streams, execute logic (e.g., a query} for selecting one or more notable events from the one or
more input event streams, and output the selected notable events to one or more event sources

via one or more output event streams. FIG. 6 provides a drilldown for one such event

30

10

20

30

WO 2018/052908 PCT/US2017/051196

processing application 614. As shown in FIG 6, event processing application 614 is
configured to listen to input event stream 618, execute a continuous guery 630 comprising
logic for selecting one or more notable events from input event 618, and output the selected
notable events via output event stream 622 to event sink 612, Examples of event sources
include, without imitation, an adapter (e g, JIMS, HTTP, and file), a channel, a processor, a
table, a cache, and the like. Examples of event sinks include, without limitation, an adapter

{e.g.. IMS, HTTP, and file), a channel, a processor, a cache, and the like.

[0122] Although event processing application 614 in FIG. 6 is shown as listening to one
input stream and outputting selected events via one output stream, this is not intended to be
himiting. In alternative embodiments, an event processing application may be configured to
listen to multiple input streams received from one or more event sources, select events from
the monitored streams, and output the selected events via one or more output event streams to
one or more event sinks. The same query can be associated with more than one event sink

and with different types of event sinks.

[6123] Due toits unbounded nature, the amount of data that s recetved via an event siream
is generally very large. Consequently, it is generally impractical and undesirable to store or
archive all the data for querying purposes. The processing of event streams requires
processing of the events in real-time as the events are received by EPS 602 without having to
store all the received events data. Accordingly, EPS 602 provides a special querying
mechanism that enables processing of events to be performed as the events are received by

EPS 602 without having to store all the received events.

[0124] Event-driven applications are rule-driven and these rules may be expressed in the
form of continuous queries that are used to process input streams. A continuous query may
comprise instructions (e.g., logic) that identity the processing to be performed for received
events including what events are to be selected as notable events and output as results of the
query processing. Continuous queries may be persisted to a data store and used tor processing
input streams of events and generating output streams of events. Continuous gueries typically
perform filtering and aggregation functions to discover and extract notable events from the
input event streams. As a result, the nurober of outbound events 1o an output event stream is
generally much lower than the number of events in the input event stream from which the

events are selected.

31

10

20

30

WO 2018/052908 PCT/US2017/051196

[8125] Unlike a SQL guery that is run once on a finite data set, a continuous query that has
been registered by an application with EPS 602 for a particular event stream may be executed
each time that an event s recetved in that event stream. As part of the continuous query
execution, EPS 602 evaluates the received event based upon instructions specified by the
continuous query to determine whether one or more events are to be selected as notable

events, and output as a result of the continuous query execution.

[0126] The continuous query may be progranumed using different languages. In certain
embodiments, continuous queries may be contfigured using the CQL provided by Oracle
Corporation and used by Oracle's Complex Events Processing (CEP) product offerings.
Oracle's COL 13 a declarative language that can be used to program queries (referred to as
CQL queries) that can be executed against event streams. In certain embodiments, CQL s

based upon SQL with added constructs that support processing of streaming events data.

[0127] 1t should be appreciated that system 600 depicted in FIG. 6 may have other
components than those depicted in FIG. 6. Further, the embodiment shown in FIG. 6 is only
one example of a systern that may incorporate an embodiment of the present disclosure. In
some other embodiments, system 600 may have more or fewer components than shown in
FIG. 6, rmoay combine two or more components, or may have a different configuration or
arrangement of components. System 600 can be of varicus types including a service provider
computer, a personal computer, a portable device (e.g., a mobile telephone or device), a
workstation, a network computer, a mainframe, a kiosk, a server, or any other data processing

systermn.

[0128] FIG. 71s a simplified block diagram 700 illustrating the components of a distributed
event processing system 710, in accordance with an embodiment of the present disclosure.
The embodiment shown in FIG. 7 15 one example of a distributed event processing system
that may incorporate an embodiment of the present disclosure. In some other embodiments,
systemn 710 may have more or fewer components than shown in FIG. 7, may combine two or
more components, or may have a different configuration or arrangement of components.
System 710 can be any type of computing device, such as, but not limited to, a mobile,
desktop, thin-client, and/or cloud computing device, a server, or any other data processing

system.

[0129] In some examples, the distributed event processing system 710 may be made up of

pre-integrated and optinuzed combinations of software resources, hardware resources,

WO 2018/052908 PCT/US2017/051196

networking resources, and other resources. Hardware resources may include, without
limitation, servers, data storage devices, servers, printers, or the like. Software resources may
include, without limitation, a computing program, an application (e.g., cloud-based
applications, enterprise applications, or any other applications), a computer-program product
5 ({eg., software), a service (g.g., cloud-based services), or the like. Data resources may
include, without limitation, any accessible data objects such as a file {e.g, a networked file or

directory information), a database, and the like.

[#0138] In certain embodiments, the distributed event processing system 710 may comprise
a receiver 704 and a cluster of computing nodes 708. The receiver 704 may be configured to
10 receive a continuous nput event stream 702 and discretize (divide) the event stream into one
or more batches of events 706 of a particular duration (g.g., X seconds} for subsequent
processing by the cluster of computing nodes 708 in the distributed event processing systerm
710. Each batch of events is referred to herein as a Dstream. In some examples, each Dstream

is internally represented by the receiver 704 as a Resilient Distributed Dataset (RDD), which

Ju—
(V4]

is a snapshot of all the input stream of data (events} ingested during a specified time period
(i.e., in an event batch). Thus, in some embodiments, the input data stream 702 15 represented
as a sequence of Dstreams where each Dstream is internally represented as an RDD, and each
RDD comprises the events (tuples) received during a particular batch interval. In certain
examples, each RDD represents an immutable, partitioned collection of elements that can be

20 stored in cache memory and executed in parallel in the distributed event processing system.

[0131] In certain embodiments, the cluster of computing nodes 704 may be contigured to
partition the data contained in each RDD across the cluster of computing nodes and perform
operations on the data in parallel against a set of queries detined in an application and provide

the resulis of the processing to a user of the distributed event processing system. Thus, the

[\
(V4]

cluster of computing nodes 708 may be configured to distribute the processing of the event
data in an RDD across the cluster of computing nodes 708 and provide resulis pertaining to
the execution of the application against the event data quickly and in real-time to a user. In an
embodiment, the distributed event processing systemn 710 may be configured using the
Apache® Spark Streaming framework to perform the distributed and real-time processing of

n

30 continuous streams of data and the deployment of event processing applications.

[0132] FIG. 8 15 an example flow diagram of a process 800 that describes a set of

operations for processing an event processing application to generate a common application

33

10

Ju—
(V4]

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

runtime model of the application, in accordance with one embodiment of the present
disclosure. In certain embodiments, the process 800 can be performed by one or more
components {e.g., 316, 318, and 320) in the application processing engine (314} described in
FIG. 3. The process 800 starts at 802 by receiving information identifving an application.
This information may include, for instance, information that describes the various
components {e.g., adapter, processer, stream, or event bean) of the application such as
configuration information, query information, and other types of information. As noted
above, this information may be expressed in configuration files (308, 310, and 312) as

described in FIG. 3.

[0133] At 804, the process includes generating a ‘common application runtime model” of
the application based on the information identifying the application. In an embodiment,
generating the ‘common application runtime model” for the application may include
representing the application as a set of one or more configuration blocks, wherein each
configuration block represents an event bean with associated metadata. The configuration
blocks may inchlude an inbound socket event bean, an outbound socket event bean, a
continuous query language (CQL) processor event bean, or one or more channel event beans

as described in relation to FIG. 4.

[0134] At 8OO, the process includes converting the ‘common application runtime model” of
the application into a first generic representation of the application. The first generic
representation of the application may be configured to be executed in a first target event
processing system of a plurality of target event processing systems. In one example,
converting the ‘coramon application runtime model” of the application into a first generic
representation of the application may include converting the configuration blocks in the
common application runtime model into a runtime DAG of components of the application.
An example of the runtime DAG of components generated for an application is shown in

FIG. 5.

[01358] In some embodiments, at 808, the process includes transmitting the first generic
representation of the application to the first target event processing system for execution by
the first target event processing system. In one example, the first target event processing
system is a distributed event processing system.

[0136] FIG. 91is an example flow diagram of a process 900 that describes a set of

operations for processing an event processing application to generate a common application

34

I

0

20

(42
<

(v

WO 2018/052908 PCT/US2017/051196

runtime model of the application, in accordance with another embodiment of the present
disclosure. In certain embodiments, the process 900 can be performed by one or more
components {e.g., 316, 318, and 320) in the application processing engine (314} described in
FIG. 3. The process 900 starts at 902 by receiving information identifying an application. As
noted above, this information may include configuration information, query information, and

other types of information that describe the various components of the application.

[0137] At 904, the process includes generating a ‘common application runtime model” of
the application based on the information identifving the application. In an embodiment,
generating the ‘common application runtime model” for the application may include
representing the application as a set of one or more configuration blocks, wherein each
configuration block represents an event bean with associated metadata. The configuration
blocks may nclude an inbound socket event bean, an outhound socket event bean, a
continuous query language (CQL} processor event bean, or one or more channel event beans

as described in relation to FIG. 4.

[0138] At 906, the process includes converting the ‘common application runtirae model” of
the application into a second generic representation of the application. The second generic
representation of the application may be configured to be executed 1 a second target event
processing system of a plurality of target event processing systems. In some examples, the
second target event processing system may be ditferent from the first target event processing
system. In one example, converting the ‘common application runtime model” of the
application into a second generic representation of the application may include converting the
configuration blocks in the common application runtime model into a target representation of

the application.

[013%9] In some embodiments, at 908, the process includes transmitting the second generic
representation of the application to the second target event processing system for execution
by the second target event processing system. In one example, the second target event

processing system is an Oracle® Event Processor (OEP) syster.

Serialization and Deserialization of Event Data

[0148] In certain embodiments, the disclosed distributed event processing system may be
configured to perform the serialization and de-serialization of event data received via a
continuous event stream. The serialization and de-serialization of event data enables the

conversion of complex data objects in memory into sequences of bits that can be transferred

35

10

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

to the computing nodes in the distributed event processing system. The sertalization and de-
serialization of the event data enables the efficient storage and representation of the data by
the processing nodes in the distributed event processing system prior to the processing of the
event data by the distributed event processing system. In addition, the serialization and de-
serialization of the event data reduces latencies in exchanging input and output events
between the processing nodes in the distributed event processing system and improves the

overall performance of the distributed event processing system.

[#141] The techniques described above may be implemented 1n a number of ways and ina
number of contexts. Several example implementations and contexts are provided with
reference to FIGS. 1-10 below which describe additional details of the manner in which the
disclosed distributed event processing system may perform operations related to the

deployment, processing, and execution of event processing applications.

[0142] FIG. 1018 a simplified block diagram 1000 illustrating the components of a
distributed event processing system, in accordance with an embodiment of the present
disclosure. The distributed event processing systern 1000 may be the same as or similar to the
distributed event processing system 110 described in FIG. 1. The embodiment shown in FI(.
10 1s one example of a distributed event processing system that way incorporate an
embodiment of the disclosure. In other embodiments, the distributed event processing engine
may have more or fewer components than shown in FIG. 10, may combine two or more
components, or may have a different configuration or arrangement of components. These
components may be implemented in hardware, firmware, software, or combinations thereof.
In some embodiments, the software may be stored in memory {e.¢., a non-transitory
computer-readable medium}, on a memory device, or some other physical memory and may
be executed by one or more processing units (e.g., one Or MOre Processors, one or more
processor cores, one or more GPUs, etc.}. The embodiment shown in FIG. 10 is thus one
example of a distributed event processing engine for implementing an embodiment systerm

and is not intended to be limiting,

[0143] In certain embodiments, the distributed event processing system 1002 may include a
receiver 1004, an application deployment module 1008, and a cluster of computing nodes
1012. The receiver 1006 may be capable of receiving a continuous input stream of data 1004
(e.g., from an event source 204, 2006, or 208} as described in FIG. 2 and divide the input data

stream into one or more batches of events 1010, referred to herein an Dstreams. As noted

10

Ju—
(V4]

[\
(V4]

36

WO 2018/052908 PCT/US2017/051196

above, each Dstream (i.e., event batch) comprises all of the input stream of data (events)
ingested during a specified time period and can internally be represented by the receiver 1006
as an RDD object, which is an immutable, partitioned collection of elements that can be
executed on in parallel in the cluster of computing nodes 1012 in the distributed event

processing system 1002

[0144] The application deployment module 1006 may be configured to deploy an
application {e.g., an event processing application) for processing and execution by the
computing nodes in the cluster of computing nodes 1012, An application as described herein
may refer to a computer program (e.g., built by a user) of the distributed event processing
system. For instance, an application may comprise a word counting application that counts a
quantity of references to a particular word within a set of input texts. Such an application may
be built using, for example, one or more continuous queries that read a set of texts and count
the number of times that each word appears in each text. The input text may contain, for
exarmple, short messages received in the stream from an on-line application, such as
Facebook® or Twitter®. As noted above, continuous queries may be configured using the
CQL language. For instance, to specify a word-counting task/operation to be performed in the
word counting streaming application, a user can write a CQL query that can take a form such
as: SELECT count FROM location GROUP BY word. Such a query can gather all of the
sentences from the specified location, group the unique words from those sentences into

distinct groups, and then count the quantity of words in each group.

[0145] In certain embodiments, the application deployment module 1008 may be
configured to receive information that identifies an application from a user of the distributed
event processing system. For example, the application deployment module 1008 may be
configured to receive information that tdentifies an application via an application design user
interface in the application deployment module 1008. Information that identifies an
application may include a set of one or more continuous queries defined in the application.
Information that identifies an application may also include application parameters associated
with the application. Application parameters may include, for instance, a deployment type
parameter that specifies a type of deployment {(e.g., ‘cluster mode’} of the application on the
cluster of nodes 1012, Additional application parameters may include parameters related to
runtime configuration of application (e.g., the number of executors to use, parallelism

parameters, the size of memory, the high availability parameters, and so on).

(V4]

[\
(V4]

WO 2018/052908 PCT/US2017/051196

[8146] Upon receiving the information related to the application, in certain embodiments,
the application deployment module 1008 may then be configured to transmit an instruction to
the cluster of computing nodes 1012 to deploy the application on a computing node in the
cluster. In certain examples, the cluster of computing nodes 1012 may be configured to
deploy the application to a master computing node 1014 on the cluster of computing nodes
1012. The master computing node 1014 may be configured to store the “application context’
of the application. The ‘application context’ may include, for instance, the application’s
content such as the application’s topology, scheduling information, application parameters,

and the like.

[0147] In certain embodiments, the master computing node 1014 may be referred to as the
‘driver program,’ or the application master that runs/executes the application. The driver
program may be defined as a process that runs the main{) function of the application and
creates the ‘application context’ for the application. The driver program may be responsible
for both driving the application and requesting resources from the resource manager 1016,
The resource manager 1016 may be a service that acquires resources for the computing nodes
on the cluster of computing nodes 1012 to execute the application. To run/execute the
application on the cluster, the master computing node 1014 connects to the resource manager
1016 which then allocates resources for the application. Once connected, the master
computing node 1014 acquires one or more executors on one of more computing nodes (also
known as worker nodes 1018) in the cluster. The executors are processes that run
computations and store data for the application. The master computing node 1014 sends
application code (for example, defined by a JAR file) to the executors. Based on the
transformations and actions defined 1n the application, the master computing node 1014 may

send tasks 1020 to the executors.

[0148] In certain embodiments, the master computing node 1014 may include a DAG
generator 1022, a DAG scheduler 1024, a task scheduler 1026, and application context
information 1028. As noted above, application context information 1028 may comprise
information about an application such as the application’s topology, scheduling information,
application parameters, and the like. The DAG generator 1022 may be configured to define
and/or create a Directed Acyclic Graph (DAG) of RDD objects based on the RDD objects
that it receives from the receiver. In some examples, the DAG generator 1022 may represent
the DAG of RDD objects as a RDD lineage graph of all the RDDs that it has received during

a certain interval of time. Each RDD object in the RDD lineage graph maintains a pointer to

38

(V4]

[\
(V4]

WO 2018/052908 PCT/US2017/051196

one ot more parents along with the metadata about what type of relationship it has with its
parent. The RDD lineage graph also identifies the DAG of transformations to be executed for
each RDD object. When the master computing node 1014 is requested to run a job in the
application, the DAG generator 1022 executes the DAG of transtformations. The
transformations may identify one or more operations to be performed on the RDD objects to
transform the data in the RDD object from one form to another. These operations may be
defined, for example, as part of the application generation process by the application
deployment module 1008. When an operation is applied on an RDD object, a new RDD
object with transforroed data 1s obtained. Examples of operations performed on an RDD
object may include, for instance, map, filter, flatMap, reduce, union, groupByKey, distinct,
join, collect, count, and the like. The DAG of transtormations that involve the CQL language

may be referred to heretn as CQL. transformations.

