Abstract

Novel compounds of formula (7.0a), (7.0b) or (7.0c) are disclosed. Also disclosed is a method of inhibiting Ras function and therefore inhibiting the abnormal growth of cells. The method comprises administering a compound of formula (7.0a), (7.0b) or (7.0c) to a biological system. In particular, the method inhibits the abnormal growth of cells in a mammal such as a human being.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
<td></td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
<td></td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
<td></td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
<td></td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td></td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
<td></td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td></td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td></td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
<td></td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td></td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td></td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td></td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td></td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td></td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LR</td>
<td>Liberia</td>
<td></td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LT</td>
<td>Lithuania</td>
<td></td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td></td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
<td></td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td></td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td></td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
<td></td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
TRICYCLIC AMIDE AND UREA COMPOUNDS USEFUL FOR INHIBITION OF G-PROTEIN FUNCTION AND FOR TREATMENT OF PROLIFERATIVE DISEASES

BACKGROUND

International Publication Number WO92/11034, published July 9, 1992, discloses a method of increasing the sensitivity of a tumor to an antineoplastic agent, which tumor is resistant to the antineoplastic agent, by the concurrent administration of the antineoplastic agent and a potentiating agent of the formula:

\[
\begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\]

wherein the dotted line represents an optional double bond, \(X' \) is hydrogen or halo, and \(Y' \) is hydrogen, substituted carboxylate or substituted sulfonyl. For example, \(Y' \) can be, amongst others, \(-\text{COOR'}\) wherein \(R' \) is C1 to C6 alkyl or substituted alkyl, phenyl, substituted phenyl, C7 to C12 aralkyl or substituted aralkyl or -2, -3, or -4 piperidyl or N-substituted piperidyl. \(Y' \) can also be, amongst others, \(\text{SO}_2R' \) wherein \(R' \) is C1 to C6 alkyl, phenyl, substituted phenyl, C7 to C12 aralkyl or substituted aralkyl. Examples of such potentiating agents include 11-(4-piperidylidene)-5H-benzo[5,6]cyclohepta[1,2-b]pyridines such as Loratadine.

Oncogenes frequently encode protein components of signal transduction pathways which lead to stimulation of cell growth and mitogenesis. Oncogene expression in cultured cells leads to cellular transformation, characterized by the ability of cells to grow in soft agar and the growth of cells as dense foci lacking the contact inhibition exhibited by non-transformed cells. Mutation and/or overexpression of certain oncogenes is frequently associated with human cancer.

To acquire transforming potential, the precursor of the Ras oncoprotein must undergo farnesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Inhibitors of the enzyme that catalyzes
this modification, farnesyl protein transferase, have therefore been suggested as anticancer agents for tumors in which Ras contributes to transformation. Mutated, oncogenic forms of ras are frequently found in many human cancers, most notably in more than 50% of colon and pancreatic carcinomas (Kohl et al., Science, Vol. 260, 1834 to 1837, 1993).

In view of the current interest in inhibitors of farnesyl protein transferase, a welcome contribution to the art would be compounds useful for the inhibition of farnesyl protein transferase. Such a contribution is provided by this invention.

SUMMARY OF THE INVENTION

Inhibition of farnesyl protein transferase by tricyclic compounds of this invention has not been reported previously. Thus, this invention provides a method for inhibiting farnesyl protein transferase using tricyclic compounds of this invention which: (i) potentily inhibit farnesyl protein transferase, but not geranylgeranyl protein transferase I, in vitro; (ii) block the phenotypic change induced by a form of transforming Ras which is a farnesyl acceptor but not by a form of transforming Ras engineered to be a geranylgeranyl acceptor; (iii) block intracellular processing of Ras which is a farnesyl acceptor but not of Ras engineered to be a geranylgeranyl acceptor; and (iv) block abnormal cell growth in culture induced by transforming Ras. Several compounds of this invention have been demonstrated to have anti-tumor activity in animal models.

This invention provides a method for inhibiting the abnormal growth of cells, including transformed cells, by administering an effective amount of a compound of this invention. Abnormal growth of cells refers to cell growth independent of normal regulatory mechanisms (e.g., loss of contact inhibition). This includes the abnormal growth of: (1) tumor cells (tumors) expressing an activated Ras oncogene; (2) tumor cells in which the Ras protein is activated as a result of oncogenic mutation in another gene; and (3) benign and malignant cells of other proliferative diseases in which aberrant Ras activation occurs.

The compounds useful in the claimed methods are novel compounds represented by Formula (7.0a), (7.0b) or (7.0c):
or a pharmaceutically acceptable salt or solvate thereof, wherein:

- each \(R^1 \) and each \(R^2 \) is independently selected from H, halo, -CF_3, -OR^{10} \text{ (e.g., -OCH}_3\text{), -COR}^{10}, \text{-SR}^{10} \text{ (e.g., -SCH}_3\text{ and -SCH}_2\text{C}_6\text{H}_5\text{), -S(O)}_t\text{R}^{11} \text{ (wherein } t \text{ is 0, 1 or 2, e.g., -SOCH}_3\text{ and -SO}_2\text{CH}_3\text{), -SCN, -N(R}^{10}_2\text{, -NR}^{10}\text{R}^{11}, \text{-NO}_2, \text{-OC(O)}\text{R}^{10}, \text{-CO}_2\text{R}^{10}, \text{-OCO}_2\text{R}^{11}, \text{-CN, -NHC(O)}\text{R}^{10}, \text{-NHSO}_2\text{R}^{10}, \text{-CONHR}^{10}, \text{-CONHCH}_2\text{CH}_2\text{OH,}}

- \text{-SR}^{11}\text{C(O)OR}^{11} \text{ (e.g., -SCH}_2\text{CO}_2\text{CH}_3\text{), -SR}^{11}\text{N(R}^{75}_2 \text{wherein each } R^{75} \text{ is independently selected from H and -C(O)OR}^{11} \text{ (e.g., -S(CH}_2\text{)_2NHC(O)}\text{-t-butyl and -S(CH}_2\text{)_2NH}_2\text{, benzotriazol-1-yloxy,}}

- tetrazol-5-ythio, or substituted tetrazol-5-ythio (e.g., alkyl substituted tetrazol5-ythio such as 1-methyl-tetrazol-5-ythio), alkynyl, alkenyl or alkyl, said alkyl or alkenyl group optionally being substituted with halo, -OR^{10} or -CO}_2\text{R}^{10} \text{;}

\(R^3 \) and \(R^4 \) are the same or different and each independently represents H, any of the substituents of \(R^1 \) and \(R^2 \), or \(R^3 \) and \(R^4 \) taken
together represent a saturated or unsaturated C\textsubscript{5}-C\textsubscript{7} fused ring to the benzene ring (Ring III);

\(R^5, R^6, R^7\) and \(R^8\) each independently represents H, -CF\textsubscript{3}, -COR10, alkyl or aryl, said alkyl or aryl optionally being substituted with -OR10, -SR10, -S(O)\textsubscript{2}R11, -NR10COR11, -NR10R11, -NO\textsubscript{2}, -COR10, -OCOR10, -OCO\textsubscript{2}R11, -CO\textsubscript{2}R10, OPO\textsubscript{3}R10 or one of \(R^5, R^6, R^7\) and \(R^8\) can be taken in combination with \(R^{40}\) as defined below to represent -(CH\textsubscript{2})\textsubscript{r} wherein \(r\) is 1 to 4 which can be substituted with lower alkyl, lower alkoxy, -CF\textsubscript{3} or aryl, or \(R^5\) is combined with \(R^6\) to represent =O or =S and/or \(R^7\) is combined with \(R^8\) to represent =O or =S;

\(R^{10}\) represents H, alkyl, aryl, or aralkyl (e.g., benzyl);

\(R^{11}\) represents alkyl or aryl;

\(R\) represents \(R^{40}, R^{42}, R^{44},\) or \(R^{54}\), as defined below;

