


Sept. 2, 1958

R. SMITH

2,850,431

SOLVENT DEASPHALTING

Filed Dec. 30, 1955

United States Patent Office

2,850,431

Patented Sept. 2, 1953

1

2,850,431

SOLVENT DEASPHALTING

Randlow Smith, New Rochelle, N. Y., assignor to The Texas Company, New York, N. Y., a corporation of Delaware

Application December 30, 1955, Serial No. 556,496

8 Claims. (Cl. 196—14.46)

This invention relates to the treatment of asphaltic oils with a deasphalting solvent for the separation of asphaltic constituents therefrom. More particularly, this invention is concerned with the treatment of asphaltic residual hydrocarbon oils for the recovery of asphaltic constituents therefrom and for the production of a deasphalted oil suitable for use as a catalytic cracking feed stock. In accordance with one embodiment, this invention relates to a process for deasphalting residual hydrocarbon oils for the production of an asphalt fraction and a deasphalted oil fraction which is subsequently solvent refined for the preparation of a catalytic cracking feed stock characterized by a relatively low metals content.

It is an object of this invention to provide an improved solvent deasphalting process.

It is another object of this invention to provide an improved solvent deasphalting process employing a volatile deasphalting solvent, such as a normally gaseous hydrocarbon, e. g., ethane, propane, n-butane, isobutane, n-pentane, isopentane and mixtures thereof, wherein the deasphalting solvent after having been employed to separate asphaltic constituents from the asphaltic oil undergoing treatment is recovered in a deasphalting solvent recovery system which does not require the use of compressors to effect liquefaction and recovery of the deasphalting solvent.

It is another object of this invention to provide an improved and economical method for the recovery of deasphalting solvent employed in an operation involving the solvent deasphalting of asphaltic residual hydrocarbon oils.

How these and other objects of this invention are accomplished will become apparent with reference to the accompanying disclosure and drawing wherein there is schematically illustrated an embodiment of the practice of this invention directed to the solvent deasphalting of an asphaltic residual hydrocarbon oil. In at least one embodiment of this invention at least one of the foregoing objects will be achieved.

In accordance with this invention an asphaltic oil is solvent deasphalting by contact with a deasphalting solvent under deasphalting conditions of temperature and pressure to effect separation of asphaltic constituents from said oil. There is recovered from the aforesaid deasphalting operation a liquid deasphalted oil phase having a reduced amount of asphaltic constituents and containing a portion of said deasphalting solvent and a liquid asphalt phase containing another portion of said deasphalting solvent. The deasphalted oil phase at substantially the deasphalting conditions of temperature and pressure is partially volatilized or vaporized, as by pressure reduction, to produce a resulting first liquid phase and a resulting first vapor phase containing deasphalting solvent at a temperature T_1 and at a pressure P_1 . The resulting first liquid phase is further treated, e. g., partial vaporization by pressure reduction, to produce a resulting second liquid phase comprising deasphalted oil and a resulting second vapor phase comprising deasphalting solvent at a tem-

2

perature T_2 and a pressure P_2 , T_2 being lower than T_1 and P_2 being lower than P_1 . The aforesaid first and second vapor phases are then passed in indirect heat exchange relationship to each other whereby the temperature of said first vapor phase is reduced such that the vapor pressure of the deasphalting solvent therein is substantially lower than P_1 , preparatory to or leading to the ready liquefaction and condensation of the deasphalting solvent in said first vapor phase. The resulting second vapor phase after heat exchange with said vapor phase is then cooled to a temperature sufficiently low to effect condensation of the deasphalting solvent therein. By operating in accordance with the above-broadly-indicated method the deasphalting solvent contained in the deasphalted liquid oil phase issuing from the solvent deasphalting operation is substantially completely recovered in liquid form without requiring the use of compressors and the like and is available for recycle to the solvent deasphalting operation. Also by operating a solvent deasphalting operation in accordance with the above-indicated method, substantial heat economy is possible.

