PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00738070
GOGF 12/08 Al o
(43) International Publication Date: 29 June 2000 (29.06.00)
(21) International Application Number: PCT/US99/19856 | (81) Designated States: JP, KR, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 26 August 1999 (26.08.99) SE).
(30) Priority Data: Published
09/217,699 21 December 1998 (21.12.98) US With international search report.
09/217,212 21 December 1998 (21.12.98) UsS
09/217,649 21 December 1998 (21.12.98) Us
09/370,970 10 August 1999 (10.08.99) Us

(71) Applicant: ADVANCED MICRO DEVICES, INC. [US/US];
One AMD Place, Mail Stop 68, Sunnyvale, CA 94088-3453
(US).

(72) Inventor: KELLER, James, B.; 210 Iris Way, Palo Alto, CA
94303 (US).

(74) Agent: RILEY, Louis, A.; Advanced Micro Devices, Inc., 5204
East Ben White Boulevard, M/S 562, Austin, TX 78741
(US).

(54) Title: CONSERVATION OF SYSTEM MEMORY BANDWIDTH AND CACHE COHERENCY MAINTENANCE USING
MEMORY CANCEL MESSAGES

(57) Abstract

A messaging scheme that conserves system mem- 70

ory bandwidth and maintains cache coherency during a :
victim block write operation in a multiprocessing com-
puter system (10) is described. A target node (72) receives
a memory cancel response corresponding to a transaction,
and aborts processing of the transaction in response to the
memory cancel response. In one embodiment, the trans-
action is a victim block write and the memory cancel
response is received from a source node (70). In another
embodiment, the transaction is a read operation and the
memory cancel response is received from a different node
(76) having a modified copy of the data addressed by the
read operation.

-

Target Done

Read Response
Read Command

MEMORY
421

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

40

WO 00/38070 PCT/US99/19856

ENTITLED: CONSERVATION OF SYSTEM MEMORY BANDWIDTH AND CACHE COHERENCY
MAINTAINENCE USING MEMORY CANCEL MESSAGES

BACKGROUND OF THE INVENTION

L. Technical Field
The present invention broadly relates to computer systems, and more particularly, to

a messaging scheme to accomplish cache-coherent data transfers in a multiprocessing computing environment,

2. Background Art
Generally, personal computers (PCs) and other types of computer systems have been designed around

a shared bus system for accessing memory. One or more processors and one or more input/output (I/O) devices
are coupled to memory through the shared bus. The I/O devices may be coupled to the shared bus through an
I/0 bridge, which manages the transfer of information between the shared bus and the /O devices. The
processors are typically coupled directly to the shared bus or through a cache hierarchy.

Unfortunately, shared bus systems suffer from several drawbacks. For example, since there are
multiple devices attached to the shared bus, the bus is typically operated at a relatively low frequency. Further,
system memory read and write cycles through the shared system bus take substantially longer than information
transfers involving a cache within a processor or involving two or more processors. Another disadvantage of the
shared bus system is a lack of scalability to larger number of devices. As mentioned above, the amount of
bandwidth is fixed (and may decrease if adding additional devices reduces the operable frequency of the bus).
Once the bandwidth requirements of the devices attached to the bus (either directly or indirectly) exceeds the
available bandwidth of the bus, devices will frequently be stalled when attempting to access the bus. Overall
performance may be decreased unless a mechanism is provided to conserve the limited system memory
bandwidth.

A read or a write operation addressed to a non-cache system memory takes more processor clock
cycles than similar operations between two processors or between a processor and its internal cache. The
limitations on bus bandwidth, coupled with the lengthy access time to read or write to a system memory,
negatively affect the computer system performance.

One or more of the above problems may be addressed using a distributed memory system. A computer
system employing a distributed memory system includes multiple nodes. Two or more of the nodes are
connected to memory, and the nodes are interconnected using any suitable interconnect. For example, each
node may be connected to each other node using dedicated lines. Alternatively, each node may connect to a
fixed number of other nodes, and transactions may be routed from a first node to a second node to which the
first node is not directly connected via one or more intermediate nodes. The memory address space is assigned
across the memories in each node.

| Nodes may additionally include one or more processors. The processors typically include caches that
store cache blocks of data read from the memories. Furthermore, a node may include one or more caches

external to the processors. Since the processors and/or nodes may be storing cache blocks accessed by other

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856

nodes, a mechanism for maintaining coherency within the nodes is desired.

DISCLOSURE OF INVENTION

The problems outlined above are in large part solved by a computer system as described herein. The
computer system may include multiple processing nodes, two or more of which may be coupled to separate
memories which may form a distributed memory system. The processing nodes may include caches, and the
computer system may maintain coherency between the caches and the distributed memory system.

In one embodiment, a multiprocessing computer system includes processing nodes interconnected
through a plurality of dual unidirectional links. Each pair of unidirectional links forms a coherent link structure
that connects two of the processing nodes. One unidirectional link in the pair of links sends signals from a first
processing node to a second processing node connected through that pair of unidirectional links. The other
unidirectional link in the pair carries a reverse flow of signals, i.e. it sends signals from the second processing
node to the first processing node. Thus, each unidirectional link forms as a point-to-point interconnect that is
designed for packetized information transfer. Communication between two processing nodes may be routed
through more than one remaining nodes in the system.

Each processing node may be coupled to a respective system memory through a memory bus. The
memory bus may be bi-directional. Each processing node comprises at least one processor core and may
optionally include a memory controller for communicating with the respective system memory. Other interface
logic may be included in one or more processing nodes to allow connectivity with various I/O devices through
one or more I/O bridges.

In one embodiment, one or more I/O bridges may be coupled to their respective processing nodes
through a set of non-coherent dual unidirectional links. These /O bridges communicate with their host
processors through this set of non-coherent dual unidirectional links in much the same way as two directly-
linked processors communicate with each other through a coherent dual unidirectional link.

At some point during program execution, the processing node with a dirty copy of the memory data in
its cache may discard the cache block containing that modified data. In one embodiment, that processing node
(also called, the source node) transmits a victim block command along with the dirty cached data to the second
processing node, i.e. the node that is coupled to the portion of the system memory that has a corresponding
memory location for the cached data. The second processing node (also called, the target node) responds with a
target done message that is sent to the transmitting processing node, and initiates a memory write cycle to
transfer the received data to its associated non-cache memory to update content of the corresponding memory
location. If the transmitting processing node encounters an invalidating probe between the time it sent the victim
block command and the time it received the target done response, the transmitting node sends a memory cancel
response to the target node — the second processing node — to abort further processing of the memory write
cycle. This may advantageously conserve the system memory bandwidth and avoid time-consuming memory
write operation when the data to be written in the non-cache memory is stale.

The memory cancel response may maintain cache coherency during a victim block write operation,
especially in a situation when the victim block arrives at the target node (i.e., the second processing node) after

a read command from a third processing node (other than the source node that sent the victim block) to read the

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
content of the memory location that is the destination for the victim block. The read command may manifest the
third processing node’s intent to modify the data read from that memory location. The target node, therefore,
may responsively transmit an invalidating probe to each processing node in the system, including the source
node. As the later-arriving victim block may not contain the most current data and may not need to be
committed to the corresponding memory location in the target node memory, the source node sends the memory
cancel response to the target node when the source node receives the target done response. Further, as the target
done response is received after the intervening invalidating probe, the memory cancel response from the source
node thus helps maintain cache coherency among the processing nodes.

In one embodiment, when a first processing node sends a read command to a second processing node
to read data from a designated memory location associated with the second processing node, the second
processing node responsively transmits a probe command to all the remaining processing nodes in the system.
Each processing node that has a cached copy of the designated memory location updates its cache tag associated
with that cached data to reflect the current status of the data. Each processing node that receives a probe
command sends, in return, a probe response indicating whether that processing node has a cached copy of the
data. In the event that a processing node has a cached copy of the designated memory location, the probe
response from that processing node further includes the state of the cached data — i.e. modified, shared etc.

Upon receiving the probe command, all of the remaining nodes check the status of the cached copy, if
any, of the designated memory location as described before. In the event that a processing node, other than the
source and the target nodes, finds a cached copy of the designated memory location that is in a modified state,
that processing node responds with a memory cancel response sent to the target node, i.e. the second processing
node. This memory cancel response causes the second processing node to abort further processing of the read
command, and to stop transmission of the read response, if it hasn’t sent the read response yet. All the other
remaining processing nodes still send their probe responses to the first processing node. The processing node
that has the modified cached data sends that modified data to the first processing node through its own read
response. The messaging scheme involving probe responses and read responses thus maintains cache coherency
during a system memory read operation.