\(R^{40}\) represents H, aryl, alkyl, cycloalkyl, alkenyl, alkynyl or -D

wherein -D represents

\[
\begin{align*}
\text{N} & \text{R}^3 \quad \text{N} & \text{R}^4 \\
\text{N} & \text{R}^3 \quad \text{N} & \text{R}^4 \\
\end{align*}
\]

wherein \(R^3\) and \(R^4\) are as previously defined and \(W\) is O, S or NR10

wherein \(R^{10}\) is as defined above; said \(R^{40}\) cycloalkyl, alkenyl and alkynyl groups being optionally substituted with from 1-3 groups selected from halo, -CON(R10)\textsubscript{2}, aryl, -CO\textsubscript{2}R10, -OR12, -SR12, -N(R10)\textsubscript{2}, -N(R10)CO\textsubscript{2}R11, -COR12, -NO\textsubscript{2} or D, wherein -D, \(R^{10}\) and \(R^{11}\) are as defined above and \(R^{12}\) represents \(R^{10}\), -(CH\textsubscript{2})\textsubscript{m}OR10 or -(CH\textsubscript{2})\textsubscript{q}CO\textsubscript{2}R10 wherein \(R^{10}\) is as previously defined, \(m\) is 1 to 4 and \(q\) is 0 to 4; said alkenyl and alkynyl \(R^{40}\) groups not containing -OH, -SH or

-\(N(R^{10})_2\) on a carbon containing a double or triple bond respectively; or

\(R^{40}\) represents phenyl substituted with a group selected from -SO\textsubscript{2}NH\textsubscript{2}, -NHSO\textsubscript{2}CH\textsubscript{3}, -SO\textsubscript{2}NHCH\textsubscript{3}, -SO\textsubscript{2}CH\textsubscript{3}, -SOCH\textsubscript{3}, -SCH\textsubscript{3}, or -NHSO\textsubscript{2}CF\textsubscript{3}, preferably, said group is located in the para (p-) position of the phenyl ring; or

\(R^{40}\) represents a group selected from
wherein R²⁰, R²¹ and R⁴⁶ are each independently selected from the group consisting of:

(1) H;
(2) -(CH₂)qSC(O)CH₃ wherein q is 1 to 3 (e.g., -CH₂SC(O)CH₃);
(3) -(CH₂)qOSO₂CH₃ wherein q is 1 to 3 (e.g., -CH₂OSO₂CH₃);
(4) -OH;
(5) -CS(CH₂)ₙ(substituted phenyl) wherein w is 1 to 3 and the substitutents on said substituted phenyl group are the same substitutents as described below for said substituted phenyl (e.g., -C-S-CH₂-4-methoxyphenyl);
(6) -NH₂;
(7) -NHCBZ (wherein CBZ stands for carbonylbenzyloxy--i.e., CBZ represents -C(O)OCH₂C₆H₅);
(8) -NHC(O)OR²² wherein R²² is an alkyl group having from 1 to 5 carbon atoms (e.g., R²² is t-butyl thus forming -NHBOC wherein BOC
stands for tert-butyloxycarbonyl--i.e., BOC represents -C(O)OC(CH₃)₃, or
R²² represents phenyl substituted with 1 to 3 alkyl groups (e.g., 4-
methylphenyl);
 (9) alkyl (e.g., ethyl);
5 (10) -(CH₂)ₖphenyl wherein k is 1 to 6, usually 1 to 4 and
preferably 1 (e.g., benzyl);
 (11) phenyl;
 (12) substituted phenyl (i.e., phenyl substituted with from 1 to 3
substituents, preferably one) wherein the substituents are selected from
the group consisting of: halo (e.g., Br, Cl, or I, with Br being preferred);
NO₂; -OH; -OCH₃; -NH₂; -NHR²²; -N(R²²)₂; alkyl (e.g., alkyl having from 1
to 3 carbons with methyl being preferred); -O(CH₂)ᵗphenyl (wherein t is
from 1 to 3 with 1 being preferred); and -O(CH₂)ᵗsubstituted phenyl
(wherein t is from 1 to 3 with 1 being preferred); examples of substituted
phenyls include, but are not limited to, p-bromophenyl, m-nitrophenyl, o-
nitrophenyl, m-hydroxy-phenyl, o-hydroxyphenyl, methoxyphenyl, p-
methylyphenyl, m-methyl-phenyl, and -OCH₂C₆H₅;
 (13) naphthyl;
 (14) substituted naphthyl, wherein the substituents are as defined
for substituted phenyl above;
 (15) bridged polycyclic hydrocarbons having from 5 to 10 carbon
atoms (e.g., adamantyl and norbornyl);
 (16) cycloalkyl having from 5 to 7 carbon atoms (e.g., cyclopentyl,
and cyclohexyl);
 (17) heteroaryl (e.g., pyridyl, and pyridyl N-oxide);
 (18) hydroxyalkyl (e.g., -(CH₂)vOH wherein v is 1 to 3, such as, for
example, -CH₂OH);
 (19) substituted pyridyl or substituted pyridyl N-oxide wherein the
substituents are selected from methylpyridyl, morpholinyl, imidazolyl,
1-piperidinyl, 1-(4-methylpiperazinyl), -S(O)ᵣR¹¹, or any of the
substituents given above for said substituted phenyl, and said
substituents are bound to a ring carbon by replacement of the hydrogen
bound to said carbon;
-NHC(O)-(CH₂)ₖ-phenyl or -NH(O)-(CH₂)ₖ-substituted phenyl, wherein said k is as defined above (i.e., 1-6, usually 1-4 and preferably 1);

(24) piperidine Ring V:

\[
\begin{array}{c}
\text{V} \\
N-R^{50}
\end{array}
\]

wherein \(R^{50} \) represents H, alkyl (e.g., methyl), alkylcarbonyl (e.g., \(\text{CH₃C(O)-} \)), alklyoxycarbonyl (e.g., \(-\text{C(O)}\text{O-t-C}_4\text{H}_9\), \(-\text{C(O)}\text{OC}_2\text{H}_5\), and \(-\text{C(O)}\text{OCH}_3\)), haloalkyl (e.g., trifluoromethyl), or \(-\text{C(O)}\text{NH}(R^{10})\) wherein \(R^{10} \) is H or alkyl; Ring V includes

\[
\begin{array}{ccc}
\text{N-R^{50}} & \text{N-R^{50}} & \text{N-R^{50}} \\
& & \\
\end{array}
\]

examples of Ring V include:

\[
\begin{array}{c}
\text{N} \\
\text{CH}_3 \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{CH}_3 \\
\text{O} \\
\text{CH}_3 \\
\text{O} \\
\text{CH}_3 \\
\text{O} \\
\text{CH}_3
\end{array}
\]

(25) -NHC(O)CH₂C₆H₅ or -NHC(O)CH₂-substituted-C₆H₅, for example -NHC(O)CH₂-p-hydroxyphenyl, -NHC(O)CH₂-m-hydroxyphenyl, and -NHC(O)CH₂-o-hydroxyphenyl;

(26) -NHC(O)OC₆H₅;
(27) ![Chemical Structure](image1)
(28) ![Chemical Structure](image2)
(29) ![Chemical Structure](image3)
(30) -OC(O)-heteroaryl, for example
(31) -O-alkyl (e.g., -OCH₃);
(32) -CF₃;
(33) -CN;
(34) a heterocycloalkyl group of the formula
(35) a piperidinyl group of the formula

wherein R⁸⁵ is H, alkyl, or alkyl substituted by -OH or -SCH₃; or
R²⁰ and R²¹ taken together form a =O group and the remaining
R⁴⁶ is as defined above; or

two of R²⁰, R²¹ and R⁴⁶ taken together form piperidine Ring V

wherein R⁵⁰ and Ring V are as defined above;
with the proviso R⁴⁶, R²⁰, and R²¹ are selected such that the
carbon atom to which they are bound does not contain more than one
heteroatom (i.e., R⁴⁶, R²⁰, and R²¹ are selected such that the carbon
atom to which they are bound contains 0 or 1 heteroatom);
R⁴⁴ represents
![Chemical Structure](image4)
wherein R^{25} represents heteroaryl (e.g., pyridyl or pyridyl N-oxide) or aryl (e.g., phenyl and substituted phenyl); and R^{48} represents H or alkyl (e.g., methyl);

R^{54} represents an N-oxide heterocyclic group of the formula (i), (ii), (iii) or (iv):

(5)

![Chemical structures](image)

wherein R^{56}, R^{58}, and R^{60} are the same or different and each is independently selected from H, halo, -CF$_3$, -OR$_{10}$, -C(O)R$_{10}$, -SR$_{10}$, -S(O)$_e$R$_{11}$ (wherein e is 1 or 2), -N(R$_{10}$)$_2$, -NO$_2$, -CO$_2$R$_{10}$, -OCO$_2$R$_{11}$, -OCOR$_{10}$, alkyl, aryl, alkenyl or alkynyl, which alkyl may be substituted with -OR$_{10}$, -SR$_{10}$ or -N(R$_{10}$)$_2$ and which alkenyl may be substituted with OR$_{11}$ or SR$_{11}$; or

R^{54} represents an N-oxide heterocyclic group of the formula (ia), (iia), (iiia) or (iva):

(10)

![Chemical structures](image)

wherein Y represents N$^+$-O$^-$ and E represents N; or

R^{54} represents an alkyl group substituted with one of said N-oxide heterocyclic groups (i), (ii), (iii), (iv), (ia), (iia), (iiia) or (iva).

