(86) Date de dépôt PCT/PCT Filing Date: 2011/11/15
(87) Date publication PCT/PCT Publication Date: 2012/05/31
(85) Entrée phase nationale/National Entry: 2013/05/22
(86) N° demande PCT/PCT Application No.: US 2011/060692
(87) N° publication PCT/PCT Publication No.: 2012/071212
(30) Priorité/Priority: 2010/11/23 (US61/416,636)

(54) Titre : NOUVEAUX ACIDES PHOSPHONIQUES UTILISES COMME MODULATEURS DES RECEPTEURS S1P
(54) Title: NOVEL PHOSPHONIC ACIDS AS S1P RECEPTOR MODULATORS

(57) Abrégé/Abstract:
The present invention relates to novel phosphonic acids derivatives, processes for preparing them, pharmaceutical compositions containing them and their use as pharmaceuticals as modulators of sphingosine-1-phosphate receptors.
(51) International Patent Classification:
C07F 9/38 (2006.01) A61K 31/675 (2006.01)
A61K 31/662 (2006.01)

(21) International Application Number:
PCT/US2011/060692

(22) International Filing Date:
15 November 2011 (15.11.2011)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
61/416,636 23 November 2010 (23.11.2010) US

(72) Inventors: and

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(iii))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(88) Date of publication of the international search report:
4 April 2013

(54) Title: NOVEL PHOSPHONIC ACIDS AS S1P RECEPTOR MODULATORS

(57) Abstract: The present invention relates to novel phosphonic acids derivatives, processes for preparing them, pharmaceutical compositions containing them and their use as pharmaceuticals as modulators of sphingosine-1-phosphate receptors.
NOVEL PHOSPHONIC ACIDS AS S1P RECEPTOR MODULATORS

By inventors: Janet Takeuchi, Ling Li, Ken Chow and Wha-Bin Im

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Serial No. 61/416,636 filed November 23, 2010, which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to novel phosphonic acids derivatives, processes for preparing them, pharmaceutical compositions containing them and their use as pharmaceuticals, as modulators of sphingosine-1-phosphate receptors. The invention relates specifically to the use of these compounds and their pharmaceutical compositions to treat disorders associated with sphingosine-1-phosphate receptor modulation.

BACKGROUND OF THE INVENTION

Sphingosine-1 phosphate is stored in relatively high concentrations in human platelets, which lack the enzymes responsible for its catabolism, and it is released into the blood stream upon activation of physiological stimuli, such as growth factors, cytokines, and receptor agonists and antigens. It may also have a critical role in platelet aggregation and thrombosis and could aggravate cardiovascular diseases.

On the other hand the relatively high concentration of the metabolite in high-density lipoproteins (HDL) may have beneficial implications for atherogenesis. For example, there are recent suggestions that sphingosine-1-phosphate, together with other lysolipids such as sphingosylphosphorylcholine and lysosulfatide, are responsible for the beneficial clinical effects of HDL by stimulating the production of the potent antiatherogenic signaling molecule nitric oxide by the vascular endothelium. In addition, like lysophosphatidic acid, it is a marker for certain types of cancer, and there is evidence that its role in cell division or proliferation may have an influence on the development of cancers. These are currently topics that are attracting great interest amongst medical researchers, and the potential for therapeutic intervention in sphingosine-1-phosphate metabolism is under active investigation.

10 SUMMARY OF THE INVENTION

A group of novel phosphonic acid derivatives, which are potent and selective sphingosine-1-phosphate modulators has now been discovered. As such, the compounds described herein are useful in treating a wide variety of disorders associated with modulation of sphingosine-1-phosphate receptors. The term "modulator" as used herein, includes but is not limited to: receptor agonist, antagonist, inverse agonist, inverse antagonist, partial agonist, partial antagonist.

This invention describes compounds of Formula I, which have sphingosine-1-phosphate receptor biological activity. The compounds in accordance with the present invention are thus of use in medicine, for example in the treatment of humans with diseases and conditions that are alleviated by S1P modulation.

In one aspect, the invention provides a compound having Formula I or individual stereoisomeric forms thereof, or individual geometrical isomers, individual enantiomers, individual diastereoisomers, individual tautomers, individual zwitterions or a pharmaceutically acceptable salt thereof:

```
R1 R2 R3 R4
\ / \ / \ / \ / \
N N N N
\ / \ / \ / \ / \
O O O O
\ / \ / \ / \ / \
N N N N
\ / \ / \ / \ / \
R5 R6 R7 R7
```

25
wherein:

R^1 is N or C-R^9;
R^2 is H, C_{1-10} alkyl, halogen, hydroxyl or -OC_{1-10} alkyl;
R^3 is aromatic heterocycle, non-aromatic heterocycle, C_{3-8} cycloalkyl, C_{3-8} cycloalkenyl or C_{6-10} aryl;
R^4 is the same or is independently H, halogen, -OC_{1-10} alkyl, hydroxyl, C_{1-10} alkyl, nitrile, NR^7R^8, C_{2-6} alkenyl, C_{2-6} alkynyl, aromatic heterocycle, non-aromatic heterocycle, C_{3-8} cycloalkyl, C_{3-8} cycloalkenyl or C_{6-10} aryl;
R^5 is H, halogen, -OC_{1-10} alkyl, hydroxyl or C_{1-10} alkyl;
R^6 is H, C_{1-10} alkyl, halogen, hydroxyl or -OC_{1-10} alkyl;
R^7 is H or C_{1-10} alkyl;
R^8 is H or C_{1-10} alkyl;
R^9 is H or C_{1-10} alkyl; and

a is 1, 2, 3, 4 or 5; with the proviso that the compound is not of formula

![Chemical Structure](image)

In another aspect the invention provides a compound having Formula I, wherein

R^1 is C-R^9;
R^2 is H, C_{1-10} alkyl or halogen;
R^5 is H, halogen or C_{1-10} alkyl;
R^6 is H, C_{1-10} alkyl or halogen;
R^9 is H or C_{1-10} alkyl;
R^3 is ;

R^4 is the same or is independently H, halogen, -OC_{1-10} alkyl, hydroxyl, C_{1-10} alkyl; and a is 1, 2 or 3.