Referring now in detail to the drawing a reduced crude, such as a mixture of reduced California crudes, having an initial boiling point greater than about 650° F., usually having a boiling point greater than about 800° F., amounting to about 35-75% by volume of the original crude, is supplied via line 11 to vis-breaker 12 where it is subjected to temperature, pressure and throughput conditions so as to mildly lower the viscosity of the reduced crude. A temperature in the range 800-1000° F. and a pressure in the range 50-800 p. s. i. g. are usually sufficient to effect mild vis-breaking of the reduced crude.

Vis-breaking of the reduced crude serves to reform or otherwise alter some of the high molecular weight or high boiling constituents of the reduced crude into relatively low molecular weight or low boiling constituents. The vis-breaking operation tends to produce lower boiling, more aromatic constituents which are generally more refractory in a catalytic cracking operation than lower boiling, more paraffinic hydrocarbons which are also produced. The vis-breaking operation complements and otherwise cooperates with a subsequent combination of deasphalting and solvent refining operations described hereinafter. The vis-breaking operation increases the yield of naphtha recoverable from the reduced crude in that the relatively more aromatic hydrocarbons produced during the vis-breaking operations are separated in a subsequent combination of fractionation, and deasphalting and solvent refining steps with the resulting production of a more paraffinic catalytic cracking charge stock suitable for the production of a catalytic cracked naphtha.

The mildly vis-broken reduced crude from vis-breaker 12 is introduced via line 14 into fractionator or atmospheric flasher 15 from which there is recovered overhead via line 16 a gas fraction comprising normally gaseous hydrocarbons such as propane and the butanes, a naphtha fraction via line 18, such as a 430° F. end point naphtha, and a gas oil fraction via line 19. There is also recovered from flasher 15 a bottoms fraction via line 20. The flasher bottoms is then introduced via line 20 into vacuum still or distillation zone 21 where it undergoes further fractionation for the production of a light gas oil fraction recovered via line 22 and a heavy gas oil fraction recovered via line 24. Vacuum bottoms is recovered from vacuum still 21 via line 25.

The vacuum bottoms fraction recovered from vacuum still 21 via line 25, usually having a gravity °A. P. I. in the range 3-12 and a Conradson carbon residue in the range 15-40%, more or less, is introduced via line 25 into the upper part of solvent deasphalting tower or zone 26. The solvent deasphalting operation may be a batch operation, a multiple vessel operation or a substan-

5
tially continuous liquid-liquid counter-current treating operation, as indicated in the drawing, wherein the vacuum bottoms to be deasphalted is introduced via line 25 into the top of deasphalting tower 26 and flowed therein in countercurrent liquid-liquid contact with a suitable deasphalting solvent, such as a liquefied normally gaseous hydrocarbon, e. g., propane, n-butane, isobutane. The deasphalting solvent is introduced via line 29 into the bottom portion of deasphalting tower 26 from deasphalting solvent storage tank 28.

A suitable deasphalting solvent in accordance with the practice of this invention is a liquefied normally gaseous hydrocarbon such as ethane, ethylene, propane, propylene, normal butane, isobutane, n-butylene, isobutylene, pentane, isopentane and mixtures thereof, either alone or in admixture with a minor amount of additive materials to improve the deasphalting operation or otherwise increase the yield and quality of the deasphalting oil and/or the recovered asphalt. The deasphalting operation is carried out at any suitable deasphalting temperature and pressure, the temperature and pressure being adjusted so as to maintain the deasphalting solvent in the liquid phase during the deasphalting operation. A deasphalting temperature in the range 150-325° F., usually not more than 75 degrees Fahrenheit lower than the critical temperature of the deasphalting solvent, and a pressure in the range 200-800 p. s. i. g., are employed depending upon the composition of the deasphalting solvent employed and to some extent the composition of the vacuum bottoms undergoing deasphalting. Generally, a deasphalting solvent to vacuum bottoms volume charge ratio in the range 2-10 is employed within deasphalting tower 26. Deasphalting tower 26 may be operated under substantially isothermal conditions or under a temperature gradient, e. g., top tower temperature greater than bottom tower temperature by not more than about 40 degrees Fahrenheit. Also deasphalting tower 26 may be operated so that the vacuum bottoms is introduced thereto at a number of points along the height of the tower and/or so that the deasphalting solvent is introduced thereto at a number of points.