The memory cancel response may further cause the second processing node to transmit a target done
response to the first processing node regardless of whether it earlier sent the read response to the first processing
node. The first processing node waits for all the responses to arrive — i.e. the probe responses, the target done
response, and the read response from the processing node having the modified cached data — prior to
completing the data read cycle by sending a source done response to the second processing node. In this
embodiment, the memory cancel response may conserve system memory bandwidth by causing the second
processing node to abort time-consuming memory read operation when a modified copy of the requested data is
cached at a different processing node. Reduced data transfer latencies are thus achieved when it is observed that
a data transfer between two processing nodes over the high-speed dual unidirectional link is substantially faster
than a similar data transfer between a processing node and a system memory that involves a relatively slow

speed system memory bus.

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
BRIEF DESCRIPTION OF DRAWINGS

A better understanding of the present invention can be obtained when the following detailed
description of the preferred embodiment is considered in conjunction with the following drawings, in which:

Fig. 1 is a block diagram of one embodiment of a computer system.

Fig. 2 shows in detail one embodiment of the interconnect between a pair of processing nodes from
Fig.1.

Fig. 3 is a block diagram of one embodiment of an information packet.

Fig. 4 is a block diagram of one embodiment of an address packet.

Fig. 5 is a block diagram of one embodiment of a response packet.

Fig. 6 is a block diagram of one embodiment of a command packet.

Fig. 7 is a block diagram of one embodiment of a data packet.

Fig. 8 is a table illustrating exemplary packet types that may be employed in the computer system of
Fig 1.

Fig. 9 is a diagram illustrating an example flow of packets corresponding to a memory read operation.

Fig. 10A is a block diagram of one embodiment of a probe command packet.

Fig. 10B is a block diagram for one embodiment of the encoding for the NextState field in the probe
command packet of Fig. 10A.

Fig. 11A is a block diagram of one embodiment of a read response packet.

Fig. 11B shows in one embodiment the relationship between the Probe, Tgt and Type fields of the read
response packet of Fig. 11A.

Fig. 12 is a block diagram of one embodiment of a probe response packet.

Fig. 13 is a diagram illustrating an example flow of packets involving a memory cancel response.

Fig. 14 is a diagram illustrating an example flow of packets showing a messaging scheme that
combines probe commands and memory cancel response.

Fig. 15A is a diagram that generally illustrates an example flow of packets during a victim block write
operation.

Fig. 15B shows a detailed flow of packets depicting an invalidating probe and a memory cancel
response during a victim block write operation.

Fig. 16A is an exemplary flowchart for the transactions involved in a memory read operation.

Fig. 16B is an exemplary flowchart for the transactions involved in a victim block write operation.

MODE(S) FOR CARRYING OUT THE INVENTION

Turning now to Fig. 1, one embodiment of a multiprocessing computer system10 is shown. In the
embodiment of Fig. 1, computer system 10 includes several processing nodes 12A, 12B, 12C, and 12D. Each
processing node is coupled to a respective memory 14A-14D via a memory controller 16A-16D included within
each respective processing node 12A-12D. Additionally, processing nodes 12A-12D include one or more
interface ports 18, also known as interface logic, to communicate among the processing nodes 12A-12D, and to

also communicate between a processing node and a corresponding I/O bridge. For example, processing node

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856

12A includes interface logic 18A for communicating with processing node 12B, interface logic 18B for
communicating with processing node 12C, and a third interface logic 18C for communicating with yet another
processing node (not shown). Similarly, processing node 12B includes interface logic 18D, 18E, and 18F;
processing node 12C includes interface logic 18G, 18H, and 18I; and processing node 12D includes interface
logic 18], 18K, and 18L. Processing node 12D is coupled to communicate with an I/O bridge 20 via interface
logic 18L. Other processing nodes may communicate with other I/O bridges in a similar fashion. I/O bridge 20
is coupled to an I/O bus 22.

The interface structure that interconnects processing nodes 12A-12D includes a set of dual-
unidirectional links. Each dual-unidirectional link is implemented as a pair of packet-based unidirectional links
to accomplish high-speed packetized information transfer between any two processing nodes in the computer
system 10. Each unidirectional link may be viewed as a pipelined, split-transaction interconnect. Each
unidirectional link 24 includes a set of coherent unidirectional lines. Thus, each pair of unidirectional links may
be viewed as comprising one transmission bus carrying a first plurality of binary packets and one receiver bus
carrying a second plurality of binary packets. The content of a binary packet will primarily depend on the type
of operation being requested and the processing node initiating the operation. One example of a dual-
unidirectional link structure is links 24A and 24B. The unidirectional lines 24 A are used to transmit packets
from processing node 12A to processing node 12B and lines 24B are used to transmit packets from processing
node 12B to processing node 12A. Other sets of lines 24C-24H are used to transmit packets between their
corresponding processing nodes as illustrated in Fig. 1.

A similar dual-unidirectional link structure may be used to interconnect a processing node and its
corresponding I/O device, or a graphic device or an I/O bridge as is shown with respect to the processing node
12D. A dual-unidirectional link may be operated in a cache coherent fashion for communication between
processing nodes or in a non-coherent fashion for communication between a processing node and an external
1/0 or graphic device or an I/0 bridge. It is noted that a packet to be transmitted from one processing node to
another may pass through one or more remaining nodes. For example, a packet transmitted by processing node
12A to processing node 12D may pass through either processing node 12B or processing node 12C in the
arrangement of Fig. 1. Any suitable routing algorithm may be used. Other embodiments of computer system
10 may include more or fewer processing nodes than those shown in Fig. 1.

Processing nodes 12A-12D, in addition to a memory controller and interface logic, may include other
circuit elements such as one or more processor cores, an internal cache memory, a bus bridge, a graphics logic,
a bus controller, a peripheral device controller, etc. Broadly speaking, a processing node comprises at least one
processor and may optionally include a memory controller for communicating with a memory and other logic as
desired. Further, each circuit element in a processing node may be coupled to one or more interface ports
depending on the functionality being performed by the processing node. For example, some circuit elements
may only couple to the interface logic that connects an I/O bridge to the processing node, some other circuit
elements may only couple to the interface logic that connects two processing nodes, etc. Other combinations
may be easily implemented as desired.

Memories 14A-14D may comprise any suitable memory devices. For example, a memory 14A-14D

may comprise one or more RAMBUS DRAMs (RDRAMs), synchronous DRAMs (SDRAMEs), static RAM, etc.

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856

The memory address space of the computer system 10 is divided among memories 14A-14D. Each processing
node 12A-12D may include a memory map used to determine which addresses are mapped to which memories
14A-14D, and hence to which processing node 12A-12D a memory request for a particular address should be
routed. In one embodiment, the coherency point for an address within computer system 10 is the memory
controller 16A-16D coupled to the memory that is storing the bytes corresponding to the address. In other
words, the memory controller 16A-16D is responsible for ensuring that each memory access to the
corresponding memory 14A-14D occurs in a cache coherent fashion. Memory controllers 16A-16D may
comprise control circuitry for interfacing to memories 14A-14D. Additionally, memory controllers 16A-16D
may include request queues for queuing memory requests.

Generally, interface logic 18A-18L may comprise a variety of buffers for receiving packets from one
unidirectional link and for buffering packets to be transmitted upon another unidirectional link. Computer
system 10 may employ any suitable flow control mechanism for transmitting packets. For example, in one
embodiment, each transmitting interface logic 18 stores a count of the number of each type of buffers within the
receiving interface logic at the other end of the link to which the transmitting interface logic is connected. The
interface logic does not transmit a packet unless the receiving interface logic has a free buffer to store the
packet. As areceiving buffer is freed by routing a packet onward, the receiving interface logic transmits a
message to the sending interface logic to indicate that the buffer has been freed. Such a mechanism may be
referred to as a "coupon-based" system.

Turning next to Fig. 2, a block diagram illustrating processing nodes 12A and 12B is shown to
illustrate in more detail one embodiment of the dual unidirectional link structure connecting the processing
nodes 12A and 12B. In the embodiment of Fig. 2, lines 24A (the unidirectional link 24A) include a clock line
24AA, a control line 24AB, and a command/address/data bus 24AC. Similarly, lines 24B (the unidirectional
link 24B) include a clock line 24BA, a control line 24BB, and a command/address/data bus 24BC.