Examples of R^{20}, R^{21}, and R^{48} for the above formulas include:

(15)

![Chemical structures](image)
Examples of R²⁵ groups include:

wherein Y represents N or NO, R²⁸ is selected from the group consisting of: C₁ to C₄ alkyl, halo, hydroxy, NO₂, amino (-NH₂), -NHR³⁰, and -N(R³⁰)₂ wherein R³⁰ represents C₁ to C₆ alkyl.

This invention also provides a method for inhibiting tumor growth by administering an effective amount of the tricyclic compounds, described herein, to a mammal (e.g., a human) in need of such treatment. In particular, this invention provides a method for inhibiting the growth of tumors expressing an activated Ras oncogene by the administration of an effective amount of the above described compounds. Examples of tumors which may be inhibited include, but are not limited to, lung cancer (e.g., lung adenocarcinoma), pancreatic cancers (e.g., pancreatic carcinoma such as, for example, exocrine pancreatic carcinoma), colon cancers (e.g., colorectal carcinomas, such as, for example, colon adenocarcinoma and colon adenoma), myeloid leukemias (for example, acute myelogenous leukemia (AML)), thyroid follicular cancer, myelodysplastic syndrome (MDS), bladder carcinoma and epidermal carcinoma.

It is believed that this invention also provides a method for inhibiting proliferative diseases, both benign and malignant, wherein Ras proteins are aberrantly activated as a result of oncogenic mutation in other genes--i.e., the Ras gene itself is not activated by mutation to an oncogenic form--with said inhibition being accomplished by the administration of an
effective amount of the tricyclic compounds described herein, to a mammal (e.g., a human) in need of such treatment. For example, the benign proliferative disorder neurofibromatosis, or tumors in which Ras is activated due to mutation or overexpression of tyrosine kinase oncogenes (e.g., neu, src, abl, lck, and fyn), may be inhibited by the tricyclic compounds described herein.

The compounds of this invention inhibit farnesyl protein transferase and the farnesylation of the oncogene protein Ras. This invention further provides a method of inhibiting ras farnesylin protein transferase, in mammals, especially humans, by the administration of an effective amount of the tricyclic compounds described above. The administration of the compounds of this invention to patients, to inhibit farnesyl protein transferase, is useful in the treatment of the cancers described above.

The tricyclic compounds useful in the methods of this invention inhibit the abnormal growth of cells. Without wishing to be bound by theory, it is believed that these compounds may function through the inhibition of G-protein function, such as ras p21, by blocking G-protein isoprenylation, thus making them useful in the treatment of proliferative diseases such as tumor growth and cancer. Without wishing to be bound by theory, it is believed that these compounds inhibit ras farnesyl protein transferase, and thus show antiproliferative activity against ras transformed cells.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the following terms are used as defined below unless otherwise indicated:

M⁺-represents the molecular ion of the molecule in the mass spectrum;

MH⁺⁺-represents the molecular ion plus hydrogen of the molecule in the mass spectrum;

Bu-represents butyl;

Et-represents ethyl;

Me-represents methyl;

Ph-represents phenyl;

benzotriazol-1-ylxy represents
1-methyl-tetrazol-5-ylthio represents

alkyl-(including the alkyl portions of alkoxy, alkylamino and dialkylamino)-represents straight and branched carbon chains and contains from one to twenty carbon atoms, preferably one to six carbon atoms;

alkanediyl-represents a divalent, straight or branched hydrocarbon chain having from 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, the two available bonds being from the same or different carbon atoms thereof, e.g., methylene, ethylene, ethylidene, -CH₂CH₂CH₂-, -CH₂CHCH₃, -CHCH₂CH₃, etc.

cycloalkyl-represents saturated carbocyclic rings branched or unbranched of from 3 to 20 carbon atoms, preferably 3 to 7 carbon atoms;

heterocycloalkyl-represents a saturated, branched or unbranched carbocyclic ring containing from 3 to 15 carbon atoms, preferably from 4 to 6 carbon atoms, which carbocyclic ring is interrupted by 1 to 3 hetero groups selected from -O-, -S- or -NR₁¹-(suitable heterocycloalkyl groups including 2- or 3-tetrahydrofuranyl, 2- or 3- tetrahydrothienyl, 2-, 3- or 4-piperidinyl, 2- or 3-pyrrolidinyl, 2- or 3-piperizinyl, 2- or 4-dioxanyln, etc.);

alkenyl-represents straight and branched carbon chains having at least one carbon to carbon double bond and containing from 2 to 12 carbon atoms, preferably from 2 to 6 carbon atoms and most preferably from 3 to 6 carbon atoms;

alkynyl-represents straight and branched carbon chains having at least one carbon to carbon triple bond and containing from 2 to 12 carbon atoms, preferably from 2 to 6 carbon atoms;

aryl (including the aryl portion of aryloxy and aralkyl)-represents a carbocyclic group containing from 6 to 15 carbon atoms and having at least one aromatic ring (e.g., aryl is a phenyl ring), with all available substitutable carbon atoms of the carbocyclic group being intended as possible points of attachment, said carbocyclic group being optionally
substituted (e.g., 1 to 3) with one or more of halo, alkyl, hydroxy, alkoxy, phenoxy, CF₃, amino, alkylamino, dialkylamino, -COOR¹⁰ or -NO₂; and halo-represents fluoro, chloro, bromo and iodo; and heteroaryl-represents cyclic groups, optionally substituted with R³ and R⁴, having at least one heteroatom selected from O, S or N, said heteroatom interrupting a carbocyclic ring structure and having a sufficient number of delocalized pi electrons to provide aromatic character, with the aromatic heterocyclic groups preferably containing from 2 to 14 carbon atoms, e.g., triazolyl, 2-, 3- or 4-pyridyl or pyridyl N-oxide (optionally substituted with R³ and R⁴), wherein pyridyl N-oxide can be represented as:

![Chemical Structure](image)

The following solvents and reagents are referred to herein by the abbreviations indicated: tetrahydrofuran (THF); ethanol (EtOH); methanol (MeOH); acetic acid (HOAc or AcOH); ethyl acetate (EtOAc); N,N-dimethylformamide (DMF); trifluoroacetic acid (TFA); trifluoroacetic anhydride (TFAA); 1-hydroxybenzotriazole (HOBT); m-chloroperbenzoic acid (MCPBA); triethylamine (Et₃N); diethyl ether (Et₂O); ethyl chloroformate (ClCO₂Et); 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (DEC).

Reference to the position of the substituents R¹, R², R³, and R⁴ is based on the numbered ring structure:

![Chemical Structure](image)

For example, R¹ can be at the C-4 position and R² can be at the C-2 or C-3 position. Also, for example, R³ can be at the C-8 position and R⁴ can be at the C-9 position.

Examples of the R⁴² groups include:
Compounds of formula 7.0c include:

(7.0e) and

compounds of the formula 7.0b include:

(7.0g) and

(7.0h); and compounds of the formula 7.0a include:

(7.0j) and

(7.0k).

wherein all substituents for 7.0e-7.0k are as defined for 7.0a-7.0c.