Following the deasphalting operation there is recovered from deasphalting tower 26 a deasphalted oil solvent mix via line 31 and an asphalt solvent mix via line 30. The deasphalted oil in the mix in line 31 may have a gravity °A. P. I. in the range 10-25 and a Conradson carbon residue in the range 1-10% and a viscosity in the range 200-600 SUS at 210° F., more or less. The deasphalted oil solvent mix is transferred from line 31 via line 32 through a vaporizing device, such as pressure reducing or expansion valve 34, and through a heater 35 into deasphalted oil flash drum 36. From flash drum 36 there is removed overhead via line 38 a first vapor phase containing deasphalting solvent vapor. There is also removed from the bottom of flash drum 36 via line 39 a first liquid phase containing deasphalted oil admixed with deasphalting solvent. The first liquid phase is passed via line 39 through a second vaporizing device, such as pressure reducing valve 40, whereby it is partially vaporized to a lower temperature and pressure than the temperature and pressure prevailing in line 38. The resulting partially vaporized first liquid phase is then passed in indirect counter-current heat exchange relationship via lines 41a, 41b and 41c by means of heat exchangers 42a, 42b and 42c with said first vapor phase introduced into the heat exchangers via lines 44a, 44b and 44c, respectively. After the above-described heat exchange has taken place the resulting partially vaporized first liquid phase is recovered via line 45 and introduced into deasphalting solvent storage tank 28. The resulting cooled first vapor phase, approaching the temperature of the partially vaporized first liquid phase in lines 41a, 41b and 41c, is recovered via line 48 and, if necessary, after having been cooled in cooler 49 is introduced into deasphalting solvent storage tank 28 from which the result-

5
ing liquefied deasphalting solvent can be returned to deasphalting tower 26 via line 29.

The partially vaporized first liquid phase introduced into deasphalting oil flash drum 46 via line 45 is separated into an overhead solvent vapor phase via line 51 comprising substantially only deasphalting solvent and a liquid oil phase via line 52 comprising substantially only deasphalted oil. The deasphalting solvent vapor phase in line 51 is cooled in cooler 54 and the resulting liquefied deasphalting solvent is passed via lines 55 and 56 into deasphalting solvent storage tank 58.

The liquid asphalt deasphalting solvent mix leaving deasphalting tower 26 is passed via line 30 through a heater 59 and line 60 into asphalt flasher 61. The resulting vaporized deasphalting solvent is removed overhead from asphalt flasher 61 via line 62 for introduction into deasphalting oil flash drum 46 for the eventual liquefaction and recovery of the deasphalting solvent as indicated hereinabove. There is removed from asphalt flasher 61 a liqued asphalt bottoms via line 64 which is introduced into asphalt stripper 65 for the removal overhead via line 66 of residual deasphalting solvent by the injection of high temperature, high pressure steam into asphalt stripper 65 via line 68. The resulting steam stripped asphalt is removed as liquid bottoms from asphalt stripper 65 via line 69.

30
35
3b
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450

contacted therein with a solvent extract mix comprising selective solvent, such as furfural, together with the dissolved hydrocarbons therein, which is recovered from solvent refining unit 91, described hereinafter, and introduced into pretreater 90 via line 92. The resulting deasphalted oil raffinate from pretreater 90 is recovered via line 94 and introduced into line 85 for introduction into selective solvent refining unit 91 in admixture with the bottoms fraction recovered from topping still 82 and the gas oil fractions removed from vacuum still 21 via lines 22, 24 and 95. If desired, liquid deasphalting solvent from deasphalting solvent storage tank 58 may be admixed via lines 80 and 96 with the pretreated deasphalted oil prior to introduction into selective solvent refining unit 91. Also, if desired, a portion of the deasphalted oil solvent mix recovered from deasphalting tower 26 via line 31 may be introduced via line 95 into line 85 for eventual admixture with the pretreated deasphalted oil in selective solvent refining unit 91.