[0149] The DAG scheduler 1024 is configured to generate a physical execution plan based
on the RDD lineage graph generated by the DAG generator. In one ernbodiment, the DAG
scheduler 1024 generates the physical execution plan by splitting the RDD lineage graph into
multiple stages, wherein each stage 1s identified based on the transtormations that need to be
executed against the data in each RDD object. For example, if the transformations to be
executed on an RDD object include map transformations and reduce transformations, the map
transformations may be grouped together into a single stage and the reduce transformations
may be grouped together into another stage. The DAG scheduler 1024 then submits the

stages to the task scheduler 1026,

[0156] The task scheduler 1026 divides the application (job) into stages. Each stage is
comprised of one or more tasks. In one embodiment, the number of tasks for a particular
stage is determined based on the number of partitions of the input data in an RDD object. For
example, and as noted above, the DAG scheduler 1024 may schedule all the map operations
into a single stage. The stages are then passed to the task scheduler 1026 and the task
scheduler 1026 launches the tasks via the resource manager. The tasks are then executed by
the executor nodes 1018, The task scheduler 1026 identifies the nodes in the cluster of
computing nodes 1012 that will execute the operations defined in application (job) against

each RDD object (i.e., each batch of events being processed).

[0151] In certain embodiments, when an executor node 1018 receives an RDD object, it

performs the serialization and de-sertalization of data in the RDD object if the RDD object

39

10

Ju—
(V4]

36

WO 2018/052908 PCT/US2017/051196

needs to be sent to other executor {worker} nodes in the cluster of computing nodes. As noted
above, the processing of the data in the RDD object may involve the execution of one or
more continuous queries defined in the application. In an embodiment, the executor node
(e.g., 1018) that 15 identified by the task scheduler 1026 may invoke a CQL Engine (such as
the CQL processor 230) to perform the processing of data in the RDID object and return the
results of the processing to the master computing node 1014, The manner in which the
executor node 1018 may perform the serialization and deserialization of data in an RDD

object prior to its processing is discussed in detail in relation to FIG. 11 below.

[0152] FIG. 11 depicts a high level data flow of a process for performing the serialization
and de-serialization of data in an RDD object, in accordance with an embodiment of the
present disclosure. In certain examples, one or more of the operations in FIG. 10 may be
performed by a node {e.g., a master node or an executor node) in the cluster of computing
nodes when 1t receives an RDD object from the receiver for processing. In one set of
operations, a receiver 1102 receives an input data stream and divides the input data stream
into one or more batches of events (tuples) of a particular duration {e.g., X seconds). In one
embodiment, and as described in relation to FIG. 10, each batch of events {(tuples) may
internally be represented by the receiver as an RBD object. The DAG generator 1104
receives the RDD objects and creates a DAG of RDD objects 1106, As noted above in FIG.
10, in certain examples, the DAG of RDD objects 1106 comprises a CQL transformations
1108 to be executed against each RDD object. When the master computing node (e.g., 1014
as shown in FIG. 10} 1s requested to run a job in the application, the DAG generator 1104
executes the CQL transformations 1108 to process a set of input tuples represented by the
RDD object. The set of input tuples to be processed may, in some examples, be obtained
trom the parent transformation of the CQL transformations 1108, The child transformation of
the CQL transformations 1108 then invokes the specific operation to be performed against

the set of input tuples as represented in the CQL transformations 1108,

[0153] In certain examples, the CQL transformations 1108 invokes a baich serializer
process 1112 against the set of input tuples in the RDD object to perform the seriahization of
data in the RDID object. In an embodiment, the baich serializer process 1112 may be executed
by the node {e.g., executor node) in the cluster of computing nodes that is processing the
RDI> object. As noted above, the data in the RDD object represents a batch of input tuples
{events) received via the event stream. The batch serializer process 1112 serializes the data in

the RDD object and the serialized block of the result from the batch serializer process is sent

40

10

Ju—
(V4]

[\
(V4]

36

WO 2018/052908 PCT/US2017/051196

to a CQL Engine 1116 through a network to process the set of input tuples. In certain
embodiments, the node that 1s processing the RDD object may invoke the CQL Engine 1116
to process the set of tnput tuples in the RDD object. The CQL Engine 1116 may, for instance,
be an event processing engine {e.g., 630 described in FIG. 6) deployed on the executor node.
The COQL Engine 1116 may be configured to receive the set of input tuples, process the set of
input tuples based upon processing logic (operations/transformations) defined in the

application, and generate a set of output tuples as a result of the processing.

[0154] In certain embodiments, the CQL Engine 1116 may invoke a batch de-serializer
process 1114 against the serialized block of data that it receives from the batch serializer
process 1112 prior to processing the data 1n the RDD object. This is because the serialized
block is a binary format or wire format that is suitable for transferring through the network
and it needs to be de-serialized as a JAVA object 1o order for the CQL Engine 1116 to be
able to process. The result of the de-sertalization process is thus a set of input tuples that is in
a form that can be processed by the CQL Engine 1116, The CQL Engine 1116 processes the
set of input tuples and generates a set of cutput tuples based on the processing. In certain
examples, the COQL Engine 1116 invokes another batch serializer process 1118 to serialize set
of cutput tuples and the result of the serialization is a sertalized block of output tuples. When
the serialized set of output tuples are received by the DAG generator, the CQL
transformations 1108 invokes another batch de-serializer process 1120 against the received
serialized block of output tuples. The result of the batch de-serializer process 1120 1s a set of
de~serialized output tuples. The CQL transformations 1108 returns the set of output tuples to
the child transformation in the CQL transformations to perform the next set of processing
operations on the data in the RDD object. In some embodiments, the set of output tuples 1110

are then transmitted to a user of the distributed event processing system.

[0155] In certain embodiments, the batch sertalizer process and the batch de-serializer
process described above can be performed by software modules or instructions executed by
the node {e.g,. the executor node) in the cluster of nodes in the distributed event processing
system that 1s processing the RDD object. Additional details of the operations performed by
the batch serializer process and the batch de-serializer process are discussed in detail in

relation to FIGS. 12-15 below.

[0156] FIG. 12 15 an example flow diagram of a process 1200 that describes a set of

operations by which data comprised in a batch of events can be sertalized, in accordance with

41

WO 2018/052908 PCT/US2017/051196

an embodiment of the present disclosure. In certain embodiments, the process 1200 can be
performed by a batch serializer process (1112) in the distributed event processing system. As
noted above, the batch serializer process may, in certain embodiments, be invoked by the
master computing node when the master computing node (e.g., 1014 as shown in FIG. 10} is
5 requested to run a job/operation defined in the application. As described above, the master
computing node identifies a node (e.¢., an executor node 1018) in the cluster of computing
nodes 1012 in the distributed computing system 1002 to process a batch of events against the
job/operation defined in the application and generate a set of cutput events as a result of the
processing. In certain erobodirnents, processing the batch of events may include the
10 serialization of the data in the batch of events. The process of FIG. 12 describes one
technique by which data in a batch of events can be serialized. The particular series of
processing steps depicted in FIG. 12 15 not intended to be limiting. Alternative embodiments
may have more or less steps than those shown in FIG. 12 in various arrangements and

combinations.

Ju—
(V4]

[0157] In certain embodiments, the processing depicted in FIG. 12 may be performed by a
node in the cluster of computing nodes 1012 in the distributed computing systermn 1002 each
time a baich of events is received via a task 1020 (shown in FI. 10). The process starts at
1202 when it receives a batch of events from the CQL transformations 1108 at 1204, In
certain examples, each event in a batch of events may be referred to as a tuple, and the batch
20 of events may be referred to as a batch of input tuples or a set of input tuples. As noted above,
each event received via the event stream conforms to a schema associated with the event
stream and the schema identifies one or more attributes for each event received via the event

stream.

[0158] Forinstance, a continuous event siream may represent product related information

[\
(V4]

related to products sold by a company, where each event in the event stream may represent an
order for an ttern. Such a continuous event strearn may comprise attributes such as an order
identifier, an order status, and an order amount related to an item. The schema for such an
input stream can be represented as S(timestamp, <orderld>, <orderStatus™, <orderAmount>).
Each event received via such a stream will thus be identified by a time stamp and three

30 attributes. In certain embodiments, the one or more atiributes of the events may be
represented as one or more columns in the set of input tuples (batch of events) and hence, an
attribute, in some examples, may refer to a column that stores data values for a tuple{event) in

the set of input tuples.

i

[\

3

O

(V4]

n

8

WO 2018/052908 PCT/US2017/051196

[0159] At 1206, the process includes identifving an attribute (e.g., a first atiribute) of the
events in the batch of events. At 1208, the process includes identifving a data type of the
attribute. For instance, per the example of the order processing stream described above, the
processes at 1206 and 1208 may 1dentify that the attribute corresponds to an “orderld’
attribute of the events and that the data type of the attribute is a numeric data type. At 1210,
the process includes determining if the data type of the attribute is a numeric data type. Iif the
identified data type of the attribute 1s a numeric data type, then, in certain embodiments, the
process proceeds to 1212 to determine a first type of data compression to be performed on
data values represented by the attribute. For instance, at 1212, the process may include
determining that a numeric value compression technique (for e.¢., a base value compression,
a precision reduction compression, or a precision reduction value index) is to be applied on
the data values represented by the attribute. At 1214, the process includes generating a set of
serialized data values for the attribute as a result of the application of the numeric value
compression technique on the data values stored by the attribute. The process of generating a
set of serialized data values for a numeric attribute of an event 1s discussed in FIG. 13A, FIG.
138, FIG. 13C, and FIG. 13D, At 1216, the process includes storing the set of sertalized data

values represented by the attribute.

[0168] In certain embodiments, at 1218, the process includes determining if there are
additional attributes of the events that need to be processed. If there are additional attributes
to be processed, the process loops back to 1206 to identify the next atiribute {e.g., a second
attribute) of the events in the event batch and the processes at 1208-516 are performed for the

next atiribute.

[0161] In certain embodiments, at 1210, if the identified data type of the attribute 18 not
determined to be a numeric data type, then, in certain embodiments, the process proceeds to
1220 to determine a second type of data compression to be performed on data values
represented by the atiribute. For instance, continuing with the example of the order
processing stream described above, the processes at 1206 and 1208 may identify that a
second attribute of the events corresponds to the “orderStatus’ attribute and that the data type
for this attribute 1s a non-numeric data type. In this case, the process continues to 1220 to
determine a second type of data compression to be performed on data values stored by the
attribute. In an embodiment, the second type of data compression may be different from the
first type of data compression. For instance, the process at 1220 may determine that a non-

numeric value compression technique {e.g., a value index compression} is to be applied on

43

10

Ju—
(V4]

20

[\
(V4]

36

WO 2018/052908 PCT/US2017/051196

the data values stored by the aftribute. At 1214, the process includes generating a set of
serialized data values represented by the attribute as a result of the application of the non-
numeric value compression technique on the data values stored by the atiribute. The process
by which a set of serialized data values may be generated for a non-numeric attribute of an
event is discussed in FIG. 14, At 1216, the process includes storing the set of serialized data

values represented by the attribute.

[0162] In certain embodiments, the process may again continue to 1218 to determine if
there are any additional attributes of the event that are to be identified and processed. If there
are more attributes, then the process loops back to 1206 to identify a third attribute of the
events in the batch of events. The process at 1208 may then include identitying a data type
tor the third attribute and the process at 1210 may include determining a third type of data
compression to be performed on data values stored by the third attribute based on the data
type of the third attribute. For instance, continuing with the example of the order processing
event stream described above, a third type of data compression may be performed on data
values stored by the ‘orderAmount’ attribute based on the data type of the attribute. In certain
examples, when all the attributes for the events have been identified and processed, the

process ends at 1222,

[0163] FIG. 13A 1s an example flow diagram of a process 1300 that describes a set of
operations for generating a set of serialized data values for a numeric attribute of an event, in
accordance with an embodiment of the present disclosure. In an embodiment, the process
1300 describes additional details of the operations performed by the process in 1214 of FIG,
12, In certain examples, the process 1300 begins at 1302 by storing the current buffer offset
to the current column number of the column {for e.g , the first attribute) whose data values
are being processed. At 1304, the process includes obtaining the data type {column type) of
the attribute. For example, the data type of the attribute, in this case, may be determined to be
a numeric atiribute. At 1306, the process includes scanning the set of input tuples to obtain
the minimum value, the maximum value, and the set of unique values represented by the
attribute. At 1308, the process includes computing the requited number of bits to store the
data values represented by the atiribute from the range (maximum-~ minimum}. At 1309, the
process includes determining if the required number of bits is larger than half of the number
of bits of the data type of the attribute and the size of the set of unigue value is smaller than
the number of input tuples/value index_threshold where the value index threshold is

configurable. In an example, the value index threshold can be configured to a value of 11 as

44

10

Ju—
(V4]

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

the default value. If so, the process continues to 1350 to perform the precision reduction
index value compression technique. At 1310, the process includes determining if the required
number of bits is smaller than the number of bits of the original data type of the column. The
checking at 1310 is performed to ensure that the size of serialized block does not increase
trom the original biock. This is because if the bits required to cover the range of values is
greater than the bits required for the original data, the result block created using the value

indexed technigue could be larger than the original block size.

[0164] If the required number of bits is smalier than the number of bits of the original data
type of the column, the process continues to 1312 to determine if the size of the set of unique
values 1s smaller than the nuraber of input tuples/2. This determination is performed to ensure
that the compression rate is large enough. If there are too many unique values, in certain
examples, the value itself is used instead of the value and the index to the value. If it is
determined that the required number of bits is smaller than the original data type of the
column and the size of the set of unique values i1s smaller than the number of input tuples/2

then the processes described in 1314-626 are performed.

[0165] For example, at 1314, the process includes storing the first type of data compression
to be performed on the data values represented by the atiribute as a precision reduction value
index type of data compression. The precision reduction technigue reduces the bits
representing values from the used values by finding the range of values. The required bits
will depend on the range of values. At 1316, the process includes storing the mininmum data
value of the attribute. At 1318, the process includes storing the number of bits for each
minimum value. At 1320, the process includes performing the operations at 1322 and 1324
for each data value of the column (e.g., the attribute} whose data values are currently being
processed. For instance, at 1322, the process includes obtaining the index from the set of
unique data values. At 1324, the process includes storing the index to the buffer. After all the
data values of the columun have been processed, at 1326, the process includes storing the
{unique value - minimum value) for each unigue value in the set of tuples. These values
represents the actual value indexed from the index stored at the step 1324

[8166] In certain embodiments, if the process at 1312 determines that the size of set of
unique values is not smaller than the number of input tuples / 2, then, in some embaodiments,

the processes 1332-638 described in FIG. 13B below are performed. In certain embodiments,

if the process at 1310 determines that the required number of bits is not smaller than the

45

10

Ju—
(V4]

[\
(V4]

36

WO 2018/052908 PCT/US2017/051196

original data type of the column, then, in one embodiment, the processes in 1342-646
described in FIG. 13C are performed. In certain embodiments, the process ends at 1328 by
returning a set of serialized data values (i.e,, a serialized block of data} for the attribute to the
CQL Engine for processing the set of tuples (i.¢, the batch of events) received via the event

stream.

[0167] FIG. 13B is an example flow diagram of a process 1350 that describes a set of
operations for generating a set of serialized data values for a numeric atiribute of an event
using the precision reduction compression technigue, in accordance with an embodiment of
the present disclosure. In an embodiment, the process 1350 describes additional details of the
operations pertormed by the process in 1330 of FIG. 13A. In certain examples, the process
1350 begins at 1332 by storing the type of data compression to be performed on data values
represented by the atiribute as a precision reduction compression. At 1334, the process
includes storing the minimum data value of the attribute. At 1336, the process includes
storing the number of bits per data value of the attribute. At 1338, the process includes for
each data value of the column, performing a bit copy (value-minimum} only for the required
bits. For example, the set of input values (10,11,12) will be stored with the bits 00 for the
value O which is the result of (10 — 10(the minimum value)),01 for the value 1 which s the
result of (11 — 10} ,and 02 for the value 2 which is the result of (12-10}. The sequence of bit
values 00, 01, and 02 can be stored into a byte(8 bits) 00010200 and stored as 154 in hex

value.

[0168] FIG. 13C is an example flow diagram of a process 1360 that describes a set of
operations for generating a set of senialized data values for a numeric attribute of an event
using the regular compression technique, in accordance with an embodiment of the present
disclosure. In an embodiument, the process 1360 describes additional details of the operations
performed by the process in 1340 of FIG. 13A. In certain examples, the process 1360 begins
at 1342 by storing the first type of data compression to be performed on data values
represented by the attribute as a general compression type. At 1344, the process includes
corupressing the array of column values using a standard compression technigue such as, zip
or gzip. At 1346, the process includes storing the compressed bytes of the data values

represented by the attribute.

[0169] FIG. 13D is an example tlow diagram of a process 1370 that describes a set of

operations for generating a set of serialized data values for a numeric attribute of an event

WO 2018/052908 PCT/US2017/051196

using the precision reduction value index compression technique, in accordance with an
embodiment of the present disclosure. In an embodiment, the process 1370 describes
additional details of the operations performed by the process in 1350 of FIG. 13A. In certain
examples, the process 1370 begins at 1372 by storing the type of data compression to be
5 performed on data values represented by the attribute as a precision reduction index value
compression. At 1374, the difference value set (e.g., value — minimum) is computed. At
1376, the process includes scanning all the values in the difference value set to obtain a set of
enumerated values. At 1378, the process includes computing the set of indices for each data
value represented by the difference value set. At 1380, the process includes computing the
10 mintmum and maximum value from the set of indices. At 1382, the process includes storing
the minimum data value of the attribute. At 1384, the process includes storing the number of
bits per data value of the index values. At 1386, the process 1ncludes for each data value of
the colurn, performing a bit copy only for the required bits. At 1388, the process includes

storing the set of enumerated difference values.