In another aspect the invention provides a compound having Formula I, wherein

R^1 is C-R^8;
R^2 is H;
R^5 is H;
R^6 is H;

R^9 is H;

R^3 is ;

R^4 is the same or is independently H, halogen, -OC_{1-10} alkyl or C_{1-10} alkyl; and a is 1 or 2.

The term "alkyl", as used herein, refers to saturated, monovalent or divalent hydrocarbon moieties having linear or branched moieties or combinations thereof and containing 1 to 10 carbon atoms. One methylene (-CH_2-) group, of the alkyl can be replaced by oxygen, sulfur, sulfoxide, amide, nitrogen, carbonyl, carboxyl, sulfonyl, or by a divalent C_{3-6} cycloalkyl. Alkyl groups can be substituted by halogen, hydroxyl, cycloalkyl, amino, non-aromatic heterocycles, carboxylic acid, phosphonic acid groups, sulphonic acid groups, phosphoric acid.
The term “cycloalkyl”, as used herein, refers to a monovalent or divalent group of 3 to 8 carbon atoms, preferably 3 to 5 carbon atoms derived from a saturated cyclic hydrocarbon. Cycloalkyl groups can be monocyclic or polycyclic. Cycloalkyl can be substituted by C\textsubscript{1-3} alkyl groups or halogens.

The term “cycloalkenyl”, as used herein, refers to a monovalent or divalent group of 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms derived from a saturated cycloalkyl having one double bond. Cycloalkenyl groups can be monocyclic or polycyclic. Cycloalkenyl groups can be substituted by C\textsubscript{1-3} alkyl groups or halogens.

The term “halogen”, as used herein, refers to an atom of chlorine, bromine, fluorine, iodine.

The term “alkenyl”, as used herein, refers to a monovalent or divalent hydrocarbon radical having 2 to 6 carbon atoms, derived from a saturated alkyl, having at least one double bond. C\textsubscript{2-6} alkenyl can be in the E or Z configuration. Alkenyl groups can be substituted by C\textsubscript{1-3} alkyl.

The term “alkynyl”, as used herein, refers to a monovalent or divalent hydrocarbon radical having 2 to 6 carbon atoms, derived from a saturated alkyl, having at least one triple bond. Alkynyl groups can be substituted by C\textsubscript{1-3} alkyl.

The term “heterocycle” as used herein, refers to a 3 to 10 membered ring, which can be aromatic or non-aromatic, saturated or non-saturated, containing at least one heteroatom selected from O or N or S or combinations of at least two thereof, interrupting the carbocyclic ring structure. The heterocyclic ring can be interrupted by a C=O; the S heteroatom can be oxidized. Heterocycles can be monocyclic or polycyclic. Heterocyclic ring moieties can be substituted by hydroxyl, C\textsubscript{1-3} alkyl or halogens. Usually, in the present case, heterocyclic groups are 5 or 6 membered rings. Usually, in the present case, heterocyclic groups are pyridine, furan, azetidine, thiazole, thiophene, oxazoles, pyrazoles, oxadiazole, triazole, tetrahydrobenzo[c]thiophene.

The term “aryl” as used herein, refers to an organic moiety derived from an aromatic hydrocarbon consisting of a ring containing 6 to 10 carbon atoms by
removal of one hydrogen, which can be substituted by halogen atoms or by C1-3 alkyl groups, or by –O(C1-6 alkyl) groups, or heterocycles, or aryl groups. Aryls can be monocyclic or polycyclic. Usually aryl is phenyl.

The term "hydroxyl" as used herein, represents a group of formula “-OH”.

The term "carbonyl" as used herein, represents a group of formula "-C(O)".

The term "carboxyl" as used herein, represents a group of formula "-C(O)O-".

The term "sulfonyl" as used herein, represents a group of formula "-SO2".

The term "sulfate" as used herein, represents a group of formula "-O-S(O)2-O-".

The term "carboxylic acid" as used herein, represents a group of formula "-C(O)OH".

The term "sulfoxide" as used herein, represents a group of formula "-S=O".

The term "phosphonic acid" as used herein, represents a group of formula "-P(O)(OH)2".

The term "phosphoric acid" as used herein, represents a group of formula "-(O)P(O)(OH)2".

The term "sulphonic acid" as used herein, represents a group of formula "-S(O)2OH".

The formula "H+", as used herein, represents a hydrogen atom.

The formula "O-", as used herein, represents an oxygen atom.

The formula "N+", as used herein, represents a nitrogen atom.

The formula "S-", as used herein, represents a sulfur atom.

Compounds of the invention are:

{3-[(4-{5-[2'-methyl-2-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl}phosphonic acid;
{3-[(4-{5-[4-(2-methylpiperidin-1-yl)-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[3-(methoxymethyl)-4-(2-methylpiperidin-1-yl)phenyl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[1-(2-fluorophenyl)-5-pyridin-4-yl-1H-1,2,3-triazol-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[2-(methoxymethyl)-2'-methylbiphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[3-methyl-4-(4-methyl-3-thienyl)phenyl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[3-cyano-4-isopropoxyphenyl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[4-cyclohexyl-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[2-methyl-6-propylpyridin-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[4-isobutyl-3,5-dimethyl-2-thienyl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid;

{3-[(4-{5-[3,5,5-trimethyl-4,5,6,7-tetrahydro-2-benzothien-1-yl]-1,2,4-oxadiazol-3-yl}benzyl)amino]propyl}phosphonic acid.