A clock line transmits a clock signal that indicates a sample point for its corresponding control line and
the command/address/data bus. In one particular embodiment, data/control bits are transmitted on each edge
(i.e. rising edge and falling edge) of the clock signal. Accordingly, two data bits per line may be transmitted per
clock cycle. The amount of time employed to transmit one bit per line is referred to herein as a "bit time". The
above-mentioned embodiment includes two bit times per clock cycle. A packet may be transmitted across two
or more bit times. Multiple clock lines may be used depending upon the width of the command/address/data
bus. For example, two clock lines may be used for a 32 bit command/address/data bus (with one half of the
command/address/data bus referenced to one of the clock lines and the other half of the command/address/data
bus and the control line referenced to the other one of the clock lines.

The control line indicates whether or not the data transmitted upon the command/address/data bus is
either a bit time of a control packet or a bit time of a data packet. The control line is asserted to indicate a
control packet, and deasserted to indicate a data packet. Certain control packets indicate that a data packet
follows. The data packet may immediately follow the corresponding control packet. In one embodiment, other
control packets may interrupt the transmission of a data packet. Such an interruption may be performed by

asserting the control line for a number of bit times during transmission of the data packet and transmitting the

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
bit times of the control packet while the control line is asserted. Control packets that interrupt a data packet
may not indicate that a data packet will be following.

The command/address/data bus comprises a set of lines for transmitting the data, command, response
and address bits. In one embodiment, the command/address/data bus may comprise 8, 16, or 32 lines. Each
processing node or I/O bridge may employ any one of the supported numbers of lines according to design
choice. Other embodiments may support other sizes of command/address/data bus as desired.

According to one embodiment, the command/address/data bus lines and the clock line may carry
inverted data (i.e. a logical one is represented as a low voltage on the line, and a logical zero is represented as a
high voltage). Alternatively, these lines may carry non-inverted data (in which a logical one is represented as a
high voltage on the line, and logical zero is represented as a low voltage). A suitable positive and negative logic
combination may also be implemented.

Turning now to Figs. 3-7, exemplary packets employed in a cache-coherent communication (i.e., the
communication between processing nodes) according to one embodiment of computer system 10 are shown.
Figs. 3-6 illustrate control packets and Fig. 7 illustrates a data packet. Other embodiments may employ different
packet definitions. The control packets and the data packet may collectively be referred to as binary packets.
Each packet is illustrated as a series of bit times enumerated under the "bit time" heading. The bit times of the
packet are fransmitted according to the bit time order listed. Figs. 3-7 illustrate packets for an eight-bit
command/address/data bus implementation. Accordingly, eight bits (numbered seven through zero) of control
or data information is transferred over the eight-bit command/address/data bus during each bit time. Bits for
which no value is provided in the figures may either be reserved for a given packet, or may be used to transmit
packet-specific information.

Fig. 3 illustrates an information packet (info packet) 30. Info packet 30 comprises two bit times on an
eight bit link. The command encoding is transmitted during bit time one, and comprises six bits — denoted by
the command field CMD[5:0] — in the present embodiment. An exemplary command field encoding is shown
in Fig. 8. Each of the other control packets shown in Figs. 4, 5 and 6 includes the command encoding in the
same bit positions during bit time 1. Info packet 30 may be used to transmit messages between processing
nodes when the messages do not include a memory address.

Fig. 4 illustrates an address packet 32. Address packet 32 comprises eight bit times on an eight bit
link. The command encoding is transmitted during bit time 1, along with a portion of the destination node
number denoted by the field DestNode. The remainder of the destination node number and the source node
number (SrcNode) are transmitted during bit time two. A node number unambiguously identifies one of the
processing nodes 12A-12D within computer system 10, and is used to route the packet through computer
system 10. Additionally, the source of the packet may assign a source tag (SrcTag) transmitted during bit times
2 and 3. The source tag identifies packets corresponding to a particular transaction initiated by the source node

(i.e. each packet corresponding to a particular transaction includes the same source tag). Thus, for example,

when the SrcTag field is of 7-bit length, the corresponding source node can have up to 128 (27) different
transactions in progress in the system. Responses from other nodes in the system will be associated to

corresponding transactions through the SrcTag field in the responses. Bit times four through eight are used to

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
transmit the memory address - denoted by the address field Addr [39:0] - affected by the transaction. Address
packet 32 may be used to initiate a transaction, e.g., a read or a write transaction.

Fig. 5 illustrates a response packet 34. Response packet 34 includes the command encoding,
destination node number, source node number, and source tag similar to the address packet 32. The SrcNode
(source node) field preferably identifies the node that originated the transaction that prompted the generation of
the response packet. The DestNode (destination node) field, on the other hand, identifies the processing node —
the source node or the target node (described later) — that is the final receiver of the response packet. Various
types of response packets may include additional information. For example, a read response packet, described
later with reference to Fig. 11A, may indicate the amount of read data provided in a following data packet.
Probe responses, described later with reference to Fig. 12, may indicate whether or not a hit was detected for the
requested cache block. Generally, response packet 34 is used for commands that do not require transmission of
the address during the carrying out of a transaction. Furthermore, response packet 34 may be used to transmit
positive acknowledgement packets to terminate a transaction.

Fig. 6 shows an example of a command packet 36. As mentioned earlier, each unidirectional link is a
pipelined, split-transaction interconnect in which transactions are tagged by the source node and responses can
return to the source node out of order depending on the routing of packets at any given instance. A source node
sends a command packet to initiate a transaction. Source nodes contain address-mapping tables and place the
target node number (TgtNode field) within the command packet to identify the processing node that is the
destination of the command packet 36. The command packet 36 has CMD field, SrcNode field, SrcTag field
and Addr field that are similar to the ones shown and described with reference to the address packet 32 (Fig. 4).

One distinct feature of the command packet 36 is the presence of the Count field. In a non-cacheable
read or write operation, the size of data may be less than the size of a cache block. Thus, for example, a non-
cacheable read operation may request just one byte or one quad word (64-bit length) of data from a system
memory or an I/O device. This type of sized read or write operation is facilitated with the help of the Count
field. Count field, in the present example, is shown to be of three-bit length. Hence, a given sized data (byte,
quad-word etc.) may be transferred a maximum of eight times. For example, in an 8-bit link, when the value of
count field is zero (binary 000), the command packet 36 may indicate transfer of just one byte of data over one
bit time; whereas, when the value of the count field is seven (binary 111), a quad word, i.e. eight bytes, may be
transferred for a total of eight bit times. The CMD field may identify when a cache block is being transferred. In
that case, the count field will have a fixed value; seven in the situation when the cache block is 64-byte size,
because eight quad words need be transferred to read or write a cache block. In the case of an 8-bit wide
unidirectional link, this may require transfer of eight complete data packets (Fig. 7) over 64 bit times.
Preferably, the data packet (described later with reference to Fig. 7) may immediately follow a write command
packet or a read response packet (described later) and the data bytes may be transferred in an increasing address
order. Data transfers of a single byte or a quad word may not cross a naturally aligned 8 or 64 byte boundary,
respectively.

Fig. 7 illustrates a data packet 38. Data packet 38 includes eight bit times on an eight bit link in the
embodiment of Fig. 7. Data packet 38 may comprise a 64-byte cache block, in which case it would take 64 bit

times (on an 8-bit link) to complete the cache block transfer. Other embodiments may define a cache block to

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856

be of a different size, as desired. Additionally, data may be transmitted in less than a cache block size for non-
cacheable reads and writes as mentioned earlier with reference to the command packet 36 (Fig. 6). Data packets
for transmitting data less than cache block size require fewer bit times.

Figs. 3-7 illustrate packets for an eight-bit link. Packets for 16 and 32 bit links may be formed by
concatenating consecutive bit times illustrated in Figs. 3-7. For example, bit time one of a packet on a 16-bit
link may comprise the information transmitted during bit times one and two on the eight-bit link. Similarly, bit
time one of the packet on a 32-bit link may comprise the information transmitted during bit times one through
four on the eight-bit link. Formulas 1 and 2 below illustrate the formation of bit time one of a 16 bit link and bit
time one of a 32 bit link in terms of bit times for an eight bit link.

BT1,4[15:0] = BT24{7:0] || BT1,[7:0] (1)

BT1,,[31:0] = BT4g[7:0] || BT34[7:0] || BT2,([7:0] || BT1,[7:0] (2)

Turning now to Fig. 8, a table 40 is shown illustrating commands employed for one exemplary
embodiment of the dual-unidirectional link structure within computer system 10. Table 40 includes a command
code column illustrating the command encodings (the CMD field) assigned to each command, a command
column naming the command, and a packet type column indicating which of the command packets 30-38 (Figs.
3-7) is used for that command. A brief functional explanation for some of the commands in Fig. 8 is given
below.