Ju—
(V4]

[017¢] FIG. 14 is an example flow diagram of a process 1400 that describes a set of
operations to generate a set of serialized data values for a non-numeric atiribute of an event,
in accordance with an embodiment of the present disclosure. In an embodiment, the process
1400 describes additional details of the operations performed by the process 1214 of FIG. 12
when it is determined that a second type of data compression is to be performed on the data
20 wvalues represented by an attribute (e.g., a non-numeric attribute). The process 1400 begins at
1402 by storing the current buffer offset to the current coluran number of the columu (for
e.g., the attribute) whose data values are being processed. At 1404, the data type (column
type) of the attribute 15 obtained. For instance, in this case, the data type of the attribute is
determined to be a non-numeric attribute. At 1406, the process includes storing the type of
25 data compression to be performed on data values represented by the attribute as a value index
compression. In this case, all the possible values within the batch of inputs are enumerated

and the index of the location 1s used instead of copying values multiple times.

18171] At 1408, the process includes scanning all the input tuples to obtain a set of
enumerated values for the column. At 1410, the process includes computing the set of indices

30 for each data value represented by the column. At 1412, the process includes performing the
operations described in 1414-716 below for each data value stored in the column. At 1414,
the process includes obtaining the index from the set of enumerated values. At 1416, the

process includes storing the index to the buffer. At 1418, the process includes storing the set

WO 2018/052908 PCT/US2017/051196

of enumerated values. At 1420, the process ends by returning a set of serialized data values
(i.e., a serialized block of data) for the attribute to the CQL Engine for processing the set of

tuples (i.e., the batch of events) received via the event stream.

[6172] FIG. 15 is an example of the manner in which event stream data can be serialized
5 based on determining the data type of the attributes of the events in the event stream, in

accordance with an embodiment of the present disclosure. In the example tllustrated below,
the event stream represents product related information related to products sold by a
company. Each event in the event stream may represent an order for an item and comprise
attributes such as an order identifier, an order status, and an order amount related to the item.

10 The schema for such an order event stream can be represented as S{timestamp, <orderld>,
<orderStatus>, <orderAmount>). Each event received via such a stream can thus be identitied
by a time stamp and three attributes. As an example, a batch of events received via an order

event stream may include the following events and associated timestamps:

15 (umestamp

(timestamp
(timestamp N+2, 10, processing”, 100}
(imestamp N+3, 10,7 shipped”, 100)
(timestamp N+4, 11, “processing”,5000)

20 (nmestamp N+5, 10, closed”, 100}
{(timestamp IN+6, 11, shipped”,5000)

(timestamp N+7, 11,"closed”, 5000}

[0173] As noted above, in certain embodiments, the one or more attributes of the events

may be represented as one or more columns in a set of input tuples that represent a baich of
25 events. Hence, an attribute, in some examples, may refer to a column that stores data values

for a tuple(event) in the set of tnput tuples. An example of a set of input tuples corresponding

to a batch of events received via the order event stream may be as shown in Table-1 below:

Tuple (event) Attribute H{column Attribute 2{column Attribute 3(column

48

10

15

WO 2018/052908 PCT/US2017/051196

1) 2) 3)

Order Id Order Status Order Amount
el 16 Open 160
e2 11 Open 5000
e3 10 Processing 100
ed 10 Shipped 100
es t Processing 5000
ed 10 Closed 160
e’ 11 Shipped 5000
e8 It Closed 5000

Table-1

[0174] In certain embodiments, the events in the event batch are serialized by identifying
the data type of each atiribute of the events and determining a particular type of compression
technique to be applied to the data values represented by each attribute based on the data type
of the attribute. For instance, a first compression technigue may be applied to a first atiribute
{e.g., the order id attribute) of the event based on determining that the first attribute is a
numeric atiribute, a second compression technigue may be applied to a second attribute (e g,
the order status attribute) of the event based on determining that the second attribute is a non-
numeric attribute, and a third compression technique may be applied to a third attribute (e.g.,
the order amount attribute) of the event based oo determining that the third attribute 1s a
numeric atiribute. In certain examples, the first type of compression technique, the second
type of compression technique, and the third type of compression technigue may be different

from each other.

[0175] In an embodiment, columnar storage can be used to store the attributes (columns)
that have the same data type so that the values in the columns are the same data type. In
certain embodiments, the values stored in columns of numeric types may be compressed

using a base value compression technique or a precision reduction compression technigue.

49

WO 2018/052908 PCT/US2017/051196

The precision reduction reduces the bits representing values from the used values by finding
the range of values. The required bits will depend on the range of values. The base value
compression uses the minimum value as the base value and stores the differences from the
hase value for other values. For example, the set of input values that represent the “order id’
5 of each event in the event batch (10,11,10,10,11,10,11, 11) can be compressed to (10, 1),
01001011 1n binary or Ox4B in hexadecimal which represents the values of (0,1, 0,0, 1, 0, 1,
1) using reduced bits to 2 bits from 32 bits since the minimum value is 10 and the range is 2.
For another example, the set of input values that represent the “order amount’ can be
corapressed using a precision reduction and value index technique. In this case, the set of
10 input values that represent the order amount {100, 5000,100,100,5000,100,5000,5000} can be
compressed to {100, 2, 0x10, 0x4F) and (0,4900) by using both the precision reduction and
value index techniques. The input set can be represented as (0, 4900, 0, 0, 4900, 0, 4900,
4900) with the base value of 100. The result set has a value of 00010000, 01001111 in binary
and 10 and 4F in hexadecimal which represents (0, 1,0, 0, 1, 0, 1, 1) having indexes to the
15 base value table (0, 4900} {e.g., 0 is pointing to 0 and in turn 100 with the base value 100 and

1 is pointing to 4900 and in turn 5000 with the base value 100).

[#0176] In certain embodiments, a ‘value index compression’ technique may be used to
process the values for columans that store non-numeric values such as string values. In this
case, we enumeraie all the possible values within the batch of inputs and use the index of the

20 location instead of copying values multiple times. For examiple, if the values of the “order
status’ attribute (column) are {open, open, processing, shipped, processing, closed, shipped,
closed), the corresponding enumerated unique values will be (open, processing, shipped,
closed). When the values of the columins are stored in a hinear buffer sequentially, the index
of each value will be (0,5,17,25) because the buffer will have

25 open/Oprocessing/Oshipped/Oclosed/0 where /0 1ndicates the end of string marker. The final

compressed result is (0,0,5,17,5,25,17,25) with the linear buffer of the values

[6177] FIG. 16 15 an example flow diagram of a process 1600 that describes a set of
operations by which data comprised 1n a batch of events can be de-senalized, in accordance
with an embodiment of the present disclosure. In certain embodiments, the process 1600 can
30 be performed by a batch de-serializer process (420} in the distributed event processing
system. As noted above, the batch de-serializer process may, in certain embodiments, be
invoked by the master computing node when the master computing node (e.g., 314 as shown

in FIG. 3} is requested to run a job/operation defined in the application. As described above,

50

10

Ju—
(V4]

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

the master computing node identifies a node {e.g., an executor node 318) in the cluster of
computing nodes 312 in the distributed computing system 302 to process a batch of events
against the job/operation defined in the application and generate a set of output events as a
result of the processing. In certain embodiments, processing the batch of events may include
the serialization and the subsequent de-serialization of the data in the batch of events. The
process of FIG. 16 describes one technigue by which data in a batch of events can be de-
sertalized. The particular seties of processing steps depicted in FIG. 16 1s not intended to be
limiting. Alternative embodiments may have more or less steps than those shown in FIG. 16

in various arrangements and combinations.

[8178] Iu certain embodiments, the process 1600 begins at 1602 by receiving a set of
serialized data values corresponding to one or more attributes of events in a batch of events
{(set of input tuples). At 1604, the process includes processing the set of senalized data values
corresponding to the one or more attributes of the events in the batch of events to generate a
set of output events. In certain examples, the process at 1604 may 1nclude generating a set of
de-serialized data values corresponding to the attributes based on the set of serialized data
values at 1606 and processing the set of de-serialized data values corresponding to the
attributes against a set of one or more continuous queries {o generate a first set of output
events at 1608, At 1610, the process includes transmitting the set of output events to a user of

the distributed event processing system,

[8179] The process 1604 of generating a set of de-serialized data values corresponding to
attributes of events in a batch of events is discussed in detail in relation to FIGS. 17-14
below. In particular, FIG. 17 describes a process by which a set of de-serialized data values
corresponding to one or more attributes of events in a batch of events can be generated. FIG.
18 describes a process by which set of de-serialized data values corresponding to a non-
numeric attribute of an event can be generated. FIGS. 19-14 describe a process by which set
of de-serialized data values corresponding to a numeric attribute of an event can be

generated.

[6188] FIG. 17 is an example flow diagram of a process 1700 that describes a set of
operations to generate a set of de-serialized data values for one or more attributes of events in
a batch of events, in accordance with an embodiment of the present disclosure. In an
embodiment, the process 1700 describes additional details of the operations of the process in

1604 of FIG. 16. In certain examples, the process 1700 begins at 1702 by creating an array of

51

(42
<

WO 2018/052908 PCT/US2017/051196

tuples. At 1704, the process includes identifying a first column (first attribute) of the events.
At 1706, the process includes obtaining the buffer offset of the current column number of the
column (for e.g., the first attribute) whose data values are being processed. At 1708, the
process includes reading the compression type of the attribute. This involves, for example,
reading the type of data compression that was performed by the baich serializer process o
serialize the data values of the attribute. At 1710, the process includes determining if the type
of data compression applied to the attribute is a value index compression. If the compression
type applied to the attribute s a value index compression, then the then the process continues

to 1724 to perform the process described in FIG. 18,

[0181] At 1712, the process includes determining if the type of data compression applied to
the attribute is a precision reduction compression. If the compression type applied to the
attribute 15 a precision reduction compression, then the process continues to 1726 to perform

the process described in FIG. 19

[0182] In certain embodiments, at 1714, the process includes determining if the type of
data compression type applied to the attribute 1s a precision reduction value index
compression. If the compression type applied to the attribute is a precision reduction value
index compression, then the process continues to 1728 to perform the process described in

FIG. 20,

[0183] In certain embodiments, if the process determines that the compression type applied
to the attribute 1s neither a value index compression, or a precision reduction compression, or
a precision reduction value index compression, then the process continues fo 1716 to
determine that the compression type applied to the attribute is a general compression. At

~5

1716, the process includes performing the process deseribed in FIG. 21,

[0184] At 1718, the process includes determining if there are additional attributes to be
processed. Hf there are additional attributes to be processed, the process loops back to 1704 to
identify and process the next attribute of the events. If there are no attributes to be processed,
then, in some embodiments, the process returns an array of tuples to the CQL Engine for

further processing at 1720, In certain embodiments, the process ends at 1722,

[0185] FIG. 18 is an example flow diagram of a process 1800 describing a set of operations
for generating a set of de-sertalized data values corresponding to a numeric attribute or a non-
numeric attribute of events in a baich of events using the value index compression, in

accordance with an embodiment of the present disclosure. In an embodiment, the process

10

20

WO 2018/052908 PCT/US2017/051196

1810 describes additional details of the process 1724 in FIG. 17 and is performed when the
type of data compression applied to the attribute is determined to be a ‘value index’
compression {e.g., at 1710 in FIG. 17). As an example, the process 1800 can be performed for

the ‘order status’ attribute (non-numeric attribute) in the order event stream.

[0186] An example of using the value index compression technique 15 shown in FIGS,
Column 2. The compressed value has two sets of data (0,0,5,17,5,25,17,25), and

{(‘open’ ’processing’ " shipped’, closed’). The second set is referred to value arrays since the
set includes the actual values. The first set s referred to index values since the set includes
the index values to the actual values stored in the value arrays. The value index refers to

each of the individual index values in the index _values.

[0187] In certain embodiments, the process 1800 begins at 1802 by reading the index
values to index values. At 1804, the process includes reading value arrays to value array. At
1806, the process includes performing the operations in 1808, 1810, and 1812 for each data
value corresponding to the attribute 1n the set of input tuples. For example, at 1808, the
process includes getting the ndex from index_values{value index]. At 1810, the process
includes getting the value from value arrav[index]. At 1812, the process includes setting the

value to the tuple column of tuplesfvalue index].

[0188] FIG. 19 15 an example flow diagram of a process 1900 describing a set of operations
for generating a set of de-serialized data values corresponding to a numeric atiribute of events
in a batch of events using the precision reduction compression technique, in accordance with
an embodiment of the present disclosure. In an embodiment, the process 1900 describes
additional details of the process 1726 in FIG. 17 and 1s performed when the type of data
compression applied to the attribute is determined to be a “precision reduction’ compression
(e.g, at 1712 1n FIG. 17). As an example, the process 1900 can be performed for the “order
id” or the ‘order amount’ attribute (numeric attribute} in the order event stream and the
compressed result 1s shown at FIG. &, Column 1 1s (10, 2, O0x4B). In the set of operations
described below, in one example, the term “minimum values’ has a value 17 which is the
minimum value of the value range and the term ‘the number of bits’ has the value 2 which is

the number of bits representing the value range

10189] Iu certain embodiments, the process 1900 begins at 1902 by reading the minimum
value to the base value. At 1904, the process includes reading the number of bits. At 1906,

the process includes performing the processes in 1908 and 1910 for each data value

53

10

20

WO 2018/052908 PCT/US2017/051196

corresponding to the attribute in the set of input tuples. For example, at 1908, the process
includes reading the value bits to value bits. At 1910, the process includes setting the

base valuetvalue bits to the tuple column of tuples[value index].

[0198] FIG. 20 15 an example flow diagram of a process 2000 describing a set of operations
for generating a set of de-serialized data values corresponding to a numeric attribute of events
in a batch of events using the precision reduction value index, in accordance with an
embodiment of the present disclosure. In an embodiment, the process 2000 describes
additional details of the process 1728 in FIG. 17 and 1s performed when the type of data
compression applied to the attribute is determined to be a ‘precision reduction value index’
corupression {e.g., at 1712 in FIG. 17). As an example, the process 2000 can be performed for
the “order 1d’ or the ‘order amount’ attribute (numeric attribute) in the order event stream.
FIG. 8, in column 3 shows an example result for the ‘order amount attribute” with the result,

(100, 2, 0x10, 0x4F) and (0,4900).

[0191] In the set of operations described below, the term, ‘base value’ refers to value 170
for the base value of the column values, the term ‘number of bits’ refers to value 2 for the
number of bits for the index values, the term ‘index values’ refers to value (0x10, Ox4F) for
the index values, and the term ‘value array’ refers 1o {0,4900) which represents the set of

difference values.

[6192] In certain embodiments, the process 2000 begins at 2002 by reading the minimum
value to the base_value. At 2004, the process includes reading the number of bits. At 2006,
the process includes reading the index values to index_values. At 2008, the process includes
reading the value arrays to value array. At 2010, the process includes setting the

value arraylj] to value array[j] + base value for each value of j €0 to value_array length. At
2012, the process includes performing the processes in 2014, 2016, and 2018 for each data
value corresponding to the attribute in the set of input tuples. For example, at 2014, the
process includes getting the index from index _values{value index]. At 2016, the process
includes getting the value from value array[index]. At 2018, the process includes setting the

value to the tuple column of tuplesfvalue index].

[0193] FIG. 21 1s an example flow diagram of a process 2100 describing a set of operations
for generating a set of de-serialized data values corresponding to a numeric attribute or non-
numeric attribute of events in a batch of events, in accordance with an embodiment of the

present disclosure. In an embodiment, the process 2100 describes additional details of the

54

15

(98]
<

WO 2018/052908 PCT/US2017/051196

process 1716 in FIG. 17 and is performed when the type of data compression applied to the
attribute 1s determined to be a “general compression’ technique (e.g., at 17161 FIG. 17). As
an example, the process 2100 can be performed for the ‘order id” or the ‘order amount’
attribute (numeric attribute) in the order event stream. In the set of operations described
below, the term ‘values’ refers to the uncompressed values.

[0194] In certain embodiments, the process 2100 begins at 2102 by uncompressing the
block into array of values. At 2104, the process includes setting the value in values array into
the tuple column of tuples for each data value corresponding to the attribute in the set of input

tuples.

Schedulinge and Managine Multiple CEP Engsines within a Micre-batch based Event

Processing Svstem

[0195] In recent vears, data stream management systems {(BSMs) have been developed that
can execute queries in a continuous manner over potentially unbounded, real-time data
streams. Among new DSMs, these systerns employ micro-batching based stream processing
in order to provide a combination of batch processing and stream processing from a single
framework. An example of such a system is a Spark® Streaming application running on the

Spark® platform.

[0196] Micro-batching stream processing has some shortcomings due to the nature of the
system design where stateful processing is generally complex. One such shortcoming is not
being able to perform a “pattern matching’ operation. Pattern matching is an important feature
that 1s desirable that a Stream Processing system should support and Pattern Matching
requires highly stateful processing in order to run state machines to detect patterns from an

unbound stream of events.

[0197] In order to support fully stateful query processing, the disclosed technique adds the
CQL Query Engine into micro-batching stream processing. Since there are more than one
CQL Engines in a cluster, issues related to scheduling, tracking, and maintaining locality
have to be addressed.