Some compounds of Formula I and some of their intermediates have at least one stereogenic center in their structure. This stereogenic center may be present in an R or S configuration, said R and S notation is used in correspondence with the rules described in Pure Appl. Chem. (1976), 45, 11-13.

The term “pharmaceutically acceptable salts” refers to salts or complexes that retain the desired biological activity of the above identified compounds and exhibit minimal or no undesired toxicological effects. The “pharmaceutically acceptable
salts" according to the invention include therapeutically active, non-toxic base or acid salt forms, which the compounds of Formula I are able to form.

The acid addition salt form of a compound of Formula I that occurs in its free form as a base can be obtained by treating the free base with an appropriate acid such as an inorganic acid, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; or an organic acid such as for example, acetic, hydroxyacetic, propanoic, lactic, pyruvic, malonic, fumaric acid, maleic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, citric, methylsulfonic, ethanesulfonic, benzenesulfonic, formic and the like (Handbook of Pharmaceutical Salts, P. Heinrich Staehel & Camille G. Wermuth (Eds), Verlag Helvetica Chemica Acta- Zürich, 2002, 329-345).

Compounds of Formula I and their salts can be in the form of a solvate, which is included within the scope of the present invention. Such solvates include for example hydrates, alcoholates and the like.

With respect to the present invention reference to a compound or compounds, is intended to encompass that compound in each of its possible isomeric forms and mixtures thereof unless the particular isomeric form is referred to specifically.

Compounds according to the present invention may exist in different polymorphic forms. Although not explicitly indicated in the above formula, such forms are intended to be included within the scope of the present invention.

The compounds of the invention are indicated for use in treating or preventing conditions in which there is likely to be a component involving the sphingosine-1-phosphate receptors.

In another embodiment, there are provided pharmaceutical compositions including at least one compound of the invention in a pharmaceutically acceptable carrier.

In a further embodiment of the invention, there are provided methods for treating disorders associated with modulation of sphingosine-1-phosphate receptors. Such methods can be performed, for example, by administering to a subject in need
thereof a pharmaceutical composition containing a therapeutically effective amount of at least one compound of the invention.

These compounds are useful for the treatment of mammals, including humans, with a range of conditions and diseases that are alleviated by S1P modulation: not limited to the treatment of diabetic retinopathy, other retinal degenerative conditions, dry eye, angiogenesis and wounds.

Therapeutic utilities of S1P modulators are ocular diseases, such as but not limited to: Ocular Diseases: wet and dry age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, retinal edema, geographic atrophy, glaucomatous optic neuropathy, chorioretinopathy, hypertensive retinopathy, ocular ischemic syndrome, prevention of inflammation-induced fibrosis in the back of the eye, various ocular inflammatory diseases including uveitis, scleritis, keratitis, and retinal vasculitis;

Systemic vascular barrier related diseases: various inflammatory diseases, including acute lung injury, its prevention, sepsis, tumor metastasis, atherosclerosis, pulmonary edemas, and ventilation-induced lung injury;

Autoimmune diseases and immunosuppression: rheumatoid arthritis, Crohn's disease, Graves' disease, inflammatory bowel disease, multiple sclerosis, Myasthenia gravis, Psoriasis, ulcerative colitis, antoimmune uveitis, renal ischemia/perfusion injury, contact hypersensitivity, atopic dermatitis, and organ transplantation;

Allergies and other inflammatory diseases: urticaria, bronchial asthma, and other airway inflammations including pulmonary emphysema and chronic obstructive pulmonary diseases;

Cardiac functions: bradycardia, congestional heart failure, cardiac arrhythmia, prevention and treatment of atherosclerosis, and ischemia/reperfusion injury;

Wound Healing: scar-free healing of wounds from cosmetic skin surgery, ocular surgery, GI surgery, general surgery, oral injuries, various mechanical, heat and burn injuries, prevention and treatment of photoaging and skin ageing, and prevention of radiation-induced injuries;

Bone formation: treatment of osteoporosis and various bone fractures including hip and ankles;
Anti-nociceptive activity: visceral pain, pain associated with diabetic neuropathy, rheumatoid arthritis, chronic knee and joint pain, tendonitis, osteoarthritis, neuropathic pains;

Anti-fibrosis: ocular, cardiac, hepatic and pulmonary fibrosis, proliferative vitreoretinopathy, cicatricial pemphigoid, surgically induced fibrosis in cornea, conjunctiva and tenon;

Pains and anti-inflammation: acute pain, flare-up of chronic pain, musculo-skeletal pains, visceral pain, pain associated with diabetic neuropathy, rheumatoid arthritis, chronic knee and joint pain, tendonitis, osteoarthritis, bursitis, neuropathic pains;

CNS neuronal injuries: Alzheimer’s disease, age-related neuronal injuries;

Organ transplants: renal, corneal, cardiac and adipose tissue transplants.

In still another embodiment of the invention, there are provided methods for treating disorders associated with modulation of sphingosine-1-phosphate receptors. Such methods can be performed, for example, by administering to a subject in need thereof a therapeutically effective amount of at least one compound of the invention, or any combination thereof, or pharmaceutically acceptable salts, hydrates, solvates, crystal forms and individual isomers, enantiomers, and diastereomers thereof.

