as United States

a2 Reissued Patent
Palladino et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE49722E

US RE49,722 E
*Nov. 7, 2023

(54) CLOUD-BASED HUB FOR FACILITATING
DISTRIBUTION AND CONSUMPTION OF
APPLICATION PROGRAMMING
INTERFACES

(71) Applicant: Kong Inc., San Francisco, CA (US)

(72) Inventors: Marco Palladino, San Francisco, CA
(US); Augusto Marietti, San Francisco,
CA (US); Michele Zonca, San
Francisco, CA (US)

(73) Assignee: KONG INC., San Francisco, CA (US)

(*) Notice: This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 17/220,109

(22) Filed: Apr. 1, 2021
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 9,077,773
Issued: Jul. 7, 2015
Appl. No.: 13/680,277
Filed: Nov. 19, 2012

U.S. Applications:

(63) Continuation of application No. 15/641,835, filed on
Jul. 5, 2017, now Pat. No. Re. 48,507, which is an
application for the reissue of Pat. No. 9,077,773.

(60) Provisional application No. 61/576,808, filed on Dec.
16, 2011, provisional application No. 61/561,220,
filed on Nov. 17, 2011.

(51) Int. CL
HO4L 65/40 (2022.01)
GOGF 8/30 (2018.01)
GOGF 9/44 (2018.01)

GOGF 9/54 (2006.01)
G06Q 50/00 (2012.01)
(52) US.CL
CPC oo HO4L 65/40 (2013.01); GOGF 8/30

(2013.01); GO6F 9/44 (2013.01); GOGF 9/541
(2013.01); GO6Q 50/01 (2013.01)
(58) Field of Classification Search
CPC .. GO6F 8/30; GOGF 9/44; GOGF 9/541; GO6Q
50/01; HO4L 65/40
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,856,869 Bl 10/2014 Brinskelle
9,027,039 B2 5/2015 Michels et al.
9,077,773 B2 7/2015 Marietti et al.
9,367,595 Bl 6/2016 Malks et al.
9,577,916 Bl 2/2017 Chou et al.
9,602,468 B2 3/2017 Tubi et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2008094540 Al 8/2008

Primary Examiner — Peng Ke

(74) Attorney, Agent, or Firm — Perkins Coie LLP; Colin
Fowler

(57) ABSTRACT

Systems and methods for facilitating distribution of appli-
cation programming interfaces (APIs) in a social hub are
described herein. The social API hub enables users (i.e., API
consumers) to access (e.g., search, test, and/or otherwise
utilize or consume) APIs that other users (i.e., API devel-
opers) submitted to the hub in a standardized manner.
Additionally, users can wrap submitted APIs in a standard
description format and add various add-ons on top of an
existing API infrastructure in order to provide additional
functionality.

29 Claims, 24 Drawing Sheets

US RE49,722 E

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2004/0070604 Al 4/2004 Bhat et al.
2005/0027797 Al 2/2005 San Andres et al.
2007/0002731 Al 1/2007 Misra
2007/0280206 Al 12/2007 Messer et al.
2008/0209451 Al* 82008 Michels GO6F 15/16
719/328
2010/0011394 Al 1/2010 Lee et al.
2011/0087783 Al 4/2011 Annapureddy et al.
2011/0231280 Al1* 9/2011 Farah GO06Q 40/12
705/26.8
2011/0238496 Al1* 9/2011 Gurbuxani et al. 705/14.49
2013/0132584 Al 5/2013 Palladino et al.
2013/0227291 Al 8/2013 Ahmed et al.
2014/0129326 Al* 5/2014 Munitz ... 705/14.48
2014/0366080 Al 12/2014 Gupta et al.
2015/0127565 Al 5/2015 Chevalier et al.
2015/0301883 Al 10/2015 Talla et al.
2015/0301886 Al 10/2015 Watanabe
2015/0312364 Al 10/2015 Bayliss et al.
2015/0319154 Al 112015 Balakrishnan et al.
2015/0350341 Al 12/2015 Daute
2016/0048408 Al 2/2016 Madhu et al.
2016/0173578 Al 6/2016 Sharma et al.
2017/0063989 Al 3/2017 Langouev et al.
2017/0019468 Al 6/2017 Charlton, III et al.
2017/0206707 Al 7/2017 Guay et al.

* cited by examiner

US RE49,722 E

Sheet 1 of 24

Nov. 7, 2023

U.S. Patent

c?)
iy

e

" AR UO-ARDI ;
. m
! ey ;
; 13 ST IAa0 Lb :
Tl Axold NOTL BAJES IdY M
w H
ST Jenisg lay
FOET mAeg idy
..
* Y
) ’
P ey \ ./J/ \.
ﬂ@umrﬁfin 3 u .
ey ORI e y 901
.

- s HE3 Heju; 21}
./ ﬂl \‘ ./ll\A..:/ll\\.\ ./fi - il\\
/ el p——— .|lJ
././ j f »

ﬁ&

N-YGL sandeeas] {oy

, NYGLL
{s1adojereq uoteotddy)
SISLNBUON [dY

H
H
i
i
H
H
{
{
COTR -
{
i
H
i
i
i
H
H
H

TN

US RE49,722 E

Sheet 2 of 24

Nov. 7, 2023

U.S. Patent

Did

SIIpOUI UC-DPY

amg EmJ

{ £JBU8Y)
Adeigry jueys

et

e
uonenByuen Axoid

UOREORUBLINY
UOEISUST) UBYD |

i8] peppsquig

sUIBUT Yuess i1dy

xxxxxxxx n

L7 suibuz
BoREcNUS

sinpow Axnd

A $9A0EARG [dY

Gee
SNDOLL IBAIBS (A

4%
auibusg uonensifey

0z

SINDOLL UOIBASIULIDY

{anp) sweleuepy

RO s SN

.

-

e S e

™

HIGMISH J

W

00T

U.S. Patent Nov. 7, 2023 Sheet 3 of 24 US RE49,722 E

300~

RECEIVE USER-GENERATED PARAMETERS DESCRIBING FUNCTIONALITY
ASSOCIATED WITH AN APPLICATION PROGRAMMING INTERFACE (AP1) |4
310

¥
CONFIGURE A PROXY FOR PROVIDING SECURE COMMUNICATIONS
BETWEEN AN AP! SERVER AND AN APPLICATION (CLIENT)
212
b

¥
AUTOMATICALLY GENERATE A PLURALITY OF CLIENT LIBRARIES BASED
ON THE USER-GENERATED PARAMETERS, WHEREIN THE LIBRARIES ARE
UTILIZED BY ONE OR MORE AP CONSUMERS
314
M

¥
PROVIDE THE UBER WiTH ADD-ONS FOR ADDITIONAL FUNCTIONALITY

4—/)
No T g ADQ»ON(S\}\\\\\

_ SELECTED? =
S

-

- SUBLISH API? ™~ NG

b vy
\‘\ ST e

-

\\‘ P o

l Yes

PUBLISH THE AP via THE ONLINE PLATFORM
324

-

FiG. 3

U.S. Patent Nov. 7, 2023 Sheet 4 of 24 US RE49,722 E

g O gy s e e A e L -
400 e RECEIVE TEXT SEARCH QUERY

A sy

PROVIDE ONE OR MORE Al

o - e
-~ "~ - ~.
- . - ~ .
oo -~ - - T - I
NO ~"Teer APl ON HUB? S o DOWNLOAD APIZ T No
******************** -~ . P - X SR
A RN 424 o T~ 424 o
R Pl s e
. e Ny -
\ e \\T/ -
| YES YES

V o \
NGO TesT APl on Hup /// DOWNLOAD AP N

T PN AT L IS A DO -~
< W/ CLIENT LBRARIES? >

—
426 -
2 -

PROVIDE AUTO-GENERATED CLIENT LIBRARIES ASSOCIATED WITH THE
SELECTED AP

//,\
No //// RECEIVE e
7 CLIENT LIBRARY SELECTION? >

-

FiG. 4

U.S. Patent

Nov. 7, 2023

WoRKFLOW CHART (W Proxy)

Client/
Application

Sheet 5 of 24

A/
Network Network
{Fublic) {Public or Private)
|)
i
i
i
i
i
; Proxy AP Server
i
i
i
i
APt Request
»

AR RS

Identify the requested
AP

Triggar Eveni{s)

oonse

H
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

Forward A:ﬁgi Raquest

i

H
APl Response

B

o8
X

2

i
a
]
|
]
|
]
|
]
|
]
|
]
|
]
|
]
|
]
|
]
|
]
|
]
|
]
|
f%éfs:i
]
|
]
|
]
i

Trigger Event{s}

FIG. §

i
i
!
i
!
i
!
i
!
i
!
i
!
i

US RE49,722 E

- B0

\/\\

U.S.

oy
gg
>
< W
R el
= o
B
g.'.b
& 3
& 2
=
= B
=
=

/

WORKFLOW CHART (W PROXY)

.,

BODA vl

Patent

.

i

o

i
o
i
e
SRR
e
I
et

i
s i

)
L
il
i
i

s
g
S

i
e
L
o

L
e
S

;

i
o

i
;
L
B
i

=

e !.:.j;:::.:..:;é-.,...n i

cusi
e
. \‘>§_\..x<f;‘?{‘?‘i,?g,~za:.:::'
AL
e
s
o
G
S
e
e
e
o
!
o

.
G

Nov. 7,2023 Sheet 6 of 24

o ¢ i “"éi”""

. . %{:(QL"%? .
g

T onPooN,
St
e
GG
S 'In:l'h'n% i

.
.
; .

L
L
o

e .
| < o . .
et |
e |

. G
R e
i

e -
e j i Sasi
oo .
s Lot
s
Gaeanae L Lhdn) GBS s
G G G
V s i .
s o
el e
G e
G
e

o i . e
e Lo
o R e
i :.:..,-ﬁ-...;wi;.:-.:.: b & o .é S
e G
i ...'-.I.:s::.;(D i) i
o G
L duaiiR s e o i
i RO o e e Gl
i DRt Gl
T B
L Sl G
B
o e
:
: i
G Anae
i S
G

e
e

i o

S Ghnina i
Do S i
DO e
S R TR e e
RS
Gl e

i
L
e
S
SHHA IS
g

: e o
e S
I R .

i S

.

e

l§,\>~ = o \'> “‘}g”’\ﬁihf o
5 e i 0
. o e :
o i < - i D
.
S i
v g A i S GGG
: da e G
e . " 0 e s
i
o e
i G G o e ; s
G A
s e
5 G

o ‘M""‘“‘""""""""l:%“‘ .

< . o e

S o X s i
Sl et e s
L e G

. e f o g G
, . i o o

. .

i 0 Ganidaas i
e . i i o
e eI i o i B e

35 K}%n:n}:.:n‘n}:.:n‘l'h{n‘::n".'n.n"..n i S N i i e

Goaniea L G e S
G .:-.,...u:?i*; o
s e
e

e
e o 2
. g o o o -
B feond e ! e hn
it ety e doims s dan
e o i i Sl G ; w"%“.'\".%"ﬁ?‘(f' o
. i ~ . L T
E“"IE:"". G i i
i & e
e G 4 B
RIS G SR S i (L
G R i T ~.-,§s> i
: . i e :
e " e i e Hann i
o - s e S
5 S S s & Bt A
e e i

<
SGad e
Solidiindd s
. Gl

g
i

o
.

f=

e

v

Y

¥

ddns aft
X]

o

Ehg f

E

warded g the fral AP sery
ur

AL

,,.
18
i

y

¥

bie imstnlied
1]

k#

i
Fey

- __ . @ @
et
&
&
T
[
. e 8
o &
= N 2
2 _._“,&g“m_nm_“._u.nwmhmm_&mmgummm.&m.&w_”
g E &
S ﬁ {)’; 2::
e E i
e &
& e
%t
=

=

jd
£ 8

2;?&?91
{
&

s

st i

-

i
hie praay arenin

4 The A0l be

i

%

et

s

US RE49,722 E

6A4

g
®

FIG

U.S. Patent

3

rmer)

:

st

{or Cu

ar
Premise

Consum

AP

A8 imfranivugt

WORKFLOW CHART (W PROXY ON PREMISE)

0 éﬂ.:.é. n

di

i

ivaie)

1

.,) .
7

1 <\
O ‘o\«&M
L [

o .‘f‘f. :.’
; g.ez-.n....n-.n....