The resulting extract effluent from pretreater 90 is recovered via line 98 and introduced into selective solvent recovery unit 99 wherein the selective solvent, e. g., furfural, is recovered and recycled to selective solvent refining unit 91 via line 100. The resulting separated extract is recovered from selective solvent refining unit 99 via line 101. Various selective solvents may be employed in selective solvent refining unit 91, these include furfural, phenols (Selecto), nitrobenzene, sulfur dioxide, β,β' -dichloroethyl ether (Chlorex), dimethyl formamide and other selective solvents for aromatic hydrocarbons.

The resulting admixture in line 85 comprising the bottoms fraction from topping still 82, the gas oil fractions from vacuum still 21, selective solvent pretreated deasphalted oil from pretreater 90 and, if desired, the liquid deasphalting solvent recovered from deasphalting solvent storage tank 58 via lines 80 and 96 or a portion of the deasphalted oil-deasphalting solvent mix recovered from deasphalting tower 26 via lines 31 and 95, is introduced into selective solvent refining unit 91 wherein it flows in liquid-liquid counter-current contact with a liquid selective solvent, such as furfural, which selectively dissolves or extracts the more aromatic hydrocarbons therefrom. As previously indicated, the resulting extract mix from selective solvent refining unit 91 comprising selective solvent and extracted hydrocarbons is recovered via line 92 and introduced into pretreater 90.

The aromatic type hydrocarbons contained in the extract mix introduced into pretreater 90 via line 92 and employed to contact and pretreat the deasphalted oil introduced thereto via line 89 further increase the solvent power of the selective solvent for the metal-containing components in the deasphalted oil being thus pretreated and thus assist in the removal of these metal-containing components (the presence of which is undesirable in a catalytic cracking charge stock) from the deasphalted oil. Furthermore, since the concentration of the metal-containing components would be greater in the deasphalted oil than in the admixture in line 85 introduced into selective solvent refining unit 91 a greater overall degree of metals removal is possible. Also, the selective solvent contained in the deasphalted oil raffinate recovered from pretreater 90 via line 94 serves to predilute the deasphalted oil raffinate introduced in admixture with the gas oils and bottoms fraction via line 85 into selective solvent refining unit 91. This predilution of the feed to the selective solvent refining unit 91 increases the efficiency of the selective solvent refining operation therein. Still further, the deasphalted oil introduced into pretreater 90 via line 89 removes from the extract mix introduced thereto via line 92 the lower molecular weight, more paraffinic hydrocarbons therein which may have been taken into solution in the extract mix during the refining of the combined feed admixture supplied to the selective solvent refining unit 91 via line 85. These more paraffinic ma-

terials are returned continuously to the selective solvent refining unit 91 and thus the overall yield of the raffinate recovered from selective solvent refining unit 91 via line 102 is increased. The contacting or scrubbing of the extract mix within pretreater 90 should result in a reduction in the quantity of the more paraffinic materials withdrawn from pretreater 90 as solvent effluent via line 98 and eventually removed from the system as extract suitable as cutter stock via line 101.

The raffinate removed from selective solvent refining unit 91 via line 102 having a reduced metals content, e. g., vanadium, nickel, copper, iron and similar heavy metals, in the range 0.2-5 p. p. m., after having been freed of its selective solvent content is combined via line 84 with the 500° F. end point naphtha fraction recovered from topping still 82 and introduced as feed stock to fluid catalytic cracking unit 104 where it is contacted with fluidized cracking catalyst.

A cracking catalyst usually comprises an oxide of metals of groups II, III, IV and V of the periodic table, for example, a silica-alumina catalyst containing about 5-30% by weight alumina. The average particle size of the cracking catalyst particles is usually below about 200 microns, a size sufficient to produce a dense fluidized bed of cracking catalyst.

The resulting cracked catalyst effluent from fluid catalytic cracking unit 104 is introduced via line 105 into fractionator 106 wherein it is fractionated into a catalytic cracked naphtha recovered via line 108, a catalytic cracked light gas oil recovered via line 109 and a relatively heavy cycle gas oil, e. g., FCCU decanted oil, recovered via line 110.