The present invention concerns the use of a compound of Formula I or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment of:

Ocular Diseases: wet and dry age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, retinal edema, geographic atrophy, glaucomatous optic neuropathy, chorioretinopathy, hypertensive retinopathy, ocular ischemic syndrome, prevention of inflammation-induced fibrosis in the back of the eye, various ocular inflammatory diseases including uveitis, scleritis, keratitis, and retinal vasculitis;

Systemic vascular barrier related diseases: various inflammatory diseases, including acute lung injury, its prevention, sepsis, tumor metastasis, atherosclerosis, pulmonary edemas, and ventilation-induced lung injury;

Autoimmune diseases and immnunosuppression: rheumatoid arthritis, Crohn’s disease, Graves’ disease, inflammatory bowel disease, multiple sclerosis, Myasthenia gravis, Psoriasis, ulcerative colitis, antoimmune uveitis, renal
ischemia/perfusion injury, contact hypersensitivity, atopic dermatitis, and organ transplantation;
Allergies and other inflammatory diseases: urticaria, bronchial asthma, and other airway inflammations including pulmonary emphysema and chronic obstructive pulmonary diseases;
Cardiac functions: bradycardia, congestional heart failure, cardiac arrhythmia, prevention and treatment of atherosclerosis, and ischemia/reperfusion injury;
Wound Healing: scar-free healing of wounds from cosmetic skin surgery, ocular surgery, GI surgery, general surgery, oral injuries, various mechanical, heat and burn injuries, prevention and treatment of photoaging and skin ageing, and prevention of radiation-induced injuries;
Bone formation: treatment of osteoporosis and various bone fractures including hip and ankles;
Anti-nociceptive activity: visceral pain, pain associated with diabetic neuropathy, rheumatoid arthritis, chronic knee and joint pain, tendonitis, osteoarthritis, neuropathic pains;
Anti-fibrosis: ocular, cardiac, hepatic and pulmonary fibrosis, proliferative vitreoretinopathy, cicatricial pemphigoid, surgically induced fibrosis in cornea, conjunctiva and tenon;
Pains and anti-inflammation: acute pain, flare-up of chronic pain, musculo-skeletal pains, visceral pain, pain associated with diabetic neuropathy, rheumatoid arthritis, chronic knee and joint pain, tendonitis, osteoarthritis, bursitis, neuropathic pains;
CNS neuronal injuries: Alzheimer's disease, age-related neuronal injuries;
Organ transplants: renal, corneal, cardiac and adipose tissue transplants.

The actual amount of the compound to be administered in any given case will be determined by a physician taking into account the relevant circumstances, such as the severity of the condition, the age and weight of the patient, the patient's general physical condition, the cause of the condition, and the route of administration.

The patient will be administered the compound orally in any acceptable form, such as a tablet, liquid, capsule, powder and the like, or other routes may be
desirable or necessary, particularly if the patient suffers from nausea. Such other routes may include, without exception, transdermal, parenteral, subcutaneous, intranasal, via an implant stent, intrathecal, intravitreal, topical to the eye, back to the eye, intramuscular, intravenous, and intrarectal modes of delivery. Additionally, the formulations may be designed to delay release of the active compound over a given period of time, or to carefully control the amount of drug released at a given time during the course of therapy.

In another embodiment of the invention, there are provided pharmaceutical compositions including at least one compound of the invention in a pharmaceutically acceptable carrier thereof. The phrase "pharmaceutically acceptable" means the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.

Pharmaceutical compositions of the present invention can be used in the form of a solid, a solution, an emulsion, a dispersion, a patch, a micelle, a liposome, and the like, wherein the resulting composition contains one or more compounds of the present invention, as an active ingredient, in admixture with an organic or inorganic carrier or excipient suitable for enteral or parenteral applications. Invention compounds may be combined, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use. The carriers which can be used include glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, medium chain length triglycerides, dextrins, and other carriers suitable for use in manufacturing preparations, in solid, semisolid, or liquid form. In addition auxiliary, stabilizing, thickening and coloring agents and perfumes may be used. Invention compounds are included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the process or disease condition.

Pharmaceutical compositions containing invention compounds may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions
and such compositions may contain one or more agents selected from the group consisting of a sweetening agent such as sucrose, lactose, or saccharin, flavoring agents such as peppermint, oil of wintergreen or cherry, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets containing invention compounds in admixture with non-toxic pharmaceutically acceptable excipients may also be manufactured by known methods. The excipients used may be, for example, (1) inert diluents such as calcium carbonate, lactose, calcium phosphate or sodium phosphate; (2) granulating and disintegrating agents such as corn starch, potato starch or alginic acid; (3) binding agents such as gum tragacanth, corn starch, gelatin or acacia, and (4) lubricating agents such as magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glycercyl monostearate or glycercyl distearate may be employed.

In some cases, formulations for oral use may be in the form of hard gelatin capsules wherein the invention compounds are mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin. They may also be in the form of soft gelatin capsules wherein the invention compounds are mixed with water or an oil medium, for example, peanut oil, liquid paraffin or olive oil.

The pharmaceutical compositions may be in the form of a sterile injectable suspension. This suspension may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butandiol. Sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides, fatty acids (including oleic acid), naturally occurring vegetable oils like sesame oil, coconut oil, peanut oil, cottonseed oil, etc., or synthetic fatty vehicles like ethyl oleate or the like. Buffers, preservatives, antioxidants, and the like can be incorporated as required.
Invention compounds may also be administered in the form of suppositories for rectal administration of the drug. These compositions may be prepared by mixing the invention compounds with a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters of polyethylene glycols, which are solid at ordinary temperatures, but liquefy and/or dissolve in the rectal cavity to release the drug.