.%\ ..

{Publicor P

Nov. 7, 2023

led adiions beines

eyl to The AR

“p

Srukes e i

1

Sheet 7 of 24

— e s S Er o %
e o o SR %« ey
"%\gi '="§'(~3;\'(GiEntnalie A .‘ﬂ '~'§f.5'~"- S \%ﬁﬁﬁ i '\f»e . .
o - ‘\‘?‘ S\S o ~n s W& i u 7 .
e ,....,.,....,,,.'.:u\n'u S ...,,,...., .n...,.,.. i ».,4. <‘ .. ':.;..*éix s \\ >< }lu -.,....,, }}}g /;’ e
i S .,....'-.hS S S . . 7 u\ui\.y...f ds i
R L o ,....,:~.....§..,.,. o L i
e L - .. Liesa i o s i N
damnaage e ,....'-.,....:-.....a.. i ' I-.v. o ::-.:....:-.:.\(\3,....:-. o
....,:.,....,;.,...,;z,» ﬁ‘h, dadadanedia G o v,.,....,: s <“ L .,;.,. ..L., L 5" ,.,...,:.;' Ll
eg M AL ~\»\\, e ‘,g. Gl i i Gt
SO |.||I.||.‘||I.I~Ill.l|.~>'3\§. 0 SRR o - e
,....,..,....,,.,....g,.... .3....,,.,;,...., .n...,..,...'.,,.n.g.n.'...,... Gt,.,....'.z, ~"-"~"W’f/\'-3(""""‘%"-"""'-‘ G
.:-.'..:.:-.'..:.:-.'. S S g :....:-'..n.%:-.'..:q-»;A ﬁ/ Gom s QR
Gl R sl SR
o G G
G Gl
L L B S 2
,....,,.,....,,.,....,,f,.z., i ‘E- G L
G g ..n...~.'-...énn..p.'-..p.'-.?}- SRS AR
i SMaTd e e S o
..:.:-.n..:.:-.v..:.:-.'~w-..'-'. < w o o . '..;."g»,,»,.
,n..,;.,....,;.,....-. ? o lll‘~l|‘l|“l|:‘l e ,:..:,.,:..:,:eg~,:..:,:~,:..:,:~,:..:k{’f’ G e a G S
L L
l‘~,ln.l‘~,ln.l‘~,ln5 l\.}'.ll.l‘~,l..n|:~“n.l‘~,ln.l,:~“ l&‘_h.,ln.l‘~,ln.l‘~,ln.l‘~,ln.=l'~,l..l'~,l..l,'~nl'/ '~,l..l,§'~,l..l.}'~,l..l'~,l..l,:~,ul.. 'u.,l'~,l..l'~,l..l'~,l..l'~,l.. ln.l,:~l§“~"~,ln.l,‘~lnl"lll.
MEE
2o
&

s

h

&
=
- =
L

£

i

:

o T

e

Do

PRl

.
i
i

% preiy sReni
it |
=

4 The AP

i Th

US RE49,722 E

PRarecion B e R R R R S e e G R R PO S i e e et

ETWORK
{Public)

SRR

~
':Z:Z:o‘:z:;:g:«». :

o

e

]

g
4t
=
o
pa

then rel

BLE {5

The

.

)

St

o ,«:;’«';:::; o

U.S. Patent

Sheet 8 of 24 US RE49,722 E

Nov. 7, 2023

Ty REARESs
. .
o G L
4 R e % Lo CROhH NG,
Cas G i a;'\:ﬁ.';@::fi::n:é e S .
' L > ,q.g;\}g\ i .:%.I..:.'-.I..:.'-.aLe,.u-.e, e 3-.:.5':ég.;;ﬁ‘;.;{.;.‘;..\.f;h e st L
i Sl e i oy
0 L G e B s s i
i e o s L e
S G s e \x“:%\gn..n: S
. Galosia s e e S G
o
; S B I
e e e e e e
Solg sl s e e s s S S S
. Lol T A e L e S R e e
ek i g s s e s
i S :;.:;:;:s;ez,:;egg.;.:»sgig::;:;::;::;:;::;::;';~:g;;;g\-sv:;:;::;':;';gn,:;z;:f@,f.z;:,:;':,:;::;f,é»w»z;.:;::te;.;,;::::;:s.i; o
e L
LEo s e e
el e e e e e e
A o =
% = 8
{: &
2 b
£3
g, i
e . o
) & Iz
2 o o £
h & %)
= = P
B y o S BN
=0 i o =
e e |2 g W
@ s s -
Serr s i]
Tk = R~ a é S W
] & L0 q
o 5 b ot .
& B g oo o5
o B Y w B & F
5 e = & P
et 5w o e by
[= oA
C o= o o g . = :
. =i [+ =R o
o8 pis e w8 o
= i 8 o =
b g 34 5 MoOL gy
=] ol & ey
2 k1] Rl
ooa R R i ~
SRR 45 AR SR B

WORKFLOW CHART (v B LG ADD-0on)

e

ot

wsErs amouy

B

Ty et b
ieir See mwan

he Dilme andon

T

|
|
|

e that
oty

"

g pan

E«Ex the

"
retirned and the conn

Feuest
{54

re

o suhscr

it
%

et i

ks
:
i

b

&
5

H
The response 5 then o

ik
6 -

Thie ches

s et S
- S
s

U.S. Patent Nov. 7, 2023 Sheet 9 of 24 US RE49,722 E

exporis.interceptors = {
onStartfunction{contest, callbacky {
log.infol{"Executing addon: onStart event wriggered”);
calibaclk(y;
inﬁimg:fmst@m {contesxt, calihack) {
log.info{"Executing addon: onCloss event triggered™);
caltbackl;

FiG. 7

TN TN

MESSAGE ADD-ON |

PROXY - o
BROKER WORKER |

\‘\._ _________________________________ ,,/l \ __________________________________ _// e ,,//

FiG. 8

US RE49,722 E

Sheet 10 of 24

Nov. 7, 2023

U.S. Patent

6 A

M-I SR

S

P BalY YOIEST

uoung - e (888 10014}

1351 M ; ghedawion

US RE49,722 E

Sheet 11 of 24

Nov. 7, 2023

U.S. Patent

1 "Di4d

f q] 3004
m DA i uolng
! IAE SN) o srun ! aommwmw MOifG4
W boogon \
f
! m \
! |
! !
! |
m |
!
!
{
{
{
| #00) 2oty
2001 P AinBoen lay
ey A

AR BT DI

\ W

2008
ealy
SHNSOW e

ifa

{ !
| |
! m
! |
! |
m |
! |
m |
m m
i m m
m |
m |
m |
m |
M |
m |
m |
L }

oy

U.S. Patent Nov. 7, 2023 Sheet 12 of 24 US RE49,722 E

,f o o i) :quvi 3 N L,
P L‘j l‘!f‘f"“ e "“i’ — AP Pricing Tab
{for Ah::,nn&m:e:s, \\ﬁ tation Tab (o FiG. 12) More add-ons Tab
1100 1z / 1104 / 1108

. . TRl R LISNRASIIE At
Him
ot
o .

gt

Saann mmmns amng

MorsAdd-ons 1108 ""'"""'"W’f fepartan e | §
7 Mo

. {i& & Feport issue Button
-
Cooupeniatinog i(

S oun>

N

BRSNS

Rtk it Wostka pied raeeiel sutitiee B ok Bow Wit 5 ey e

P

Paramabnrs
ek Tk v

e

ETIYS
Yk

!
i
E
i
i
E
!
i

w,i Heppones Bxvvple

Ermbedded —
AR} Test Area
1112

S

3

{

!

!

i

}

i

§

!

i
ii&
b
.
!

!

!

i

i

i

!

i

!

!

Dgnes Giorgan Fatfnem Rosmsons

St
P

Documentation Pane
1120

FiG, 114

U.S. Patent Nov. 7, 2023 Sheet 13 of 24 US RE49,722 E

AP Profile Page
{for AP consumars) '“**\\
1106

/

Mo

e
Yo Phaes

Baseumentanion

Peparts e

Response Body =
Tast Tab
1114

Praponse Bxampie

FiG. 1IB

U.S. Patent Nov. 7, 2023 Sheet 14 of 24 US RE49,722 E

AP} Profile Page
{for APl consumers) ———

1400 Ty

W, PR

Fapratay e

plrsses

e SEonIon wnd DR e S L,

Faggroators

R T oty b R
L)

Sholedy

fratensedd

wiwins

s o
Embedded
AF Test Area

1112

Test Tab

ERRTS
[

Hogpansy Bxsmple

Biuen L

B s s S e e LR AN U DN VUV VN POUUVI U,

{
!
!
!
Response Headers ‘//(
{
{
!
!
!
{
{

BLWRG

S S ——————————

FIG HIC

US RE49,722 E

Sheet 15 of 24

Nov. 7, 2023

U.S. Patent

A
[ty

abed 8ii0ld 14

i b

BB BRI

BEIROTS

A4

R

WIS Be oSy

e ey

Ao

SRS UPO

ge), Bupud idy

704 el

g 481 LOBRILBUNO0E Ly

RaRes SN DRSS P ¢

put Buhle

ISR T e e T

s

US RE49,722 E

Sheet 16 of 24

Nov. 7, 2023

U.S. Patent

£ 004

Ziel
suEy
plEOGYSEQ

3 PRGBS B

sp e BB

. Y

UONEBUEORY

wagmapy; W

LSRN PN LR e s i

slwy edeusen %

P

|
m
m
m
|
m
pog Ay M
m
m
m
m

, .@gﬁ im_m%aﬁ .. “..”_ /
Q81 JUR0OsY JBSY QB KOG OB SI0BUDS JBLUNSUOD :

US RE49,722 E

Sheet 17 of 24

Nov. 7, 2023

U.S. Patent

Fi "Did

faia]

QA 15900y

£ HELL 10409 80 5 it

St |l ST By)

N ‘
g i
BN / \ o i)
\ / \ , 8UBd
kY / f e SOSUCY) JBLINSUOT
) / \ 4 e

»&\\\\\

S
~,
k=

T T R R TR I R TR Ve

Juntony roul; B SOE T el B8 m pesniien B

N -

3 gel

gbedstion Jesn

US RE49,722 E

Sheet 18 of 24

Nov. 7, 2023

U.S. Patent

i

2 Bapie f

BHOIHISEY TR sdeEmeiy

3l A

% S s

Ak s BB R R

e

SRR LSRN £ asnty e

g4 »
008t ¢l

afie] S0 1880

O %

ees

US RE49,722 E

Sheet 19 of 24

Nov. 7, 2023

U.S. Patent

g

[

F

FEET T

| PRIBBLT B

91 DA

B AL RNIRE SREE

3

W

shwy soBusER %

pugoogser; BB

.

e

afiedawon B3N

|)

US RE49,722 E

Sheet 20 of 24

Nov. 7, 2023

U.S. Patent

o TDIA

A e ee s onns s oo cooe omnoe oones owoe oenn woon snoes onnee oo cnns ownn soon sonnn ooone onnee onnes owon onnn venn anos ponnes ooeee onowe ononssoon nnnn oene noovs onesovon rnnee: o

Lory e i

i

i

i

i

!

i

i

i

i

i

f

i

i

i

i

i
bl g 08 m
!
Aurnoy jiy |

i
i
]

&

e nene | snene o

BUE MBMBAC

. 0044
S { PN i
e {SIBUGEAED 1Y 401
afieg ULIDY Bl0Ld IdY

US RE49,722 E

Sheet 21 of 24

Nov. 7, 2023

U.S. Patent

o onnn wnan eenn wmnn mnnn e anan naame e onae onnm onnm annm wnan wean wean weenn aeann tenne | ananc

&1 °OlA

waligo MOA genins o SRRmE BB 880

BRI R ity

SO

B e s iR R 2 WP Y g SRR Ay
PR R BB S PIRITR iR

b

.