A read transaction is initiated using one of the Rd(Sized), RdBlk, RdBIkS or RdBIkMod commands.
The sized read command, Rd(Sized), is used for non-cacheable reads or reads of data other than a cache block
in size. The amount of data to be read is encoded into the Rd(Sized) command packet. For reads of a cache
block, the RdBlk command may be used unless: (i) a writeable copy of the cache block is desired, in which
case the RdBlkMod command may be used; or (ii) a copy of the cache block is desired but no intention to
modify the block is known. The RdBIkS command may be used to make certain types of coherency schemes
(e.g. directory based coherency schemes) more efficient. In response to the RABIkS command, the target node
may return the cache block to the source node in a shared state. In general, the appropriate read command is
transmitted from the source node initiating a read transaction to a target node that owns the memory
corresponding to the cache block requested by the source node.

The ChangeToDirty packet may be transmitted by a source node in order to obtain write permission for
a cache block that is stored in the source node in a non-writeable or read-only state. A transaction initiated with
a ChangeToDirty command may operate similar to a read except that the target node does not return data. The
ValidateBlk command may be used to obtain write permission to a cache block not stored in the source node if
the source node intends to update the entire cache block. No data is transferred to the source node for such a
transaction, but otherwise operates similar to a read transaction. Preferably, the ValidateBlk and the
ChangeToDirty commands may only be directed to a memory, and may only be generated by coherent nodes.

The InterruptBroadcast, Interrupt Target, and IntrResponse packets may be used to broadcast

interrupts, to send an interrupt to a particular target node, and to respond to interrupts, respectively. The

9

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
CleanVicBlk command may be used to inform a memory controller that a cache block (a victim block) in the
clean state has been discarded from a node (e.g. for directory based coherency schemes). The TgtStart
command may be used by a target to indicate that a transaction has been started (e.g. for ordering of subsequent
transactions). The Error command is used to transmit an error indication.

Figs. 9, 13 and 14 depict some example flows of packets when a processing node in the computer
system 10 attempts to read a designated memory location. The designated or corresponding system memory
locations are, for explanation only, assumed to be in the system memory 421 associated with a target processing
node 72. The system memory 421 may be a part of the target processing node 72 or may be external to the
target node 72 — as shown here. Further, during a memory read transaction, it may be possible that a copy of
the designated memory location may already exist in the internal or external cache memory of the target node
72. In any event, the flow of packets remains the same whenever the source node 70 transmits a read command
to read a designated memory location associated with the target node 72. It is noted that any processing node
12A-12D (Fig. 1) may function as a source node or a target node. The node that is not either a source node or a
target node is referred to as a remaining node, here nodes 74 and 76. The same numerals are used in Figs. 9, 13
and 14 to identify the source node, the target node, and the remaining nodes for the sake of clarity only; it does
not imply that the source node 70 in Fig. 9 is the same source node in Fig. 13, etc.

As mentioned earlier, any processing node in Fig. 1 may function as a source node, a target node or a
remaining node depending on the particular transaction. The arrangements shown in Figs. 9, 13 and 14 are for
illustrative purpose only, and they do not imply similar actual connections among the processing nodes 12A-
12D. That is, a remaining node, e.g. node 76, or the target node 72 may not be directly connected to the source
node 70. Hence, additional packet routing may occur. Further, the arrangements of Figs. 9, 13 and 14 are
described with reference to the circuit topology in Fig. 1. It is understood that other interconnections between
two or more processing nodes may be contemplated and the packet transfer schemes of Figs. 9, 13 and 14 may
be easily implemented in those various interconnections. The arrows are used to indicate dependencies and
represent packets that must be sent between respective nodes joined by the arrows. Generally, the outgoing
arrows may not be taken until all corresponding incoming dependencies have happened. This is illustrated
further below with reference to the operations depicted in Figs. 9, 13 and 14.

Referring now to Fig. 9, a flow of packets 42 during a read transaction ~ a Rd(Sized) or a block read
(RdBIk, RABIkS, or RdBIkMod) command, as described earlier — is illustrated. The processor (not shown) in
the source node 70 sends appropriate read command to the memory controller (not shown) in the target node 72.
A typical command packet has been described earlier with reference to Fig. 6. Upon receiving the read
command from the source processor, the target memory controller, in response, performs the following two
operations: (1) It sends a RdResponse (read response) packet along with the requested data from the memory
421 to the source node 70, and (2) It also broadcasts a Probe/Src command to all the processing nodes in the
computer system 10. Generally, the Probe/Src command (more simply, a probe command) is a request to a node
to determine if a cache block is stored in that node and an indication of the actions to be taken by that node if
the cache block is stored in that node. In one embodiment, when a packet is broadcast to more than one
destination, the router at the receiving node that receives the packet first may terminate the packet at that node

and recreate and transmit a copy of that packet to the adjacent processing nodes.

10

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856

The exact order of execution of these previous two operations may depend on the status of pending
operations in various internal buffers in the target node 72. Preferably, each processing node in the computer
system 10 includes a number of buffers to store command packets, data packets associated with various
command packets (for example, a memory write command), probes, response packets (for example, ProbeResp,
SrcDone, TgtDone, MemCancel), and read responses (including both RdResponse packet and its associated data
packet). Each data buffer may contain storage for a cache block of, for example, 64-byte size. In the alternative,
any other convenient storage capacity may be implemented based on the design requirements.

The flow of binary packets between two processing nodes using the above mentioned buffers may be
controlled by implementing the previously described “coupon-based” system. In that implementation, a
transmitting node may contain a counter for each type of buffer at the receiving node. At system reset the
transmitting node may clear its counters; and when the reset signal is deasserted, the receiving node may send
an information packet (with a format similar to that shown in Fig. 3, with the CMD field identifying an Nop
command) to the transmitting node to indicate how many buffers of each type it has available. When the
transmitting node sends a packet to the receiving node it decrements the associated counter, and when a
particular counter reaches a zero value the transmitting node processor stops sending packets to the associated
buffer. When the receiver frees a buffer it sends another information packet to the transmitter, and the
transmitter increments the associated counter. A transmitter may not start a memory write operation unless the
receiver has both a command buffer and a data buffer available.

Referring back to Fig. 9, the memory controller in the target node 72 transmits the Probe/Src
commands to other nodes in the system to maintain coherency by changing the state of the cache block in those
nodes and by causing a node having an updated copy of the cache block to send the cache block to the source
node. The scheme employs an indication within the probe command that identifies a receiving node to receive
the probe responses. Here, the Probe/Src command (the probe command) causes each remaining node, 74 and
76, to transmit a ProbeResp (probe response) packet to the source node. The probe response indicates that the
actions have been taken, and may include a transmission of data if the cache block has been modified by the
node. If a probed node has an updated copy of the read data (i.e. dirty data), that node transmits a RdResponse
(read response) packet and the dirty data as described later with reference to Fig. 13. The Probe/Src command
may be received by a cache controller in a given processing node (including the target node 72), and the
ProbeResp and the RdResponse may be generated by that cache controller. Generally, a cache controller in a
processing node having an associated cache may generate a probe response packet in response to the Probe/Src
command. In one embodiment, when a processing node does not have a cache that processing node may not
generate a probe response packet.

Once each of the probe responses (from the remaining nodes 74 and 76) and the RdResponse with the
requested data (from the target node 72) are received in the source node, the source node processor transmits a
SrcDone (source done) response packet to the target node memory controller (not shown) as a positive
acknowledgement of the termination of the transaction. To maintain coherency among the processing nodes
during each read operation, the source node may not use the data received through the RdResponse from the
target node 72 until all the probe responses (from the remaining nodes) are also received. When the target node

receives the SrcDone response it removes the read command (received from the source node 70) from its

11

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
command buffer queue, and it may, then, start to respond to a command to the same designated memory
address.

By providing the flexibility to route the probe responses to different receiving nodes depending upon
the command sent, the maintenance of coherency may be performed in a relatively efficient manner (e.g. using
the fewest number of packet transmissions between processing nodes) while still ensuring that coherency is
maintained. For example, probe commands indicating that the target or the source of transaction should receive
probe responses corresponding to the transaction may be included. Probe commands may specify the source of
the transaction as the receiving node for read transactions (such that dirty data is delivered to the source node
from the node storing the dirty data). On the other hand, for write transactions (in which data is being updated
in memory at the target node of the transaction), the probe commands may specify the target of the transaction
as the receiving node. In this manner, the target may determine when to commit the write data to memory and
may receive any dirty data to be merged with the write data.