To the asphalt recovered from asphalt stripper 65 via line 69, which asphalt may have a ring and ball softening point in the range 180°-325° F., is added at least a portion of the gas oil fractions recovered from catalytic cracking fractionator 106 via lines 109, 110 and 111 and at least a portion of the selective solvent-free extract recovered from selective solvent recovery zone 99 via line 101, the resulting stream of combined catalytic cracked gas oils and selective solvent extract being added via line 111 as cutter stock to the asphalt in line 69.

If desired, at least a portion of the catalytic cracked light gas oil recovered from fractionator 106 via line 109 and/or the heavy gas oil or FCCU decanted oil recovered via line 110 are passed via lines 111 and 89 to pretreater 90 or in admixture via lines 112 and 85 to selective solvent refining unit 91 for the recovery of the more paraffinic constituents therefrom as raffinate via line 102 to provide additional catalytic cracking charge stock and for the eventual recovery of the more aromatic constituents therefrom as extract via line 101 as cutter stock. When the gas oil recovered from catalytic cracking fractionator 106, such as the FCCU decanted oil, possesses a relatively high metals content, e. g., more than about 30 p. p. m. heavy metals, the gas oils are preferably introduced via lines 111 and 89 as feed to pretreater 90 in order to reduce its metals content.

Pretreater 90 is operated at any suitable temperature and pressure for effecting liquid-liquid contacting and for the removal of the more aromatic components contained in the feed thereto. The operating conditions and solvent dosages employed within pretreater 90 are influenced to some extent by the composition of feed thereto and the type of selective solvent employed therein. In the instance where furfural is employed as the selective solvent pretreater 90 is operated at a solvent dosage in the range 75-250%, e. g., 125%, basis oil charge whereas selective solvent refining unit 91, employing the same solvent (furfural), might be operated at a relatively lower solvent dosage in the range 10-100%, e. g., about 25%, basis oil charge thereto. By operating in accordance with this feature of the invention the

yield of recoverable catalytic cracked naphtha is further increased.

Cutback product asphalt is recovered via line 114. Desirably, however, especially when a heavy crude such as a San Ardo, California, crude is the source of the reduced crude introduced into the above-described operations via line 11, the asphalt in line 69, prior to the addition of cutter stock thereto via line 111, is subjected to vis-breaking as indicated by asphalt vis-breaker 115 in the drawing and the cutter stock added to the resulting vis-broken asphalt via line 111a. The resulting cutback vis-broken asphalt is then removed as product via line 118. Desirably a portion of the combined stream employed as cutter stock in line 111 is admixed via line 116 with the solvent asphalt mix recovered from deasphalting tower 26 via line 30 prior to introducing the same into asphalt heater 59. This addition of cutter stock to the asphalt deasphalting solvent mix prior to introduction into asphalt heater 59 is desirable in order to alleviate coke deposition and reduce cracking which might otherwise occur within the furnace heating tubes and upon the heated surfaces within the asphalt-deasphalting solvent recovery system.

The following is illustrative of the practice of this invention. A mixture comprising California crude was atmospherically distilled to about 50-55% volume reduced crude based on the original crude mixture and charged through a heater operated under mild viscosity breaking conditions at an outlet temperature of 850° F. The resulting mildly viscosity broken reduced crude was introduced into an atmospheric flasher from which was recovered overhead approximately 46% total volume yield of gas oil, naphtha and atmospheric viscosity broken gas oil, basis reduced crude, in the following amounts: gas 1% volume; 430° F. end point naphtha 3.5% volume; gas oil 41.5% volume, the atmospheric flasher being operated at a maximum temperature of about 790°-800° F. The atmospheric flasher bottoms having a gravity of about 12° A. P. I. and a Conradson carbon residue of about 15 was introduced into a vacuum still operated at about 25 mm. Hg at a temperature of 665° F. There was recovered overhead from the vacuum still gas oil fractions amounting to about 42% by volume of the vacuum still charge and a heavy bottoms fraction amounting to about 16% by volume basis original crude mixture or about 33.8% volume basis reduced crude. The vacuum still bottoms had a gravity of about 3.6° A. P. I., a penetration (100 gm./5 sec./77° F. cm. $\times 10^{-2}$) in the range 27-29 and a Conradson carbon residue in the range 26-33.