Preferably for compounds of the formula 7.0e, 7.0g and 7.0j the group R^{46} is selected from piperidino ring V, heteroaryl, phenyl, substituted phenyl, substituted pyridyl or substituted pyridyl N-oxide, and R^{20} and R^{21} are independently selected from H or alkyl. Most preferably R^{46} is pyridyl, pyridyl N-oxide or piperidino ring V. It is also preferred that R^{20} and R^{21} are both H or are both alkyl, preferably methyl.

Preferably for compounds of the formula 7.0f, 7.0h and 7.0k, the group R^{25} is phenyl, 3-pyridyl, 4-pyridyl, 3-pyridyl N-oxide, 4-pyridyl N-
oxide or piperidine ring V. More preferably R^4_B is H or methyl, with H being most preferred.

Preferably for the compounds of formula 7.0a, 7.0b, 7.0c, 7.0e, 7.0f, 7.0g, 7.0h, 7.0j and 7.0k the groups R^5, R^6, R^7 and R^8 are H, and R^1, R^2, R^3 and R^4 are independently selected from H, halo, -NO_2, -N(R^{10})_2, alkyl, alkenyl, alkynyl, -COR^{10}, -CO_2R^{10}, -CF_3, -OR^{10}, and -CN, wherein R^{10} is as defined above for the compounds of formula 7.0a-7.0c.

Representative compounds of the present invention include:
Preferred compounds of this invention are selected from the group consisting of the compounds of Examples: 1, 2, 2-A, 2-B, 2-C, 2-D, 2-E, 2-F, 2-K, 2-N, 2-P, and 3.

Lines drawn into the ring systems indicate that the indicated bond may be attached to any of the substitutable ring carbon atoms.

Certain compounds of the invention may exist in different isomeric (e.g., enantiomers and diastereoisomers) forms. The invention contemplates all such isomers both in pure form and in admixture, including racemic mixtures. Enol forms are also included.

Certain tricyclic compounds will be acidic in nature, e.g. those compounds which possess a carboxyl or phenolic hydroxyl group. These
compounds may form pharmaceutically acceptable salts. Examples of such salts may include sodium, potassium, calcium, aluminum, gold and silver salts. Also contemplated are salts formed with pharmaceutically acceptable amines such as ammonia, alkyl amines, hydroxyalkylamines, N-methylglucamine and the like.

Certain basic tricyclic compounds also form pharmaceutically acceptable salts, e.g., acid addition salts. For example, the pyridonitrogen atoms may form salts with strong acid, while compounds having basic substituents such as amino groups also form salts with weaker acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those in the art. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise equivalent to their respective free base forms for purposes of the invention.

All such acid and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.

Compounds of the invention may be made by the processes described in WO 95/10516 published April 20, 1995 (see, for example, the procedures for making compounds of formula 400.00), and by the processes described in the examples below.

On page 57 at lines 7-16 of WO 95/10516 a process is disclosed for introducing substituents at the C-3 position of pyridine Ring I of Formula 1.0 by nitrating a compound of Formula 415.00. The nitro group may then be reduced to the corresponding amine using the disclosed reagents, or powdered Zn and either CuCl₂ or CuBr₂ in aqueous EtOH.

Compounds of the formula 7.0a, 7.0b and 7.0c can be prepared from amines of the formula 7.1a, 7.1b and 7.1c, respectively, by coupling a compound of the formula 7.0a, 7.0b or 7.0c with a carboxylic acid of the
formula RCOOH via the method described in WO 95/10516 for reacting compounds of the formula 405.00.

Alternatively, a compound of the formula 7.0a, 7.0b or 7.0c is treated with a compound of the formula RC(O)L, where L is a suitable leaving group, via the procedure described in WO 95/10516 for compounds of the formula 405.00.

Compounds of the formula 7.1a can be prepared from a compound of the formula 420.50, (i.e., a compound of the formula 420.00, of WO 95/10516, wherein A and B are both H, no double bond is present between carbons 5 and 6, or between carbon 11 and X, X is CH, and the N-alkyl group is a methyl group) as shown in Reaction Scheme 1.
In Step A of Reaction Scheme 1, a compound of the formula 420.50 is reacted with a strong base, such as an lithium diisopropylamide or an alkyllithium reagent (e.g., n-butyllithium), at -100° to -10°C, preferably at -80° to -20°C, then treated with methyl iodide to form a compound of formula 7.2a.

In Step B of Reaction Scheme 1, a compound of the formula 7.2a is converted to a compound of the formula 7.3a via substantially the same procedure as described in WO 95/10516 for formation of compounds of the formula 415.00.

In Step C of Reaction Scheme 1, a compound of the formula 7.3a is hydrolyzed via essentially the same procedure as described in WO
95/10516 for formation of compounds of formula 405.00, to form a compound of the formula 7.1a.

Compounds of the formula 7.1b can be prepared from a compound of the 420.51 (i.e., a compound of the formula 420.00, of WO 95/10516, wherein A and B are both H, no double bond is present between carbons 5 and 6, a double bond is present between carbon 11 and X, X is C, and the N-alkyl group is a methyl group) via the process shown in Reaction Scheme 2.

Reaction Scheme 2

10 Step A:

Step B:

Step C:

In Step A of Reaction Scheme 2, a compound of the formula 420.51 is reacted with a strong base, such as an lithium diisopropylamide or an alkyllithium reagent (e.g., n-butyllithium), at -100° to -10°C, preferably at
- -80° to -20°C, then treated with a protic solvent, such as an alcohol, preferably MeOH, to form a compound of formula 7.2b.

In Step B of Reaction Scheme 2, a compound of the formula 7.2b is converted to a compound of the formula 7.3b via substantially the same procedure as described in WO 95/10516 for formation of compounds of the formula 415.00.

In Step C of Reaction Scheme 2, a compound of the formula 7.3b is hydrolyzed via essentially the same procedure as described WO 95/10516, for formation of compounds of formula 405.00, to form a compound of the formula 7.1b.

Compounds of the formula 7.1c can be prepared from a compound of the 420.51 via the process shown in Reaction Scheme 3.

Reaction Scheme 3

Step A:

\[
\begin{align*}
\text{(420.51)} & \quad \rightarrow \quad \text{(7.2c)} \\
\end{align*}
\]

Step B:

\[
\begin{align*}
\text{(7.2c)} & \quad \rightarrow \quad \text{(7.3c)} \\
\end{align*}
\]

Step C:

\[
\begin{align*}
\text{(7.3c)} & \quad \rightarrow \quad \text{(7.1c)} \\
\end{align*}
\]
In Step A of Reaction Scheme 3, a compound of the formula 420.51 is reacted with a strong base, such as an lithium diisopropylamide or an alkyllithium reagent (e.g., n-butyllithium), at -100° to -10°C, preferably at -80° to -20°C, then treated with methyl iodide to form a compound of formula 7.2c.

In Step B of Reaction Scheme 3, a compound of the formula 7.2c is converted to a compound of the formula 7.3c via substantially the same procedure as described in WO 95/10516 for formation of compounds of the formula 415.00.

In Step C of Reaction Scheme 1, a compound of the formula 7.3c is hydrolyzed via essentially the same procedure as described in WO 95/10516 for formation of compounds of formula 405.00, to form a compound of the formula 7.1c.

Compounds useful in this invention are exemplified by the following preparative examples, which should not be construed to limit the scope of the disclosure. Alternative mechanistic pathways and analogous structures within the scope of the invention may be apparent to those skilled in the art.