Figs. 10-12 depict one embodiment of the probe command, the read response and the probe response
packets, respectively. The probe command packet 44 in Fig. 10A is slightly different from the general command
packet shown in Fig. 6. The CMD field identifies the probe as a Probe/Src command that requires the receiving
node to transmit its response to the source node 70. As mentioned earlier, in certain other transactions, the target
node 72 may be the recipient of responses to the probe command, and in those cases the CMD field will again
indicate so. Furthermore, depending on the routing involved, it may happen that the source node 70 or the target
node 72 or both of these nodes may receive the Probe/Src command prior to or along with the other remaining
nodes in the system. The SrcNode and the TgtNode fields in the probe command would identify the source and
the target nodes respectively, and would prevent the source node cache controller from responding to the probe
command. The SrcTag field functions the same way as earlier described with reference to Fig. 4. The DM (data
movement) bit indicates whether a data movement is required in response to this probe command. For example,
a clear DM bit may indicate lack of any data movement; whereas if the DM bit is set, data movement is required
if the probe command hits a dirty or a shared/dirty block in the internal (or external) cache in one of the
remaining nodes 74 or 76.

As described earlier, the read command from the source node may be a sized read command
[Rd(sized)] or may be a block read command [RdBIk, RdBIkS or RdBlkMod]. Both types of read commands
preferably require a data movement, and hence the DM bit may be set by the target node’s memory controller to
indicate data movement requirement. In a different embodiment, the DM bit, when cleared, may indicate data
movement and the DM bit, when set, may indicate lack of any data movement.

The NextState field 46 (Fig. 10B) is a two-bit field that indicates the state transition that should occur if
there is a probe hit, i.e. if one or more of the remaining nodes have a cached copy of the designated memory
location that is identified by the probe command Addr field. One exemplary encoding for the NextState field 46
is shown in Fig. 10B. During a block read command, the NextState field is one (1), and hence, the remaining
node having the cached copy of the memory data would mark that copy as shared upon receipt of the Probe/Src
command. On the other hand, during a sized read command, the NextState field is zero (0), and hence, no
remaining node has to change corresponding cache tag even when it has a cached copy of the data from the

memory 421. In certain other target memory transactions (e.g., certain write operations), it may be desirable to

12

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
mark the cached data in corresponding remaining nodes as invalid as indicated by the NextState field 46 with a
value two (2).

Thus, through this NextState field, a probe command may maintain cache coherency among the system
processing nodes during a memory read operation. The target node cache controller may transmit a probe
response packet along with a read response packet (containing the requested data) upon receiving the Probe/Src
command broadcast by the target node memory controller and upon finding the requested data in the target node
cache memory (internal or external). As will be described later, the source node updates its cache tag associated
with the requested data through the information supplied by the RdResponse and ProbeResp packets. This way
the source node may indicate (through the corresponding cache tag) whether it has an exclusive or a shared
copy of the requested data. The probe response packet from the target node cache controller may be helpful, for
example, in a situation where only the target node has a copy of the requested data in its cache and no other
remaining node has a cached copy of the requested data. The target node, on the other hand, may be configured
to automatically update its cache state when the target node has in its cache the data requested by the source,
and hence, is sending the data to the source from the target node cache.

Referring now to Fig. 11A, an exemplary encoding for a RdResponse packet 48 is shown. The memory
controller (not shown) in the target node 72 may be configured to send a RdResponse to the source node 70 in
response to each read command, whether a sized read command or a block read command. As mentioned
earlier, alternatively, the target node cache controller (not shown) may be configured to send an appropriate
read response packet in case the requested data is cached in the target node. The RdResponse packet 48 is-
typically followed by a data packet 38 (Fig. 7) that contains the requested data. The data packet for a sized read
operation may be arranged with the lowest addressed datum returned first and the remainder of the addressed
data returned in the ascending address order. The data packet for a cache block read, however, may be arranged
with the requested quadword (64 bits) returned first, and the remainder of the cache block may be returned
using interleaved wrapping.

The Count field in the RdResponse packet 48 is identical to the Count field in the read command
packet (see, for example, Fig. 6) that started the read transaction. The Type field encodes the size of the original
read request, and along with the Count field, indicates the total size of the data packet. The Type field may take
binary values 0 or 1. In one embodiment, the Type field, when zero, may indicate that a byte size of data is to be
transferred. The Type field, when one, may indicate that a quad-word (64 bits) of data is to be transferred. The
Count field, on the other hand, indicates how many times that size of data, as indicated by the Type field, needs
to be transferred over a link. Thus, the Count field and the Type field, in combination, may determine the total
size of the data to be transferred. For example, during a sized read operation over an 8-bit unidirectional link, to
transfer a double word the Type field must be zero and the Count field must be three [011 in the binary].

The RespNode field in the RdResponse packet 48 identifies the node to which the read response packet
is directed. The SrcNode field identifies the node that started the transaction, i.e. the source node 70. During a
read operation, the RespNode and the SrcNode fields will identify the same node, i.e. the source node 70. As
described later with reference to Fig. 13, a RdResponse may be generated by one of the remaining nodes that
has in its cache a dirty copy of the addressed memory location (in the target memory 421). The Probe bit may

be set to indicate that the read response 48 was generated by a node in response to a probe that required data

13

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
movement. A clear Probe bit may indicate that the RdResponse 48 is either from the memory controller (not
shown) or from the cache controller (not shown) at the target node 72.

The Tgt bit is the bit in the bit position [0] in the CMD[5:0] field. In one embodiment, the Tgt bit,
when set, may indicate that the RdResponse 48 is destined for the memory controller (not shown) in the target
node 72 (during, for example, some write transactions). On the other hand, the Tgt bit, when clear, may indicate
that the RdResponse 48 is destined for the source node 70. The Tgt bit, thus, may identify how the data flow is
managed internally within a node. The Tgt bit may be omitted in an embodiment.

The table 50 in Fig. 11B shows one example of a relationship between the Probe bit, the Tgt bit, the
Type field, and the Count field. As shown therein, the probe bit is clear whenever the RdResponse 48 is from
the memory controller (not shown) or from the cache controller (not shown) at the target node 72. In one
embodiment, the target node 72 may supply less than a cache block size of data (for example, during a sized
read operation). The Type and the Count fields may jointly specify the size of the data to be transferred to the
source node 70. As described later, when one of the remaining nodes (node 74 or node 76) sends a RdResponse
packet to the source node 70, the only size of data that may be transferred is a cache block. In that situation, the
Count field must be 7 (binary 111) and the Type field must be 1 to accomplish a 64-byte data transfer
(assuming that the cache block size is 64 bytes).

Referring now to Fig. 12, an example of a ProbeResp packet 52 is shown. Generally, a processing node
(one or more of the remaining nodes or the target node 72) that has an associated cache memory responds to the
Probe/Src command by directing a ProbeResp packet to the source node 70 indicating a Miss or a HitNotDirty.
However, if the responding node has a modified cached copy of the requested data, it will, instead, transmit a
RdResponse as described later. The CMD field, the RespNode field, the SrcNode field and the SrcTag fields are
already described earlier with reference to one or more control packets. In one embodiment, the Hit bit is set to
indicate (to the source processing node 70) that the responding node has an unmodified cached copy of the
addressed memory location. In another embodiment, a clear Hit bit may convey the same indication. The source
node 70, thus, gets the necessary information regarding how to mark (in its cache) the block of data received
from the target node 72. For example, if one of the remaining nodes 74 or 76 has an unmodified (or clean) copy
of the addressed memory location, the source node 70 would mark the data block received from the target
memory controller (not shown) as clean/shared. On the other hand, if this is a sized read operation, then the
source node 70 may not need to change its cache tag associated with the received data as the data read is less
than the cache block in size. This is quite similar to the earlier discussion (Fig. 10B) with reference to the
remaining nodes.

Fig. 13 shows an example flow of packets, i.e. the arrangement 54, when one of the remaining nodes
(node 76, here) has in its cache a modified copy (i.e., a dirty copy) of the target memory location. As before, the
target node memory controller (not shown) sends a Probe/Src command (probe command) and a RdResponse
upon reception of the read command from the source node 70. Here, the target node 72 is assumed to have an
associated cache memory, and hence, the target node cache controller (not shown) sends a probe response to the
source node 70 as described earlier. In the event that the target node 72 also has a cached copy of the requested

data, the target node cache controller (not shown) may also send a read response packet along with the

14

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
requested data as described earlier. In the absence of an associated cache, the target node 72 may not send a
probe response packet.

One implementation of the probe command packet and the read response packet has been described
earlier in conjunction with Figs. 10A and 11A respectively. In the embodiment of Fig. 13, however, the
responding node 76 is configured to send two packets through its cache controller in response to the probe
command — a RdResp packet to the processor in the source node 70 and a MemCancel response to the target
node memory controller (not shown). The read response from the remaining node 76 is followed by a data
packet containing the modified cache block, as required by the DM (data movement) bit in the probe command
packet (Fig. 10A). As described earlier with reference to Fig. 11A, the RdResponse from a non-target node may
have its Probe bit set to indicate that the source of the data block is not the target node 72. Through this
RdResponse packet from the responding node 76, the source node 70 gets an indication to mark (in its internal
cache) the state of the received cache block of data as modified/shared.