Portions of the above-identified vacuum still bottoms were solvent deasphalting with liquid isobutane as the deasphalting solvent, employing a solvent:oil volume ratio of 5:1 at various temperatures in the range 200°-275° F. and at a pressure in the range 200-500 p. s. i. g. The results of these operations are set forth in accompanying Table No. I.

Table No. I

Solvent	Deasphalting		Deasphaled oil				
	Temp., ° F.	Press., p.s.i.g.	Yield, weight percent	Carbon residue, percent	P. p.m. Fe	P. p.m. Ni	P. p.m. V
Charge							
Isobutane	200	280	46.0	5.9	80	150	350
Do.	235	335	40.1	5.0	6	11	9
Do.	245	385	42.0	4.1	6	8	5
Do.	270	475	35.6	3.0	8	3	3

There was directly recovered from a deasphalting operation carried out in the manner described hereinabove a liquid deasphalting solvent-deasphaled oil mix containing deasphaled oil and isobutane at a temperature of about 248° F. and at a pressure of about 390

75

p. s. i. g.; there was also directly recovered a liquid deasphalting solvent-asphalt mix containing asphalt and liquid isobutane at about the same aforesaid temperature and pressure. The liquid deasphaled oil-isobutane mix leaving the deasphalting operation at a pressure of about 390 p. s. i. g. was partially vaporized by passage through an expansion valve to yield a first vapor phase at a temperature of about 190° F. and at a pressure of at least about 175 p. s. i. g., e. g., about 210 p. s. i. g., and a first liquid phase at substantially the same temperature and pressure as said first vapor phase. The first liquid phase is then partially vaporized by passage through an expansion valve to yield a partially liquefied admixture containing deasphaled oil and vaporous isobutane at a temperature of about 145° F. and at a pressure of at least about 75 p. s. i. g., preferably about 100 p. s. i. g. The resulting vaporous admixture is then passed in indirect heat exchange relationship with said first vapor phase to yield a resulting relatively cooled first vapor phase at a temperature in the range 190°-200° F. (at a pressure about 205 p. s. i. g.) whereby the isobutane deasphalting solvent in said first vapor phase is condensed and liquefied or is readily condensed and liquefied by supplemental cooling to a temperature of about 190° F. the pressure in the resulting cooled first vapor phase being at least about 160 p. s. i. g. and higher if necessary in order to effect liquefaction of the isobutane deasphalting solvent. The resulting admixture of liquid deasphaled oil and vaporous isobutane derived from first said liquid phase, after having been passed in indirect heat exchange relationship with said first vapor phase, now at a temperature of about 160° F. and is passed to a gas liquid separator from which there is recovered overhead, at a pressure of about 100 p. s. i. g., vaporous isobutane which is liquefied and condensed by cooling to a temperature of about 126° F. at a pressure of at least about 95 p. s. i. g. The separated deasphaled oil is then steam stripped to effect substantially complete removal of isobutane therefrom and the resulting steam stripped isobutane is recovered by cooling the effluent resulting from the steam stripping operation to a temperature of about 90°-100° F., more or less, at a pressure of at least about 50 p. s. i. g., preferably above about 75 p. s. i. g. and at least sufficient to effect liquefaction of the deasphalting solvent at said temperature, and passed to storage at a temperature of about 126° F. at a pressure of about 95 p. s. i. g.

The deasphaled oil recovered from a solvent recovery operation described hereinabove has a gravity in the range 15.3°-16.8° A. P. I., a viscosity SUS 210° F. in the range 238-281 and a K factor of about 11.7.

The liquid asphalt deasphalting solvent mix phase containing asphalt admixed with isobutane, after the addition of an amount of cycle gas oil cutter stock, is passed to the asphalt heater and heated to a temperature of about 500° F. at a pressure of about 100 p. s. i. g. The resulting heated asphalt-isobutane stream was passed to an asphalt separator from which there is recovered overhead vaporous isobutane which is admixed with vaporous isobutane from the deasphaled oil flash drum, from which admixture liquid isobutane is condensed by cooling the resulting vaporous stream to a temperature of about 126° F. at a pressure preferably at least about 100 p. s. i. g. The liquid asphalt bottoms recovered from the asphalt separator is then steam stripped for the removal of any residual isobutane and recovered as a product. There was recovered from the aforementioned operations an asphalt having a ring and ball softening point in the range 200°-300° F.