Aoy

iy

S

SRR

g oo

R

LRI IRLRE

T {SISU0IBASD 1t J01)
ofied LupY 8i0id |dv

U.S. Patent Nov. 7, 2023 Sheet 22 of 24 US RE49,722 E

oWl

ey gt
e

o

resizePeronnt

it 50 g b e o g

API Profile Admin Page
{for AP developers)

- 1700

SN Fotorl

o Faen
Mot A S
FARANGLE
Cangady PRERTGS
S Sy
e i TROn g, BAREsDOT A (Y s
% B
e e Vs perarhige

i st

i Risgkedd

e Pty s 5@&»}?‘@&

Documentation Pane

Ny §
-
- 40017
£ 1902
o g o
frnageib §
Haszongs fw §
o i
Sitein §
Hoe b §
Sengor T v §
Sout St §
Ervees §
g Dok Wik
LN SR §
B }

FIG. 19

US RE49,722 E

Sheet 23 of 24

Nov. 7, 2023

U.S. Patent

0C "BiA

b BYRGHE BGA RRIDNN 1) BRI SR 11 B

SRR Y

L
sy ebToN \%ﬂ m St B
Z00Z Nloanan

auBd SUO-DDY

[k S R A A R

1 Y 004

~—,

e (SIBG0IRABD i 101
aBEd UlLpY 9i01d iy

oo ey oo ooeoe s oo Goooe oo oo e oo

U.S. Patent Nov. 7, 2023 Sheet 24 of 24 US RE49,722 E

2100

N,

_~

P
-
P
Pt ——

Frocessor

_ Video Display
Instructions

oo

Alpha-numeric Input Devics

Main Memory

) Cursor Control Device
Bus

instructions

ey

Drive Unit

Machine-readable
{Storage) Medium

8

Non-volatile Memory

Instructions
Network interface Device

Signal Generation Device

Network

{

;

\
N

R

FiG. 21

US RE49,722 E

1
CLOUD-BASED HUB FOR FACILITATING
DISTRIBUTION AND CONSUMPTION OF
APPLICATION PROGRAMMING
INTERFACES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE 1O RELATED
APPLICATIONS

More than one reissue application has been filed for the
reissue of U.S. Pat. No. 9,077,773. The reissue applications
are application Ser. No. 15/641,835 (parent of the present
application), filed Jul. 5, 2017 and the present application.
The present application is a continuation of U.S. patent
application Ser. No. 15/641,835, filed Jul. 5, 2017, which in
turn is a reissue of U.S. patent application Ser. No. 13/680,
277, filed Jul. 19, 2012, now issued as U.S. Pat. No.
9,077,773, which claims priority to U.S. Provisional Appli-
cation No. 61/576,808, filed Dec. 16, 2011, and which claims
priority to U.S. Provisional Application No. 61/561,220,
filed Nov. 17, 2011, all of which are incorporated herein by
reference in their entireties.

CLAIM OF PRIORITY

This application claims priority to U.S. Provisional Patent
Application No. 61/561,220 entitled “SYSTEMS AND
METHODS FOR API MARKETPLACE,” which was filed
on Nov. 17, 2011, and U.S. Provisional Patent Application
No. 61/576,808 entitled “METHODS AND SYSTEMS
FOR PROGRAMMABLE API PROXY,” which was filed
on Dec. 16, 2011, both of which are expressly incorporated
by reference herein.

BACKGROUND

Application programming interfaces (APIs) are specifi-
cations intended to be used as interfaces by software com-
ponents to communicate with each other. For example, APIs
can include specifications for routines, data structures,
object classes, and variables. An API specification can take
many forms, including an International Standard such as
POSIX, vendor documentation such as the Microsoft Win-
dows API, and/or the libraries of a programming language
(e.g., Standard Template Library in C++ or Java API).

Cloud-based (or simply cloud) APIs are a specific type of
API that are used to build applications in the cloud com-
puting market. Cloud APIs typically allow software to
request data and computations from one or more services
through a direct or indirect interface and most commonly
expose their features via REST and/or SOAP. For example,
vendor specific and cross-platform APIs can be made avail-
able for specific functions. Cross-platform interfaces typi-
cally have the advantage of allowing applications to access
services from multiple providers without rewriting, but may
have less functionality or other limitations in comparison to
vendor-specific solutions.

Cloud-based APIs have become powerful tools that ser-
vices, components, and devices routinely rely on and utilize.
Unfortunately, there are several issues related to use and

10

15

20

25

30

35

40

45

50

55

60

65

2

development of APIs. For example, it is often an arduous
task for new cloud-based APIs to gain traction (or visibility)
among developers. That is, when a cloud-based API devel-
oper designs a new API, making the world aware of the new
API can be exceedingly difficult.

Furthermore, application developers (i.e., API consumers)
designing new applications or refining existing applications
often cannot easily find, test, and/or otherwise download
cloud-based APIs (i.e., the client libraries) because APIs are
currently not easily searchable and, if an appropriate API is
found, it is not documented or otherwise defined in a
standardized fashion. Consequently, application developers
may have to download many APIs before they eventually
find an appropriate API and, even then, usability and/or
reliability of the API can be an issue.

SUMMARY

Systems and methods for facilitating distribution and
consumption of APIs in a social cloud-based hub (or mar-
ketplace) are described herein. The social cloud-based API
hub overcomes problems of the prior art by enabling users
(i.e., API consumers) to access (e.g., search and/or otherwise
utilize or consume) APIs that other users (i.e., API devel-
opers) submit to the social API hub in a standardized
manner. The API consumers can test the APIs in the cloud
without downloading the API and/or writing any additional
code prior to consuming the API. Further, the systems and
methods provide API developers with the ability to wrap
APIs submitted to the hub in a standard description format
and add one or more add-ons on top of the existing API
infrastructure. The add-ons can provide additional function-
ality to an API without requiring API developers to write any
additional code.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of an online environment
suitable for facilitating distribution and consumption of APIs
in a social cloud-based hub.

FIG. 2 depicts a block diagram illustrating the compo-
nents of a hub server suitable for facilitating distribution and
consumption of APIs in a social cloud-based hub.

FIG. 3 depicts a flow diagram illustrating an example
process for facilitating distribution of APIs in a social
cloud-based hub.

FIG. 4 depicts a flow diagram illustrating an example
process for facilitating consumption of APIs in a social
cloud-based hub.

FIG. 5 depicts a signaling diagram that illustrates repre-
sentative messaging used by a client application, a proxy,
and an API server to facilitate consumption of an APl in a
social cloud-based hub.

FIG. 6A depicts a signaling diagram that illustrates rep-
resentative messaging used by a client application, a proxy,
and an API server to facilitate consumption of an APl in a
social cloud-based hub.

FIG. 6B depicts a signaling diagram that illustrates rep-
resentative messaging used by a client application, an on-
premise proxy, and an API server to facilitate consumption
of an API in a social cloud-based hub.

FIG. 6C depicts a signaling diagram that illustrates rep-
resentative messaging used by a client application, a proxy,
and an API server to facilitate consumption of an API with
a billing add-on in a social cloud-based hub.

US RE49,722 E

3

FIG. 7 depicts an example illustrating code representing
an add-on that is configured to be loaded at run time for use
in a social cloud-based hub.

FIG. 8 depicts a block diagram illustrating an example
programmable API proxy for use with a message broker and
one or more add-on workers in a social cloud-based hub.

FIG. 9 illustrates an example user interface depicting a
homepage or front page of a social cloud-based hub.

FIG. 10 illustrates an example user interface depicting
API search results in a social cloud-based hub.

FIGS. 11A-C illustrate an example user interface depict-
ing an API profile page for use in a social cloud-based hub.

FIG. 12 illustrates an example user interface depicting an
API profile page for use in a social cloud-based hub.

FIG. 13 illustrates an example user interface depicting a
user homepage for use in a social cloud-based hub.

FIG. 14 illustrates an example user interface depicting a
user homepage for use in a social cloud-based hub.

FIG. 15 illustrates an example user interface depicting a
user homepage for use in a social cloud-based hub.

FIG. 16 illustrates an example user interface depicting a
user homepage for use in a social cloud-based hub.

FIG. 17 illustrates an example user interface depicting an
API profile administrator page for use in a social cloud-
based hub.

FIG. 18 illustrates an example user interface depicting an
API profile administrator page for use in a social cloud-
based hub.

FIG. 19 illustrates an example user interface depicting an
API profile administrator page for use in a social cloud-
based hub.

FIG. 20 illustrates an example user interface depicting an
API profile administrator page for use in a social cloud-
based hub.

FIG. 21 depicts a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed.

DETAILED DESCRIPTION

The following description and drawings are illustrative
and are not to be construed as limiting. Numerous specific
details are described to provide a thorough understanding of
the disclosure. However, in certain instances, well-known or
conventional details are not described in order to avoid
obscuring the description. References to one or an embodi-
ment in the present disclosure can be, but not necessarily are,
references to the same embodiment; and, such references
mean at least one of the embodiments.

Reference in this specification to “one embodiment” or
“an embodiment” mewls that a particular feature, structure,
or characteristic described in connection with the embodi-
ment is included in at least one embodiment of the disclo-
sure. The appearances of the phrase “in one embodiment™ in
various places in the specification are not necessarily all
referring to the same embodiment, nor are separate or
alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described
which may be exhibited by some embodiments and not by
others. Similarly, various requirements are described which
may be requirements for some embodiments but not other
embodiments.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the
disclosure, and in the specific context where each term is

5

10

15

20

25

30

35

40

45

50

55

60

4

used. Certain terms that are used to describe the disclosure
are discussed below, or elsewhere in the specification, to
provide additional guidance to the practitioner regarding the
description of the disclosure. For convenience, certain terms
may be highlighted, for example using italics and/or quota-
tion marks. The use of highlighting has no influence on the
scope and meaning of a term; the scope and meaning of a
term is the same, in the same context, whether or not it is
highlighted. It will be appreciated that same thing can be
said in more than one way.

Consequently, alternative language and synonyms may be
used for any one or more of the terms discussed herein, nor
is any special significance to be placed upon whether or not
a term is elaborated or discussed herein. Synonyms for
certain terms are provided. A recital of one or more syn-
onyms does not exclude the use of other synonyms. The use
of examples anywhere in this specification including
examples of any terms discussed herein is illustrative only,
and is not intended to further limit the scope and meaning of
the disclosure or of any exemplified term. Likewise, the
disclosure is not limited to various embodiments given in
this specification.

Without intent to further limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may
be used in the examples for convenience of a reader, which
in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used
herein have the same meaning as commonly understood by
one of ordinary skill in the art to which this disclosure
pertains. In the case of conflict, the present document,
including definitions will control.