The RdResponse packet from the remaining node 76 contains the entire corresponding cache block (in
modified state), even if the read command identifies a sized read transaction. In a different embodiment, the
responding non-target node (node 76, here) may be configured to send only the requested data directly to the
source node. In this embodiment, the size of the data to be transferred to the source node may be encoded as
part of the probe command. In yet another embodiment, the responding node 76 may send only the requested
data to the memory controller (not shown) in the target node 72 and, thereafter, the target node memory
controller sends the data back to the source node 70.

The MemCancel (memory cancel) response from the responding node 76 causes the memory controller
at the target processing node 72 to abort further processing of the read command from the source node 70. In
other words, the MemCancel response has the effect of canceling the transmission of the RdResponse packet
(along with the requested data) from the target node memory controller, and even the cancellation of a prior
memory read cycle by the target node memory controller that may have been initiated in response to the read
command by the source 70, if the target node memory controller receives the MemCancel response prior to the
release of the RdResponse packet from the target node read response buffer or prior to the completion of the
memory read cycle, respectively. The MemCancel response, thus, accomplishes two principal objectives: (1)
Conservation of the system memory bus bandwidth by eliminating, to the extent possible, relatively lengthy
memory accesses when the system memory (e.g., the memory 421) has a stale data. This also reduces
unnecessary data transfers over the coherent links; and (2) Maintaining cache coherency among various
processing nodes in a multiprocessing computer system by allowing transfer of most recent cache data among
the processing nodes.

It is noted that due to the routing involved in the circuit configuration of Fig. 1 the MemCancel
response packet from the responding node 76 may not arrive at the target node 72 in time to abort the target
node memory controller’s transmission of a read response packet or initiation of a relatively lengthy memory
read cycle. In such a situation, the target processing node 72 may simply ignore the late-received MemCancel
response when it is too late to cancel the read response transmission or the system memory read cycle. The
precise point at which a transaction may be aborted may depend on the circuit configuration, the routing

implemented, the operating software, the hardware constituting the various processing nodes, etc. When the

15

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
source node receives the RdResponse from the target node memory controller it simply ignores that
RdResponse (and its associated data packet), and, instead, receives its requested data from the cache block
supplied along with the RdResponse packet from the remaining node 76.

Upon receiving the MemCancel response, the target node memory controller transmits a TgtDone
(target done) response to the source processing node 70. The TgtDone response is transmitted regardless of
whether the target node earlier sent its RdResponse packet (along with the requested data) to the source node
70. If the target node memory controller did not earlier send the RdResponse packet, it cancels the transmission
of the RdResponse packet (and also of the requested data), and, instead, sends the TgtDone response to the
source node 70. The TgtDone response functions to inform the source node 70 of the source of the cache block
fill. The presence of the TgtDone response indicates to the source node that the target node memory 421 or
target node internal cache (not shown) has a stale version of the requested data, and, hence, the source node 70
must await a modified copy of the cache block from one of the remaining nodes (e.g., nodes 74 or 76).

The source node processor may use, prior to its reception of the TgtDone response, the modified cache
block transmitted along with the RdResponse packet by the responding node 76. However, the source node 70
may not reuse its source tag (SrcTag field in its read command packet, Fig.6) prior to sending a SrcDone
response because the transaction, i.e. the read operation, initiated by the read command packet may not be
complete until the source node 70 receives all the responses generated by the initiation of the read transaction.
Therefore, the source node 70 waits until it receives the RdResponse (if sent) from the target node 72, the
TgtDone response from the target node, and for any other responses from other remaining nodes (described
later with reference to Fig. 14) prior to sending the SrcDone response to the target node memory controller.
Similar to the discussion with reference to Fig. 9, the SrcDone response in Fig. 13 signals to the target node the
completion of the memory read transaction initiated by the source node. When the target node 72 sends the
RdResponse as well as the TgtDone response, the source node may have to wait for both of these responses
prior to acknowledging the completion of the read transaction through its SrcDone response. The SrcDone
response thus helps maintain cache block fill-probe ordering during a memory read transaction whether the
source of the requested data is the target node memory controller or target node internal (or external) cache or
one of the remaining nodes having a dirty copy of the cache block containing the requested data.

Referring now to Fig. 14, a packet flow arrangement 56 is shown with respect to a memory read
transaction initiated by the source node 70. This embodiment depicts more than one remaining nodes, nodes 74
and 76, and one of the remaining nodes 76 is assumed to have in its cache a dirty (modified) copy of the
memory block containing the requested data. Various command and response packets shown in Fig. 14 are
similar to those described earlier with reference to Figs. 9-13. The source processor may not use the data
received along with the RdResponse from the node 76 until it also receives the probe responses from all the
other remaining nodes (here, the node 74 only) in the system. As described with reference to Fig. 13, the source
node may not reuse the SrcTag until the completion of the initiated transaction, i.e. the memory read operation,
has been established through the transmission of the SrcDone response. The SrcDone response is transmitted
when the RdResponse from the responding node 76, the probe responses from all the remaining processing

nodes, the TgtDone response from the target node 72, and the RdResponse from the target node (if already

16

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
transmitted) are received by the source node 70. The SrcDone and the TgtDone responses (in Figs. 9, 13, 14,
15A and 15B) are thus used to provide an end-to-end acknowledgement of commands and responses.

Fig. 15A depicts an example flow of packets 58 during a dirty victim block write operation. A dirty
victim block is generally a modified cache block that is being evicted from the cache (not shown) in the
processing node originating the victim block write operation, i.e. the source node 70, and is being replaced
according to any suitable cache block replacement algorithm. When a dirty victim block is selected for
replacement, it is written back into the corresponding system memory — here the memory 421 associated with
the target node 72 — using the VicBlk command. A memory write back operation is initiated using the VicBlk
packet followed by a data packet containing the modified victim cache block. Probes are not needed for the
VicBlk command. Accordingly, when the target memory controller is prepared to commit the received victim
block data to the memory 421, the target memory controller transmits a TgtDone packet to the source node
processor. The source node processor replies with either a SrcDone packet to indicate that the data should be
committed or a MemCancel packet to indicate that the data has been invalidated between transmission of the
VicBlk command and receipt of the TgtDone packet (e.g. in response to an intervening probe).

It is noted that the source node 70 owns the victim block until it is accepted by the target node memory
controller (not shown) for writing into the appropriate memory location in the system memory 421. The target
node 72 may place the received victim block in its command data buffer and send a TgtDone response back to
the source node processor (not shown) to indicate its acceptance of the victim block. The source node 70, until
it receives the TgtDone response, continues processing other transactions involving the data contained in the
victim block.

Referring now to Fig. 15B, a detailed flow of packets 59 indicating reception by the source node 70 of
an invalidating probe prior to the TgtDone response is shown. As mentioned earlier, the delivery of a control or
a data packet to a target node depends on the routing involved in the system 10. As shown in Fig. 15B, it may
happen that the VicBlk command and the victim block data packet (indicated as Data-1 in Fig. 15B) from the
source node 70 may follow a routing path that includes one of the remaining nodes 74. The time involved in a
packet propagation within the system 10 generally depends on the number of intervening processing nodes in
the routing path and on the time it takes for each intervening node to retransmit the received command and data
packets to the other processing node on the routing path or to the target node 72 as the case may be.

Fig. 15B illustrates an example where one of the remaining processing nodes (node 76, here) sends a
RdBIkMod command to the target node 72 after the source node 70 transmits the VicBlk command along with
the victim block (Data-1), but before the VicBlk command is received by the target node memory controller
(not shown). The RdBlkMod command from node 76 may specify the same memory location in the memory
421 as is the destination for the victim block from the source node 70. As briefly mentioned earlier, the
RdBlkMod command may be used when a writeable copy of a cache block is desired. As the RABIkMod
command is one type of a read command, various signal flow patterns shown and described with reference to
Figs. 9-14 may occur during the RdBlkMod command execution.

In response to the RABIkMod command, the target node 72 may transmit a probe command packet
(Fig. 10A) to the source node 70 and to the other remaining node 74 as described earlier with reference to Fig.