Since individual subjects may present a wide variation in severity of symptoms and each drug has its unique therapeutic characteristics, the precise mode of administration and dosage employed for each subject is left to the discretion of the practitioner.

The compounds and pharmaceutical compositions described herein are useful as medicaments in mammals, including humans, for treatment of diseases and/or alleviations of conditions which are responsive to treatment by agonists or functional antagonists of sphingosine-1-phosphate receptors. Thus, in further embodiments of the invention, there are provided methods for treating a disorder associated with modulation of sphingosine-1-phosphate receptors. Such methods can be performed, for example, by administering to a subject in need thereof a pharmaceutical composition containing a therapeutically effective amount of at least one invention compound. As used herein, the term "therapeutically effective amount" means the amount of the pharmaceutical composition that will elicit the biological or medical response of a subject in need thereof that is being sought by the researcher, veterinarian, medical doctor or other clinician. In some embodiments, the subject in need thereof is a mammal. In some embodiments, the mammal is human.

The present invention concerns also processes for preparing the compounds of Formula I. The compounds of Formula I can be prepared analogously to conventional methods as understood by the person skilled in the art of synthetic organic chemistry. The synthetic scheme set forth below illustrates how compounds according to the invention can be made. Those skilled in the art will be able to routinely modify and/or adapt the following scheme to synthesize any compounds of the invention covered by Formula I.
DETAILED DESCRIPTION OF THE INVENTION

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention claimed. As used herein, the use of the singular includes the plural unless specifically stated otherwise.

It will be readily apparent to those skilled in the art that some of the compounds of the invention may contain one or more asymmetric centers, such that the compounds may exist in enantiomeric as well as in diastereomeric forms. Unless it is specifically noted otherwise, the scope of the present invention includes all enantiomers, diastereomers and racemic mixtures. Some of the compounds of the invention may form salts with pharmaceutically acceptable acids or bases, and
such pharmaceutically acceptable salts of the compounds described herein are also within the scope of the invention.

The present invention includes all pharmaceutically acceptable isotopically enriched compounds. Any compound of the invention may contain one or more isotopic atoms enriched or different than the natural ratio such as deuterium 2H (or D) in place of protium 1H (or H) or use of 13C enriched material in place of 12C and the like. Similar substitutions can be employed for N, O and S. The use of isotopes may assist in analytical as well as therapeutic aspects of the invention. For example, use of deuterium may increase the in vivo half-life by altering the metabolism (rate) of the compounds of the invention. These compounds can be prepared in accord with the preparations described by use of isotopically enriched reagents.

The following examples are for illustrative purposes only and are not intended, nor should they be construed as limiting the invention in any manner. Those skilled in the art will appreciate that variations and modifications of the following examples can be made without exceeding the spirit or scope of the invention.

As will be evident to those skilled in the art, individual isomeric forms can be obtained by separation of mixtures thereof in conventional manner. For example, in the case of diastereoisomeric isomers, chromatographic separation may be employed.

Compound names were generated with ACD version 8; some intermediates' and reagents' names used in the examples, were generated with software such as Chem Bio Draw Ultra version 12.0 or Auto Nom 2000 from MDL ISIS Draw 2.5 SP1.

In general, characterization of the compounds is performed using NMR spectra which were recorded on 300 and/or 600 MHz Varian and acquired at room temperature. Chemical shifts are given in ppm referenced either to internal TMS or to the solvent signal.

All the reagents, solvents, catalysts for which the synthesis is not described were purchased from chemical vendors such as Sigma Aldrich, Fluka, Bio-Blocks, Combi-blocks, TCI, VWR, Lancaster, Oakwood, Trans World Chemical, Alfa, Fisher, Maybridge, Frontier, Matrix, Ukrorgsynth, Toronto, Ryan Scientific, SiliCycle,
Anaspec, Syn Chem, Chem-Impex, MIC-scientific, Ltd; however some known intermediates, were prepared according to published procedures.

Usually the compounds of the invention were purified by column chromatography (Auto-column) on a Teledyne-ISCO CombiFlash with a silica column, unless noted otherwise.

The following abbreviations are used in the general schemes and in the examples:

CDCl₃ deuterated chloroform
MeOH methanol
CD₃OD deuterated methanol
THF tertahydrofuran
EtOAc ethylacetate
MPLC medium pressure column chromatography
CDI 1,1'-Carbonyldiimidazole
TPAP tetrapropylammonium perruthenate
NMO N-methylmorpholine-N-oxide
rt room temperature
h hours
K₂CO₃ potassium carbonate
Bu₄NOH Tetraethylammonium hydroxide
Bu₄N Tetrabutylammonium
MWI microwave
TFA-d deuterated trifluoroacetic acid

Example 1

Intermediate 1

(4-(5-(4-isopropoxy-3-(trifluoromethyl)phenyl)-1,2,4-oxadiazol-3-yl)phenyl)methanol

![Intermediate 1 Structure](image)
To a solution of 4-isopropoxy-3-(trifluoromethyl)benzoic acid (CAS 213598-16-4) (1.04g, 4.19 mmol) in THF (20mL) was added CDI (748mg, 4.61 mmol). After stirring at rt for 2 h, N'-hydroxy-4-(hydroxymethyl)benzenecarboximidamide (CAS 1233243-49-6) (766mg, 4.61 mmol) was added to the mixture and resulting solution was stirred at 50°C for 3 h. The reaction mixture was submitted to the microwave at 150°C for 20 min. The reaction mixture was quenched with water, extracted with EtOAc and washed with K₂CO₃, brine, dried over magnesium sulfate and concentrated. The crude material was purified by MPLC (1:1 ethyl acetate in hexanes) to give rise to 874 mg of the title compound as a colorless solid.