Embodiments of the present disclosure include systems,
methods, and a machine readable medium for distributing,
monetizing, managing and consuming cloud APIs. The
systems, methods, and a machine readable medium :facili-
tate distribution and consumption of APIs in a social mar-
ketplace or hub. The social API hub enables users (i.e., API
consumers) to access (e.g., discover, test, and/or otherwise
utilize or consume) APIs that other users (i.e., API devel-
opers) submit to the hub in a standardized manner.

In one embodiment, a cloud API hub (also referred to as
a “marketplace” herein; although, as will be described
below, some APIs in the hub may not be available for public
consumption) is described that facilitates discovering, docu-
menting, monetizing, and consuming APIs. The cloud API
hub allows users (i.e., API developers) to post/publish or
otherwise distribute an API in the cloud so that third-party
developers can use and improve on it. The cloud API hub
auto-generates libraries in multiple languages providing for
universal or near-universal access to the API. The auto-
generated client libraries can include, among others, Bash,
Ruby, Python, PHP, Node js, C#, Java, and Objective-C. The
hub allows users (i.e., API consumers) to consume APIs
from any kind of source API server.

In one embodiment, users (i.e., API developers) can wrap
up APIs submitted to the hub in a standard description
format and add various add-ons (e.g., a billing system,
authentication system, etc.) on top of all existing API
infrastructure in order to provide additional functionality on
top of the existing API functionality. The add-ons can be
selected and added without requiring the API developers to
perform any additional coding steps. A billing add-on, for
example, allows users to create public and private billing
plans for premium APIs. Additionally, with minimal server-

US RE49,722 E

5

side configuration, a user can configure quotas on custom
objects, which provides for a granular control of billing API
consumers.

In one embodiment, APIs can be easily documented in a
standardized manner via an embedded editing interface
graphical user interface (GUI). The documentation is then
auto-generated and presented to developers so that they can
understand and consume the API. Alternatively or addition-
ally, an API can be documented via standard XML..

In one embodiment, users can post and/or publish their
API or updates (or hacks) to their or others APIs in order to
gain instant visibility for the API from an environment (i.e.,
the cloud-based hub) where developers are ready to con-
sume the APIs. API developers can earn money for posting
(or otherwise publishing) an API and selling the API. Thus,
the systems and methods provide for a virtual central
repository with robust, easy to use, and well-documented
cloud APIs.

Environment

FIG. 1 depicts a block diagram of example environment
100 suitable for facilitating distribution and consumption of
APIs in a social hub. The example environment 100 includes
a plurality of API developers 105A-N operating client
devices 102A-N, a plurality of API consumers 115 operating
client devices 112A-N, a plurality of application consumers
125A-N operating client devices 122A-N, a plurality of API
servers 130A-N, a management (or hub) infrastructure 140,
and a network 150. Alternative configurations are possible.

As shown, the management (hub) infrastructure 140
includes management (hub) server 141, API data store 142,
and proxy 145. The API data store 142 and/or the proxy 145
can be distributed (physically distributed and/or functionally
distributed), in some embodiments such as, for example
when the proxy is installed at or near the API server 130 (i.e.,
proxy-on-premise). Additionally, although shown sepa-
rately, it is appreciated that an API developer can also he an
API consumer and/or an application consumer of other APIs
in the hub.

The management (hub) server 141 is configured to com-
municate with client devices 102A-N, 112A-N, and 122A-
N, and API servers 130A-N for facilitating distribution and
consumption of APIs in the e loud-based social hub. For
example, an API developer 105 can interact with the man-
agement (hub) server 141 via a client device 112 in order to
distribute and/or monetize an API (not shown) that the API
developer has developed. The management (hub) server 141
acts as a virtual cloud-based social-infused central reposi-
tory for the API so that application developers (i.e., API
consumers) 115A-N can easily search and download APIs
for consumption in and/or by their applications. The API
servers 130A-N typically host the APIs locally. However, in
some embodiments, the APIs may be hosted by the man-
agement (hub) infrastructure 140. In one embodiment, the
management (hub) infrastructure 140 is entirely comprised
of'one or more management (hub) servers 141 which include
one or more proxies 145 and the API data store 142.

As shown, API server 130 is configured in the proxy-on-
premise configuration with proxy 135 installed locally. In
this case, the proxy 135 (e.g., proxy server) may be utilized
to act as a secure interface between clients and the API
servers 130. Clients can thus access the API server 130
directly. A more detailed example illustrating the concept of
proxy-on-premise is shown and discussed with respect to
FIG. 7B.

The client devices 102A-N, 112A-N, and 122A-N are
coupled to network 150. The client devices 102A-N,
112A-N and/or 122A-N can be any systems, devices, and/or

20

25

35

40

45

50

6

any combination of devices/systems that are able to establish
a connection with another device, server and/or other sys-
tem. The client devices 102A-N and 112A-N typically
include respective user interfaces 110A-N. Although not
shown, in some embodiments, the client devices 122A-N
can include similar functionality. The user interfaces
110A-N include one or more input devices and a display or
other output functionalities to present data exchanged
between the devices to a user. The user interfaces 110A-N
can also include graphical user interfaces such as those
examples discussed with respect to FIGS. 9-20. The client
devices can include, but are not limited to, a server desktop,
a desktop computer, a computer cluster, a mobile computing
device such as a notebook, a laptop computer, a handheld
computer, a mobile phone, a smart phone, a PDA, a Black-
Berry™ device, a Treo™, and/or an iPhone or Droid device,
etc.

The network 150 can he any collection of distinct net-
works operating wholly or partially in conjunction to pro-
vide connectivity to the client devices and hub server, and
can appear as one or more networks to the serviced systems
and devices. In one embodiment, communications to and
from the client devices 102A-N, 112A-N and 122A-N cart
be achieved by, an open network, such as the Internet, or a
private network, such as an intranet and/or the extranet. The
network 150, to which the client devices 112A-N and
122A-N and API servers 130A-N are coupled, can be a
telephonic network, an open network, such as the Internet,
or a private network, such as an intranet and/or the extranet.
For example, the Internet can provide file transfer, remote
log in, email, news, RSS, and other services through any
known or convenient protocol, such as, but not limited to the
TCP/IP protocol, Open System Interconnections (OSI), FTP,
UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.

The client devices 102A-N, 112A-N, and 122A-N and
API servers 130A-N can be coupled to the network 150
(e.g., Internet) via a dial-up connection, a digital subscriber
loop (DSL, ADSL), cable modem, wireless connections,
and/or other types of connection. Thus, the client devices
102A-N, 112A-N, and 122A-N can communicate with
remote servers (e.g., API servers 130A-N, hub servers, mail
servers, instant messaging servers, etc.) that provide access
to user interfaces of the World Wide Web via a web browser,
for example.

API data store 142 can store information such as software,
APIs, analytics, authentication information, user informa-
tion, descriptive data, images, system information, drivers,
and/or any other data items utilized by the management
(hub) server 141 for operation. In one embodiment, API data
store 142 can be managed by a database management system
(DBMS), for example but not limited to, Oracle, DB2,
Microsoft Access, Microsoft SQL, Server, PostgreSQL,
MySQL, FileMaker, etc. Databases 141-143 can be imple-
mented via object-oriented technology and/or via text files,
and can be managed by a distributed database management
system, an object-oriented database management system
(OODBMS) (e.g., ConceptBase, FastDB Main Memory
Database Management System, JDOlInstruments, ObjectDB,
etc.), an object-relational database management system
(OR-DBMS) (e.g., OpenLink Virtuoso, VMDS, etc.), a file
system, and/or any other convenient or known database
management package. As shown, the API data store 142 is
coupled to management (hub) server 141. It is appreciated
that, in some embodiments, API data store 142 may be
coupled directly to network 150.

FIG. 2 depicts a block diagram illustrating an example
system 200 that facilitates distribution and consumption of

US RE49,722 E

7

APIs in an API hub. The system 200 includes management
(hub) server 141 coupled to API data store 142. As shown,
the management (hub) server 141 is the management (hub)
server of FIG. 1, although alternative configurations are
possible.

The management (hub) server 141, although illustrated as
comprised of distributed components (physically distributed
and/or functionally distributed), could be implemented as a
collective element. In some embodiments, some or all of the
modules, and/or the functions represented by each of the
modules, can be combined in any convenient or known
manner. Furthermore, the functions represented by the mod-
ules and/or engines can be implemented individually or in
any combination thereof, partially or wholly, in hardware,
software, or a combination of hardware and software.

In the example of FIG. 2, the management (hub) server
141 includes a network interface 205, a communication
module 208, an administration module 210, a web server
module 220, a social module 230, an API consumer interface
module 240, an API developer interface module 250, a
proxy module 260, and an API add-on module 270. Addi-
tional or fewer modules can be included.

The management (hub) server 141 can be communica-
tively coupled to the API data store 142, as illustrated in
FIG. 2. In some embodiments, the API data store 142 is
partially or wholly internal to the management (hub) server
141. In other embodiments, the API data store 142 is coupled
to the management (hub) server 141 over network 150. In
one or more embodiments, the API data store 142 is a
distributed database.

In the example of FIG. 2, the network interface 205 can
be one or more networking devices that enable the manage-
ment (hub) server 141 to mediate data in a network with an
entity that is external to the server, through any known
and/or convenient communications protocol supported by
the host and the external entity. The network interface 205
can include one or more of a network adaptor card, a
wireless network interface card, a router, an access point, a
wireless router, a switch, a multilayer switch, a protocol
converter, a gateway, a bridge, a bridge router, a hub, a
digital media receiver, and/or a repeater.

In the example of FIG. 2, the management (hub) server
141 includes the communications module 208 communica-
tively coupled to the network interface 205 to manage a
communication session over a plurality of communications
protocols. In one embodiment, the communications module
208 receives data (e.g., audio data, textual data, audio files,
etc.), information, commands, requests (e.g., text and/or
audio-based), and/or text-based messages over a network.
Since the communications module 208 is typically compat-
ible with receiving and/or interpreting data originating front
various communication protocols, the communications
module 208 is able to establish parallel and/or serial com-
munication sessions with users of remote client devices,
merchant POS devices, payment systems, advertisers, web
servers, and data miners.

One embodiment of the management (hub) server 141
includes an administration module 210. The administration
module 210 can be any combination of software agents
and/or hardware components able to manage and register
users of management (hub) server 141. The administration
module 210 includes a registration engine 212 and an
authentication engine 214.

In one embodiment, the registration engine 212 is con-
figured to register new users including API developers
and/or API consumers. This process may involve creating
new accounts with the management (hub) server 141. In one

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment, during the registration process, a user can
provide login credential for the various social networking
sites that they would like to log-into or from, and to which
the user would like to provide status updates from the
management (huh) server 141. The authentication engine
214 is configured to authenticate the hub users as they access
the management (hub) server 141 from a variety of devices.
In some embodiments, authentication occurs by associating
a user’s username and password with an existing user
account and/or associating an affiliate POS device with an
existing affiliate account and/or associating an advertiser’s
username and password with an existing advertiser account.
Unauthorized users can be directed to register with the
system.

One embodiment of the management (hub) server 141
includes a web server module 220. The web server module
220 can be any combination of software agents and/or
hardware components able to interact with users that have
logged in or otherwise accessed or interacted with the
management (hub) server 141. In one embodiment, the web
server module 220 provides access to API developers and
API consumers via an online platform (e.g., web interface).
The web server module 220 presents or otherwise provides
access to the virtual cloud-based social-infused central
repository for APIs that is managed by the management
(hub) server 141. For example, graphical interfaces such as
those described in FIGS. 9-20 may be provided and/or
otherwise served to client devices by the web server module
220.