A high boiling petroleum fraction comparable to the deasphaled oil recovered from the asphalt deasphalting operation is subjected to liquid-liquid contact with furfural solvent extract mix at a solvent dosage in the range 100-200% volume, e. g., 125%, basis oil charge, the furfural solvent extract mix having been derived

from the furfural solvent refining of the resulting deasphalted oil raffinate in admixture with VPS gas oil, said subsequent furfural refining being carried out at a solvent dosage in the range 15-75%, basis oil charge. The raffinate resulting from the subsequent furfural refining operation possesses a significantly lower metals content, substantially below 30 p. p. m., in the range 5-20 p. p. m. and lower.

It is also advantageous in the practice of this invention to carry out the subsequent solvent refining operation and/or the selective solvent pretreatment of the deasphalted oil in the presence of a substantial amount of a light liquid hydrocarbon, such as the deasphalting solvent, in an amount in the range 10-200% volume, more or less, based on the deasphalted oil charged to the pretreater or to the selective solvent refining unit. By so operating the metals content of the resulting raffinate (selective solvent refined deasphalted oil) is further reduced, e. g., below about 5 p. p. m. The advantages of carrying out a solvent refining operation in the presence of a liquid low molecular weight hydrocarbon, e. g., deasphalting added thereto or present in the deasphalted oil due to the incomplete removal of deasphalting solvent therefrom is more completely set forth in copending, coassigned patent application Serial No. 547,638, filed November 18, 1955. Also the advantages of carrying out a solvent refining operation by pretreating a deasphalted oil by contact with a solvent extract mix and then subjecting the resulting pretreated deasphalted oil to contact with fresh selective solvent in a selective solvent refining unit in order to produce a suitable catalytic cracking charge stock is more completely set forth in copending, coassigned patent application Serial No. 556,495, filed December 30, 1955. The disclosures of the above-referred patent applications are herein incorporated and made part of this disclosure.

As will be apparent to those skilled in the art in the light of the foregoing disclosure, many substitutions, changes and alterations are possible in the practice of this invention without departing from the spirit or scope thereof.

I claim:

1. A method of treating an asphaltic oil which comprises contacting said oil with a deasphalting solvent under deasphalting conditions of temperature and pressure to effect separation of asphaltic constituents from said oil, recovering from the aforesaid operation a liquid oil phase having a reduced amount of asphaltic constituents and containing a portion of said deasphalting solvent and a liquid asphalt phase containing another portion of said deasphalting solvent, treating said liquid oil phase to produce a resulting first liquid phase and a resulting first vapor phase comprising deasphalting solvent at a temperature T_1 and at a pressure P_1 , treating said first liquid phase to convert the same to a resulting second liquid phase and a resulting second vapor phase comprising deasphalting solvent at a temperature T_2 and a pressure P_2 , T_2 being lower than T_1 and P_2 being lower than P_1 , passing said first vapor phase and second vapor phase in indirect heat exchange relationship to each other whereby the temperature of said first vapor phase is reduced such that the vapor pressure of the deasphalting solvent therein is substantially reduced, condensing deasphalting solvent from said first vapor phase, heating said liquid asphalt phase to produce a third vapor phase comprising deasphalting solvent and a third liquid phase comprising asphalt, admixing said third vapor phase with said second vapor phase after said second vapor phase has been passed in indirect heat exchange relationship with said first vapor phase, recovering the resulting combined second and third vapor phases and cooling the resulting combined second and third vapor phases to a temperature sufficiently low to condense the deasphalting solvent therein.