PREPARATIVE EXAMPLE 1

Using the compound of Preparative Example 3, Step C, and following essentially the same procedure as described in Example 358, Step A, of WO 95/10516, the compound:

![Chemical structure](image)

was prepared. Mass Spec.: MH⁺ = 407
PREPARATIVE EXAMPLE 2

Step A:

Combine 82.0 g (0.26 mole) of the product of Preparative Example 1, Step G, of WO 95/10516, and 1 L of toluene, then add 20.06 g (0.53 mole) of LiAlH₄ and heat the reaction mixture at reflux overnight. Cool the mixture to room temperature and add ~1 L of Et₂O, followed by dropwise addition of saturated Na₂SO₄ (aqueous) until a precipitate forms. Filter and stir the filtrate over MgSO₄ for 30 minutes, then concentrate in vacuo to give the product compound in 83% yield. Mass Spec.: MH⁺ = 313

Step B:

Combine 74 g (0.24 mol) of the Product from Step A and 95 g (6.84 equiv.) of HCO₂H, then add 129 g of 7% formaldehyde and heat the mixture to ~80°C for 2 hours. Cool the mixture to room temperature and basify with 25% NaOH (aqueous). Extract with EtOAc (3 X 1.3 L), dry the extracts over Na₂SO₄ and concentrate to a residue. Recrystallize the
residue from iPr$_2$O and Et$_2$O to give the product compound. Mass Spec.: MH$^+$ = 326.

Step C:

combine 28 g of the product of step B and 800 mL of THF and cool to -65°C. Add a solution of 41.2 mL (1.2 equiv.) of 2.5 M n-BuLi in hexanes, stir for 1 hour at -65°C, then warm to -30°C and stirred at that temperature for 1 hour. Cool to -65°C and add 10.5 mL of CH$_3$I, then warm to -10°C and quench with 1.5 mL of Et$_2$O followed by 10 mL of NH$_4$OH (aqueous). Dry the organic phase over K$_2$CO$_3$ and concentrate in vacuo to a residue. Dissolve the residue in CH$_2$Cl$_2$, wash with H$_2$O, dry over Na$_2$SO$_4$ and concentrate in vacuo to give a residue. Chromatograph (silica gel, 5% MeOH/EtOAc + NH$_4$OH) to give 26 g of the product compound.

Step D:

Combine 26 g of the product of step C, toluene, and 33 mL (3 equiv.) of Et$_3$N, then heat to 70°C. Slowly add 45 mL (6 equiv.) of ClCO$_2$Et over a period of 45 min. Stir for 15 min, then pour the mixture into ice and add 100 mL of 1 N NaOH (aqueous). Extract with EtOAc, dry the extract and concentrate in vacuo to give 37 g of the product compound.
Step E:

Hydrolyze 3.5 g (8.8 mmol) of the Product of Step D, by substantially the same procedure as described for Example 358, Step A, to give 2.26 g (79% yield) of the product compound.

Mass Spec.: MH⁺ = 327

PREPARATIVE EXAMPLE 3

Step A:

Dissolve 8.66 g (28.6 mmol) of tetra-n-butylammonium nitrate in 50 mL of CH₂Cl₂ and add 5.99 g (28.57 mmol, 2.1 mL) of TFAA. Cool to 0°C and add the mixture (via cannula) to a solution of 10.36 g (14.9 mmol) of the product of Preparative Example 2, Step D in 150 mL of CH₂Cl₂ at 0°C, then stir at 0°C for 3 hours. Allow the mixture to warm to 25°C while stirring overnight, then extract with 150 mL of saturated NaHCO₃ (aqueous) and dry over MgSO₄. Concentrate in vacuo to a residue and chromatograph the residue (silica gel, 10% EtOAc/hexane, then 20% EtOAc/hexane) to give a 57% yield of the product compound.

Mass Spec.: MH⁺ = 442.
Step B:

Combine 5.9 g (13.29 mmol) of the Product of Step A and 400 mL of 85% EtOH (aqueous), add 6.6 g (119 mmol) of Fe filings and 0.66 g (5.98 mmol) of CaCl₂, and heat at reflux for 16 hours. Filter the hot mixture through a bed of celite®, wash the celite® with 700 mL of hot EtOH. Concentrate the filtrate in vacuo to give a 100% yield of the product compound. Mass Spec.: MH⁺ = 414.

Step C:

Combine 6.5 g (15.7 mmol) of the Product of Step B and 63 mL of 48% HBr, cool the mixture to -5°C and slowly (dropwise) add 4.4 mL of Br₂ bromine (4.4 mL). Stir the mixture at -5°C for 15 minutes and slowly add a solution of 3.25 g (47.1 mmol) of NaN₂ in 30 mL of water. Stir for 45 minutes, then quench with 50% NaOH (aqueous) to pH ~10. Extract with EtOAc (3 x 200 mL), dry the combined extracts over Na₂SO₄ and concentrate in vacuo to give 6.32 g (81% yield) of the product compound. Mass Spec.: MH⁺ = 479.
PREPARATIVE EXAMPLE 4

Step A:

Dissolve 9.8 g (30.2 mmol) of the Product of Preparative Example 1, Step E, of WO 95/10516, in THF under nitrogen, cool the mixture to -15°C, then add 17.76 mL (30.3 mmol) of 2.5 M n-butyllithium in hexanes and stir for 1.5 hours. Cool the reaction mixture to -70°C and add 2.45 mL (60 mmol) of MeOH and warm to room temperature overnight. Add 300 mL of (Et₂O) and extract with water (3 x 100 mL). Dry the extracts, concentrate in vacuo to a residue and chromatograph the residue (silica gel, 5% Et₃N/EtOAc) to give 6.59 g (68% yield) of the product compound.

Step B:

Treat 3 g (9.23 mmol) of the Product of Step A with 10 mL of CICO₂Et and 10 mL of Et₃N via substantially the same procedure as described in Preparative Example 2, Step D, to give 2.2 g (64% yield) of the product compound. Mass Spec.: MH⁺ = 383
Step C:

Treat the Product of Step B via substantially the same procedure as described in Preparative Example 1, Step F, of WO 95/10516, to give the product compound. Mass Spec.: MH\(^+\) = 310

PREPARATIVE EXAMPLE 4A

Step A:

Using the Product of Preparative Example 1, Step E, of WO 95/10516, and following substantially the same procedure as described in Preparative Example 4, Step A, except that methyl iodide is used in place of MeOH, the compound:

was prepared. Mass Spec.: MH\(^+\) = 339

Step B:

Using the compound of Preparative Example 4A, Step A, and following substantially the same procedure as described in Preparative Example 4, Step B, the compound:
was prepared. Mass Spec.: MH\(^+\) = 397

Step C:

5 Using the compound of Preparative Example 4A, Step B, and following substantially the same procedure as described in Preparative Example 4, Step C, the compound:

was prepared. Mass Spec.: MH\(^+\) = 325

EXAMPLE 1

Using 4-pyridyl acetic acid N-oxide and the compound of Preparative Example 2, the compound:

was prepared via substantially the same procedure as described in Example 227 of WO 95/10516 Mass Spec: MH\(^+\) = 462.
The product of Preparative Example 2 was reacted with 4-pyridylacetic acid via substantially the same procedure as described for Example 180, of WO 95/10516, to give the product compound. Mass Spec.: MH⁺ = 446

Using the appropriate carboxylic acid and the starting compound indicated, the compounds in Table 1 were prepared via substantially the same procedure as described for Example 2:

TABLE 1

<table>
<thead>
<tr>
<th>Starting Compound</th>
<th>Product Compound</th>
<th>Analytical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparative Example 1</td>
<td></td>
<td>Mass Spec.: MH⁺ = 526</td>
</tr>
<tr>
<td>Example 2-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparative Example 1</td>
<td></td>
<td>Mass Spec.: MH⁺ = 542</td>
</tr>
<tr>
<td>Example 2-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting Compound</td>
<td>Product Compound</td>
<td>Analytical Data</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Preparative Example 1</td>
<td>![Compound Image]</td>
<td>Mass Spec.: MH<sup>+</sup> = 542</td>
</tr>
<tr>
<td>Preparative Example 4</td>
<td>![Compound Image]</td>
<td>m.p. = 67°-69°C</td>
</tr>
<tr>
<td>Preparative Example 4A</td>
<td>![Compound Image]</td>
<td>m.p. = 77°-78°C</td>
</tr>
<tr>
<td>Preparative Example 4A</td>
<td>![Compound Image]</td>
<td>m.p. = 78°-79°C</td>
</tr>
</tbody>
</table>
TABLE 1 - CONTINUED

<table>
<thead>
<tr>
<th>Starting Compound</th>
<th>Product Compound</th>
<th>Analytical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparative Example 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m.p. = 108.8°-109.7°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Spec.: MH⁺ = 465.4</td>
</tr>
<tr>
<td></td>
<td>Example 2-K</td>
<td></td>
</tr>
<tr>
<td>Preparative Example 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m.p. = 164.8°-165.2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Spec.: MH⁺ = 546</td>
</tr>
<tr>
<td></td>
<td>Example 2-N</td>
<td></td>
</tr>
<tr>
<td>Preparative Example 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m.p. = 124.2°-125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Spec.: MH⁺ = 546</td>
</tr>
<tr>
<td></td>
<td>Example 2-P</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 3

Step A:

The compound of Preparative Example 1 (0.96g) was dissolved in 20 mL of DMF by stirring at room temperature. The reaction mixture was then cooled to about 0°C, and then 4-methylmorpholine (5.0 eq), DEC (2.0 eq), HOBT (2.0 eq) and HOCH₂COOH (1.5 eq) were added to the reaction mixture. The reaction mixture was kept at room temperature overnight.