One embodiment of the management (hub) server 141
includes a social module 230. The social module 230 can be
any combination of software agents and/or hardware com-
ponents able to provide users (e.g., API consumers and API
developers) with social components. For example, each API
can include a chat area, an issues area, notification areas,
etc., that provides indications about the users that hack on
(e.g., aid in the development of) and/or consume specific
APIs. The chat area can allow users to discuss, for example,
useful aspects of an API. Similarly, the issues area can alert
users as to specific bugs and/or bug fixes or workarounds.
The indications about the users that hack and/or otherwise
utilize particular APIs is an interesting social aspect that
allows users to see which APIs other users are consuming.
The social module 230 can also provide private and/or
public messaging services, boards for questions related to
specific APIs or general APIs, monitoring information about
general and/or specific APIs such as, for example, ratings of
APIs, reviews of APIs, etc. Additionally, the social module
230 may provide an area to raise tickets to fix bugs in APIs),
etc.

The social module 230 also allows users to maintain a
personal profile. An example personal profile is shown in
FIG. 15. The user may link Facebook, LinkedIn, GitHub,
and/or Twitter accounts to their profile in order to stay
connected with other developers and friends and to keep
apprised of the latest APIs that their friends are using, etc.
Users can also follow one another within the API hub
system. The users can also have auto-generated reputations
attached to their personal profiles so that developers can
literally know “who’s who” among the API community.

One embodiment of the management (hub) server 141
includes an API consumer interface module 240. The API
consumer interface module 240 can be any combination of
software agents and/or hardware components able to allow
API consumers to search, test, and/or otherwise access the
API in the hub. The API consumer interface module 240

US RE49,722 E

9

includes an API search engine 242, an embedded test engine
244, and a token generation/authentication engine 246.

In one embodiment, the API search engine 242 is con-
figured to receive and process search queries received from
users (i.e., APl consumers). For example, when a search
query is received, the API search engine 242 searches the
categorized API data store 142 based on the search query,
and returns one or more APIs that match the query. The
query can be, for example, a text based search inquiry. In one
embodiment, the embedded test engine 244 allows a user to
test the API in the cloud prior to actual use and/or integration
in an application. Advantageously, the API can be tested in
the cloud (e.g.. online) without writing any code. The token
generation/authentication engine 246 generates authentica-
tion tokens for consuming clients to consume APIs. This
process is discussed is greater detail with reference to FIG.
5, but generally the tokens provide for additional security in
some embodiments.

One embodiment of the management (hub) server 141
includes an API developer interface module 250. The API
developer interface module 250 can be any combination of
software agents and/or hardware components able to inter-
face with an API developer to publish an API. The API
developer interface module 250 includes a proxy configu-
ration engine 252, a client library generation engine 254, a
categorization engine 256, and an API publishing engine
258.

In one embodiment, in order to provide secure commu-
nications between and API server and clients (e.g., API
consumers), the proxy configuration engine 252 configures
a proxy such as, for example, proxy 145 of FIG. 1. The API
server selves the API. The API servers can be local or remote
to the management (hub) server 140. In one embodiment,
the client library generation engine 254 is configured to
automatically generate a plurality of client libraries based on
user-generated parameters associated with the API. The
user-generated parameters are provided by an developer
prior to publishing the API. Once published, the API is
available for use by API consumers in the social hub. In one
embodiment, the API publishing engine 258 publishes the
API in the social hub (i.e., makes the API available for
download and/or consumption by API consumers via the
online platform).

One embodiment of the management (hub) server 141
includes a proxy module 260. The proxy module 260 can be
any combination of software agents and/or hardware com-
ponents able to perform proxy operations as described
herein. For example, in one embodiment, the proxy provides
secure communications between the API and clients (e.g..
API consumers). Like other modules described with respect
to the management (hub) server 141, in some embodiments,
the proxy module 260 may be external to the management
(hub) server 141.

In one embodiment, the proxy is programmable via either
or both of the proxy module 260 or the proxy configuration
engine 252. Programmable proxies are easily expandable
with more features and/or connectablity with third-party
services. With a programmable proxy, add-ons can modity
an API request at any point in the lifecycle of the request,
block execution of the request (e.g., through authentication),
read and modify the response from an API server, etc. As
discussed, the add-ons can be installed locally (i.e., proxy-
on-site) or remotely (i.e., proxy module 260 of FIG. 2 or
proxy 145 of FIG. 1). If the add-ons are installed remotely,
the customer need not work directly with them because the
proxy auto-configures by automatically downloading the
required information from the remote servers and activating

25

30

40

45

10

the appropriate add-ons during the execution. The proxy can
identify the API by analyzing the requested URIL/domain
name/DNS information (e.g., CNAME entry). Example
using the proxy are discussed in greater detail with respect
to FIGS. 6-8.

One embodiment of the management (hub) server 141
includes an API add-on module 270. The API add-on
module 270 can be any combination of software agents
and/or hardware components able to provide API developers
a plurality of add-ons for including with a published API.
The API add-on module includes an API add-on library 272
and an API add-on UF engine 274. In one embodiment, the
API add-on library 272 stores a plurality of add-ons that a
developer can select to include on top of an API. For
example, the add-on library 272 can include various add-ons
that can be included with an API for consumption in the hub.
For example, the add-on library 272 can include billing
add-ons, analytics add-ons, authentication add-ons, etc. The
add-on is typically a piece of code that connects a proxy with
a third-party service or extends the proxy functionalities. As
will be discussed below in greater detail, the add-ons can be
executed during the lifecycle of the API request or stand-
alone. In one embodiment, the API add-on I/F engine 274
can interface with an API developer to wrap one or more
add-ons around an API.

FIG. 3 depicts a flow diagram illustrating an example
process 300 for facilitating distribution of APIs in a social
cloud-based hub, according to an embodiment. More spe-
cifically, example process 300 illustrates an example of a
user (i.e., API developer) publishing an API to a manage-
ment (hub) server. In one embodiment, the management (or
hub) system performs example process 300.

To begin, the management server receives user (i.e., API
developer) login information or credentials. In some
embodiments, the login information can include a customer
identification (ID)/password combination. In process 310
the management server receives user-generated parameters
describing functionality associated with an API that the user
wants to publish in the social cloud-based hub. The param-
eters can include definitions of API name, tags, versions,
public/private (i.e., public APIs are indexed), descriptions of
the API and/or versions of the API, various target informa-
tion, and various proxy information, Private APIs can be
download by only a selected group of API developers.

Target information can define target URLs and/or services
that the API invokes, the interface structure for the API,
operations of the API, etc. The targets can be defined as
production and/or sandbox (e.g., development). The struc-
ture of an API can be defined such as, for example, a SOAP
or REST service and profile information such as input output
requirements (e.g., XML/JSON, etc.). The operations such
as LIST, READ, ADD, etc. can each have an associated
method (e.g.. GET, POST) and an associated path. The
proxy definition provides information about how the API
looks, what context prefixes and paths it requires. etc.

In process 312, the management system configures a
proxy for providing secure communications between an API
server and client (e.g., application consumers). In process
314, the management server automatically generates a plu-
rality of client libraries based on the user-generated param-
eters. The client libraries are utilized by one or more API
consumers. In process 316, the user is provided a selection
of add-on to wrap around their API. As discussed, the
add-ons can provide additional functionality to APIs. In
process 318, the management system determines whether

US RE49,722 E

11

any add-ons are selected and, if so, in process 320, wraps the
one or more selected add-ons on top of the existing API
infrastructure.

In process 322, after configuration is completed, the
management server determines whether or not the user
wants to publish the API. If so, in process 324, the man-
agement server publishes the API in the online platform.
Otherwise, the API developer can go back and make addi-
tional changes quit and cancel the API publication process.

FIG. 4 depicts a flow diagram illustrating an example
process 400 for facilitating consumption of APIs in a social
cloud-based hub, according to an embodiment. More spe-
cifically, example process 400 illustrates an example of a
client (i.e., API consumer) consuming or otherwise obtain-
ing an API using the management (hub) server. In one
embodiment, the management (hub) server performs
example process 400.

To begin, the management server receives user (i.e., API
developer) login information or credentials. In some
embodiments, the login information can include a customer
identification (ID)/password combination. In process 410,
the management server receives a text-based search query.
For example, a client (i.e., API consumer) consuming or
otherwise obtaining an API using the management (hub)
server can enter a text-based search string into the search
interface. An example search interface is shown and dis-
cussed at greater detail with reference to FIG. 9.

In process 412, the management server, searches a cat-
egorized (or indexed) API data store based on the query
information and, in process 414, provides one or more APIs
that match the search criteria. An example search results
page is shown and discussed in greater detail with respect to
FIG. 10.

In process 416, the management server determines if the
API consumer has made a selection of an API. If so, in
process 418, the management server provides (or displays)
an API profile associated with the API to the user. An
example API profile is shown and discussed in greater detail
with respect to FIGS. 11A-C and 12. In process 420, the
management server determines whether the API consumer
wishes to test the API on the hub and, if so, in process 422
the management server tests the API without requiring the
user to write any additional code. In one embodiment, the
test interface is embedded in the graphical user interface as
illustrated in FIGS. 11A-C.

In process 424, the management server determines if the
API consumer wants to download the API. If so, in process
426, the management server determines if the API consumer
wants to download the API with the client libraries. If so, in
process 428, the management server provides the auto-
generates client libraries associated with the selected API to
the user. In process 430, the management server determine
if the API consumer has selected one of the API libraries. If
s0, in process 422, the management server provides (down-
loads) the selected API to the API consumer via the online
platform.

Programmable API Proxy

FIG. 5 depicts a signaling diagram 500 that illustrates
representative messaging used by a client application, a
proxy, and an API server to facilitate consumption of an API
in a social cloud-based hub, accordingly an embodiment.
The client system, management server, and API server could
be an API consumer device 122, management (hub) server
140, and API server 130 of FIG. 1, respectively; although
alternative configurations are possible.

Add-ons, as discussed herein, can be loaded at any time
during execution of the proxy (not necessarily at startup). It

20

30

40

45

65

12

is appreciated that any of the methods of loading the add-ons
described herein can co-exist. In one embodiment, add-ons
can execute (or work) in two modes. In one mode, the
add-on works during the lifecycle of an API request (e.g.,
when certain events are triggered, like “onStart,” “onEnd,”
etc.). In a standalone mode, the add-on is not triggered by an
API request but rather some other event (e.g., a timer that
invokes add-on every thirty seconds). The example of FIG.
5 illustrates an example of the farmer mode (i.e., worktflow
of an add-on tied with the lifecycle of the request).

To begin, a client makes an API request. The proxy
identifies the API request, and loads the APIs installed
add-ons if not already completed (e.g., either locally or
remotely). The proxy then triggers one or more events that
activate the installed add-ons, If the add-ons do not block
execution (an authentication may block an unauthorized
request), the proxy forwards the request to the appropriate
API server (API hub server). The proxy subsequently
receives a response from the API server and triggers other
events (e.g., “onClose”). Lastly, a response is sent back to
the client.

In one embodiment, the management (hub) server and the
entire API conforms to the design principles of Represen-
tational State Transfer (REST). in this case, methods to
retrieve data from the management (hub) server require a
GET request, while methods to submit, change, or destroy
data require a POST, PUT, or DELETE. The API supports
JavaScript Object Notation (JSON) data, Because the API
can be a REST API that runs over HTTP, this also means that
the API can be accessed by any application or device that has
an internet connection and can speak HTTP.

A developer can create any APIs. For example, apart from
listing services, a developer could create an API for (by way
of example, and not limitation): audio services, document
conversion, email services, financial services, geolocaliza-
tion services, graph generation, image services, news aggre-
gators, SMS services, statistical services, text-to-speech
services, translation services, video services, whois services,
wrappers around existing services (e.g., Facebook, Twitter,
etc.), etc.