[0198] FIG. 22 is an example system or architecture in which a scheduling process in the
CQL Engine Tracker can be implemented. In one embodiment, and as shown in FIG. 22
below, a CQL Engine Tracker 2202 component is disclosed in the driver {(master) 2206 that

can remotely communicate between the COL engine 2212 and the CQL Resilient Distributed

55

10

30

WO 2018/052908 PCT/US2017/051196

Dataset (RDD) 2218. For launching and scheduling, the CQLEngineTracker 2202 uses a two-
step scheduling policy to differentiate different systern environments. In order to maximize
the locality, in one embodiment, the COQLEngineTracker 2202 uses the following affinity

algorithm.

1. Al COLEngines 2212, 2214, 2216 are launched by the CQLEngineTracker 2202
from a driver 2206, No association of a CQLEngine to a preferred location is set.
The first CQLRDD 2218 does not have preferred location information.

A Scheduler 2204 will try to co-locate to the host where the parent RDD is located
using the parent RDD's preferred location.

4. The first ran of CQLRDD 2218 associates the CQLEngine 2212 to the same host
2208.

The next COQLRDD 2220 will set the preferred location information from the
association information set from step 4.

6. The Scheduler 2204 will try to run CQLRDD to the preferred location it is set to.

D2

W

[0199] The disclosed technique enables having fully stateful CQLEngines 2212, 2214,
2216 within micro-batching stream processing, maintaining locality between CQLEungine and
CQLRDD, and Multi-step scheduling algorithm for launching and re-launching CQLEngines.
In addition, the disclosed local affinity algorithio provides maxirourn performance compared

to other event-by-event based stream processing systems.

[62008] In certain embodiments, the disclosed CQL engine tracker 2202 is responsible for
scheduling, tracking , and restarting CQLEngines in a cluster. The CQL Engine runs as a
long-running task in the cluster and can be launched as a regular Streaming Job. The CQL

engine tracker 2202 does not return except when it encounters the fault situation,

[6201] In some embodiments, the following tracking information by the CQL Engine

Tracker 2202 can be maintained.
« state: CQLEngineState - INACTIVE, SCHEDULED, ACTIVE

—~ This changes from INACTIVE -> SCHEDULED > ACTIVE -> INACTIVE
throughout the lifecycle of CQLEngine 2212, 2214, 2216

+ schedulelocation : TaskLocation
— The initial scheduled location
« runningHExecutor : ExecutorCacheTaskLocation

— The executor 2208 location where the CQLEngine actually runs

56

10

Ju—
(V4]

20

WO 2018/052908 PCT/US2017/051196

[0202]

name ;. String

— The name of COLEngine 2212, 2214, 2216

2

endpoint | RpcEndpointRef

— The Remote Process Call (RPC) endpoint of CQLEngine 2212, 2214, 2216 to

access it remotely
errorinfo - COLEngineErrorinfo
— The last known error information

In an embodiment, the launch flow of the CQL Engine 2212, 2214, 2216 may be

described as follows:

[0203]

Decide number of CQLEngines 2212, 2214, 2216 to launch
Get the list of executors 2208, 2210, 2212

Run Round-robin scheduler to schedule CQLEngine 2212, 2214, 2216 to the hist of

executors 2208, 2210, 2212

2

TaskScheduler 2204 aunches actual long-running tasks

The newly launched CQLEngine invokes ‘register” RPC call to CQLEngineTracker
(e.g., COL Engine Tracker 2202)

In certain embodiments, the CQLEngine Locality Affinity Algorithm roay be

described by the following process:

I

All CQLEngines are launched by CQLEngineTracker from a driver. No association of

CQOLEngine to a preferred location is set.
The first CQLRID does not have preferred location information.

The Scheduler will try to co-locate to the host where the parent RDD 1s located using

the parent RDD's preferred location.
The first run of CQLRDD associates the CQLEngine to the same host.

The next CQLRDD will set the preferred location information from the association

information set from step 4.

The Scheduler will try to run CQLRDD to the preferred location it's set.

16

15

[\
(V4]

WO 2018/052908 PCT/US2017/051196

[0204]

follows:

In an embodiment, the CQLEngine Restart Scheduling process may be described as

» Handle two cases (Rejected, Crashed)

* Regjected - If the schedule location and actual location 13 different (failed to start from

the schedule)

« et scheduled executor either using the old scheduled executor {minus the ones that

are not active} or the new scheduled executor with

schedulePolicy rescheduleCQLEngine

— choose the executors that are still alive in the list of scheduled locations

= start CQLEngine with the scheduled executor

[6205]

The following flow shows the data tlow of the above architecture:

CQLEngineTracker 2202 in Driver 2206 launches long running tasks for each
CQLEngine. The CQLEngineTracker 2202 exposes RPCEndpoint of it to the long

running tasks.

TaskScheduler 2204 executes the long running tasks to executors 2208, 2210, 2212

in the cluster
As part of the fong running task, CQLEngine runs from executors 2208, 2210, 2212,

CQLEngines register themselves to CQLEngineTracker 2202 in Driver 2206 with

the RPCEndpoint of CQLEngines.

As part of strearning DAG, there will be COLRDD responsible for CEP Processing.
The CQLRDD gets processed by either local CQLEngine or remote CQLEngine by
consulting COLEngineTRacker. The remote CQLEngine is invoked through RPC

Startine the COLEngines

[0206]

The CQLEngine runs as a long-running tasks in the cluster. A CQLEngine gets

started by the CQLEngineTracker as a regular Job but it never returns and keeps running

1.

except the fault or crash. The CQLEngineTracker launches CQLEngines o the cluster

following the algorithm described below:

Decide number of COLEngines to launch

58

WO 2018/052908 PCT/US2017/051196

(zet the list of execuiors

]

(%7

Run Round-robin scheduler to schedule CQLEngine to the list of executors
4. TaskScheduler launches actual long-running tasks

5. The newly launched CQLEngine invokes ‘register” RPC call to CQLEngineTracker

W
o)

The long-running tasks returns the control only when the CQLEngine crashes or

other faults.

[6207] At step #1, the number of CQLEngine in the cluster to launch is decided. The
default number of CQLEngine in the cluster 1s same as the number of executors in the cluster.
As the result, one CQLEngine runs from each executor. This maximum number CQLEngine

10 can be configured.

[0208] At step #2, the list of executor information (executor host and executor 1d) is

retrieved from the cluster.
[6209] At step #3, the round-robin scheduler to assign executors to CQLEngines.

[0218] At step #4, launch long-running tasks for each CQUEngine. The TaskScheduler uses
15 the scheduled executor information {executor host and 1d) to start the CQLEngine 1n the

scheduled executor.

[0211] At step #5, the newly launched CQLEngine invokes “register’ RPC call to the
CQLEngineTracker. This step initiates the tracking process from CQLEngineTracker shown
below.

20 [0212] At step #6, the fault or crash of CQLEngines triggers the recovery process from

CQLEngineTracker shown below

Tracking COLEnsines

6213] In some embodiments, the following tracking information by the CQL Engine

Tracker can be maintained for each CQLEngine
25 state: CQLEngineState
scheduleLocation : TaskLocation

runmngExecutor | ExecutorCacheTaskLocation

59

16

WO 2018/052908 PCT/US2017/051196

name ;. String
endpoint | RpcEndpointRef
errorlnfo . CQLEngineErrorinfo

[0214] The ‘state’ keeps the state of CQLEngine. It changes from INACTIVE >
SCHEDULED > ACTIVE > INACTIVE throughout the lifecycle of CQLEngine.
INACTIVE is the initial state before the COLEngine gets tracked by the CQLEngineTracker.
SCHEDULED is the state when the COLEngine is scheduled to be executed in an executor.

ACTIVE is the state when the CQLEngine is actually running from the executor.

[0215] The ‘scheduledLocation’ keeps the scheduled location to execute the CQLEngine.
[0216] The ‘runmingBExecutor’ keeps the executor location where CQLEngine actually runs.
[6217] The ‘name’ 1s the name of the COLEngine as the identifier,

[0218] The ‘endpoint’ is the RPCEndpoint to communicate with.

[021%9] The ‘errorinfo’ is the last known error information of CQLEngine.

Recoverv of COL . Engines

[0228] The long-running tasks returns the control to CQLEngineTracker only when the
CQLEngine crashes or other faults. The CQLEngineTracker uses the following CQLEngine
Restart Scheduling process in order to re-start the CQLEngine. The Restart Scheduling

process gets invoked from two cases: Rejected and Crashed.

132211 Crashed 15 the case when the runnung CQLEngine is crashed or the long-running
task returned with any faults. Rejected is the case when the scheduled location and the actual
location 1s different (e.g. Failed to start from the scheduled executor and started from
different executor by the TaskScheduler). This may happen due to the resources issue from

the cluster.

[6222] In an embodiment, the CQLEngine Restart Scheduling process may be described as

follows:

1. Get the list of candidate executors using the old scheduled executor (minus the ones

that are not active) and the new executors in the cluster

2. Choose an executor that are still alive in the list of candidate executors

60

Ju—
(V4]

20

WO 2018/052908 PCT/US2017/051196

3. Launch a long running-task that start CQLEngine with the scheduled executor

Localityv affinitv aloorithm

[0223] In order to support horizontal scalability, the input datasets are partitioned and get
processed with parallielize distributed data processing. A CQLEngine may process multiple
partitions using the affinity or association of {queryld, partitionld} to CQLEngine. To

optimize transtormation with minimal network traffic for sending data between executors,

this affinity needs to be created with maximizing locality. In order to maximize the locality,

in one embodiment, the CQLEngineTracker uses the following affinity algorithm.

1. Al CQLEngines are launched by the CQLEngineTracker from a driver. No

assoctation of a CQLEngine to a preferred location is set.
2. The first CQLRDD does not have preferred location information.

3. Spark® Scheduler will try to co-locate to the executor where the parent RDD s

located using the parent RDD's preferred location.
4. COQLRDD invokes ‘getCQLEngine” RPC to CQLEngineTracker.

5. The first computation of a partition of CQLRDD associates the {partitionld, queryld)
to the CQLEngine to the same executor of CQLRDD.

6. The preferred location ruapping of (partitionld, queryld) to CQLEngine i3

maintained in the CQLEngineTracker.

7. The CQLEngine from the association returns to CQLRDD and the RDD gets
processed by the CQLEngine.

8. The next CQLRIDD will set the preferred location information from the association
information set from step 5.

9. Spark® Scheduler will try to run CQLRDD to the preferred location it 18 set to.

10. COQLRDD invokes “getCQLEngine’ RPC to CQLEngineTracker and the
(partitionid,queryid) should be already the same executor.
10224] FIG. 23 is an example flow diagram of a process 2300 that describes a set of
operations for scheduling and managing multiple CEP engines within a micro-batch based
event processing system, in accordance with an embodiment of the present disclosure. In an

embodiment, the process 2300 describes additional details of the operations described in FIG.

61

10

20

30

WO 2018/052908 PCT/US2017/051196

22, In certain examples, the process 2300 begins at 2302 by launching a first CQL engineina
cluster of CQL engines. The first CQL engine, and additional CQL engines, can be launched
using a CQL engine tracking engine. At 2304, the CQOL engine tracking engine can also
schedule the first CQL engine to process a batch of a continuous stream of input events
related to an application. At 2306, the CQL engine tracking engine can also track the first
CQL engine to be scheduled for execution. At 2308, the CQL engine tracking engine can also
execute the first CQL engine to process the batch of the continuous stream of input events to

generate a set of output events related to the application.

Automatic Data Partitioning and parallelism using Group By and Obiect 1D Fields

[0225] In recent years, data stream management systems (DSMs) have been developed that
can execute queries in a continuous manner over potentially unbounded, real-time data
streams. For example, a typical DSMS can receive one or more data streams, register a query
against the data streams, and continuously execute the query as new data appears in the
streams. Since this type of continuous query is long-running, the DSMS can provide a

continuous stream of updated results to a client.

[0226] Typical applications in DSMS are designed as a “topology” in the shape of a
Directly Acyclic Graph (DAG) of operations or transtormations. The topology acts as a data

transformation pipeling.

[6227] Most stream processing systems including Apache Storm, Spark Streaming, and
Flink provide an Application Programming Interface (API) for an application developer to

build the topology using different programming languages such as Java, Scala, or Clojure.

[0228] APIs are good for programmers to build stream processing applications, but it is
relatively complex for a code generation system such as Stream Analytics which generates a

stream processing application for users, due to the complexity of the code generation fayer.

[0229] FIG. 24 is an example architecture 2400 in which an input pipeline of data
transformations can be input into a pipeline analyzer 2402 and classified by a stage
classtfication module 2404, In some examples, the code generation layer of Stream Analytics
is responsible for determining the paralielism in the data transtformation pipeline
automatically by analyzing the pipeline stages. A data transformation pipeline is composed of
various stages where each stage performs a specific transformation according to the stage

definition. An aggregator stage computes the real time aggregates on the incoming stream

WO 2018/052908 PCT/US2017/051196

data. A data transformation pipeline processing can be optimized if the stages of the pipeline

can be processed on a cluster of nodes,

[6238] To compute a stage on a cluster of nodes, it is desirable to automatically determine
the parallelism characteristics of stage operation and then create the DAG of transformations
5 where computation of transformations can be completed on a set of cluster nodes by

maximizing parallelism.

[0231] In one embodiment, a Data Stream Management System (DSMS) is built which
analyzes the data transformation pipeline designed by the user, derives the partitioning
criteria for various stages, and generates an optimized DAG of transformation where every
10 stage can run on a set of cluster nodes.
[0232] In certain embodiments, the following stages can be included in the pipeline
designed by the Stream Analytics platform.
1) Query
2} Business Rules
15 3) Spatial
4} Pattern
[0233] The pipeline can be composed of one or more stages of the above types.
16234] An example of a sample pipeline 1s shown below:

20 Input -> Query -> Query -> Spatial -> Cutput

[0235] In some examples, the user creates the pipeline to achieve desired business logic.
While designing the pipeline, the user may select every stage for the pipeline and configure

the stage attributes for the pipeline. In some examples, the configuration attribute of a stage

A\
W

becomes the stage metadata.

[0236] The disclosed technique determines automatic data partitioning of a stage if the
stage type is Query. To transform the user created pipeline into a BAG of native runtime

transformations, the Stream analytics platform may perform the following steps:

1} Traverse the pipeline from source to sink.

2} For each stage

i) Determine the stage type

11} If the stage type 1s ‘Query’, then the platform marks whether the transtformation
for this stage can be computed in a distributed manner

a) Determine the COL query assoctated with the Query Stage.

b} Parse the CQL Query into tokens.

(98]
<

(42
W

63

10

15

25

30

s
(¥

40

WO 2018/052908 PCT/US2017/051196

[0237]

¢) Pertorm the semantic analysis of the CQL Query of the parsed query.

d} Determine the Query Classification using various rules

These rules classity a continuous query into the following categories:

Stateless, SemiStateful, Fully Stateful

¢} I the query 15 stateless, mark the stage to be partitioned without any partitioning
attribute (criteria) 2406, In this way, the stage will depend on the partitioning criteria
of the parent stage.

£} If the query 1s stateful, roark the stage to be non-partitioned 2408 In this way, the
stage can be executed only on a single cluster of nodes.

g} If the query is semi-stateful, mark the stage to be partitioned with a partitioning
attribute 2410, The partitioning attribute will be obtained from the result of step 2.11.d.
In this way, stage computation can be partitioned on the automatically determined
partitioning attribute.

3) For each stage, generate the transformation in the DAG of data transformation
pipeline.

1) I the stage is marked as partitioned without any partitioning atiribute 2406, then
generate the transformation for this stage in DAG without any repartitioning
transformation. Number of partitions of the stage will be determined by number of
partitions from the previous stage.

11} If the stage is marked as partitioned with a partitioning attribute 2410, then
generate the transformation for this stage in DAG with re-partitioning transformation.
Input to the re-partitioning transformation will be the partitioning attribute and
number of partitions. Re-partitioning transformation will re-partition the incoming
stream of events with new partitioning criteria.

iit) If the stage is marked as non-partitioned 2408, then generate the transformation
for the stage in DAG with a repartitioning transformation followed by stage
transformation. Input to the repartitioning transformation will be partitioning attribute
and number of partitions which will be 1. Re-partitioning transformation will re-
partition the already partitioned/non-partitioned stream into single partition.

In certain pipelines, if the system doesn’t have enocugh metadata or if partitioning

can’t be determined from the query analysis, then the system marks the object 1d as the

partitioning attribute 2412

[0238]

If the stage type 15 spatial and DSMS is processing a stream of geo-location events

of moving objects where each object has a unique 1dentity, the Stream Analytics platform

marks the object id as the partitioning attribute for the stage and generates the transformations

tor this stage in DAG with a partitionung transformation followed by a stage transformation.

[0239]

Ermbodiments of the disclosed technique provide the following teatures:

- To perform metadata scan of a pipeline stage and classify the stage on the basis of
COL query classification,

- To automatically determine a partitioning attribute by performing semantic
analysis of a query based on continuous query language.

- To generate a DAG of transformations by using the partitioning.