The DMF was removed from the mixture and the resulting mixture was
dried in vacuo. The crude mixture was then extracted with CH₂Cl₂ - H₂O, saturated NaHCO₃, 10% NaHCO₃, and brine. The organic layer was dried over MgSO₄, filtered and concentrated. The resulting material was purified using flash column chromatography (~ 125 mL of normal phase silica gel, 2%MeOH/NH₃-CH₂Cl₂) to give

\[
\text{Br} \quad \begin{array}{c}
\text{N} \\
\text{CH₃}
\end{array} \\
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{S}
\]

(m.p. = 108.8 - 109.7°C). Mass Spec.: MH⁺ = 465

Step B:

The Product of Step A (~ 1.0g, 2.2mmol) was dissolved in 7.0 mL of SOCl₂ and stirred at room temperature overnight. The excess SOCl₂ was removed, and ~ 50 mL of CH₂Cl₂ was added and the resulting solution was concentrated to dryness (3X). Mass Spec.: MH⁺ = 483

Step C:

The chloride Product of Step B (~ 0.40g) was dissolved in 28.4 mL of CH₂Cl₂ under nitrogen. Thiomorpholine (0.5 mL) was added at room temperature. When tlc indicated the reaction was complete, ~ 250 mL of CH₂Cl₂ was added to the reaction mixture, and the resulting mixture was extracted with water (~ 200 mL) and brine. The organic layer was dried over MgSO₄ and then the solvent was removed in vacuo. The resulting material was purified by flash column chromatography (~ 100 mL normal phase silica gel, 2%MeOH/NH₃-CH₂Cl₂) to give

\[
\text{Br} \quad \begin{array}{c}
\text{N} \\
\text{CH₃}
\end{array} \\
\text{Cl} \\
\text{O} \\
\text{N}
\]

Mass Spec.: MH⁺ = 550, m.p. = 102.5°-102.9°C
ASSAYS

FPT IC₅₀ (inhibition of farnesyl protein transferase in vitro enzyme assay), GGPT IC₅₀ (inhibition of geranylgeranyl protein transferase in vitro enzyme assay), COS Cell IC₅₀ (Cell-Based Assay) and Cell Mat Assay are determined by the assay procedures described in WO 95/10516.

TABLE 2
FPT INHIBITION

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>FPT IC₅₀ (µM)</th>
<th>EXAMPLE</th>
<th>FPT IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01-10</td>
<td>2-C</td>
<td>0.01-10</td>
</tr>
<tr>
<td>2</td>
<td>0.01-10</td>
<td>2-D</td>
<td>0.01-10</td>
</tr>
<tr>
<td>2-A</td>
<td>0.01-10</td>
<td>2-E</td>
<td>31% @ 4.5 µM</td>
</tr>
<tr>
<td>2-B</td>
<td>0.01-10</td>
<td>2-F</td>
<td>0.01-10</td>
</tr>
</tbody>
</table>

TABLE 3
COMPARISON OF FPT INHIBITION AND GGPT INHIBITION

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>ENZYME INHIBITION</th>
<th>ENZYME INHIBITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FPT IC₅₀ µM</td>
<td>GGPT IC₅₀ µM</td>
</tr>
<tr>
<td>2-A</td>
<td>0.01-10</td>
<td>47% @ 35 µM</td>
</tr>
<tr>
<td>2-B</td>
<td>0.01-10</td>
<td>21% @ 35 µM</td>
</tr>
</tbody>
</table>

TABLE 4
ACTIVITY IN COS CELL

<table>
<thead>
<tr>
<th>Example</th>
<th>Inhibition of Ras Processing IC₅₀ (µM)</th>
<th>Example</th>
<th>Inhibition of Ras Processing IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-A</td>
<td>0.01-10</td>
<td>2-N</td>
<td>0.01-10</td>
</tr>
<tr>
<td>2-B</td>
<td>0.01-10</td>
<td>2-P</td>
<td>0.01-10</td>
</tr>
<tr>
<td>2-D</td>
<td>10-100</td>
<td>3</td>
<td>0.01-10</td>
</tr>
</tbody>
</table>
- 36 -

TABLE 5

<table>
<thead>
<tr>
<th>Example</th>
<th>Tumor (IC_{50}) (µM)</th>
<th>Normal (IC_{50}) (µM)</th>
<th>Example</th>
<th>Tumor (IC_{50}) (µM)</th>
<th>Normal (IC_{50}) (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-A</td>
<td>1.6</td>
<td>18</td>
<td>2-N</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2-B</td>
<td>10</td>
<td>>25</td>
<td>2-P</td>
<td>6.25</td>
<td>6.25</td>
</tr>
<tr>
<td>2-D</td>
<td>10</td>
<td>>50</td>
<td>3</td>
<td>>25</td>
<td>>25</td>
</tr>
</tbody>
</table>

5 **RESULTS:**

1. **Enzymology:**

The data demonstrate that the compounds of the invention are inhibitors of Ras-CVLS farnesylation by partially purified rat brain farnesyl protein transferase (FPT). The data also show that there are compounds of the invention which can be considered as potent (\(IC_{50} < 10\) µM) inhibitors of Ras-CVLS farnesylation by partially purified rat brain FPT.

The data also demonstrate that compounds of the invention are poorer inhibitors of geranylgeranyl protein transferase (GGPT) assayed using Ras-CVLL as isoprenoid acceptor. This selectivity is important for the therapeutic potential of the compounds used in the methods of this invention, and increases the potential that the compounds will have selective growth inhibitory properties against Ras-transformed cells.

2. **Cell-Based: COS Cell Assay**

Western blot analysis of the Ras protein expressed in Ras-transfected COS cells following treatment with compounds of the invention indicated that the compounds inhibit Ras-CVLS processing, causing accumulation of unprocessed Ras. Microscopic and photographic examination of the Ras-transfected COS cells following treatment with the compounds indicated that the compounds also blocked phenotypic changes induced by expression of oncogenic Ras. Cells expressing oncogenic Ras-CVLS or Ras-CVLL overgrew the monolayer and formed dense foci of cells.

These results provide evidence for specific inhibition of farnesyl protein transferase, but not geranylgeranyl transferase I, by compounds of this invention in intact cells and indicate their potential to block cellular transformation by activated Ras oncogenes.
3. **Cell-Based: Cell Mat Assay**

Compounds of the invention also inhibited the growth of Ras-transformed tumor cells in the Mat assay without displaying cytotoxic activity against the normal monolayer.

For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 70 percent active ingredient. Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar, lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration.

For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection.

Liquid form preparations may also include solutions for intranasal administration.

Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.

The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

Preferably the compound is administered orally.
Preferably, the pharmaceutical preparation is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.

The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 0.1 mg to 1000 mg, more preferably from about 1 mg to 300 mg, according to the particular application.

The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated.

Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.

The amount and frequency of administration of the compounds of the invention and the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended dosage regimen is oral administration of from 10 mg to 2000 mg/day preferably 10 to 1000 mg/day, in two to four divided doses to block tumor growth. The compounds are non-toxic when administered within this dosage range.