³¹H NMR (300MHz, CDCl₃) δ 1.43-1.44 (m, 6H), 4.77-4.79 (m, 3H), 7.13-7.15 (m, 1H), 7.50-7.51 (m, 2H), 8.14-8.16 (m, 2H), 8.29-8.31 (m, 1H), 8.42-8.43 (m, 1H).

Intermediate 2

\[
\text{[4-[5-(3-bromo-4-isopropoxyphenyl)-1,2,4-oxadiazol-3-yl]phenyl]methanol}
\]

Intermediate 2 was prepared from the corresponding starting materials, following the procedure described in Example 1.

³¹H NMR (300MHz, CDCl₃) δ 1.43-1.45 (m, 6H), 4.66-4.77 (m, 3H), 6.98-7.02 (m, 1H), 7.47-7.50 (m, 2H), 8.01-8.14 (m, 3H), 8.39-8.40 (m, 1H)

Example 2

Intermediate 3

\[
4-[5-[4-isopropoxy-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzaldehyde
\]
To a solution of Intermediate 1 (874mg, 2.3mmol), NMO (676mg, 5.78mmol), molecule sieves 4Å (0.4g) in dicholormethane (20mL) and acetonitrile (3mL) was added TPAP (20mg). The reaction mixture was stirred at rt for 3 h, filtered through celite, and concentrated. The crude material was purified by MPLC (35% ethyl acetate in hexanes) to yield 531mg of the title compound as a colorless solid.

\[^{1}\text{H NMR (300MHz, CDCl}_3\text{) \delta 1.44-1.45 (m, 6H), 4.78-4.82(m, 1H), 7.16-7.17(m, 1H), 8.03-8.05 (m, 2H), 8.32-8.36(m, 3H), 8.45-8.46(m, 1H), 10.12(s, 1H)}\]

Intermediate 4

4-[5-(3-bromo-4-isopropoxyphenyl)-1,2,4-oxadiazol-3-yl]benzaldehyde

Intermediate 4 was prepared from **Intermediate 2**, following the procedure described in Example 2.

\[^{1}\text{H NMR (300MHz, CDCl}_3\text{) \delta 1.45-1.47 (m, 6H), 4.68-4.77(m, 1H), 7.02-7.05(m, 1H), 8.01-8.04 (m, 2H), 8.09-8.13(m, 1H), 8.33-8.36(m, 2H), 8.42-8.43(m, 1H), 10.11(s, 1H)}\]

Example 3

Compound 1

{3-[(4-{5-[4-isopropoxy-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl]amino}propyl]phosphonic acid
To a solution of Intermediate 3 (214mg, 0.57mmol) in MeOH (15mL) at 50°C, was added 3-aminopropyl-phosphonic acid (CAS 13138-33-5) (79mg, 0.57mmol) followed by Bu₄NOH (0.8mL, 0.57mmol). After stirring at 50°C for 30 min, sodium cyanoborohydride (36mg, 0.57mmol) was added and stirred at 50°C for another 3h. Concentration and purification by MPLC (100% MeOH) gave 108mg of Compound 1 as a colorless solid.

¹H NMR (300MHz, CD₃OD) δ 1.41-1.43 (m, 6H), 1.61-1.71(m, 2H), 1.87-1.95(m, 2H), 2.88-2.92(m, 2H), 4.02(s, 2H), 4.82-4.94(m, 1H), 7.42-7.45(m, 1H), 7.62-7.65(m, 2H), 8.11-8.17(m, 2H), 8.38-8.41(m, 2H)

Compounds 2 and 3 were prepared from the corresponding starting materials in a similar manner to the procedure described in Example 3 for Compound 1. The results are tabulated below in Table 1.

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>IUPAC name</th>
<th>Intern. No.</th>
<th>¹H NMR δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>[3-{{4-[5-(3-bromo-4-isopropoxyphenyl)-1,2,4-oxadiazol-3-yl]benzyl}amino}propyl]phosphonic acid</td>
<td>4</td>
<td>¹H NMR (300MHz, CD₃OD) δ 1.38-1.45 (m, 6H), 1.60-1.68(m, 2H), 1.89-1.93(m, 2H), 2.84-2.86(m, 2H), 3.98(s, 2H), 4.82-4.89(m, 1H), 7.25-7.27(m, 1H), 7.61-7.62(m, 2H), 8.10-8.16(m, 3H), 8.36-8.37(m, 1H)</td>
</tr>
<tr>
<td>3</td>
<td>(3-{4-[5-(4-isobutyl-phenyl)-[1,2,4]oxadiazol-3-yl]-benzylamino}-propyl)-phosphonic acid</td>
<td></td>
<td>¹H NMR (600mHz, TFA-d) δ: 8.18 - 8.40 (m, 4H), 7.84 (d, J = 6.7 Hz, 2H), 7.73 (br. s., 2H), 7.60 (d, J = 7.9 Hz, 2H), 4.62 (br. s., 2H), 3.62 (br. s., 2H), 2.76 (d, J = 7.3 Hz, 2H), 2.43 (br. s., 2H), 2.30 (d, J = 15.6 Hz, 2H), 2.00 - 2.14 (m, 1H), 1.06 (d, J = 6.5 Hz, 6H)</td>
</tr>
</tbody>
</table>
Biological Data

Compounds were synthesized and tested for S1P1 activity using the GTP γ\(^{35}\)S binding assay. These compounds may be assessed for their ability to activate or block activation of the human S1P1 receptor in cells stably expressing the S1P1 receptor.