64

10

20

WO 2018/052908 PCT/US2017/051196

[8246] Prior techniques involved the use of a pipeline data transformation system for a user
to explicitly define the paralielism characteristics of the pipeline stages. If not specified, the

system could process the pipleline stages without fully utilizing the computing resources.

[0241] The disclosed technique automatically determines data partitioning criteria by
analyzing the stages of a pipelined stream processing system. This significantly reduces the

complexity of designing a data processing pipeline for the Stream Analytics Platform.

[0242] FIG 25 is an example flow diagram of a process 2500 that describes a set of
operations for data partitioning and parallelism in a distributed event processing system. In an
embodiment, the process 2500 describes additional details of the operations described tn FIG,
24 In certain examples, the process 2500 begins at 2502 by determining a stage for a
continuous query language (CQL) query being processed by an event processing system. At
2504, the system may be configured to determine a stage type associated with the stage. In
some examples, the process 2500 may continue at 2506 by determining a transformation to
be computed for the stage based at least in part on the stage type. The process 2500 may also
determine a classification for the CQL query based at least in part on a plurality of rules at
2508. In some examples, the process 2500 may include marking the stage as a partitioned
stage or a non-partitioned stage by applying partitioning criteria to the stage at 2510
Additionally, in some examples, the process 2500 may generate a transformation in a
Directly Acyclic Graph (DAG) of a data transformation pipeline for the stage based at least in
part on the partitioning criteria for the stage at 2512, At 2514, the process 2500 may
determine a partitioning of the stage based at least in part on the transformation. The process

2500 may also process the CQL query based at least in part on the deterrmined partitioning.

Hlustrative Svstems

[0243] FIGS. 26-12 illustrate aspects of example environments for implementing aspects of
the present disclosure in accordance with various embodiments. FIG. 26 depicts a simplified
diagram of a distributed system 2600 for implementing an embodiment of the present
disclosure. In the illustrated embodiment, the distributed system 2600 includes one or more
client computing devices 2602, 2604, 2606, and 2608, which are configured to execute and
operate a client application such as a web browser, proprietary client {e.g , Oracle Forms), or
the like over one or more network{s) 2610. The server 2612 may be commununicatively
coupled with the remote client computing devices 2002, 2604, 2606, and 2608 via network

2610,

65

I

[\

3

0

(V4]

(V4]

n

8

WO 2018/052908 PCT/US2017/051196

[0244] In various embodiments, the server 2612 may be adapted to run one or more
services or software applications such as services and applications that provide event
processing services. In certain embodiments, the server 2612 may also provide other services
or software applications can include non-virtual and virtual environments. In some
embodiments, these services may be offered as web-based or cloud services or under a
Software as a Service (SaaS) model to the users of the client computing devices 2602, 2604,
2606, and/or 2608, Users operating the client computing devices 2602, 2604, 2606, and/or
2608 may in turn utilize one or more client applications to interact with the server 2612 to

utilize the services provided by these components.

16243] In the configuration depicted in FIG. 26, the software components 2618, 2620 and
2622 of system 2600 are shown as being implemented on the server 2612, In other
embodiments, one or more of the components of the system 2600 and/or the services
provided by these components may also be implemented by one or more of the client
coruputing devices 2602, 2604, 2606, and/or 2608, Users operating the client computing
devices may then utilize one or more client applications to use the services provided by these
components. These components may be implemented in hardware, firmware, software, or
are possible, which may be different from distributed systerm 2600. The embodiment shown
in FIG. 26 is thus one example of a distributed system for implementing an embodiment

system and is not intended to be limiting.

[0246] The client computing devices 2602, 2604, 2606, and/or 2608 may include various
types of computing systems. For example, client device may include portable handheld
devices (e.g., an iIPhone®, cellular telephone, an iPad®, computing tablet, a personal digital
asststant (PIDA)} or wearable devices (e.g., a Google Glass® head mounted display), running
software such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems
such as 108, Windows Phone, Android, BlackBerry 26, Palm 08, and the like. The devices
may support various applications such as various Internet-related apps, e-mail, short message
service (SMS) applications, and may use various other communuication protocols. The client
computing devices may also include general purpose personal computers including, by way
of example, personal computers and/or laptop computers running varicus versions of
Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems. The client
computing devices can be workstation computers running any of a variety of commercially-

avatlable UNIX® or UNIX-like operating systems, including without limitation the variety of

o
o

20

30

WO 2018/052908 PCT/US2017/051196

GNU/Linux operating systems, such as for example, Google Chrome OS. Client computing
devices may also include electronic devices such as a thin-client computer, an Internet-
enabled gaming system {e.g., a Microsoft Xbox gaming console with or without a Kinect®
gesture input device), and/or a personal messaging device, capable of communicating over

the network(s) 2610.

0247] Although distributed system 2600 in FIG. 26 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, etc., may interact with the server 2612

[#248] The network(s} 2010 in the distributed system 2600 may be any type of network
familiar to those skilled in the art that can support data communications using any of a variety
of available protocols, including without limitation TCP/IP (transmission control
protocol/Internet protocol), SNA (systems network architecture}, IPX (Internet packet
exchange), AppleTalk, and the like. Merely by way of example, the network(s} 2610 can be a
local area network (LAN), networks based on Ethernet, Token-Ring, a wide-area network,
the Internet, a virtual network, a virtual private network (VPN), an intranet, an extranet, a
public switched telephone network (PSTN), an infra-red network, a wireless network {e.g., a
network operating under any of the Institute of Electrical and Electronics (IEEE) 2602 .11
suite of protocols, Bluetooth®, and/or any other wireless protocol}, and/or any combination

of these and/or other networks.

16249] The server 2612 may be composed of one or more general purpose computers,
specialized server computers (including, by way of example, PC (personal computer) servers,
UNIX® servers, nud-range servers, mainframe computers, rack-mounted servers, etc), server
farms, server clusters, or any other appropriate arrangement and/or combination. The server
2612 can include one or more virtual machines running virtual operating systems, or other
computing architectures involving virtualization. One or more flexible pools of logical
storage devices can be virtualized to maintain virtual storage devices for the server. Virtual
networks can be controlled by the server 2612 using software defined networking. To various
embodiments, the server 2612 may be adapted to run one or more services or software
applications described in the toregoing disclosure. For example, the server 2612 may
correspond to a server for performing processing as described above according to an

embodiment of the present disclosure.

10

Ju—
(V4]

20

[\
(V4]

36

WO 2018/052908 PCT/US2017/051196

[8256] The server 2612 may run an operating system including any of those discussed
above, as well as any commercially available server operating system. Server 2612 may also
run any of a variety of additional server applications and/or mid-tier applications, including
HTTP (hypertext transport protocol) servers, FTP (file transfer protocol) servers, CGl
{common gateway interface) servers, JAVA® servers, database servers, and the like.
Example database servers include without limitation those commercially available from

Oracle, Microsoft, Sybase, IBM (International Business Machines), and the like.

[#251] In some implementations, the server 2612 may include one or more applications to
analyze and consolidate data feeds and/or event updates received from users of the client
cornputing devices 2602, 2604, 2606, and 2608, As an example, data feeds and/or event
updates may include, but are not limited to, Twitter® feeds, Facebook® updates or real-time
updates received from one or more third party information sources and continuous data
streams, which may include real-time events related to sensor data applications, financial
tickers, network performance measuring tools (e.g., network monitoring and traffic
management applications}, clickstream analysis tools, automobile traffic monitoring, and the
like. The server 2612 may also include one or more applications to display the data feeds
and/or real-time events via one or more display devices of the client computing devices 2602,

2604, 2606, and 2608

[0232] The distributed system 2600 may also include one or more databases 2614 and
2616. These databases may provide a mechanism for storing information such as event
information, and other information used by embodiments of the present disclosure. Databases
2614 and 2616 may reside in a variety of locations. By way of example, one or more of
databases 2614 and 2616 may reside on a non-transitory storage medium local to (and/or
resident in) the server 2612, Alternatively, the databases 2614 and 2616 may be remote from
the server 2612 and in communication with the server 2612 via a network-based or dedicated
conuection. In one set of embodiments, the databases 2614 and 2616 may reside in a storage-
area network (SAN). Similarly, any necessary files for performing the functions attributed to
the server 2612 may be stored locally on the server 2612 and/or remotely, as appropriate. In
one set of embodiments, the databases 2614 and 2616 may include relational databases, such
as databases provided by Oracle, that are adapted to store, update, and retrieve data in

response to SQL-formatted commands.

68

WO 2018/052908 PCT/US2017/051196

[8253] Systems depicted in some of the figures may be provided in varicus configurations.
In some embodiments, the systems may be configured as a distributed system where one or
mote components of the system are distributed across one or more networks in one or more

cloud infrastructure systems.

5 [0254] A cloud infrastructure system is a collection of one or more server computing
devices, network devices, and/or storage devices. These resources may be divided by cloud
services providers and allotted to its customers in some manner. For example, a cloud
services provider, such as Oracle Corporation of Redwood Shores, California, may offer
various tyvpes of cloud services including but not limited to one or more services provided

10 under Software as a Service (SaaS) category, services provided under Platform as a Service
{(PaaS}) category, services provided under Infrastructure as a Service (I1aaS) category, or other
categories of services including hybrid services. Exaroples of Saa$ services wnclude, without
limitation, capabilities to build and deliver a suite of on-demand applications such as Oracle

Fusion applications. SaaS services enable customers to utilize applications executing on the

Ju—
(V4]

cloud infrastructure system without the need for customers to purchase software for the
applications. Examples of PaaS services include without limitation services that enable
orgamzations (such as Oracle) to consolidate existing applications on a shared, common
architecture, as well as the ability to build new applications that leverage the shared services
provided by the platform such as Oracle Java Cloud Service (JUS), Oracle Database Cloud
20 Service {(DBCS), and others. 1aaS services typically facilitate the management and control of
the underlying computing resources, such as storage, networks, and other fundamental
computing resources for customers utilizing services provided by the SaaS platform and the

PaaS platform.

[0255] FIG. 27 1s a simplified block diagram of one or more components of a system

[\
(V4]

environment 2700 by which services provided by one or more components of an embodiment
system may be offered as cloud services, in accordance with an embodiment of the present
disclosure. In the illustrated embodiment, system environment 2700 includes one or more
client computing devices 2704, 2706, and 2708 that may be used by users to interact with a
cloud infrastructure system 2702 that provides cloud services. The client computing devices
30 may be configured to operate a client application such as a web browser, a proprietary client
application {e.g., Oracle Forms), or some other application, which may be used by a user of
the client computing device to interact with cloud infrastructure system 2702 to use services

provided by cloud infrastructure system 2702.

69

I

(42
<

5

WO 2018/052908 PCT/US2017/051196

[8256] It should be appreciated that cloud infrastructure system 2702 depicted in the figure
may have other components than those depicted. Further, the embodiment shown in the
figure is only one example of a cloud infrastructure system that may incorporate an
embodiment of the disclosure. In some other embodiments, cloud infrastructure system 2702
may have more or fewer components than shown in the figure, may combine two or more

components, or may have a different configuration or arrangement of components.

[0257) Client computing devices 2704, 2706, and 2708 may be devices similar to those

described above for 502, 504, 306, and 508.

[0258] Although example system environment 2700 is shown with three client computing
devices, any number of client computing devices may be supported. Other devices such as

devices with sensors, etc. may interact with cloud infrastructure system 2702,

[8259] Network(s) 2710 may facilitate communications and exchange of data between
clients 2704, 2706, and 2708 and cloud mnfrastructure systern 2702, Each network may be any
type of network familiar to those skilled in the art that can support data communications
using any of a variety of commercially-available protocols, including those described above

for network{s} 2710.

8266] Cloud infrastructure system 2702 may comprise one or more computers and/or

servers that may include those described above for server 2712,

[0261] In certain embodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system
on demand, such as online data storage and backup solutions, Web-based e-mail services,
hosted office suites and document collaboration services, database processing, managed
technical support services, and the like. Services provided by the cloud infrastructure system
can dynamically scale to meet the needs of its users. A specific instantiation of a service
provided by cloud infrastructure system is referred to herein as a “service instance.” In
general, any service made available to a user via a communuication network, such as the
Internet, from a cloud service provider's system is referred to as a “cloud service.” Typically,
in a public cloud environment, servers and systerns that make up the cloud service provider's
system are different from the customer's own on-premises servers and systems. For example,
a cloud service provider's system may host an application, and a user may, via a

communication nefwork such as the Internet, on demand, order and use the application.

70

10

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

[8262] In some examples, a service in a computer network cloud infrastructure may inchude
protected computer network access to storage, a hosted database, a hosted web server, a
software application, or other service provided by a cloud vendor to a user, or as otherwise
known in the art. For example, a service can include password-protected access to remote
storage on the cloud through the Internet. As another example, a service can include a web
service-based hosted relational database and a script-language middleware engine for private
use by a networked developer. As another example, a service can include access to an email

software application hosted on a cloud vendor's web site.

[0263] In certain embodiments, cloud infrastructure system 2702 may include a suite of
applications, middleware, and database service offerings that are delivered to a customerin a
self-service, subscription-based, elastically scalable, reliable, highly available, and secure
manner. An example of such a cloud 1nfrastructure system is the Oracle Public Cloud

provided by the present assignee.

[0264] In various embodiments, cloud intrastructure system 2702 may be adapted to
autoratically provision, manage and track a customer’s subscription to services offered by
cloud infrastructure system 2702, Cloud intrastructure system 2702 may provide the cloud
services via different deployment models. For example, services ruay be provided under a
public cloud model in which cloud infrastructure system 2702 is owned by an organization
selling cloud services {e.g., owned by Oracle) and the services are made available to the
general public or different industry enterprises. As another example, services may be
provided under a private cloud model in which cloud infrastructure system 2702 is operated
solely for a single organization and may provide services for one or more entities within the
organization. The cloud services may also be provided under a community cloud model in
which cloud infrastructure system 2702 and the services provided by cloud infrastructure
system 2702 are shared by several organizations in a related community. The cloud services
may also be provided under a hybrid cloud model, which 1s a combination of two or more

different models.

[0265] In some embodiments, the services provided by cloud infrastructure system 2702
may include one or more services provided under Software as a Service (SaaS) category,

Platform as a Service (PaaS) category, Infrastructure as a Service (1aaS) category, or other
categories of services including hybrid services. A customer, via a subscription order, may

order one or more services provided by cloud infrastructure system 2702, Cloud

71

10

Ju—
(V4]

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

infrastructure system 2702 then performs processing to provide the services in the customer’s

subscription order.

[0266] In some embodiments, the services provided by cloud infrastructure system 2702
may include, without limitation, application services, platform services and infrastructure
services. In some examples, application services may be provided by the cloud infrastructure
system via a Saa8 platform. The Saa$ platform may be configured 1o provide cloud services
that fall under the SaaS category. For example, the SaaS platform may provide capabilities to
build and deliver a suite of on~-demand applications on an integrated development and
deployment platform. The SaaS platform may manage and control the underlying software
and infrastructure for providing the SaalS services. By utilizing the services provided by the
SaaS platform, customers can utilize applications executing on the cloud infrastructure
systern. Customers can acquire the application services without the need for customers to
purchase separate licenses and support. Various different Saa$ services may be provided.
Examples include, without limitation, services that provide solutions for sales performance

management, enterprise integration, and business flexibility for large organizations.

[0267] In some embodiments, platform services may be provided by the cloud
infrastructure system via a PaaS platform. The PaaS platform may be configured to provide
cloud services that fall under the Paa$ category. Examples of platform services may include
without limitation services that enable organizations (such as Oracle) to consolidate existing
applications on a shared, common architecture, as well as the ability to build new applications
that leverage the shared services provided by the platform. The PaaS platform may manage
and control the underlying software and 1nfrastructure for providing the PaaS services.
Customers can acquire the PaaS services provided by the cloud infrastructure system without
the need for customers to purchase separate licenses and support. Examples of platform
services include, without limitation, Oracle Java Cloud Service (JCS), Oracle Database Cloud

Service (DBCS), and others.

10268] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also
control the deployed services. In some embodiments, platform services provided by the cloud
infrastructure system may include database cloud services, middieware cloud services {e.g,,
Oracle Fusion Middleware services), and Java cloud services. In one embodiment, database

cloud services may support shared service deployment models that enable organizations o

20

(42
<

WO 2018/052908 PCT/US2017/051196

pool database resources and offer customers a Database as a Service in the form of a database
cloud. Middleware cloud services may provide a platform for customers to develop and
deploy various business applications, and Java cloud services may provide a platform for

customers to deploy Java applications, in the cloud infrastructure system.

[0269] Varnous different infrastructure services may be provided by an faaS platform in the
cloud infrastructure system. The infrastructure services facilitate the management and control
of the underlying computing resources, such as storage, networks, and other fundamental
computing resources for customers utilizing services provided by the Saa$ platform and the

Paa$S platform.

[0278] In certain embodiments, cloud infrastructure system 2702 may also include
infrastructure resources 2730 for providing the resources used to provide various services 1o
customers of the cloud infrastructure system. In one embodiment, infrastructure resources
2730 may include pre-integrated and optimized combinations of hardware, such as servers,
storage, and networking resources to execute the services provided by the PaaS platform and

the SaaS platform.