The following are examples of pharmaceutical dosage forms which contain a compound of the invention. The scope of the invention in its pharmaceutical composition aspect is not to be limited by the examples provided.
Pharmaceutical Dosage Form Examples

EXAMPLE A

Tablets

<table>
<thead>
<tr>
<th>No.</th>
<th>Ingredients</th>
<th>mg/tablet</th>
<th>mg/tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Active compound</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>2.</td>
<td>Lactose USP</td>
<td>122</td>
<td>113</td>
</tr>
<tr>
<td>3.</td>
<td>Corn Starch, Food Grade, as a 10% paste in Purified Water</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>4.</td>
<td>Corn Starch, Food Grade</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>5.</td>
<td>Magnesium Stearate</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>300</td>
<td>700</td>
</tr>
</tbody>
</table>

Method of Manufacture

Mix Item Nos. 1 and 2 in a suitable mixer for 10–15 minutes. Granulate the mixture with Item No. 3. Mill the damp granules through a coarse screen (e.g., 1/4”, 0.63 cm) if necessary. Dry the damp granules. Screen the dried granules if necessary and mix with Item No. 4 and mix for 10–15 minutes. Add Item No. 5 and mix for 1–3 minutes. Compress the mixture to appropriate size and weigh on a suitable tablet machine.

EXAMPLE B

Capsules

<table>
<thead>
<tr>
<th>No.</th>
<th>Ingredient</th>
<th>mg/capsule</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Active compound</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>2.</td>
<td>Lactose USP</td>
<td>106</td>
<td>123</td>
</tr>
<tr>
<td>3.</td>
<td>Corn Starch, Food Grade</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>4.</td>
<td>Magnesium Stearate NF</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>253</td>
<td>700</td>
</tr>
</tbody>
</table>

Method of Manufacture

Mix Item Nos. 1, 2 and 3 in a suitable blender for 10-15 minutes. Add Item No. 4 and mix for 1-3 minutes. Fill the mixture into suitable two-piece hard gelatin capsules on a suitable encapsulating machine.

While the present invention has been described in conjunction with the specific embodiments set forth above, many alternatives, modifications and variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, modifications and variations are intended to fall within the spirit and scope of the present invention.
WHAT IS CLAIMED IS:

1. A compound of the formula (7.0a), (7.0b) or (7.0c):

![Chemical structures](image)

or a pharmaceutically acceptable salt or solvate thereof, wherein:

- each R⁰ and each R² is independently selected from H, halo, -CF₃,
-OR¹⁰, -COR¹⁰, -SR¹⁰, -S(O)R¹¹ (wherein t is 0, 1 or 2), -SCN, -N(R¹⁰)₂,
-NO₂, -OC(O)R¹⁰, -CO₂R¹⁰, -OCO₂R¹¹, -CN, -NHC(O)R¹⁰, -NHSO₂R¹⁰,
-CONHR¹⁰, -CONHCH₂CH₂OH, -NR¹⁰COOR¹¹, -SR¹¹C(O)OR¹¹,
-SR¹¹N(R⁷⁵)₂ (wherein each R⁷⁵ is independently selected from H and
-C(O)OR¹¹), benzotriazol-1-ylxoy, tetrazol-5-ylthio, or substituted tetrazol-
5-ylthio, alkynyl, alkenyl or alkyl, said alkyl or alkenyl group optionally
being substituted with halo, -OR¹⁰ or -CO₂R¹⁰;

R³ and R⁴ are the same or different and each independently
represents H, any of the substituents of R¹ and R², or R³ and R⁴ taken
together represent a saturated or unsaturated C₅-C₇ fused ring to the
benzene ring;
R⁵, R⁶, R⁷ and R⁸ each independently represents H, -CF₃, -COR¹⁰, alkyl or aryl, said alkyl or aryl optionally being substituted with -OR¹⁰, -SR¹⁰, -S(O)₂R¹¹, -NR¹⁰COOR¹¹, -N(R¹⁰)₂, -NO₂, -COR¹⁰, -OCOR¹⁰, -OCO₂R¹¹, -CO₂R¹⁰, OPO₃R¹⁰ or one of R⁵, R⁶, R⁷ and R⁸ can be taken in combination with R⁴⁰ as defined below to represent -(CH₂)ₚ wherein p is 1 to 4 which can be substituted with lower alkyl, lower alkoxy, -CF₃ or aryl, or R⁵ is combined with R⁶ to represent =O or =S and/or R⁷ is combined with R⁸ to represent =O or =S;

R¹⁰ represents H, alkyl, aryl, or alaralkyl;

R¹¹ represents alkyl or aryl;

R represents R⁴⁰, R⁴², R⁴⁴, or R⁵⁴, as defined below;

R⁴⁰ represents H, aryl, alkyl, cycloalkyl, alkenyl, alkynyl or -D

wherein -D represents

\[
\begin{array}{c}
\text{N} \quad \text{R}^3, \\
\text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{W} \quad \text{R}^3, \\
\text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} \quad \text{W} \quad \text{R}^3, \\
\text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} \quad \text{R}^3, \\
\text{R}^4 \\
\end{array}
\]

or

\[
\begin{array}{c}
\text{N} \quad \text{R}^3, \\
\text{R}^4 \\
\end{array}
\]

wherein R³ and R⁴ are as previously defined and W is O, S or NR¹⁰ wherein R¹⁰ is as defined above; said R⁴⁰ cycloalkyl, alkenyl and alkynyl groups being optionally substituted with from 1-3 groups selected from halo, -CON(R¹⁰)₂, aryl, -CO₂R¹⁰, -OR¹², -SR¹², -N(R¹⁰)₂, -N(R¹⁰)CO₂R¹¹, -COR¹², -NO₂ or D, wherein -D, R¹⁰ and R¹¹ are as defined above and R¹² represents R¹⁰, -(CH₂)ₚOR¹⁰ or -(CH₂)ₚCO₂R¹⁰ wherein R¹⁰ is as previously defined, m is 1 to 4 and q is 0 to 4; said alkenyl and alkynyl R⁴⁰ groups not containing -OH, -SH or -N(R¹⁰)₂ on a carbon containing a double or triple bond respectively; or

R⁴⁰ represents phenyl substituted with a group selected from

- SO₂NH₂, -NHSO₂CH₃, -SO₂NHCH₃, -SO₂CH₃, -SOCH₃, -SCH₃, or
- NHSO₂CF₃, preferably, said group is located in the para position of the phenyl ring; or

R⁴⁰ represents a group selected from
wherein R^{20}, R^{21} and R^{46} are each independently selected from the group consisting of:

1. H;
2. -(CH$_2$)$_q$SC(O)CH$_3$ wherein q is 1 to 3;
3. -(CH$_2$)$_q$OSO$_2$CH$_3$ wherein q is 1 to 3;
4. -OH;
5. -CS(CH$_2$)$_w$(substituted phenyl) wherein w is 1 to 3 and the substituents on said substituted phenyl group are the same substituents as described below for said substituted phenyl;
6. -NH$_2$;
7. -NHCBZ;
8. -NHC(O)OR22 wherein R^{22} is an alkyl group having from 1 to 5 carbon atoms, or R^{22} represents phenyl substituted with 1 to 3 alkyl groups;
9. alkyl;
(10) \(-\text{CH}_2\)k-phenyl wherein k is 1 to 6;
(11) phenyl;
(12) substituted phenyl wherein the substituents are selected from the group consisting of: halo, NO₂, -OH, -OCH₃, -NH₂, -NHR², -N(R²), alkyl, -O(CH₂)ₜ-phenyl (wherein t is from 1 to 3), and -O(CH₂)ₜ-substituted phenyl (wherein t is from 1 to 3);
(13) naphthyl;
(14) substituted naphthyl, wherein the substituents are as defined for substituted phenyl above;
(15) bridged polycyclic hydrocarbons having from 5 to 10 carbon atoms;
(16) cycloalkyl having from 5 to 7 carbon atoms;
(17) heteroaryl;
(18) hydroxyalkyl;
(19) substituted pyridyl or substituted pyridyl N-oxide wherein the substituents are selected from methylpyridyl, morpholinyl, imidazolyl, 1-piperidiny, 1-(4-methylpiperazinyl), -S(O)ₗR¹, or any of the substituents given above for said substituted phenyl, and said substituents are bound to a ring carbon by replacement of the hydrogen bound to said carbon;
(20)
(21)
(22)
(23) -NHC(O)-(CH₂)k-phenyl or -NH(O)-(CH₂)k-substituted phenyl, wherein said k is as defined above;
(24) piperidine Ring V:
(25) -NHC(O)CH₂C₆H₅ or -NHC(O)CH₂-substituted-C₆H₅;
(26) -NHC(O)OC₆H₅;
(27) -NHC(O)OC₆H₅;
(28)
(29)
(30) -OC(O)-heteroaryl, for example