9. The source node 70 may respond to the probe command (alternatively known as the invalidating probe) by

17

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
sending a read response packet (Fig. 11A) along with the requested data, i.e. the victim block, because (i) the
source node has the modified copy (i.e., the victim block) of the designated memory location and (ii) the source
node has not yet received a target done response from the target node 72 indicating receipt and acceptance by
the target node of the earlier sent victim block. The source node 70 may also send a memory cancel response
(not shown in Fig. 15B) to the target node 72 as described earlier with reference to Fig. 13. A probe response
from the other remaining node 74 to the read command source node 76 is also not shown in Fig. 15B for the
sake of clarity.

The processing node 76 may also modify the victim block received from the source node 70 and may
transmit the modified data (Data-2) to the target node 72 to commit Data-2 to the corresponding memory
location in the system memory 421. In the situation illustrated in Fig. 15B, the VicBlk command and the
original victim block (Data-1) arrive at the target node after target node accepts the modified victim block
(Data-2). Upon receiving the original victim block (Data-1), target node memory controller (not shown) may
transmit the target done response to the source node 70 to indicate acceptance of the victim block data packet
(Data-1). As the target node 72 may not track the chronology of data transmission events, it is desirable to
prevent the target node 72 from overwriting the memory location containing the modified victim block (Data-2)
with the later-arriving (but earlier-sent) stale victim block (Data-1). The source node 70, in that case, will
transmit a MemCancel response, instead of the SrcDone response, to the target node memory controller when
the source node receives the target done response from the target node 72. The MemCancel response from the
source node 70, thus, prevents the target node 72 from overwriting the common memory location with the stale
data (Data-1).

In general, the source node 70 sends a memory cancel message (MemCancel) in response to the
TgtDone message from the target node whenever the source node receives an invalidating probe prior to
receiving the TgtDone message but after sending the VicBlk command and the victim block data packets. The
memory cancel response thus helps maintain cache coherency among various processing nodes in the system,
for example, in a situation when a processing node (here, node 76) other than the source node 70 indicates its
intent to modify the data contained in the victim block (Data-1) earlier sent by the source node 70 as indicated
in Fig. 15B. The memory cancel response may also conserve the system memory bandwidth by preventing the
target node memory controller from initiating a lengthy memory write operation when the data to be committed
to the system memory 421 may no longer be valid.

The source node processor may, instead, send a SrcDone packet to the target node memory controller
if the TgtDone response is received prior to an invalidating probe as indicated by the dotted arrow in Fig. 15B.
In other words, the source node may send a SrcDone response to the target node after it receives the TgtDone
message, given the victim block is still valid. In the situation depicted in Fig. 15B, the source node may send a
probe response packet (Fig. 12) instead of a read response packet when the probe command arrives after the
target done response because the source node may no longer own the victim block once it releases the victim
block to the target node by sending a source done message. The SrcDone response signals the completion of the
dirty victim block (Data-1) write operation initiated by the source node processor. No memory cancel response

is needed because, for example, a later write operation to the same memory location involving the modified

18

10

15

20

25

WO 00/38070 PCT/US99/19856
victim block (Data-2) will correctly overwrite the previous (and, hence, stale) victim block (Data-1). Cache
coherency among the processing nodes may thus properly be maintained.

It is noted that a victim block command (VicBIk) may only be directed to a system memory, and may
only be generated by a coherent processing node (i.e. one of the processing nodes 12A-12D in Fig. 1) and not
by, for example, the I/O bridge 20. The SrcDone and the TgtDone responses are used to provide an end-to-end
acknowledgement of commands and responses as described earlier.

Finally, Fig. 16A shows an exemplary flowchart 60 for the transactions involved in a memory read
operation (whether a sized read or a block read operation). Additionally, Fig. 16B depicts an exemplary
flowchart 62 for the transactions involved in a dirty victim block write operation. All the details associated with
various blocks in the flowcharts of Figs. 16A and 16B have already been discussed earlier with reference to
Figs. 9-15B. Various control packets (including command packets and response packets) and the data packet
have been illustrated using exemplary embodiments shown in Figs. 3-8 and 10-12. The system may implement
other control and data packets for similar purposes, but using different formats and encodings. The present
messaging scheme involving the command and response packets in the system configuration of Fig. 1 may also
be implemented in another system configuration.

The foregoing discloses a cache-coherent data transfer scheme in a multiprocessing computer system
environment. The data transfer scheme may conserve the system memory bandwidth by causing the target
processing node to abort relatively lengthy memory read or write operations on the slower system memory bus.
An end-to-end acknowledgement of command and response packets may maintain cache coherency throughout
the multiprocessing system.

While the invention is susceptible of various modifications and alternative forms, specific embodiments
thereof are shown by way of examples in the drawings and are herein described in detail. It should be
understood, however, that the drawings and detailed description thereto are not intended to limit the invention to
the particular forms disclosed, but on the contrary, the intention is to cover all such modifications, equivalents

and alternatives as falling within the spirit and scope of the present invention as defined by the appended claims.

INDUSTRIAL APPLICABILITY

This invention may be generally applicable to computer systems.

19

10

15

20

25

30

35

WO 00/38070 PCT/US99/19856
WHAT IS CLAIMED 1IS:

1. A computer system comprising:

a first processing node (76; 70) configured to transmit a memory cancel response corresponding to a

transaction; and

a second processing node (72) coupled to receive said memory cancel response from said first
processing node (76; 70), wherein said second processing node (72) is configured to abort

further processing of said transaction responsive to said memory cancel response.

2. The computer system as recited in claim 1 wherein said second processing node (72) comprises a target node

of said transaction.

3. The computer system as recited in claim 2 wherein said transaction is a read operation, and wherein said first
processing node (76) is a processing node configured to: (i) receive a probe from said second processing node
(72); (ii) detect a modified copy of data addressed by said read operation; and (iii) transmit said memory cancel

response responsive to detecting said modified copy.

4. The computer system as recited in claim 3 wherein said first processing node (76) is further configured to
transmit a read response and said modified copy of data to a third processing node (70) which is a source of said

read operation.
5. The computer system as recited in 2 wherein said transaction is a victim block write, and wherein said first
processing node (70) is a source of said transaction, and wherein said first processing node (70) is configured to

transmit said memory cancel response responsive to a target done response from said second processing node

(72).

6. The computer system as recited in claim 5 wherein said first processing node (70) is configured to transmit
said memory cancel response further responsive to an invalidation of said victim block in response to a probe
received by said first processing node (70) prior to receiving said target done response.

7. A method comprising:

transmitting a memory cancel response from a first processing node (70; 76), said memory cancel

response corresponding to a transaction;

receiving said memory cancel response in a second processing node (72); and

20

10

15

20

25

30

WO 00/38070 PCT/US99/19856
aborting processing said transaction in said second processing node (72) responsive to said receiving
said memory cancel response.
8. The method as recited in claim 7 wherein said transaction is a read operation, the method further comprising:
receiving a probe in said first processing node (76), said probe corresponding to said transaction;
detecting a modified copy of data address by said read operation in said first processing node (76); and

said transmitting said memory cancel response being responsive to said detecting.

9. The method as recited in claim 8 further comprising transmitting a read response and said modified copy

from said first processing node (76) to a third processing node (70).

10. The method as recited in claim 7 wherein said transaction is a victim block write, and wherein said first

processing node (70) is a source of said victim block write, the method further comprising:

transmitting a target done response from said second processing node (72), said target done response

corresponding to said transaction;
receiving said target done response in said first processing node (70); and

said transmitting said memory cancel response being responsive to said receiving said target done

response.
11. The method as recited in claim 10 further comprising:

receiving an invalidating probe in said first processing node (70) prior to said receiving said target

done response; and

said transmitting said memory cancel response being further responsive to said receiving said invalidating
probe.