[6271] In some embodiments, resources in cloud infrastructure system 2702 may be shared
by multiple users and dynamically re-allocated per demand. Additionally, resources may be
allocated to users in different time zones. For example, cloud infrastructure system 2730 may
enable a first set of users in a first time zone to utilize resources of the cloud infrastructure
system for a specified number of hours and then enable the re-allocation of the same
resources to another set of users located in a different time zone, thereby maximizing the

utilization of resources.

[6272] In certain embodiments, a number of 1nternal shared services 2732 may be provided
that are shared by different components or modules of cloud infrastructure system 2702 and
by the services provided by cloud infrastructure system 2702 These internal shared services
may inciude, without limitation, a security and identity service, an integration service, an
enterprise repository service, an enterprise manager service, a virus scanning and white list
service, a high availability, backup and recovery service, service for enabling cloud support,

an email service, a notification service, a file transfer service, and the like.

[0273] In certain embodiments, cloud infrastructure system 2702 may provide
comprehensive management of cloud services (e.g., SaaS, Paa8, and 1aa8 services) in the

cloud infrastructure system. In one embodiment, cloud management functionality may

73

20

(98]
<

WO 2018/052908 PCT/US2017/051196

include capabilities for provisioning, managing and tracking a customer’s subscription

received by cloud infrastructure system 2702, and the like.

132741 In one embodiment, as depicted in the figure, cloud management functionality may
be provided by one or more modules, such as an order management module 2720, an order
orchestration module 2722, an order provisioning module 2724, an order management and
monitoring module 2726, and an identity management module 2728, These modules may
include or be provided using one or more computers and/or servers, which may be general
purpose computers, specialized server computers, server farms, server clusters, or any other

appropriate arrangement and/or combination.

[0275] In example operation 2734, a customer using a client device, such as client device
2704, 2706 or 2708, may interact with cloud infrastructure system 2702 by requesting one or
more services provided by cloud infrastructure system 2702 and placing an order for a
subscription for one or more services offered by cloud infrastructure system 2702, In certain
embodiments, the customer may access a cloud User Interface (Ul), cloud UI 2712, cloud Ul
2714 and/or cloud UL 2716 and place a subscription order via these Uls. The order
information received by cloud infrastructure system 2702 in response to the customer placing
an order may include information identifying the customer and one or more services offered

by the cloud infrastructure system 2702 that the customer intends to subscribe to.

[3276] After an order has been placed by the customer, the order information is received

via the cloud Uls, 2712, 2714 and/or 2716.

[8277] At operation 2736, the order 15 stored in order database 2718, Order database 2718
can be one of several databases operated by cloud infrastructure system 2718 and operated in

conjunction with other system elements.

[0278] At operation 2738, the order information ts forwarded to an order management
module 2720. In some instances, order management module 2720 may be configured to
perform billing and accounting functions related to the order, such as verifying the order, and
upon verification, booking the order.

[0279] At operation 2740, information regarding the order is communicated to an order
orchestration module 2722, Order orchestration rodule 2722 may utilize the order

information to orchestrate the provisioning of services and resources for the order placed by

the customer. In some instances, order orchestration module 2722 may orchestrate the

74

10

20

30

WO 2018/052908 PCT/US2017/051196

provisioning of resources to support the subscribed services using the services of order

provisioning module 2724,

[6288] In certain embodiments, order orchestration module 2722 enables the management
of business processes associated with each order and applies business logic to determine
whether an order should proceed to provisioning. At operation 2742, upon receiving an order
for a new subscription, order orchestration module 2722 sends a request to order provisioning
module 2724 to allocate resources and configure those resources needed to fulfill the
subscription order. Order provistoning module 2724 enables the allocation of resources for
the services ordered by the customer. Order provisioning module 2724 provides a level of
abstraction between the cloud services provided by cloud infrastructure system 2700 and the
physical implementation laver that is used to provision the resources for providing the
requested services. Order orchestration module 2722 may thus be isolated from
implementation details, such as whether or not services and resources are actually

provisioned on the fly or pre~-provisioned and only allocated/assigned upon request.

16281] At operation 2744, once the services and resources are provisioned, a notification of
the provided service may be sent to customers on client devices 2704, 2706 and/or 2708 by
order provisioning module 2724 of cloud infrastructure system 2702, At operation 2746, the
customer’s subscription order may be managed and tracked by an order management and
monitoring module 2726, In some instances, order management and monitoring module 2726
may be configured to collect usage statistics for the services in the subscription order, such as
the amount of storage used, the amount data transterred, the number of users, and the amount

of system up time and system down time,

[0282] In certain embodiments, cloud infrastructure system 2700 may include an identity
management module 2728 Identity management module 2728 may be configured to provide
identity services, such as access management and authorization services in cloud
infrastructure system 2700, In some embodiments, identity management module 2728 may
control information about customers who wish to utilize the services provided by cloud
infrastructure system 2702, Such information can include information that authenticates the
identities of such customers and information that describes which actions those customers are
authorized to perform relative to varicus system resources {e.g, files, directories,

applications, communication ports, memory segments, etc.). Identity management module

75

10

20

WO 2018/052908 PCT/US2017/051196

2728 may also include the management of descriptive information about each customer and

about how and by whom that descriptive information can be accessed and modified.

[6283] FIG. 28 illustrates an example computer systern 2800 that may be used to
implement an embodiment of the present disclosure. In some embodiments, computer system
2800 may be used to implement any of the various servers and computer systems described
above. As shown in FIG. 28, computer system 2800 inclhudes vartous subsystems including a
processing subsystern 2804 that communicates with a number of peripheral subsystems via a
bus subsystem 2802, These peripheral subsystems may include a processing acceleration unit
2806, an VO subsystem 2808, a storage subsystem 2818 and a communications subsystem
2824, Storage subsystem 2818 ruay include tangible computer-readable storage media 2822

and a system memory 2810,

[0284] Bus subsystem 2802 provides a mechanism for letting the various components and
subsystems of computer system 2800 communicate with each other as intended. Although
bus subsystem 2802 is shown schematically as a single bus, alternative embodiments of the
bus subsystem may utilize multiple buses. Bus subsystem 2802 may be any of several types
of bus structures including a memory bus or memory controller, a peripheral bus, and a local
bus using any of a variety of bus architectures. For example, such architectures may include
an Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus, which can be implemented as a Mezzanine

bus manufactured to the IEEE P1386.1 standard, and the like.

[0285] Processing subsystem 2804 controls the operation of computer system 2800 and
may comprise one or more processing units 2832, 2834, etc. A processing unit may include
he one or more processors, including single core or multicore processors, one or more ¢ores
of processors, or combinations thereof. In some embodiments, processing subsystem 2804
can include one or more special purpose co-processors such as graphics processors, digital
signal processors (DSPs), or the like. In some ermnbodiments, some or all of the processing
units of processing subsystem 2804 can be implemented using customized circuits, such as

application specific integrated circuits (ASICs), or field programmable gate arrays (FPGAs).

8286] Iu some embodiments, the processing units in processing subsystern 2804 can
execute instructions stored in system memory 2810 or on computer readable storage media

2822, In various embodiments, the processing units can execute a variety of programs or code

76

10

20

[\
(V4]

30

WO 2018/052908 PCT/US2017/051196

instructions and can maintain multiple concurrently executing programs or processes. At any
given time, some or all of the program code to be executed can be resident in system memory
2810 and/or on computer-readable storage media 2810 including potentially on one or more
storage devices. Through suitable programming, processing subsystermn 2804 can provide
various functionalities described above for dynamically modifying documents {(e.g., web

pages) responsive to usage patterns.

[0287] In certain embodiments, a processing acceleration unit 2806 may be provided for
performing customized processing ot for off-loading some of the processing performed by
processing subsystem 2804 so as to accelerate the overall processing performed by computer

system 2800,

[0288] /0 subsystem 2808 may include devices and mechantsms for inputting information
to computer system 2800 and/or for outputting information from or via computer system
2800, In general, use of the term "tnput device” is intended to include all possible types of
devices and mechanisms for inputting information to computer system 2800, User interface
input devices may include, for example, a keyboard, pointing devices such as a mouse or
trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click
wheel, a dial, a button, a switch, a keypad, audio input devices with voice command
recognition systems, microphones, and other types of input devices. User interface input
devices may also include motion sensing and/or gesture recognition devices such as the
Microsoft Kinect® motion sensor that enables users to control and interact with an input
device, the Microsoft Xbox® 360 game controlier, devices that provide an interface for
receiving input using gestures and spoken commands. User interface input devices may also
include eye gesture recognition devices such as the Google Glass® blink detector that detects
eye activity {e.g., "blinking" while taking pictures and/or making a menu selection} from
users and transforms the eve gestures as input into an input device {e.g., Google Glass®}.
Additionally, user interface input devices may include voice recognition sensing devices that
enable users to interact with voice recognition systems (e.g., Siri® navigator), through voice

commands.

16289] Other examples of user interface input devices include, without limitation, three
dimensional (3D} mice, joysticks or pointing sticks, gamepads and graphic tablets, and
audio/visual devices such as speakers, digital cameras, digital camcorders, portable media

players, webcams, image scanners, fingerprint scanners, barcode reader 3D scanners, 3D

10

Ju—
(V4]

20

30

WO 2018/052908 PCT/US2017/051196

printers, laser rangefinders, and eve gaze tracking devices. Additionally, user interface input
devices may include, for example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission tomography, medical
ultrasonography devices. User interface input devices may also include, for example, audio

input devices such as MIDI1 keyboards, digital musical instruments and the like.

[029¢] User interface output devices may include a display subsystem, indicator lights, or
non-visual displays such as audio output devices, etc. The display subsystem may be a
cathode ray tube {CRT), a flat-panel device, such as that using a Hquid crystal display (LCD)
or plasma display, a projection device, a touch screen, and the like. In general, use of the term
"output device" is intended to include all possible types of devices and mechanisms for
outputting information from computer system 2800 to a user or other computer. For example,
user interface output devices may include, without limitation, a vanety of display devices that
visually convey text, graphics and audio/video information such as monitors, printers,
speakers, headphones, automotive navigation systems, plotters, voice output devices, and

modems.

[0291] Storage subsystem 2818 provides a repository or data store for storing information
that 1s used by computer system 2800. Storage subsystem 2818 provides a tangible non-
transitory computer-readable storage medium for storing the basic programming and data
constructs that provide the functionality of some embodiments. Software (programs, code
modules, instructions) that when executed by processing subsystem 2804 provide the
tunctionality described above may be stored in storage subsystem 2818, The software may be
executed by one or more processing units of processing subsystem 2804, Storage subsystern
2818 may also provide a repository for storing data used in accordance with the present

disclosure.

[0292] Storage subsystem 2818 may include one or more non-transitory memory devices,
including volatile and non-volatile memory devices. As shown in FIG. 28, storage subsystem
2818 includes a systern memory 2810 and a computer-readable storage media 2822, System
memory 2810 may inchude a number of memories including a volatile main random access
memory (RAM) for storage of instructions and data during program execution and a non-
volatile read only memory (ROM) or flash memory in which fixed instructions are stored. In
some implementations, a basic input/output system (BIOS), containing the basic routines that

help to transfer information between elements within computer system 2800, such as during

78

10

20

[\
(V4]

36

WO 2018/052908 PCT/US2017/051196

start-up, may typically be stored in the ROM. The RAM typically contains data and/or
program modules that are presently being operated and executed by processing subsystem
2804, In some implementations, system memory 2810 may include muitiple different types of
memory, such as static random access memory {SRAM) or dynamic random access memory

(DRAM).

[6293] By way of example, and not limitation, as depicted in Fig. 28, system memory 2810
may store application programs 2812, which may include client applications, Web browsers,
mid-tier applications, relational database management systems (RDBMS), etc., program data
2814, and an operating system 2816. By way of example, operating system 2816 may include
various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux operating
systems, a variety of commercialiy-available UNIX® or UNIX-like operating systems
(including without himitation the variety of GNU/Linux operating systems, the Google
Chrome® 08, and the like) and/or mobile operating systems such as 108, Windows® Phone,

Android® OF, BlackBerry® 26 085, and Palm® OS operating systems,

10294] Computer-readable storage media 2822 may store programming and data constructs
that provide the functionality of some embodiments. Software {(programs, code modules,
instructions) that when executed by processing subsystem 2804 a processor provide the
functionality described above may be stored in storage subsystem 2818 By way of example,
computer-readable storage media 2822 may include non-volatile memory such as a hard disk
drive, a magnetic disk drive, an optical disk drive such as a CD ROM, DVD, a Blu-Ray®
disk, or other optical media. Computer-readable storage media 2822 may include, but is not
limited to, Zip® drives, flash memory cards, umversal serial bus (USB) flash drives, secure
digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable storage
media 2822 may also include, solid-state drives (8SD) based on non-volatite memory such as
tlash-memory based SSDis, enterprise flash drives, solid state ROM, and the like, SSDs based
on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) §8Ds, and hybrid SSDs that use a combination of
DRAM and flash memory based SSDs. Computer-readable media 2822 may provide storage
of computer-readable instructions, data structures, program modules, and other data for

computer system 2800,

[0295] In certain embodiments, storage subsystem 2800 may also include a computer-

readable storage media reader 2820 that can further be connected to computer-readable

79

10

20

30

WO 2018/052908 PCT/US2017/051196

storage media 2822, Together and, optionally, in combination with system memory 2810,
computer-readable storage media 2822 may comprehensively represent remote, local, fixed,
and/or removable storage devices plus storage media for storing computer-readable

information.

[0296] In certain embodiments, computer system 2800 may provide support for executing
one ot more virtual machines. Computer system 2800 may execute a program such as a
hypervisor for facilitating the configuring and managing of the virtual machines. Each virtual
machine may be allocated memory, compute (e.g., processors, cores), /O, and networking
resources. Each virtual machine typically runs its own operating system, which may be the
same as or ditferent from the operating systems executed by other virtual machines executed
by computer system 2800. Accordingly, multiple operating systems may potentially be run
concurrently by computer system 2800, Each virtual machine generally tuns independently of

the other virtual machines.

[6297] Communications subsystem 2824 provides an interface to other computer systems
and networks. Communications subsystern 2824 serves as an interface for receiving data
trom and transmitting data to other systems from computer system 2800. For exampile,
communications subsystem 2824 may enable computer systern 2800 to establish a
communication channel to one or more client devices via the Internet for receiving and
sending information from and to the client devices. Additionally, communication subsystem
2824 may be used to communicate notifications of successtul logins or notifications to re-

enter a password from the privileged account manager to the requesting users.

[0298] Communication subsystem 2824 may support both wired and/or wireless
communication protocois. For example, in certain embodiments, communications subsystem
2824 may mclude radio frequency (R¥) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular telephone technology, advanced data network
technology, such as 3G, 4G or EDGE (enhanced data rates for global evolution), WiFi (IEEE
802.11 family standards, or other mobile communication technologies, or any combination
thereof), global positioning system {GPS) receiver components, and/or other components. In
some embodiments coromunications subsystern 2824 can provide wired network connectivity

{(e.g., Ethernet) in addition to or instead of a wireless interface.

[0299] Communication subsystem 2824 can receive and transmit data in vartous forms. For

example, in some embodiments, communications subsystem 2824 may receive input

30

10

20

(42
<

WO 2018/052908 PCT/US2017/051196

communication in the form of structured and/or unstructured daia feeds 2826, event sireams
28217, event updates 2830, and the like. For example, communications subsystem 2824 may
be configured to receive (or send} data feeds 2826 in real-time from users of social media
networks and/or other communication services such as Twitter® feeds, Facebook® updates,
web feeds such as Rich Site Summary (RSS) feeds, and/or real-time updates from one or

more third party information sources.

[0306] In certain embodiments, communications subsystem 2824 may be configured to
receive data in the form of continuous data streams, which may include event streams 2828 of
real-time events and/or event updates 2830, that may be continucus or unbounded in nature
with no explicit end. Examples of applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network performance measuring tools
{e.g. network monitoring and traffic mavnagement applications), clickstream analysis tools,

automobile traffic monitoring, and the like.

[6301] Communications subsystem 2824 may also be configured to cutput the structured
and/or unstructured data feeds 2826, event streams 2823, event updates 2830, and the hike to
one or more databases that may be in communication with one or more streaming data source

computers coupled to computer system 2800

16302] Computer system 2800 can be one of various types, including a handheld portable
device {e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable
device (e.g., a Google Glass® head mounted display), a personal computer, a workstation, a

mainframe, a kiosk, a server rack, or any other data processing systen.

[03063] Due to the ever-changing nature of computers and networks, the description of
computer system 2800 depicted in FIG. 28 1s intended ounly as a specific exarmple. Many
other configurations having more or fewer components than the system depicted in Fig. 28
are possible. Based on the disclosure and teachings provided herein, a person of ordinary skill

in the art will appreciate other ways and/or methods to implement the various embodiments.

[0304] Although specific embodiments of the disclosure have been described, various
modifications, alterations, alternative constructions, and equivalents are also encompassed
within the scope of the disclosure. Embodiments of the present disclosure are not restricted to
operation within certain specific data processing environments, but are free to operate within
a plurality of data processing environments. Additionally, although embodiments of the

present disclosure have been described using a particular series of transactions and steps, it

31

WO 2018/052908 PCT/US2017/051196

should be apparent to those skilled in the art that the scope of the present disclosure i3 not
limited to the described series of transactions and steps. Various features and aspects of the

above-described embodiments may be used individually or jointly.