(31) -O-alkyl (e.g., -OCH₃); and
(32) -CF₃;
(33) -CN;
(34) a heterocycloalkyl group of the formula

(35) a piperidinyl group of the formula

wherein R₈⁵ is H, alkyl, or alkyl substituted by -OH or -SCH₃; or
R₂⁰ and R₂¹ taken together form a =O group and the remaining
R₄⁶ is as defined above; or

two of R₂⁰, R₂¹ and R₄⁶ taken together form piperidine Ring V

wherein R₅⁰ is as defined above;

with the proviso that R₄⁶, R₂⁰ and R₂¹ are selected such that the
carbon atom to which they are bound does not contain more than one
heteroatom;

R₄⁴ represents

wherein R₂⁵ represents heteroaryl or aryl; and R₄⁸ represents H or alkyl;
\[R^{54} \text{ represents an N-oxide heterocyclic group of the formula (i), (ii), (iii) or (iv):} \]

\[\text{(i)} \]
\[\text{(ii)} \]
\[\text{(iii)} \]
\[\text{(iv)} \]

\[\text{wherein } R^{56}, R^{58}, \text{ and } R^{60} \text{ are the same or different and each is independently selected from } H, \text{ halo, } -CF_3, -OR^{10}, -C(O)R^{10}, -SR^{10}, -S(O)_{e}R^{11} \text{ (wherein } e \text{ is 1 or 2), } -N(R^{10})_2, -NO_2, -CO_2R^{10}, -OCO_2R^{11}, -OCOR^{10}, \text{ alkyl, aryl, alkenyl or alkynyl, which alkyl may be substituted with } -OR^{10}, -SR^{10} \text{ or } -N(R^{10})_2 \text{ and which alkenyl may be substituted with } OR^{11} \text{ or } SR^{11}; \text{ or} \]

\[R^{54} \text{ represents an N-oxide heterocyclic group of the formula (ia), (iia), (iiia) or (iva):} \]

\[\text{(ia)} \]
\[\text{(iia)} \]
\[\text{(iiia)} \]
\[\text{(iva)} \]

\[\text{wherein } Y \text{ represents } N^+ - O^-, \text{ and } E \text{ represents } N; \text{ or} \]

\[R^{54} \text{ represents an alkyl group substituted with one of said N-oxide heterocyclic groups (i), (ii), (iii), (iv), (iia), (iia), (iiia) or (iva).} \]

2. \[\text{A compound of Claim 1 wherein } R^5, R^6, R^7 \text{ and } R^8 \text{ are all } H, \text{ and } R \text{ is a group of the formula} \]

\[\text{wherein } R^{20}, R^{21}, R^{25}, R^{46} \text{ and } R^{48} \text{ are as defined in claim 1.} \]

3. \[\text{A compound of Claim 2 wherein: } R^1 \text{ and } R^2 \text{ are independently } H, \text{ alkyl, alkenyl, halo, } -NHC(O)R^{10} \text{ or } -NHSO_2R^{10}; \text{ R}^3 \text{ and } R^4 \text{ are independently } H \text{ or halo; and } R \text{ is a group of the formula} \]
wherein \(R^{20} \) and \(R^{21} \) are both \(H \), and \(R^{46} \) is 3-pyridyl, 4-pyridyl, 3-pyridyl N-oxide, 4-pyridyl N-oxide, 4-N-methylpiperidinyl, 3-N-methylpiperidinyl, 1-N-methylpiperazinyl, triazolyl or a heterocycloalkyl of the formula

4. A compound of Claim 1 selected from:
5. A method for inhibiting the abnormal growth of cells comprising administering an effective amount of a compound of Claim 1.

6. The method of Claim 5 wherein the cells inhibited are tumor cells expressing an activated ras oncogene.

7. The method of Claim 5 wherein the cells inhibited are pancreatic tumor cells, lung cancer cells, myeloid leukemia tumor cells, thyroid follicular tumor cells, myelodysplastic tumor cells, epidermal carcinoma tumor cells, bladder carcinoma tumor cells or colon tumors.
8. The method of Claim 5 wherein the inhibition of the abnormal growth of cells occurs by the inhibition of farnesyl protein transferase.

9. The method of Claim 5 wherein the inhibition is of tumor cells wherein the Ras protein is activated as a result of oncogenic mutation in genes other than the Ras gene.

10. A pharmaceutical composition for inhibiting the abnormal growth of cells comprising an effective amount of compound of Claim 1 in combination with a pharmaceutically acceptable carrier.

11. The use of a compound of Claim 1 for the manufacture of a medicament for use in inhibiting the abnormal growth of cells.

12. The use of a compound of Claim 1 for inhibiting the abnormal growth of cells.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07D401/04 A61K31/445 C07D401/14

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO, A, 92 11034 (WELLCOME FOUND) 9 July 1992 cited in the application see claims</td>
<td>1-3, 5-12</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 282 233 (VILANI FRANK J) 4 August 1981 see the whole document</td>
<td>1-5-12</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 0 270 818 (SCHERING CORP) 15 June 1988 see claims</td>
<td>1-3, 5-12</td>
</tr>
<tr>
<td>P, X</td>
<td>WO, A, 95 15949 (SCHERING CORP) 15 June 1995 see claims</td>
<td>1-12</td>
</tr>
<tr>
<td>P, X</td>
<td>WO, A, 95 10516 (SCHERING CORP) 20 April 1995 see claims</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

5 July 1996

Date of mailing of the international search report

18.07.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016

Authorized officer

Henry, J
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
 Although claims 5–9 are directed to a method of treatment of the human body the search has been carried out and based on the alleged effects of the compounds.

2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
☐ The additional search fees were accompanied by the applicant’s protest.
☐ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO-A-9211034</td>
<td>09-07-92</td>
<td>AU-B- 665341</td>
<td>04-01-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 9062691</td>
<td>22-07-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2098198</td>
<td>18-06-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0563134</td>
<td>06-10-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 6504772</td>
<td>02-06-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5416091</td>
<td>16-05-95</td>
</tr>
<tr>
<td>US-A-4282233</td>
<td>04-08-81</td>
<td>AT-T- 9695</td>
<td>15-10-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 543054</td>
<td>28-03-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 7186281</td>
<td>24-12-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1160230</td>
<td>10-01-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK-B- 169817</td>
<td>06-03-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A,B 0042544</td>
<td>30-12-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1506964</td>
<td>13-07-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 57035586</td>
<td>26-02-82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 63055513</td>
<td>02-11-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU-A- 88359</td>
<td>04-05-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4560688</td>
<td>24-12-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-T- 116310</td>
<td>15-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 7285991</td>
<td>30-05-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 604285</td>
<td>13-12-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 8336287</td>
<td>25-05-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1305147</td>
<td>14-07-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1321589</td>
<td>24-08-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-D- 3750929</td>
<td>09-02-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-T- 3750929</td>
<td>01-06-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0685476</td>
<td>06-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES-T- 2068179</td>
<td>16-04-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI-B- 96768</td>
<td>15-05-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 6078316</td>
<td>05-10-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 2500910</td>
<td>29-03-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA-A- 9546</td>
<td>31-01-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 8803138</td>
<td>05-05-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5438062</td>
<td>01-08-95</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>WO-A-9510516</td>
<td>20-04-95</td>
<td>AU-B-7970394</td>
<td>04-05-95</td>
</tr>
</tbody>
</table>