21

WO 00/38070 PCT/US99/19856

1/16
Memory Memory
14A 148
4 A
16A i 16B
C MC
18C\ M /-—18A 24A /—18F
A Processing 4 ‘> Processing /]
IF Node IF IF Node IF
12A) 28 | 128
18D —/
IF : \ IF : \
\— 18B _ 18E

24E 24F 24C 24D
NV N

18H
v / v //— 18K
IF IF 18L
18l /.
e A 246 ‘
Processing Processing /o
IF Node IF IF Node IF IF .
12C) — 24H ’ 12D ; Bridge ”
18J —/ =
MC MC) I\
A
! _ 16C 1 _ 16D Bus 92
A y
Memory Memory
14C 14D

0

FIG. 1

WO 00/38070

Processing Node
12A

2/16

CLK_L 24BA
_ /

PCT/US99/19856

A

CTL 24BB
/_

CAD_L[n:0]

A

o
CLK_L 24AA
- /_

CTL 24AB
/T

CAD_L[n:0]

FIG. 2

Processing Node
128

WO 00/38070 PCT/US99/19856

3/16

Bit Time | 7 6 5 4 3 2 1 0

1 CMD[5:0]

o

FIG. 3
BitTme| 7 | 6 | 56 | 4 | 3 | 2 | 1|0
’ De[s:!\étlbde CMD[5:0]
5 S[r:::'(')?g SrcNode[3:0] De[sgtg?de
3 SrcTag[6:2]
4 Addr{7:0]
5 Addr[15:8]
6 Addr[23:16]
7 Addr{31:24]
8 Addr[39:32]

FIG. 4

WO 00/38070 PCT/US99/19856
4/16
BitTme| 7 | 6 | 5 | 4 | 3 | 2| 1| o
1 Delsﬂ\g]’de CMD[5:0]
2 S{;’EQ SrcNode[3:0] De[sgf‘é‘]’de
3 SrcTag[6:2]
4
w
FIG. 5
BitTime| 7 | 6 | 5 | 4 | 3 | 2| 1| o
1 Tgﬁ"_,'glde CMD[5:0]
2 S[r;:?(;?g SrcNode[3:0] Tg[g\:l;]de
3 Count SrcTag[6:2]
4 Addr{7:0]
5 Addr[15:8]
6 Addr23:16]
7 Addr[31:24]
8 Addr{39:32]

FIG. 6

WO 00/38070 PCT/US99/19856

5/16

Bit Time| 7 6 5 4 3 2 1 0

1 Data [7:0]

2 Data [15:8]
3 Data [23:16]
4 Data [31:24]
5 Data [39:32]
6 Data [47:40]
7 Data [55:48]
8 Data [63:56]

FIG. 7

WO 00/38070

PCT/US99/19856
6/16
CMD Code Command Packet Type

000000 Nop Info
000001 Interrupt Broadcast Command
000011 Reserved -
000100 Probe/Src Command/Address
000101 Probe/Tgt Command/Address
00011x Reserved -
001000 RdBIkS Command/Address
001001 RdBIlk Command/Address
001010 RdBIkMod Command/Address
001011 ChangeToDirty Command/Address
001100 ValidateBlk Command/Address
001110 CleanVicBlk Command/Address
001101 Interrupt Target Command
001111 VicBlk Command/Address/Data
01xxxx Read(Sized) Command/Address
10xxxx Write(Sized) Command/Address/Data
11000x RdResponse Rd Response
11001x Reserved -
11010x ProbeResp Response
11011x Reserved -
111000 SrcDone Response
111001 MemCancel Response
111010 TgtStart Response
111011 Reserved -
11110x TgtDone Response
111110 IntrResponse Response
111111 Error Info

s0—"

FIG. 8

PCT/US99/19856

WO 00/38070

7116

auo(9IS

MEMORY

421

42

FIG. 9

WO 00/38070 PCT/US99/19856

8/16
Bit Time | 7 6 5 4 3 2 1 0
TgtNode .
1 [1:0] CMDJ5:0]
SrcTag) TgtNode
2 [1:0] SrcNode[3:0] 3:2]
g | NextState | SrcTag[6:2]
[1:0]
4 Addr[7:0]
5 Addr[15:8]
6 Addr[23:16]
7 Addr[31:24]
8 Addr{39:32]
w FIG. 10A

Next State [1:0] Next State

0 No Change

Shared:
1 Clean—»Shared
Dirty —» Shared/Dirty
2 Invalid

—

FIG. 10B

WO 00/38070

PCT/US99/19856
9/16
Bit Time | 7 6 5 4 3 2 0
RespNode _
1 [1:0] CMDI[5:0]
SrcTag) TgtNode
2 [1:0] SrcNode[3:0] [3:2]
3 Count SrcTag[6:2]
4 Rsv Probe | Type
48 _/
FIG. 11A
Probe Probe Type, Count
0 X Encode Length of Data Packet
1 0 Cache Block:
Type Must be 1, Count Must be 7
1 1 Cache Block:
Type Must be 1, Count Must be 7

50»/

FIG. 11B

PCT/US99/19856

WO 00/38070

10/16

¢l Old
\ s
v
[z:0]Be 1018 WH AsYH €
winties | olees | o0
[0:slawo mu%_”ﬁmmm !
ol v]lz|lelv]|s]| o]l m“_cm__p

PCT/US99/19856

WO 00/38070

11/16

auoQ 9IS

asuodsay peay

asuodsay aqoid

auo(Q }ebie|

MEMORY

421

54

FIG. 13

PCT/US99/19856

WO 00/38070

12/16

MEMORY

421

56

FIG. 14

PCT/US99/19856

WO 00/38070

13/16

[2oueD W

ejeq + PUBLLLIOD Y|FOIA

auoq 1ebie|

N

MEMORY

421

o

FIG. 15A

PCT/US99/19856

WO 00/38070
14/16
70\
'bob
&&
N
P
NP
W
=
C
O —
Ex 3
52 &
Olo:
© £
gz 8
°og\ =
o g

MEMORY
421

FIG. 15B

WO 00/38070

PCT/US99/19856

15/16

Coherent System Node

Y
Src Node sends Read
Command to Tgt Node

A 4

Probe Command from
Target Node to all the
remaining system nodes
and RdResponse from
Tgt Node to Src Node

Dirty

¥

A 4
-Node with dirty block
sends a RdResp to the
SrcNode and a
MemCancel response to
the TgtNode
-Other remaining nodes
send Probe Responses

to the SrcNode

Did
TgtNode send
RdResponse prior to
receiving
MemCancel?

No

TgtNode sends TgtDone

Not Dirty

w

.| SrcNode waits for all the

Probe Responses from
all the remaining system
nodes, and Read
Response from TgtNode
to SrcNode

A 4

»i

response to the SrcNode

60/

responses

No

All responses
received by the
SrcNode?

SrcNode sends SrcDone

End

FIG. 16A

response to TgtNode

WO 00/38070

PCT/US99/19856

16/16

Coherent System Nodes

Y

VicBlk command and
data from the source
node to the target node

y

TgtDone response from
the target node to the
source node

Yes

A

Source
Node receiving
an invalidating probe
prior to the
TgtDone

esponse?,

y

MemCancel response

the target node

from the source node to the source node to the

SrcDone response from

target node

v

FIG. 16B

INTERNATIONAL SEARCH REPORT

Intetr onal Application No

PCT/US 99/19856

A CLASSIFICATIONOF SUBJECT MATTER
IPC 7 GO6F12/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A EP 0 777 184 A (IBM)
4 June 1997 (1997-06-04)
page 5, line 24 - line 50

X EP 0 379 771 A (DIGITAL EQUIPMENT CORP) 1-4,7.,8
1 August 1990 (1990-08-01)
column 4, line 14 -column 6, line 53

1-4,7-9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of padicular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date ctaimed

"T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot ba considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

20 January 2000

Date of mailing of the international search report

27/01/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-~70) 340~-3016

Authorized officer

Michel, T

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inter. nal Application No

PCT/US 99/19856

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

13 February 1991 (1991-02-13)
the whole document

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
A COSIMO A PRETE: "RST CACHE MEMORY DESIGN 1,2,6,7,
FOR A TIGHTLY COUPLED MULTIPROCESSOR 10
SYSTEM"
IEEE MICRO,US,IEEE INC. NEW YORK,
vol. 11, no. 2, April 1991 (1991-04), page
16-19,40-52 XP000228222
ISSN: 0272-1732
page 16, right-hand column, 1ine 10 -page
17, left-hand column, line 7
page 40, left-hand column, line 2 -page
41, left-hand column, line 6
A EP 0 611 026 A (SGS THOMSON 1-3,5,7,
MICROELECTRONICS) 8
17 August 1994 (1994-08-17)
column 5, line 51 -column 6, line 27
A JHANG S T ET AL: "A NEW WRITE-INVALIDATE 1,7
SNOOPING CACHE COHERENCE PROTOCOL FOR
SPLIT TRANSACTION BUS-BASED MULTIPROCESSOR
SYSTEMS™
PROCEEDINGS OF THE REGION TEN CONFERENCE
(TENCON),US,NEW YORK, IEEE,
vol. -, 19 October 1993 (1993-10~19), page
229-232 XP000463271
page 229, right-hand column, line 37 -
line 48
A EP 0 412 353 A (HITACHI LTD) 1,7

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter:

nal Application No

PCT/US 99/19856

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0379771 01-08-1990 JP 2205963 A 15-08-1990

EP 0777184 04-06-1997 us 5659710 A 19-08-1997
JP 9218822 A 19-08-1997

EP 0611026 17-08-1994 us 5590307 A 31-12-1996
JP 6259323 A 16-09-1994

EP 0412353 13-02-1991 JP 3163640 A 15-07-1991
us 5283886 A 01-02-1994

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