[6305] Further, while embodiments of the present disclosure have been described using a
5 particular combination of hardware and software, it should be recognized that other
combinations of hardware and software are also within the scope of the present disclosure.
Embodiments of the present disclosure may be implemented only in hardware, or only in
software, or using combinations thereof. The various processes described herein can be
implemented on the same processor or different processors in any combination. Accordingly,
10 where components or modules are described as being configured to perform certain
operations, such configuration can be accomplished, e g, by designing electronic circuits to
pertform the operation, by programming programmable electronic circuits (such as
microprocessors) to perform the operation, or any combination thereof. Processes can

corurunicate using a variety of techniques including but not limited to conventional

Ju—
(V4]

techniques for inter process communication, and different pairs of processes may use
different techniques, or the same pair of processes may use different techniques at different

times.

[#306] The specification and drawings are, accordingly, to be regarded in an iltustrative
rather than a restrictive sense. It will, however, be evident that additions, subiractions,

20 deletions, and other modifications and changes may be made thereunto without departing
trom the broader spirit and scope as set forth in the claims. Thus, although specific disclosure
embodiments have been described, these are not intended to be limiting, Various
modifications and equivalents are within the scope of the following claims. The

modifications and variations include any relevant combination of the disclosed features.

W b

B
e

&

3

[—y

£ L2 NS

ba

(98]

W b

R
EE

[T N VS T 8

WO 2018/052908 PCT/US2017/051196

WHAT IS CLAIMED IS:

1. A method of processing an application, the method comprising:

recetving, at a computing device, information identifying an application;

generating, by the computing device, a common application runtime mode] of
the application based at least in part on the information identifying the apphication;

converting, by the computing device, the common application runtime model
of the application into a first generic representation of the application, the first generic
representation of the application configured to be executed 1n a first target event processing
system of a plurality of target event processing systems, the first generic representation of the
application comprising a runtime Directed Acyclic Graph (DAG) of components of the
application; and

transmitting, by the computing device, the first generic representation of the
application to the first target event processing system for execution by the first target event

processing system.

2. The method of claim 1, wherein the application is expressed as an
BEvent Processing Network (EPN} of components, and wherein the information identifying the
application comprises at least one of EPN configuration information, query information, and
] 2 >

rules associated with the application.

3. The method of claim 1 or claim 2, wherein generating the common
application runtime model for the application comprises representing the application as a set
of one or more configuration blocks, wherein each configuration block represents an event

bean with associated metadata.

4 The method of claim 3, whergin the set of one or more configuration
blocks comprises at least one of an inbound socket event bean, an outbound socket event
bean, a continuous guery language (CQL) processor event bean, or one or more channel event

beans.

5. The method of any one of claims 1 to 4, wherein converting the
coramon application runtime model of the application into the first generic representation of
the application comprises converting one or more configuration bocks represented in the
common application runtime mode] of the application into the runtime DAG of components

of the application.

33

£ L N

W EEN (9] R

FEN (S I)

e -t
[N

WO 2018/052908 PCT/US2017/051196

0. The method of claim 5, further comprising transmitting, by the
computing device, the runtime DAG of components of the application for execution by the
tirst target event processing system, wherein the first target event processing system is a

distributed event processing systen.

7. The method of any one of claims 1 to 6, further comprising converting,
by the computing device, the common application runtime model of the application into a
second generic representation of the application for execution in a second target event
processing system of the plurality of target event processing systems, the second target event

processing system being different from the first target event processing system.

8. The method of claim 7, wherein converting the cormnmon application
runtime model of the application into the second generic representation of the application
coruprises converting one or more configuration bocks represented in the common runtime

application model of the application into a target representation of the application.

9. The method of claim 8, further comprising transmitting, by the
computing device, the target representation of the application for execution by the second
target event processing system, wherein the second target event processing system includes

an event processor system.

10. A computer-readable medium storing computer-executable instructions
that, when executed by one or more processors, configures one or more computer systems to
perform at least:

instructions that cause the one or more processors to receive information
identifying an application;

instructions that cause the one or more processors to generate a common
application runtime model of the application based at least tn part on the information
identifying the application;

instructions that cause the one or more processors to convert the common
application runtime model of the application into a first generic representation of the
application, the first generic representation of the application configured to be executed in a

tirst target event processing system of a plurality of target event processing systems, the first

84

14
15
16
17

W

52

W

i e b3

[\~

(%7

(v

[

(%7

WO 2018/052908 PCT/US2017/051196

generic representation of the application comprising a runtime Directed Acyclic Graph
{(DAG) of components of the application; and

instructions that cause the one or more processors to transmit the first generic
representation of the application to the first target event processing system for execution by

the first target event processing system,

it The computer-readable medium of claim 10, wherein the application ts
expressed as an Hvent Processing Network (EPN) of components, and wherein the
information identifying the application corprises at least one of EPN configuration

information, query information, and rules associated with the application.

12, The computer-readable medium of claim 10 or claim 11, wherein the
instructions that cause the one or more processors to generate the common application
runtime model for the application comprises instructions that cause the one or more
processors to represent the application as a set of one or more configuration blocks, wherein

each configuration block represents an event bean with associated metadata.

13, The computer-readable medium of claim 12, wherein the set of one or
more configuration blocks comprises at least one of an inbound socket event bean, an
outbound socket event bean, a continuous query language (CQL) processor event bean, or

one or more channel event beans.

14, The computer-readable medium of any of claims 10 to 13, wherein the
instructions that cause the one or more processors to convert the common application runtime
model of the application into the first generic representation of the application comprises
information that causes the one or more processors to convert one or more configuration
bocks represented in the common application runtime model of the application into the

runtime DAG of components of the application.

15, The computer-readable medium of any of claims 10 to 14, further
comprising instructions that cause the ong or more processors to transmit the runtime DAG of
components of the application for execution by the first target event processing system,

wherein the first target event processing system is a distributed event processing system.

16. An event processing system, comprising:

a memory storing a plurality of instructions; and

35

£WN

b3 wn SN 2 [\

52

i

[\~

(%7

WO 2018/052908 PCT/US2017/051196

a processor configured to access the memory, the processor further configured
to execute the plurality of instructions to at least:

receive information identifying an application;

generate a common application runtime model of the application based
at teast in part on the information identifying the application;

convert the common application runtime model of the application into
a first generic representation of the application, the first generic representation of the
application configured to be executed in a first target event processing system of a
plurality of target event processing systems, the first generic representation of the
application comprising a runtime Directed Acyclic Graph (DAG) of components of
the application; and

transmit the first generic representation of the application to the first
target event processing system for execution by the first target event processing

system.

17. The system of claim 16, wherein the application is expressed as an
Event Processing Network (EPN) of components, and wherein the information identifying the
application comprises at least one of EPN configuration information, query information, and

rules associated with the application.

18, The system of claim 16 or claim 17, wherein the processor is
configured to execute the plurality of instructions to generate the common application
runtime model for the application by representing the application as a set of one or more
configuration blocks, wherein each configuration block represents an event bean with

associated metadata.

19, The system of claim 18, wherein the set of one or more configuration
blocks comprises at least one of an inbound socket event bean, an outbound socket event
bean, a continuous query language (CQL) processor event bean, or one or more channel event

beans.

20. The system of any of claims 16 to 19, wherein the processor is further
configured to execute the plurality of instructions to convert the common application runtime
maodel of the application into a second generic representation of the application for execution

in a second target event processing system of the plurality of target event processing systems,

86

WO 2018/052908 PCT/US2017/051196

5 the second target event processing system being different from the first target event

6 processing systent.

&7

PCT/US2017/051196

I Old

ST
(S)aNIONT ONISSTO0ON

—_ ™~ WVIHLS LINJAF L3I0V
0Z1 - S = L

(S)NOILYOITddY
ONISSIO0Hd
LIN3AT 1398V]

)

;
-
~

1/31

901 JOvuaLN|
¥3sn NoIsag
NOLLYOITddy
ST vor
HOLVHANID Oy LIouv] | NOLLYOINddY IN3IND
L \
\
\
\ /
— N p— N / \
N cll \ /
HIZINILAO YOLVHINTD \ /
13dopn 1300 /
INILNNY INILNNY
NOLLYOITddy NOILYOI1ddyY
| nownoo || nowwod |
orv 0T ;
INIONT ONISSTOOM NOILYOITddY 20 (s)3013q #3sn

WO 2018/052908

PCT/US2017/051196

WO 2018/052908

2/31

¢ Old

DIUISUOIBISHIOWERNS

I9ydepyzeoinoguoneeyiowesns
Zlsuuey)

10S$990147109

¢lsuueyn

9ponIas

vic

PCT/US2017/051196

WO 2018/052908

3/31

oce
IANION3 ONISS300dd

WV3IHLS INIAT 1OV]

8¢¢
ANIONT ONISS3ID0™d

WVY3A1S INIAT 1OV |

€ Old

9ce
ANIONT ONISS3ID0Hd

WVY3IH1S INIAT 1OV |

7TE€ INIONT ONISSIO0Hd NOILYOITddY

[z43
NOILYDI1ddY
40 NOILYLINISIHdTY
1398V

SLNINOdWOD
40 ©YQ INILNNY

(443

Z€ HOLWINIO Oy L394v]

Z0E 30IA3Q ¥3sN

90¢
JOV443LIN] ¥3SN NOIS3 NOILVYOIddY

!

g1¢
YIZINILLO
713a0 IWILNNY
NOILYOI1ddy NOWWOD

IV ENE)
130 IWILNNY
NOILYOITddy NOWIWOD

4 —

91¢

v0€
NOILYOITddY

ONISS3D0dd LNIAT

0I¢
3114 NOLLYINOIANOD A¥IND

— 80¢€
¢le 3114

$3114 ¥3HLO NOILYSNSIANOD Nd3

PCT/US2017/051196

WO 2018/052908

4/31

¥ Old

aNnoaLNQ 134008

¢-TANNVHD

-

¥0S$3004d 70D

L-TANNVHD

ANNOEN] L3X00S

—

Oly

80V

—

—

o0y

14814

—

1407 \

PCT/US2017/051196

WO 2018/052908

5/31

G Old

-

A4
NOILILdVd

—— dv[\

«—

809 \

905 —

0G —~

dvIA

INell
13%008

09 \

PCT/US2017/051196

WO 2018/052908

6/31

Z19 YNIS INIAT

9 'Old

€09 30INE3S ONISSFO0dd INIAT

19 INIS INIAT

229 WYZILS L1ndLnO

Hﬂo H0$$3004d 19

|9 dd¥ ONISS300dd LNIAT

19 ddy LN3Ag 19 ddy LN3AT

009 —7

029 WYZILS LndLnO

-t

¢

819 WYIILS LndN|

809 304N0S INIAT

.

N

J

-t

919 WYIALS LndN|

009 304N0S INIAT

\

N

J

719 WYIALS LNdN|

700 304n0S LNIAJ

.

PCT/US2017/051196

WO 2018/052908

7131

. 'Old

| [WALSAS ONISSIO0dd LNIAF A3LngdLsIqg

807

S3AON ONILNdWOY 40 H3LSNT)

ON [] GN

N

-
¢/ S1INS3Y d3SS300dd

_L

af 4

¢N

L=

<

707
¥INF0TY

SIN3IAF 40 S3HOLVY

90

—

20/ Wy3H1S INIAT
LNdN| SNONNILNOD

|
WO 2018/052908 PCT/US2017/051196

8/31

o 800

RECEIVE INFORMATION IDENTIFYING
AN APPLICATION

!

(GENERATE A COMMON APPLICATION |~ 804
RUNTIME MODEL OF THE APPLICATION
BASED ON THE INFORMATION

'

CONVERT THE COMMON
APPLICATION RUNTIME MODEL INTO
A FIRST GENERIC
REPRESENTATION OF THE

APPLICATION I~ 806

~ 802

CONVERT CONFIGURATION 1 808
BLOCKS REPRESENTED IN THE
COMMON APPLICATION RUNTIME
MODEL INTO A RUNTIME DAG
OF COMPONENTS OF THE
APPLICATION

TRANSMIT THE FIRST GENERIC
REPRESENTATION OF THE APPLICATION
TO A FIRST TARGET EVENT
PROCESSING APPLICATION FOR

EXECUTION BY THE FIRST TARGET
EVENT PROCESSING APPLICATION

-~ 810

FIG. 8

|
WO 2018/052908 PCT/US2017/051196

9/31

RECEIVE INFORMATION IDENTIFYING
AN APPLICATION

'

(GENERATE A COMMON APPLICATION |~ 904
RUNTIME MODEL OF THE APPLICATION
BASED ON THE INFORMATION

'

CONVERT THE COMMON
APPLICATION RUNTIME MODEL INTO
A SECOND GENERIC
REPRESENTATION OF THE

APPLICATION i~ 906

~ 902

CONVERT CONFIGURATION 1~ 908
BLOCKS REPRESENTED IN THE
COMMON APPLICATION RUNTIME
MODEL INTO A TARGET
REPRESENTATION OF THE
APPLICATION

TRANSMIT THE SECOND GENERIC
REPRESENTATION OF THE APPLICATION
TO A SECOND TARGET EVENT
PROCESSING APPLICATION FOR

EXECUTION BY THE SECOND TARGET
EVENT PROCESSING APPLICATION

i~ 910

FIG. 9

PCT/US2017/051196

WO 2018/052908

10/31

0l Old

210} SIAON ONILNANOD 40 ¥3LSNTD

—— Aw::
0701 S300N
(shisv] [HINIOM)
S¥0LND3XT
¥10l1]
JAON ONILNAWOD) HILSY
8¢0l
O4N| LX3LNOD) ddyf
9¢01
¥3INQIHOS HSV |
9101
HIOUNV |—— 7207
304N0S3Y | o3y ¥31NA3HIS OVQ
304N0S3TY

¢l
¥OLV¥ANI9 9vQ

001

W3LSAS ONISSIO0dd LNIATF d3LNdELSId

AOTd3Q

8001
3INAON

INIWAOCT43AQJ ddy

0tot
SIN3AT 40 HOLvg

9001
RENEREN]

y00] WYFHLS INIAT
LNdN| SNONNILNOD)

PCT/US2017/051196

WO 2018/052908

11/31

L1 "OId

oLl

INIONT TOD

s31dn1 s31dn L
LNdLNO 40 HoLvg

— VI

gLl

¥3ZIVRIAS HOLYg Mmm_w_/\o_%m
%0019
a3zInvi4as

0cit
¥3ZIvI¥3S-3Q HOLYg

SERENT
1NdLNO

0Lt
1nd1nO

clil
¥3ZIVI¥3S HOLvg

SERENTI
40 HoLYg

8011

SNOILYIWHO4SNYY | [€—¢

100

01t
Ova aay

-
S103rdQ0

ads

voIT
HOLYH3INID 9Y(q

-

40 HOlvd

103r80
aad

01y
¥INF03Y

|
WO 2018/052908 PCT/US2017/051196

12/31
a— 1200

START 1202

RECEIVE A BATCH OF EVENTs {~—1204

!

IDENTIFY AN ATIRIBUTE OF |~_1905
THE EVENTS IN THE EVENT
BATCH

v

IDENTIFY A DATA TYPE OF AN | ~_1208
ATTRIBUTE

DETERMINE A SECOND TYPE
1210 No OF DATA COMPRESSION TO BE
PERFORMED ON DATA VALUES }~-1220
REPRESENTED BY THE
ATTRIBUTE

NUMERIC DATA TYPE?

¢ YES

DETERMINE A FIRST TYPE OF
DATA COMPRESSION TO BE /_121 2
PERFORMED ON DATA VALUES
REPRESENTED BY THE
ATTRIBUTE

!

GENERATE A SET OF
SERIALIZED DATA VALUES FOR p~—1214
THE ATTRIBUTE

'

STORE THE FIRST SET OF

SERIALIZED DATAVALUES | ~_1216

REPRESENTED BY THE FIRST
ATTRIBUTE

218
ADDITIONAL ATTRIBUTES?

YES

FIG. 12

|
WO 2018/052908

PCT/US2017/051196

13/31
STORE THE CURRENT BUFFER @ V' 4 1300
OFFSET TO THE CURRENT 1302
L ~——
COLUMN NUMBER OF THE PERFORM THE PROCESSES AT
DATA VALUES ARE BEING VALUE OF THE COLUMN ~—1320
PROCESSED WHOSE DATA VALUES ARE
l BEING PROCESSED
OBTAIN DATATYPE OF THE | 1304 ¢
ATTRIBUTE(COLUMN) OBTAIN THE INDEX FROM THE }~_1322
+ SET OF UNIQUE DATA VALUES
SCAN SET OF INPUT TUPLES [~_ 1306 ¢
¢ STORING THE INDEX TO THE 1324
BUFFER
COMPUTE REQUIRED NUMBER
OF BITS TO STORE THE DATA | 1308 ¢
VALUES REPRESENTED BY THE
ATTRIBUTE STORE THE (UNIQUE VALUE-
i MINIMUM VALUE) FOR EACH L~_1326
UNIQUE VALUE IN THE SET OF
REQ NUMBER OF BITS > TUPLES
HALF THE NUMBER OF BITS? ¢
RETURN THE SERIALIZED | _ 1328
BLOCK OF DATA
REQUIRED NUMBER OF BITS
DATA TYPE OF COLUMN?
YES
PERFORM PRECISION L ~1350
REDUCTION INDEX VALUE
1312 COMPRESSION TECHNIQUE
SIZE OF THE SET OF
UNIQUE VALUES S< (#INPUT TUPLES/
2)?
1314
/_/
STORE THE FIRST TYPE OF No
DATA COMPRESSION TO BE
PERFORMED ON DATA VALUES PERFORM STEPS 642-646 OF — 1340
REPRESENTED BY THE THE PROCESS DESCRIBED IN
ATTRIBUTE FIG. 6C
¢ 1316 No

STORE THE MINIMUM DATA
VALUE OF THE ATTRIBUTE

STORE THE NUMBER OF BITS
FOR EACH MINIMUM VALUE

29,

'

PERFORM STEPS 632-638
OF THE PROCESS
DESCRIBED IN FIG. 6B

/1330

FIG. 13A

|
WO 2018/052908

14/31

PCT/US2017/051196

STORE THE TYPE OF DATA
COMPRESSION TO BE
PERFORMED ON DATA VALUES
REPRESENTED BY THE
ATTRIBUTE AS A PRECISION
REDUCTION COMPRESSION

L~ 1332

'

STORE THE MINIMUM DATA
VALUE OF THE ATTRIBUTE

~1334

!