GTP γ\(^{35}\)S binding was measured in the medium containing (mM) HEPES 25, pH 7.4, MgCl\(_2\) 10, NaCl 100, dithiothreitol 0.5, digitonin 0.003%, 0.2 nM GTP γ\(^{35}\)S, and 5 µg membrane protein in a volume of 150 µl. Test compounds were included in the concentration range from 0.08 to 5,000 nM unless indicated otherwise.

Membranes were incubated with 100 µM 5'-adenylylimidodiphosphate for 30 min, and subsequently with 10 µM GDP for 10 min on ice. Drug solutions and membrane were mixed, and then reactions were initiated by adding GTP γ\(^{35}\)S and continued for 30 min at 25 °C. Reaction mixtures were filtered over Whatman GF/B filters under vacuum, and washed three times with 3 mL of ice-cold buffer (HEPES 25, pH7.4, MgCl\(_2\) 10 and NaCl 100). Filters were dried and mixed with scintillant, and counted for \(^{35}\)S activity using a β-counter. Agonist-induced GTP γ\(^{35}\)S binding was obtained by subtracting that in the absence of agonist. Binding data were analyzed using a non-linear regression method. In case of antagonist assay, the reaction mixture contained 10 nM S1P in the presence of test antagonist at concentrations ranging from 0.08 to 5000 nM.

Table 2 shows activity potency: S1P1 receptor from GTP γ\(^{35}\)S: nM, (EC\(_{50}\)).

Activity potency: S1P1 receptor from GTP γ\(^{35}\)S: nM, (EC\(_{50}\))

<table>
<thead>
<tr>
<th>IUPAC name</th>
<th>S1P1 EC(_{50}) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{3-[(4-(5-[4-isopropoxy-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl}phosphonic acid</td>
<td>3.14</td>
</tr>
<tr>
<td>[3-[(4-(5-[3-bromo-4-isopropoxyphenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl]phosphonic acid</td>
<td>3.1</td>
</tr>
<tr>
<td>(3-[4-[5-(4-isobutyl-phenyl)-[1,2,4]oxadiazol-3-yl]-benzylamino]-propyl)-phosphonic acid</td>
<td>1.78</td>
</tr>
</tbody>
</table>
What is claimed is:

1. A compound having Formula I, or individual stereoisomeric forms thereof, or individual geometrical isomers, individual enantiomers, individual diastereoisomers, individual tautomers, individual zwitterions or a pharmaceutically acceptable salt thereof:

![Formula I](image)

wherein:

- R^1 is N or C-R^9;
- R^2 is H, C$_{1-10}$ alkyl, halogen, hydroxyl or -OC$_{1-10}$ alkyl;
- R^3 is aromatic heterocycle, non-aromatic heterocycle, cycloalkyl, cycloalkenyl or aryl;
- R^4 is independently H, halogen, -OC$_{1-10}$ alkyl, hydroxyl, C$_{1-10}$ alkyl, nitrile, NR7R8, C$_2$-C_6 alkenyl, C$_{2-6}$ alkynyl, aromatic heterocycle, non-aromatic heterocycle, cycloalkyl, cycloalkenyl or aryl;
- R^5 is H, halogen, -OC$_{1-10}$ alkyl, hydroxyl or C$_{1-10}$ alkyl;
- R^6 is H, C$_{1-10}$ alkyl, halogen, hydroxyl or -OC$_{1-10}$ alkyl;
- R^7 is H or C$_{1-10}$ alkyl;
- R^8 is H or C$_{1-10}$ alkyl;
- R^9 is H or C$_{1-10}$ alkyl; and
- a is 1, 2, 3, 4 or 5; with the proviso that the compound is not of formula
2. A compound according to claim 1, wherein:
 \(R^1 \) is C-\(R^9 \);
 \(R^2 \) is H, \(C_{1-10} \) alkyl or halogen;
 \(R^5 \) is H, halogen or \(C_{1-10} \) alkyl;
 \(R^6 \) is H, \(C_{1-10} \) alkyl or halogen;
 \(R^9 \) is H or \(C_{1-10} \) alkyl;

3. A compound according to claim 2, wherein:

 \(R^1 \) is C-\(R^9 \);
 \(R^2 \) is H;
 \(R^5 \) is H;
 \(R^6 \) is H;
 \(R^9 \) is H;
R^3 is

R^4 is the same or is independently H, halogen, -OC_{1-10} alkyl or C_{1-10} alkyl; and

a is 1 or 2.

4. A compound according to claim 1 selected from:

{3-[4-[5-{2'-methyl-2-(trifluoromethyl)biphenyl-4-yl}-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

{3-[4-[5-[4-(2-methylpiperidin-1-yl)-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

{3-[4-[5-[3-(methoxymethyl)-4-(2-methylpiperidin-1-yl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

{3-[4-[5-{1-(2-fluorophenyl)-5-pyridin-4-yl-1H-1,2,3-triazol-4-yl}-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

{3-[4-[5-{2-(methoxymethyl)-2'-methylbiphenyl-4-yl}-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

{3-[4-[5-[3-methyl-4-(4-methyl-3-thienyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

[3-{4-[5-(3-cyano-4-isopropoxyphenyl)-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

{3-[4-[5-[4-cyclohexyl-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

{3-[4-[5-(2-methyl-6-propylpyridin-4-yl)-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid;

[3-{4-[5-(4-isobutyl-3,5-dimethyl-2-thienyl)-1,2,4-oxadiazol-3-yl]benzyl}amino]propyl}phosphonic acid; and

{3-{4-[5-(3,5,5-trimethyl-4,5,6,7-tetrahydro-2-benzothien-1-yl)-1,2,4-oxadiazol-3-yl]benzyl}amino}propyl}phosphonic acid.
5. A compound according to claim 3 selected from:
 \{3-[(4-[(5-[4\text{-}isopropoxy-3\text{-}(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 [3-((4-[5-(3-bromo-4-isopropoxyphenyl)]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid; and
 (3-[4-[(5-[4\text{-}isobutyl-phenyl]-1,2,4-oxadiazol-3-yl]-benzylamino]-propyl\}phosphonic acid.