2. A method of treating an asphaltic oil which comprises contacting said oil with a deasphalting solvent under deasphalting conditions of temperature and pressure to effect separation of asphaltic constituents from said oil, recovering from the aforesaid operation a liquid oil phase having a reduced amount of asphaltic constituents and containing a portion of said deasphalting solvent and a liquid asphalt phase containing another portion of said deasphalting solvent, treating said liquid oil phase to produce a resulting first liquid phase comprising deasphalting solvent and a resulting first vapor phase comprising deasphalting solvent at a temperature T_1 and a pressure P_1 , treating said first liquid phase to convert the same to a resulting second liquid phase and a resulting second vapor phase comprising deasphalting solvent at a temperature T_2 and a pressure P_2 , T_2 being lower than T_1 and P_2 being lower than P_1 , passing said first vapor phase and said second vapor phase in the presence of said second liquid phase in indirect heat exchange relationship to each other whereby said first vapor phase is reduced to a temperature such that the vapor pressure of the deasphalting solvent is substantially reduced, condensing deasphalting solvent from said first vapor phase, heating said liquid asphalt phase to produce a third vapor phase comprising deasphalting solvent and a third liquid phase, admixing said third vapor phase with said second vapor phase in the presence of said second liquid phase after said second vapor phase has been passed in indirect heat exchange relationship with said first vapor phase, separately recovering from the aforesaid admixing operation the resulting combined second and third vapor phases and said second liquid phase, cooling the resulting combined second and third vapor phases to a temperature sufficiently low to condense the deasphalting solvent therein, steam stripping said third liquid phase to re-

11

move substantially all of said deasphalting solvent therefrom, and to produce overhead a fourth vapor phase comprising steam and deasphalting solvent, steam stripping the recovered second liquid phase to remove substantially all of said deasphalting solvent therefrom and to produce overhead a fifth vapor phase comprising steam and vaporized deasphalting solvent, recovering from the immediate aforesaid steam stripping operation said second liquid phase comprising a deasphalting oil substantially free of deasphalting solvent, admixing said fourth and fifth vapor phases and cooling the resulting combined vapor to a temperature sufficiently low to condense the steam and deasphalting solvent contained in said admixed steam and separately recovering the resulting condensed deasphalting solvent and condensed steam.

4. In a process wherein an asphaltic oil is treated with a deasphalting solvent under deasphalting conditions of temperature and pressure to separate asphaltic constituents from said oil and wherein there is recovered from the aforesaid deasphalting operation a liquid deasphalting solvent-oil mix containing deasphalting oil and deasphalting solvent, the deasphalting solvent being subsequently separated therefrom and liquefied, the improvement which comprises passing said deasphalting solvent-oil mix into a low pressure zone to produce a first vapor phase comprising deasphalting solvent and a first liquid comprising deasphalting oil and deasphalting solvent, passing said first liquid phase into a lower pressure zone to yield a second vapor phase comprising a deasphalting solvent at a temperature lower than said first liquid phase and a second liquid phase containing deasphalting oil, passing

12

said first vapor phase in indirect heat exchange relationship with said second vapor phase to substantially reduce the temperature of said first vapor phase to produce a resulting first vapor phase substantially saturated with respect to said deasphalting solvent and recovering liquefied deasphalting solvent resulting from said first vapor phase.

5. A process in accordance with claim 4 wherein said deasphalting solvent comprises isobutane.

6. A process in accordance with claim 4 whereby the pressure differential between said lower pressure zone and said low pressure zone is in the range of 50-200 p. s. i. g.

7. A process in accordance with claim 4 wherein the temperature of said resulting first vapor phase is in a range 20-60 degrees Fahrenheit lower than first said vapor phase.

8. A method in accordance with claim 4 wherein the temperature of said first vapor phase after heat exchange is reduced to a value so that substantially all of the deasphalting solvent therein is liquefied.

References Cited in the file of this patent

UNITED STATES PATENTS

25	2,121,517	Brandt	-----	June 21, 1938
	2,192,253	Adams	-----	Mar. 5, 1940
	2,223,192	Swartwood	-----	Nov. 26, 1940
	2,383,535	Dickinson et al.	-----	Aug. 28, 1945
	2,538,220	Willauer	-----	Jan. 16, 1951
30	2,645,596	Axe	-----	July 14, 1953