STORE THE NUMBER OF BITS
PER DATA VALUE OF THE

~—1336

ATTRIBUTE

!

FOR EACH DATA VALUE OF
THE COLUMN, PERFORM A BIT
COPY (VALUE-MINIMUM) ONLY

FOR THE REQUIRED BITS

~—1338

FIG. 13B

|
WO 2018/052908

15/31

PCT/US2017/051196

STORE THE FIRST TYPE OF
DATA COMPRESSION TO BE
PERFORMED ON DATA VALUES
REPRESENTED BY THE
ATTRIBUTE AS A GENERAL
COMPRESSION TYPE

| ~1342

!

COMPRESS THE ARRAY OF

COLUMN VALUES USING A

STANDARD COMPRESSION
TECHNIQUE

~1344

'

STORE THE COMPRESSED
BYTES OF THE DATA VALUES
REPRESENTED BY THE
ATTRIBUTE

L ~1346

FIG. 13C

|
WO 2018/052908

16/31

STORE THE TYPE OF DATA
COMPRESSION TO BE

PCT/US2017/051196

PERFORMED ON DATA VALUES |~_1372

REPRESENTED BY THE
ATTRIBUTE AS A PRECISION
REDUCTION INDEX VALUE
COMPRESSION

!

COMPUTE DIFFERENCE VALUE

SET (E.G VALUE — MINIMUM)

l

SCAN ALL THE VALUES IN THE

OBTAIN A SET OF
ENUMERATED VALUES

!

INDICES FOR EACH DATA
VALUE REPRESENTED BY THE

DIFFERENCE VALUE SET

'

MAXIMUM VALUE FROM THE

SET OF INDICES

!

VALUE OF THE ATTRIBUTE

'

STORE THE NUMBER OF BITS
PER DATA VALUE OF THE
INDEX VALUES

!

FOR EACH DATA VALUE OF
THE COLUMN, PERFORM A BIT
COPY ONLY FOR THE
REQUIRED BITS

!

STORE THE SET OF
ENUMERATED DIFFERENCE
VALUES

L ~1374

DIFFERENCE VALUE SETTO p~1376

COMPUTE THE SET OF
~1378

COMPUTE THE MINIMUM AND —~-1380

STORE THE MINIMUM DATA 1382

~1384

~1386

L~ 1388

FIG. 13D

1370

|
WO 2018/052908

PCT/US2017/051196
17/31

a— 1400

STORE THE CURRENT BUFFER
OFFSET TO THE CURRENT
COLUMN NUMBER OF THE —~—1402

COLUMN WHOSE DATA VALUES

ARE BEING PROCESSED

!

OBTAIN THE DATA TYPE OF THE [~_1404
COLUMN(ATTRIBUTE)

'

STORE THE TYPE OF DATA
COMPRESSION TO BE
PERFORMED ON DATA VALUES —~—1406
REPRESENTED BY THE
ATTRIBUTE AS A VALUE INDEX
COMPRESSION

I

SCAN ALL THE INPUT TUPLES TO | ~_1408
OBTAIN A SET OF ENUMERATED
VALUES FOR THE COLUMN

'

COMPUTE THE SET OF INDICES
FOR EACH DATA VALUE
REPRESENTED BY THE COLUMN

~—1410

'

PERFORM THE PROCESSES AT

714 AND 716 FOR EACH DATA }~_1412

VALUE STORED IN THE
COLUMN

!

OBTAIN THE INDEX FROM THE
SET OF ENUMERATED DATA

VALUES —~—1414

'

STORE THE INDEX TO THE

BUFFER 1416

!

STORE THE SET OF 1418
ENUMERATED VALUES

v

RETURN THE SERIALIZED }p~—1420
BLOCK OF DATA

FIG. 14

PCT/US2017/051196

WO 2018/052908

18/31

Gl Old

006% 0 4¥X0 ‘01X0 ‘C ‘001

Xapul 8N[eA pue uoljonpal uolsioald — Junowy JepJo : ¢ uwnjo)

paso|o‘paddiys ‘Buissasoid‘uado GZ'/1'62'G' /1600 [

uolssaldwoo Xapul anjeA — SNIe)S Jeplo : Z UWnjo)

(@xo)L‘L'o'L'o'0o‘Lo A

uoljonpal uoisioald — p| JapJo : | uwnjo)

00SG¥ ‘0001 0

Xapu| JopesH

|
WO 2018/052908

19/31

PCT/US2017/051196

RECEIVE A SET OF SERIALIZED DATA
VALUES CORRESPONDING TO ONE OR
MORE ATTRIBUTES OF EVENTS IN A
BATCH OF EVENTS

~ 1602

'

PROCESS THE SET OF
SERIALIZED DATA VALUES

L~_1604

(GENERATE A SET OF DE-

-~ 1606

SERIALIZED DATA VALUES

'

PROCESSING THE SET OF DE-
SERIALIZED DATA VALUES

+—1608

l

TRANSMIT A SET OF OUTPUT EVENTS

—~—1610

FIG. 16

WO 2018/052908

20/31

START 1702

-

IDENTITY A COLUMN
(ATTRIBUTE) OF THE EVENTS

v

~—1704

OBTAIN THE BUFFER OFFSET [~—1706

FROM THE BUFFER[COLUMN]

v

READ THE COMPRESSION | ~_1708

TYPE

VALUE INDEX
COMPRESSION?

PRECISION
REDUCTION
COMPRESSION?

PRECISION
REDUCTION VALUE INDEX
COMPRESSION?

PERFORM THE PROCESSES
DESCRIBED IN OF FIG. 14

PCT/US2017/051196

o 1700

1724
/_/

PERFORM THE PROCESS

DESCRIBED IN FIG. 11

r"1 726

PERFORM THE PROCESS

DESCRIBED IN OF FIG. 12

1728
/_/

PERFORM THE PROCESS

DESCRIBED IN OF FIG. 13

1716

~-1718

NO

TUPLES

1722
END

RETURN THE ARRAY OF 1720

FIG. 17

|
WO 2018/052908

21/31

PCT/US2017/051196

READ THE INDEX VALUES TO
INDEX_VALUES

~—1802

'

READ THE VALUE ARRAYS TO
VALUE_ARRAY

'

~—1804

FOR (VALUE_INDEX<-0 TO
NUMBER OF VALUES), PERFORM
THE OPERATIONS IN (1808-
1812)

—~~—1806

'

GET THE INDEX FROM
INDEX_VALUES[VALUE_INDEX]

L ~_1808

l

GET THE VALUE FROM
VALUE_ARRAY[INDEX]

~_1810

'

SET THE VALUE TO THE TUPLE
COLUMN OF
TUPLES[VALUE_INDEX]

L ~1812

FIG. 18

|
WO 2018/052908

22/31

READ THE MINIMUM VALUE TO
BASE_VALUE

~—1902

'

READ THE NUMBER OF BITS

L~1904

'

FOR (VALUE_INDEX<-0 TO
NUMBER OF VALUES), PERFORM
THE OPERATIONS IN (1908-
1910)

-~ 1906

READ THE VALUE BITS TO
VALUE_BITS

—~— 1908

'

SET THE
BASE_VALUE-+VALUE_BITS TO
THE TUPLE COLUMN OF
TUPLES[VALUE_INDEX]

L~ 1910

FIG. 19

PCT/US2017/051196

|
WO 2018/052908

23/31

PCT/US2017/051196

READ THE MINIMUM VALUE TO
BASE_VALUE

~—2002

:

READ THE NUMBER OF BITS

L ~_2004

l

READ INDEX VALUES TO
INDEX_VALUES

~~—2006

'

READ VALUE ARRAYS TO
VALUE_ARRAY

L ~-2008

l

FOR (J — 0 TO
VALUE_ARRAY.LENGTH), SET
THE VALUE_ARRAY[J] TO
VALUE_ARRAY[J] + BASE_VALUE

~—2010

GET THE INDEX FROM
INDEX_VALUES[VALUE_INDEX]

~—2012

l

GET THE VALUE FROM L2014

VALUE_ARRAY[INDEX]

'

SET THE VALUE TO THE TUPLE
COLUMN OF
TUPLES[VALUE_INDEX]

~—2016

FIG. 20

|
WO 2018/052908

24/31

FOR (J=0 TO VALUES SIZE)
UNCOMPRESS THE BLOCK INTO
AN ARRAY OF VALUES

:

SET THE VALUE IN THE ARRAY OF
VALUES TO THE TUPLE COLUMN
OF TUPLES FOR EACH DATA
VALUE CORRESPONDING TO THE
ATTRIBUTE IN THE SET OF INPUT
TUPLES

PCT/US2017/051196
2100
I~ 2102
~2104

FIG. 21

PCT/US2017/051196

WO 2018/052908

25/31

¢¢ Old

=

(¥4
SEER VY

\\\\\ wiodpu3 9dy

¢lecd _oSooxm_

\\\\\\\\\\\\\\\W\\\\

01¢¢ g J0naexy

¢0¢¢ 4ooel L uibul 109

\\\\ i E_o%ﬁ o& |
\ v Y 109 \ veubus 100 . N
\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\ _
8022 v _eaem
o0z =¥

|
WO 2018/052908

26/31

LAUNCH A FIRST CQL ENGINE
IN A CLUSTER OF CQL
ENGINES

~— 2302

!

SCHEDULE THE FIRST CQL
ENGINE TO PROCESS BATCH
OF CONTINUOUS STREAM OF
INPUT EVENTS RELATED TO
APPLICATION

1~— 2304

!

TrRACK THE FIRST CQL
ENGINE TO BE SCHEDULED
FOR EXECUTION

~ 2306

!

EXECUTE THE FIRST CQL

ENGINE TO PROCESS THE 4~ 2308

BATCH TO GENERATE A SET
OF QUTPUT EVENTS RELATED
TO THE APPLICATION

FIG. 23

PCT/US2017/051196

PCT/US2017/051196

WO 2018/052908

27131

4474

al 190 yum
ebe)g pauoniyed

90¥¢C eleD
uoniued Jnoyum
abels pauolied

O1¥eC eusiu)
uolued yum
ebe)g pauoniyed

80¥¢ obeis
pauoIjiyed-UoN

v¢ Old

v 7 o 4 \
I LG By P Y Y I R T VI
g4l iRt a4) 2 5 e 050 50004 5
KA VAV IRV 3 B (22 ST e »s\\“s\\uﬁm\\»\““\\\m

\ . Vs \.. >

70F¢ uoneouisse|d ~\\\\\\§

\\\\\§ abels

AenD 100
Jo uoijeolyisse|)

sulbu3z 109D

cove
JezAjeuy auijadid

oo

[

oy, p, A, g GG Y %
\\\H\\ \\\\ &\\\ \\\“\w w\\\\w e\\\ &
% P %

|
WO 2018/052908

28/31

DETERMINE A STAGE FOR A
CQL QUERY BEING
PROCESSED BY EPS

~— 2502

'

DETERMINE STAGE TYPE
ASSOCIATED WITH STAGE

~ 2504

'

DETERMINE
TRANSFORMATION TO BE
COMPUTED FOR STAGED

L~ 2506

'

DETERMINE CLASSIFICATION
FOR CQL QUERY BASED ON
RULES

~ 2508

'

MARK STAGE AS PARTITIONED
STAGE OR NON-PARTITIONED
STAGE BY APPLYING
PARTITION CRITERIA

~— 2510

'

GENERATE TRANSFORMATION
IN DAG OF PIPELINE BASED
ON CRITERIA

~— 2512

l

DETERMINE PARTITIONING
FOR STAGE BASED ON
TRANSFORMATION

I~ 2514

FIG. 25

PCT/US2017/051196

|
WO 2018/052908 PCT/US2017/051196

29/31

DATABASE
2616

DATABASE
2614

COMPONENT COMPONENT
2618 2620

COMPONENT
2622

SERVER 2612

NETWORK(S)

FIG. 26

PCT/US2017/051196

WO 2018/052908

30/31

/¢ Old

Z€77 SIS aFUVHS TYNYILN|

€.¢ SIEAN0STY FINLONYLSYHAN]

¢.1¢ INFWIDVYNV[N ALILNAQ|

7

92/ ONIMOLINO\ ANV
INFWIOVYNYIN H3QH0

~

.LC \H

T (V2iZ
NOILVHLS3IHOA() 340 ONINOISIAOY] d30d0

7

012 \H cvic

0¢Le 8lLC
INFWIDVYNVIN ¥3QH0 IsvavivQ ¥3ad0

8€.LC 0oz .\/»

ollc vize 4V
IN ano19 IN ano19 IN ano19

¢0.¢ WALSAS IINLONYLSYHANI ANOTD

142X4
JOINYAS

m_m_m__>omn_/

80L¢

30IA3Q

-}
N~ .2
1S3ND3Y I0INI3S

IN3MD

0lL¢
(S)ydomLaN
Wic
30IAES
Q30IN0¥d ™ 9072
< 30IA3Q
 p¢/¢ 1sInDIY IN3IMD
ERNEL
.l¢
ERINEN
Q3aIN0Nd v0/2
| 30IA3Q

A L]
“ pe/z 153N03Y IO

IN3MD

PCT/US2017/051196

WO 2018/052908

31/31

8¢ Old

AA

008¢

0€8¢ 8¢8¢ 9¢8¢

satvadn | Iswvascs| | sa3aq

IN3AT IN3AT vLv(Q
7414

W3LSASENS SNOILYOINNWNOD

| 9¢ WIALSASANS FOVHOLS

— 729z viaapy
918¢ 39vd01S F1dvavay
WALSAS ONILYYIAO ~43LNdN0?)
y18¢
V1V WYH904d
028¢

18¢c

SNVHO0dd NOILVIINddY

1 9¢ AJOWIN WALSAS

¥3avay viaap
39VHOLS I1avavay

d31NdN0H

08¢

808¢
WaLSASENS O/l

908¢ LINN
NOILVH31300Y

ONISS3I0Hd

¥E8¢ LINN 7682 LINN
ONISSI00Hd NS ONISSI0O0Nd NS
JHOVD JHOVD JHOVD
0D 0D 09
082

LINN ONISS3F00¥d

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/051196

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Oracle Corporation:

Chapter 1",

XP055418051,
Retrieved from the Internet:

19/eventprocessing/CEPED.pdf
[retrieved on 2017-10-23]
pages 1-1 - pages 1-23

"Oracle Fusion
Middleware Developer's guide for Oracle
Event Processing 11g (Release 11.1.1.9) -

i February 2015 (2015-02-01), pages 1-79,

URL:https://docs.oracle.com/middleware/111

1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 October 2017

Date of mailing of the international search report

07/11/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Chinzer, Azzurra

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/051196

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

Alexandre Alves ET AL:

In: "Getting Started with Oracle Complex
Egent Processing 11g (chapters 1, 2, 4, 5,
6 ||,

26 March 2013 (2013-03-26), Packt
Publishing, XP055418072,

ISBN: 978-1-84968-454-5

Chapter 1: pages 15-24

Chapter 2: pages 4-9; 14-27

Chapter 4: pages 1-6

Chapter 5: page 1;

Chapter 6: page 1.

US 2015/169786 Al (JERZAK ZBIGNIEW [DE] ET
AL) 18 June 2015 (2015-06-18)

paragraph [0002] - paragraph [0003]
paragraph [0015] - paragraph [0026]
paragraph [0042] - paragraph [0043]

US 2014/095446 Al (DESHMUKH UNMESH ANIL
[IN] ET AL) 3 April 2014 (2014-04-03)
paragraph [0059] - paragraph [0068]
paragraph [0128] - paragraph [0130]

US 20117196891 Al (DE CASTRO ALVES
ALEXANDRE [US] ET AL)

11 August 2011 (2011-08-11)

paragraph [0014]

paragraph [0040] - paragraph [0055]
paragraph [0079]

1-20

1,10,16
2-9,
11-15,
17-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/051196
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2015169786 Al 18-06-2015 NONE

2014095444 Al
2014095445 Al
2014095446 Al
2014095447 Al
2014095471 Al

03-04-2014
03-04-2014
03-04-2014
03-04-2014
03-04-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - wo-search-report
	Page 122 - wo-search-report
	Page 123 - wo-search-report