FIGS. 6A and 6B depict signaling diagrams 600A and
600B, respectively, that illustrate representative messaging
used by a client application, a proxy, and an API server to
facilitate consumption of an API in a social cloud-based hub.
FIG. 6A illustrates an example whereby the proxy is
installed remotely (remote to the API server). FIG. 6B
illustrates an example whereby the proxy is installed locally
(downloaded and installed on the API provider infrastruc-
ture—also called “proxy-on-premise”).

In process 1, a client makes an HTTP request to the proxy.
In process 2, the proxy executes the installed add-ons before
the request is proxied to the API. In process 3, the request is
forwarded to the final API server. In process 4, the API
returns a response. In process 5, the proxy executes the
installed add-ons after the request has been proxied to the
API, and before returning the response to the client. Lastly,
in process 6, the response is returned to the client.

Some add-ons are executed before the request is proxied
(at process 2). Others are executed after the request has been
proxied (at process 5). Yet other add-ons are executed both
at process 2 and process 5. For example, the Authentication
add-on that validates the client, is executed before the
request is proxied because if the client is not authenticated
then an error is returned and the connection is closed
immediately. The billing add-on is executed before and after.
That is, the billing add-on is executed before because it
needs to check if the client is subscribed to a billing plan of

US RE49,722 E

13

the API (if not, close connection and return error) and after,
because it needs to parse the API server response to set the
billing usage for the client. FIG. 6C discusses a billing
add-on in greater detail.

In the examples of FIG. 6A and 6B the programmable API
proxy is an HTTP(s) proxy that can be put in front of an API
of any kind. As shown, the programmable API proxy can be
utilized in the cloud and/or can be installed in a customer’s
infrastructure (i.e., a customer is an API developer or owner
of'an API that has been published in the hub). The program-
mable API proxy may be proxy 145 of FIG. 1, although
alternative configurations are possible.

In one embodiment, the programmable API proxy can be
expanded with one or more add-ons. For example, an add-on
may include, but is not limited to, a billing add-on, an
analytics add-on, an authentication add-on, etc. An example
billing add-on is discussed in greater detail with respect to
FIG. 6C. In this context, an add-on is a snippet or piece of
computer programmable code that connects the proxy with
a third-party service and/or otherwise extends the proxy
functionalities. The add-on can be executed during the
lifecycle of the API request or standalone. More specifically,
an add-on can be: 1) a connector to a service not included
into the proxy; 2) an extension to the proxy that executes
computations on the API request (e.g., a format transforma-
tions from XML to JSON).

Add-ons can be installed locally and/or remotely. If an
add-on is installed remotely, and the proxy serves more than
one API server, then the installed add-on list is downloaded
from the remote server. In this case, the installed add-on list
is downloaded from the remote server so that only those
add-ons that the customer has selected are executed.

FIG. 6C depicts a signaling diagram 600C that illustrates
representative messaging used by a client application, a
proxy, and an API server to facilitate consumption of an API
with a billing add-on in a social cloud-based hub, according
to an embodiment. Although shown as a remote proxy, it is
appreciated that the billing add-on can also be configured as
a proxy-on-premise in other embodiments.

In process 1, a client makes an HTTP request to the proxy.
In process 2, the billing add-on checks if the client is
subscribed to an API billing plan (the developer that build
time client can subscribe to billing plans from the manage-
ment (hub) server in the API profile. In process 2.1, the
management server returns an error to the client and closes
the connection with the client if the client is not subscribed
to the billing plan. In process 3, the request is forwarded to
the final API server. In process 4, the API returns a response.
In process 5, the billing add-on checks for specific infor-
mation created by the API (e.g., a specific header) that is
appended to the response. The billing add-on also allows the
API to instruct the billing add-on to set a customer usage
amount for the request. Lastly, in process 6, the response is
returned to the client.

When an API provider adds the billing add-on for his API,
he can create subscription plans that the developers who
build the clients can subscribe to. The billing plans created
by the API provider can include the notion of “Custom
Objects,” for example. The plans can charge the user upon
the amount of “Statuses Classified.” The proxy, which just
proxies the HTTP request, may not know what that request
actually does. Thus, for the user to be actually charged, the
system needs to know how many “Statuses Classified”
requests were made. The proxy can’t increment by itself the
usage of the “Statuses Classified” counter associated to the

20

40

45

55

14

user, because it doesn’t know What the request does and
how many “Statuses Classified” were consumed during the
request.

To indicate to the proxy, and more specifically, to the
Billing Add-on, how many billing objects were consumed
by the request (e.g., “Statuses Classified”), the API provider
can either choose to:

1) Configure the billing add-on to automatically incre-
ment by one unit the billing objects. This increments every
billing object specified without assuring that this is actually
true. Because the proxy and the billing add-on don’t know
what the request really does and how many billing objects
were consumed in the request, it will just increment by one
the usage.

2) Return an additional header that tells the billing add-on
to increment the usage of the custom billing, object by a
specific amount. For example, the API provider can return
the following header: “X-Mashape-Billing: statuses classi-
fied=5.” This header tells the billing add-on that the request
made by the client consumed five units of “Statuses Clas-
sified.” In this example; the header name and value are
arbitrary. Any header name and a header value could poten-
tially be used. The name of the billing object is also arbitrary
and set by the API provider. For example, an API may not
have a “Status Classified” object, but could have
“DETECT” and/or “RECOGNIZE” billing objects.

FIG. 7 depicts an example illustrating an add-on config-
ured to be loaded at run time. The example add-on of FIG.
7 is written in Java Script and executed by node.js (http://
node-js.org/), that defines two functions executed when the
“onStart” and “onClose” event are triggered by the proxy.
The proxy has the task of loading and executing the add-on.

Depending on the scenario, the proxy can load and invoke
add-ons in a variety of ways. For example; the add-on can
be bundled with the proxy, loaded or invoked at runtime,
and/or the add-on can be a separate application (also called
a “worker”) that is executed when certain conditions are
met. When the add-on is loaded or invoked at runtime, the
add-on can be loaded from a file and/or the source code of
the add-on can be download from a third-party server and
stored in a file and/or executed in memory. When the add-on
is a separate “worker” application that is executed when
certain conditions are met, the add-on can be a server that
listens on a port and is invoked by the proxy, and/or an
application that processes a message queue that is populated
by the proxy.

The add-on is typically bundled with the proxy or loaded
or invoked at runtime when the proxy is run on high CPU
machines and when requirements exist to reduce the com-
plexity of the infrastructure. The add-on can be a separate
“worker” application when a requirement exists to have
separate machines to better scale the whole architecture.

FIG. 8 depicts a block diagram illustrating an example
programmable API proxy for use with a message broker and
one or more add-on workers in a social cloud-based hub,
according to an embodiment. More specifically, FIG. 8
illustrates an example standalone add-on. In the example of
FIG. 8, the proxy, rather than triggering events that are
executed by a piece of code loaded at run-time, pushes or
otherwise sends a message to a message broker. The mes-
sage broker notifies the add-on workers. The add-on workers
process the messages asynchronously and execute the
desired action(s).

The architecture illustrated with respect to FIG. 8 is
highly scalable. For example, when a plurality of requests
are received by the proxy, the system administrator can
simply add an unlimited number of “workers” to scale up the

US RE49,722 E

15

system. The “workers” can be in-memory processes or
separate servers, and the message broker can be installed in
the proxy to avoid having another separate process, or
server, running.

User Interface Examples

The user interfaces of FIGS. 9-20 are generally self-
explanatory based on the above detailed description, but
some details will now be provided. The user interfaces of
FIGS. 9-20 are generally discussed with respect to a social
API hub for facilitating distribution of APIs.

Referring first to FIG. 9 which depicts an example inter-
face 900, according to an embodiment. More specifically,
example interface 900 depicts a management (or hub) server
front page or homepage. The example interface 900 includes
a search area or search bar 902, which is provided to
potential API consumers, a login button 904, and a new user
button 906. The search area 902 allows potential API
consumers searching for specific APIs to enter text-based
queries that can indicate a type of API that the user is
searching for specific functionality associated with an API
the user is searching for, and/or the name of an API that the
user is searching for. The user is then provided with search
results, such as those shown in FIG. 10, after selecting the
“search” button. As discussed above, in one embodiment,
the management (hub) server searches the API data store to
identify those APIs that match the search criteria. The
example interface 900 also includes various other buttons
for documentation, support, etc.

FIG. 10 depicts an example search results interface 1000,
according to an embodiment. In the example of FIG. 10, a
potential API consumer has searched for APIs by entering a
text-based search string into the search bar. The example
interface 1000 includes a search results area 1002 and a
search by category area 1006. The search by category area
includes various categories that a user can browse or follow.
Users can follow a category by selecting the follow category
button 1008 that is associated with a particular category.

The search results area 1002 indicates various APIs that
match the search criteria (e.g., the text-based search string).
Each of the APIs that match the search criteria can include
an associated API category in an API category area 1004 and
a hacker information area 1006, among other information,
displayed. The hacker information area 1006 provides social
benefit as a potential API consumer can see which hacker
(i.e., developers and/or users) hacks on, and/or makes modi-
fications to, that API. More hackers can indicate a better API
that is less prone to hugs and more likely to be quickly
updated. As discussed above, hackers can, in some embodi-
ments, update, modify, and/or otherwise edit APIs in some
instances. Additionally, these hackers may leave useful
comments and or interact with one another in order to speed
up the development process and make it more enjoyable
through social interaction.

Additionally, in the search results example interface 1000,
the number of methods in the API can be illustrated in
addition to brief descriptions, pricing information, follow
API buttons, etc. Many APIs are free or freemium (i.e., have
free and paid aspects).

FIGS. 11A-C illustrate an example user interface 1100
depicting an API profile page for use in a social cloud-based
hub, according to an embodiment. An API profile interface
may be presented if, for example, an API has been selected
from the search results in order to show more detailed
information about the selected API.

The API profile page 1100 includes an API documentation
tab 1102, an API pricing tab 1104, a more add-ons tab 1108,
and a report issue button 1106. In this example, the more

10

15

20

25

30

35

40

45

50

55

60

65

16

add-ons tab 1108 illustrates a tab that can represent one or
more additional add-ons. it is appreciated that there may be
another tab for each additional add-on. As shown, the API
documentation tab 1102 is selected causing the documenta-
tion pane 1120 to be displayed. The documentation pane
1120 illustrates various information about the selected API.

Additionally, the documentation pane 1120 includes an
embedded API test area 1112. The embedded API test area
1112 is provided to allow a potential API consumer to test
the API in the cloud-based system or hub prior to down-
loading and/or otherwise committing to the API. As dis-
cussed above, the management system provides the ability
to test the API online or in the cloud-based environment
without writing code. FIGS. 11B and 11C illustrate more
detail about the embedded API test area 1112. For example,
within the embedded API test area 1112, a response status
pane can include a response body test tab 1114 and a
response headers tab 1116. Other tabs (not shown) are also
possible.

FIG. 12 illustrates an example user interface depicting the
API profile page 1100 for use in a social cloud-based hub
when the API pricing tab 1104 is selected. More specifically,
when the API pricing tab 1104 is selected, the pricing pane
1202 is illustrated. The pricing pane 1202 illustrates various
pricing information for the particular API. As discussed,
many APIs are free or freemium (i.e., have free and paid
aspects); however, others require payment (e.g., based on
yearly, monthly, weekly, query access).

From the API profile page 1100, a user can select to
download an API for integration into an application. The
selected API can be downloaded (for later consumption) via
a variety of auto-generated client libraries such as, for
example, Bash, Ruby, Python, PHP, Node js, C#, Java, and
Objective-C. Additionally, information related to the privacy
of the API, whether the API is running, the reliability of the
API, the cost of the API, and the rate of the API can also
displayed.