6. A pharmaceutical composition comprising as active ingredient a therapeutically effective amount of a compound according to claim 1 and a pharmaceutically acceptable adjuvant, diluents or carrier.

7. A pharmaceutical composition according to claim 6 wherein the compound is selected from:
 \{3-[(4-[(5-[2\text{-}methyl-2\text{-}(trifluoromethyl) biphenyl]-4-yl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[(5-[4-(2-methylpiperidin-1-yl)]-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[(5-[3-(methoxymethyl)]-4-(2-methylpiperidin-1-yl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[5-[1-(2-fluorophenyl)]-5-pyridin-4-yl]-1H-1,2,3-triazol-4-yl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[(5-[2-(methoxymethyl)]-2\text{-}methylbiphenyl]-4-yl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[(5-[3-methyl-4-(4-methyl-3-thienyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[(5-[3-cyano-4-isoproxyphenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[5-cyclohexyl-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[5-(2-methyl-6-propylpyridin-4-yl)]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
 \{3-[(4-[5-(4-isobutyl-3,5-dimethyl-2-thienyl]-1,2,4-oxadiazol-3-yl]benzyl)amino]propyl\}phosphonic acid;
[3-\{(4-[5-(3,5,5-trimethyl-4,5,6,7-tetrahydro-2-benzothien-1-yl)-1,2,4-oxadiazol-3-yl]benzyl)amino)propyl\}phosphonic acid.

8. A pharmaceutical composition according to claim 6 wherein the compound is selected from:

- \{3-\{(4-[5-[4-isopropoxy-3-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl]benzyl)amino)propyl\}phosphonic acid;
- \{3-\{(4-[5-(3-bromo-4-isopropoxyphenyl)-1,2,4-oxadiazol-3-yl]benzyl)amino)propyl\}phosphonic acid; and
- \{3-\{(4-[5-(4-lsobutyl-phenyl)-1,2,4-oxadiazol-3-yl]-benzylamino)propyl\}phosphonic acid.

9. A method of treating a disorder associated with sphingosine-1-phosphate receptor modulation, which comprises administering to a mammal in need thereof, a pharmaceutical composition comprising a therapeutically effective amount of at least one compound of Formula I

\[
\text{Formula I}
\]

wherein:
- \(R^1\) is N or C-\(R^6\);
- \(R^2\) is H, C_{1-10} alkyl, halogen, hydroxyl or -OC_{1-10} alkyl;
- \(R^3\) is aromatic heterocycle, non-aromatic heterocycle, cycloalkyl, cycloalkenyl or aryl;
- \(R^4\) is independently H, halogen, -OC_{1-10} alkyl, hydroxyl, C_{1-10} alkyl, nitrile, NR^7R^8, C_{2-6} alkenyl, C_{2-6} alkynyl, aromatic heterocycle, non-aromatic heterocycle, cycloalkyl, cycloalkenyl or aryl;
R^5 is H, halogen, -OC$_{1-10}$ alkyl, hydroxyl or C$_{1-10}$ alkyl;
R^6 is H, C$_{1-10}$ alkyl, halogen, hydroxyl or -OC$_{1-10}$ alkyl;
R^7 is H or C$_{1-10}$ alkyl;
R^8 is H or C$_{1-10}$ alkyl;
R^9 is H or C$_{1-10}$ alkyl; and
a is 1, 2, 3, 4 or 5; with the proviso that the compound is not of formula

10. A method of claim 9, wherein the pharmaceutical composition is administered to the mammal to treat ocular disease, wet and dry age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, retinal edema, geographic atrophy, glaucomatous optic neuropathy, chorioretinopathy, hypertensive retinopathy, ocular ischemic syndrome, prevention of inflammation-induced fibrosis in the back of the eye, various ocular inflammatory diseases including uveitis, scleritis, keratitis, and retinal vasculitis; or systemic vascular barrier related diseases, various inflammatory diseases, including acute lung injury, its prevention, sepsis, tumor metastasis, atherosclerosis, pulmonary edemas, and ventilation-induced lung injury; or autoimmune diseases and immunosuppression, rheumatoid arthritis, Crohn's disease, Graves' disease, inflammatory bowel disease, multiple sclerosis, Myasthenia gravis, Psoriasis, ulcerative colitis, autoimmune uveitis, renal ischemia/perfusion injury, contact hypersensitivity, atopic dermatitis, and organ transplantation; or allergies and other inflammatory diseases, urticaria, bronchial asthma, and other airway inflammations including pulmonary emphysema and chronic obstructive pulmonary diseases; or cardiac protection, ischemia reperfusion injury and atherosclerosis; or wound healing, scar-free healing of wounds from cosmetic skin surgery, ocular surgery, GI surgery, general surgery, oral injuries, various mechanical, heat and burn injuries, prevention and treatment of photoaging and skin ageing, and prevention of radiation-induced injuries; or bone
formation, treatment of osteoporosis and various bone fractures including hip and ankles; or anti-nociceptive activity, visceral pain, pain associated with diabetic neuropathy, rheumatoid arthritis, chronic knee and joint pain, tendonitis, osteoarthritis, neuropathic pains.

11. The method of claim 10 wherein the mammal is a human.