FIG. 13 illustrates an example user interface 1300 depict-
ing a user homepage for use in a social cloud-based hub,
according to an embodiment. As shown, the user homepage
1300 includes an add API button 1302. When selected, the
API button 1302 allows a user to add an API for distribution
in the hub.

The user homepage 1300 also includes a dashboard tab
1310, a consumer console tab 1304, an inbox tab 1306, and
a user account tab 1308. As shown, the dashboard tab 1310
is selected such that a dashboard pane 1312 is illustrated.
The dashboard parse 1312 shows activities related to APIs
the user is following, APIs the user has created, APIs the
user has consumed, etc. Activities can include any event
related to an API such as, for example, publishing an API or
updating an API. The user homepage also includes an API
use information area 1314 that illustrates information related
to use of APIs by the user such as, for example, APIs created
and APIs consumed.

FIG. 14 illustrates an example of user homepage 1300
where the consumer console tab is selected such that the
consumer console pane 1402 is displayed. The consumer
console pane 1402 can graphically illustrate various statis-
tics related to APIs associated with the user. This can include
usage and subscription statistics (as shown).

FIG. 15 illustrates an example user interface depicting a
user homepage (or profile page) 1500 for use in a social
cloud-based hub. In addition to other information, API
information related to the user, API activity associated with
the user, etc. can be displayed.

US RE49,722 E

17

FIG. 16 illustrates an example of user homepage 1300
wherein the add API button 1302 is selected. It is appreci-
ated that various user interface pages include an add API
button and the example of FIG. 16 is representative of any
of those pages.

FIGS. 17-20 illustrate an example user interface depicting
to an API profile administrator page 1700 for use in a social
cloud-based hub, according to an embodiment. As shown in
FIG. 17, an overview tab is selected such that an overview
pane 1702 is displayed. Among other indicators, the over-
view pane 1702 can illustrate API activity and add-ons
related to a is specific APL. In this example, information
related to the API “Image Pack” is shown to the adminis-
trator (i.e., the API developer) of the “Image Pack™ APIL.

FIG. 18 illustrates the API profile administrator page 1700
with the settings tab selected such that a settings pane 1802
is displayed. Among other information, the settings pane
1802 can illustrate generation information, proxy settings,
firewall information, etc.

FIG. 19 illustrates the API profile administrator page 1700
with the documentation tab selected such that a documen-
tation pane 1902 is displayed. The documentation pane 1902
includes various information related to the API. An API
developer can add and/or modify this information, which is
displayed to API consumers, at any time.

FIG. 20 illustrates the API profile administrator page 1700
with the add-ons tab selected such that an adds-ons pane
2002 is displayed. The add-ons pane 2002 displays infor-
mation related to the add-ons installed on top of the APIL.
Among other information the add-ons pane 2002 can illus-
trate API billing information, API permission information,
etc.

FIG. 21 shows a diagrammatic representation of a
machine in the example form of a computer system 2100,
within which a set of instructions for causing the machine to
perform any one or more of the methodologies discussed
herein may be executed.

In alternative embodiments, the machine operates as a
standalone device or may be connected (networked) to other
machines. In a networked deployment, the machine may
operate in the capacity of a server or a client machine in a
client-server network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment.

The machine may be a server computer, a client computer,
a personal computer (PC), a tablet PC, a set-top box (STB),
a personal digital assistant (PDA), a cellular telephone or
smart phone, a tablet computer, a personal computer, a web
appliance, a point-of-sale device, a network router, switch or
bridge, or any machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be takers by that machine.

While the machine-readable (storage) medium is shown
in an exemplary embodiment to he a single medium, the
term “machine-readable (storage) medium” should be taken
to include a single medium or multiple media (a centralized
or distributed database, and/or associated caches and serv-
ers) that store the one or more sets of instructions. The term
“machine-readable medium” or “machine readable storage
medium” shall also be taken to include any medium that is
capable of storing, encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention.

In general, the routines executed to implement the
embodiments of the disclosure, may be implemented as part
of an operating system or a specific application, component,
program, object, module or sequence of instructions referred

20

25

40

45

55

18

to as “computer programs.” The computer programs typi-
cally comprise one or more instructions set at various times
in various memory and storage devices in a computer, and
that, when read and executed by one or more processors in
a computer, cause the computer to perform operations to
execute elements involving the various aspects of the dis-
closure.

Moreover, while embodiments have been described in the
context of fully functioning computers and computer sys-
tems, those skilled in the art will appreciate that the various
embodiments are capable of being distributed as a program
product in a variety of forms, and that the disclosure applies
equally regardless of the particular type of machine or
computer-readable media used to actually effect the distri-
bution.

Further examples of machine or computer-readable media
include, but are not limited to, recordable type media such
as volatile and non-volatile memory devices, floppy and
other removable disks, hard disk drives, optical disks (e.g.,
Compact Disk Read-Only Memory (CD ROMS); Digital
Versatile Discs, (DVDs), etc.), among others, and transmis-
sion type media such as digital and analog communication
links.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive
sense, as opposed to an exclusive or exhaustive sense; that
is to say, in the sense of “including, but not limited to.” As
used herein, the terms “connected,” “coupled,” or any vari-
ant thereof, means any connection or coupling, either direct
or indirect, between two or more elements; the coupling of
connection between the elements can be physical, logical, or
a combination thereof. Additionally, the words “herein,”
“above,” “below,” and words of similar import, when used
in this application, shall refer to this application as a whole
and not to any particular portions of this application. Where
the context permits, words in the above Detailed Description
using the singular or plural number may also include the
plural or singular number respectively. The word “or,” in
reference to a list of two or more items, covers all of the
following interpretations of the word: any of the items in the
list, all of the items in the list, and any combination of the
items in the list.

The above detailed description of embodiments of the
disclosure is not intended to be exhaustive or to limit the
teachings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosure,
as those skilled in the relevant art will recognize. For
example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines hav-
ing steps, or employ systems having blocks, in a different
order, and some processes or blocks may be deleted, moved,
added, subdivided, combined, and/or modified to provide
alternative or subcombinations. Each of these processes or
blocks may be implemented in a variety of different ways.
Also, while processes or blocks are at times shown as being
performed in series, these processes or blocks may instead
be performed in parallel, or may be performed at different
times. Further any specific numbers noted herein are only
examples: alternative implementations may employ differ-
ing values or ranges.

The teachings of the disclosure provided herein can be
applied to other systems, not necessarily the system

US RE49,722 E

19

described above. The elements and acts of the various
embodiments described above can be combined to provide
further embodiments.

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference. Aspects
of'the disclosure can be modified, if necessary, to employ the
systems, functions, and concepts of the various references
described above to provide yet further embodiments of the
disclosure.

These and other changes can he made to the disclosure in
light of the above Detailed Description. While the above
description describes certain embodiments of the disclosure,
and describes the best mode contemplated, no matter how
detailed the above appears in text, the teachings can be
practiced in many ways. Details of the system may vary
considerably in its implementation details, while still being
encompassed by the subject matter disclosed herein As
noted above, particular terminology used when describing
certain features or aspects of the disclosure should not be
taken to imply that the terminology is being redefined herein
to be restricted to any specific characteristics, features, or
aspects of the disclosure with which that terminology is
associated. In general, the terms used in the following claims
should not be construed to limit the disclosure to the specific
embodiments disclosed in the specification, unless the above
Detailed Description section explicitly defines such terms.
Accordingly, the actual scope of the disclosure encompasses
not only the disclosed embodiments, but also all equivalent
ways of practicing or implementing the disclosure under the
claims.

While certain aspects of the disclosure are presented
below in certain claim forms, the inventors contemplate the
various aspects of the disclosure in any number of claim
forms. For example, while only one aspect of the disclosure
is recited as a means-plus-function claim under 35 U.S.C.
§112, 46, other aspects may likewise be embodied as a
means-plus-function claim, or in other forms, such as being
embodied in a computer-readable medium. (Any claims
intended to be treated under 35 U.S.C. §112, 46 will begin
with the words “means for.”) Accordingly, the applicant
reserves the right to add additional claims after filing the
application to pursue such additional claim forms for other
aspects of the disclosure.

What is claimed is:

[1. A method comprising:

receiving, at a management system, user-generated

parameters describing functionality associated with an
application program interface (API);

configuring, at the management system, a proxy for

providing secure communications between an API
server and a client;

generating, at the management system, a plurality of

client libraries based, on the user-generated parameters,
wherein the client libraries are utilized by users of the
management system to consume the API, and wherein
generating the plurality of client libraries includes
bringing the client libraries into existence;

providing, at the management system, a plurality of

add-ons to the client, wherein each add-on of the
plurality of add-ons provides functionality in addition
to the API;
receiving, at the management system, an indication of a
selection of an add-on of the plurality of add-ons;

associating, at the management system, the add-on of the
plurality of add-ons with the API to provide function-
ality in addition to the API;

5

15

20

25

30

35

40

45

50

55

60

65

20

receiving, at the management system, a request to publish

the API; and

publishing, at the management system, the API via an

online platform.]

[2. The method of claim 1, wherein the API returns
JavaScript Object Notation (JSON) data.]

[3. The method of claim 1, further comprising:

receiving, at the management system, a request from one

of the plurality of users of the management system to
consume the APL]

[4. The method of claim 1, wherein the online platform
comprises an API hub.]

[5. The method of claim 1, further comprising:

automatically categorizing, at the management system,

the API based on the user-generated parameters; and
storing the API in an API data store.]

[6. The method of claim 1, further comprising:

after publishing the API via the online platform, provid-

ing, at the management system, a custom uniform
resource locator (URL) for the API, wherein the URL
is configured for user registration and authentication.]

[7. The method of claim 1, further comprising:

generating, at the management system, customized docu-

mentation based on the user-generated parameters.]

[8. The method of claim 1, wherein an add-on of the
plurality of add-ons comprises an add-on including billing
system functionality.]

[9. The method of claim 1, wherein an add-on of the
plurality of add-ons comprises an add-on for user authenti-
cation.]

[10. The method of claim 1, wherein an add-on of the
plurality of add-ons comprises an add-on for analytics
associated with the use of the APL]

[11. The method of claim 1, wherein an add-on of the
plurality of add-ons comprises an add-on for a request limit
check to the API, the request limit check indicating the
number of requests allowed per a specified time period.]

[12. The method of claim 1, wherein configuring the
proxy comprises configuring one or more fields in the online
platform.]

[13. The method of claim 1, further comprising:

receiving, at the management system, a request to test the

API within the online platform; and

responsive to the request, testing the API within the online

platform.]

[14. The method of claim 1, wherein the parameters are
received via an XML description file.]

[15. The method of claim 1, further comprising:

receiving, at the management system, one or more con-

tributions to the API from a third-party developer,
wherein the third-party developer is different than an
original developer of the API; and

publishing, at the management system, the updated APL]

[16. The method of claim 1, wherein publishing the API
via the online platform comprises:

providing, at the management system, a number of third-

party developers that consume and contribute to the
development of the APL]

[17. A method comprising:

receiving, at a management system, a text-based search

query indicating API specific search criteria;
searching, at the management system, a categorized API
data store using the API specific search criteria;
providing, at the management system, one or more APIs
that match the API specific search criteria via an online
platform;

US RE49,722 E

21

providing, at the management system, a plurality of
add-ons, wherein each add-on of the plurality of add-
ons provides functionality in addition to the API;

responsive to providing the one or more APIs, receiving,
at the management system, a selection of a first API of
the one or more APIs that match the API specific search
criteria;
responsive to providing the plurality of add-ons, receiv-
ing, at the management system, an indication of a
selection of an add-on of the plurality of add-ons;

associating, at the management system, the add-on of the
plurality of add-ons with the first API to provide
functionality in addition to the first API;

responsive to receiving the selection of the first API,

providing, at the management system, a plurality of
automatically generated client libraries associated with
the first API;

receiving, at the management system, a selection of a first

client library of a plurality automatically generated

client libraries associated with the first API;
determining, at the management system, whether an API

consumer has indicated to test the first API;

testing the first API at the management system in response

the determination of whether the API consumer has
indicated to test the first API; and

providing, at the management system, the first API via the

online platform.]

[18. The method of claim 17, wherein providing the first
API comprises:

providing the first automatically generated client library

associated with the first APL]

[19. The method of claim 17, wherein the text-based
search inquiry indicates a type of an API, functionality of an
AP, or an API name.]

[20. The method of claim 17, further comprising:

receiving, at the management system, a request to test the

first API via a test console that is embedded in the
online platform.]

[21. The method of claim 17, further comprising:

responsive to receiving the selection of the first API,

providing, at the management system, automatically
generated documentation associated with that APL]
[22. The method of claim 17, wherein providing the one
or more APIs that match the text-based search inquiry via an
online platform comprises:
providing categories associated with the one or more
APIs; and

providing an indication of the number of third-party
developers that contribute to the development of the
APL]

[23. The method of claim 22, further comprising:

providing the identities of the third-party developers that

contribute to the development of the APIL]

[24. The method of claim 22, further comprising:

providing a forum indicating comments from the third-

party developers that contribute to the development of
the APL]

[25. The method of claim 17, further comprising:

responsive to providing the first APl via the online

platform, updating, at the management system, third-
party usage of the first APL]

[26. The method of claim 17, wherein said each library
was automatically generated in a different one of the fol-
lowing programming languages: Bash, Ruby, Python, PHP,
Node.js, C#, Java, or Objective-C.]

30

35

40

45

55

60

22

[27. A management system comprising:

a network interface configured to receive user-generated
parameters describing functionality associated with an
application program interface (API) and a request to
publish the API; and

a processing system configured to
configure a proxy for providing secure communications

between an API server and a client,
automatically generate a plurality of client libraries
based on the user-generated parameters,

provide a plurality of add-ons,
wherein each add-on of the plurality of add-ons pro-

vides functionality in addition to the API,
receive an indication of a selection of an add-on of the
plurality of add-ons, and associate the add-on of the
plurality of add-ons with the API,
wherein the client libraries are utilized by users of the
management system to consume the API, and

wherein the processing system being configured to
automatically generate the plurality of client libraries
includes being configured to bring the client libraries
into existence, and to publish the API via an online
platform.]

[28. A management system comprising:

means for receiving a text-based search query indicating
API specific search criteria;

means for searching a categorized API data store using the
API specific search criteria;

means for providing one or more APIs that match the API
specific search criteria via an online platform;

means for providing a plurality of add-ons, wherein each
add-on of the plurality of add-ons provides function-
ality in addition to an API of the one or more APIs;

means for receiving a selection of a first API of the one or
more APIs that match the API specific search criteria
responsive to providing the one or more APIs;

means for receiving an indication of a selection of an
add-on of the plurality of add-ons;

means for associating the add-on of the plurality of
add-ons with the first API;

means for automatically generating a plurality of client
libraries based on user-generated parameters associated
with the first API and based on a standard description
format associated with the first API,

means for providing the plurality of client libraries asso-
ciated with the first API responsive to receiving the
selection of the first API;

means for receiving a selection of a first client library of
the plurality of client libraries associated with the first
API; and

means for providing the first API via the online platform.]

[29. A method comprising:

receiving, at a management system, user-generated
parameters including any of an applications program-
ming interface (API) name, an API tag, an API version,
an public/private setting for an API, a description of an
API, or a description of a version of an API;

configuring, at the management system, a proxy for
providing secure communications between an API
server and a client to enable the client to securely
consume the API;

generating, at the management system, a plurality of
client libraries based on the user-generated parameters,
wherein the client libraries are utilized by users of the
management system to consume the API, and wherein
generating the plurality of client libraries includes
bringing the client libraries into existence;

US RE49,722 E

23

providing, by the management system, a selection of a
plurality of add-ons to the client, wherein each add-on
of the plurality of add-ons provides additional func-
tionality to the API;

receiving, at the management system and from the client,
an indication of a selection of a particular add-on of the
plurality of add-ons;

associating, at the management system, the particular
add-on with the API to provide additional functionality
to the API;

receiving, at the management system, a request to publish
the API; and

publishing, at the management system, the API via an
online platform.]

30. A method comprising:

receiving, at a management system, user-generated
parameters describing functionality associated with an
application program interface (API);

configuring, at the management system, a proxy for pro-
viding secure communications between an API server
and a client;

generating, at the management system, a plurality of
client libraries based on the user-gemerated param-
eters, wherein the client libraries are utilized by users
of the management system to consume the API, and
wherein generating the plurality of client libraries
includes bringing the client libraries into existence;

providing, at the management system, a plurality of
add-ons to the client, wherein each add-on of the
plurality of add-ons provides functionality in addition
to the API;

receiving, at the management system, an indication of a
selection of an add-on of the plurality of add-ons;

associating, at the management system, the add-on of the
plurality of add-ons with the API to provide function-
ality in addition to the API;

receiving, at the management system, a request to publish
the API; and

publishing, at the management system, the API via an
online platform.

31. The method of claim 30, wherein the API returns

JavaScript Object Notation (JSON) data.

32. The method of claim 30, further comprising:

receiving, at the management system, a vequest from one
of the plurality of users of the management system to
consume the APL

33. The method of claim 30, wherein the online platform

comprises an API hub.

34. The method of claim 30, further comprising:

automatically categorizing, at the management system,
the API based on the user-generated parameters; and

storing the API in an API data store.

35. The method of claim 30, further comprising:

after publishing the API via the online platform, provid-
ing, at the management system, a custom uniform
resource locator (URL) for the API, wherein the URL is
configured for user registration and authentication.

36. The method of claim 30, further comprising:

generating, at the management system, customized docu-
mentation based on the user-generated parameters.

37. The method of claim 30, wherein an add-on of the

plurality of add-ons comprises an add-on including billing
system functionality.

38. The method of claim 30, wherein an add-on of the

plurality of add-ons comprises an add-on for user authen-
tication.

10

15

25

35

40

45

50

55

60

65

24

39. The method of claim 30, wherein an add-on of the
plurality of add-ons comprises an add-on for analytics
associated with the use of the APL

40. The method of claim 30, wherein an add-on of the
plurality of add-ons comprises an add-on for a request limit
check to the API, the request limit check indicating the
number of requests allowed per a specified time period.

41. The method of claim 30, wherein configuring the proxy
comprises configuring one or more fields in the online
platform.

42. The method of claim 30, wherein the parameters are
received via an XML description file.

43. The method of claim 30, further comprising:

receiving, at the management system, one or more con-
tributions to the API from a third-party developer,
wherein the third-party developer is different than an
original developer of the API; and

publishing, at the management system, the updated API.

44. The method of claim 30, wherein publishing the APl
via the online platform comprises:

providing, at the management system, a number of third-
party developers that consume and contribute to the
development of the API.

45. A management system comprising:

a network interface configured to receive user-generated
parameters describing functionality associated with an
application program interface (API) and a request to
publish the API; and

a processing system configured to configure a proxy for
providing secure communications between an API
server and a client,
automatically generate a plurality of client libraries

based on the user-generated parameters,
provide a plurality of add-ons,
wherein each add-on of the plurality of add-ons
provides functionality in addition to the API,
receive an indication of a selection of an add-on of the
plurality of add-ons, and associate the add-on of the
plurality of add-ons with the API;
wherein the client libraries are utilized by users of
the management system to consume the API, and
wherein the processing system being configured to
automatically generate the plurality of client
libraries includes being configured to bring the
client libraries into existence, and publish the API
via an online platform.

46. The management system of claim 45, whevein the
processing system being configured to:

receive, at the management system, a request from one of
a plurality of users of the management system to
consume the APL

47. The management system of claim 45, wherein the
processing system being configured.:

after publishing the API via the online platform, provide,
at the management system, a custom uniform resource
locator (URL) for the API, wherein the URL is config-
ured for user registration and authentication.

48. The management system of claim 45, wherein the

processing system being configured.:

generate, at the management system, customized docu-
mentation based on the user-generated parameters.

49. The management system of claim 45, wherein an
add-on of the plurality of add-ons comprises an add-on for
analytics associated with the use of the API

50. A management system comprising:

means for receiving a text-based search query indicating
API specific search criteria;

US RE49,722 E

25

means for searching a categorized API data store using
the API specific search criteria;

means for providing one or more APIs that match the API
specific search criteria via an online platform;

means for providing a plurality of add-ons, wherein each
add-on of the plurality of add-ons provides function-
ality in addition to an API of the one or more APIs;

means for receiving a selection of a first API of the one or
move APls that match the API specific search criteria
responsive to providing the one or more APIs;

means for receiving an indication of a selection of an

add-on of the plurality of add-ons;

means for associating the add-on of the plurality of

add-ons with the first API;

means for automatically generating a plurality of client
libraries based on user-generated parameters associ-
ated with the first API, and based on a standard
description format associated with the first API;

means for providing the plurality of client libraries asso-
ciated with the first API responsive to receiving the
selection of the first API;

means for receiving a selection of a first client library of

the plurality of client libraries associated with the first
API; and

means for providing the first API via the online platform.

51. The management system of claim 50, further compris-

ing:

a means to receive, at the management system, a request
from one of a plurality of users of the management
system to consume the APIL

52. The management system of claim 50, further compris-

ing:

a means to, after publishing the API via the online
platform, provide, at the management system, a custom
uniform resource locator (URL) for the API, wherein
the URL is configured for user registration and authen-
tication.

53. The management system of claim 50, further compris-

ing:

a means to generate, at the management system, custom-
ized documentation based on the user-generated
parameters.

54. The management system of claim 50, wherein an

add-on of the plurality of add-ons comprises an add-on for
analytics associated with the use of the APIL

10

15

20

25

30

35

40

26

55. A method comprising:

receiving, at a management Ssystem, user-generated
parameters including any of an applications program-
ming interface (API) name, an API tag, an API version,
an public/private setting for an API, a description of an
API, or a description of a version of an API;

configuring, at the management system, a proxy for pro-
viding secure communications between an API server
and a client to enable the client to securely consume the
API;

generating, at the management system, a plurality of
client libraries based on the user-gemerated param-
eters, wherein the client libraries are utilized by users
of the management system to consume the API, and
wherein generating the plurality of client libraries
includes bringing the client libraries into existence;

providing, by the management system, a selection of a
plurality of add-ons to the client, wherein each add-on
of the plurality of add-ons provides additional func-
tionality to the API;

receiving, at the management system and from the client,
an indication of a selection of a particular add-on of
the plurality of add-ons;

associating, at the management system, the particular
add-on with the API to provide additional functionality
to the API;

receiving, at the management system, a request to publish
the API: and

publishing, at the management system, the API via an
online platform.

56. The method of claim 55, further comprising:

receiving, at the management system, a request from one
of a plurality of users of the management system to
consume the APL

57. The method of claim 55, further comprising:

after publishing the API via the online platform, provid-
ing, at the management system, a custom uniform
resource locator (URL) for the API, wherein the URL is
configured for user registration and authentication.

58. The method of claim 55, further comprising:

generating, at the management system, customized docu-
mentation based on the user-generated parameters.

#* #* #* #* #*

