一种预制板式无砟轨道结构

摘要

一种预制板式无砟轨道结构，它包括钢轨（1）、扣件、预制轨道板（2）、调整层（3）、底座（4），其特征是，所述的轨道板下设置限位凸台（5）或限位凹槽（6），所述限位凸台（5）或限位凹槽（6）为单个或多个。本发明受力合理，具有较好的结构稳定性和耐久性，能充分发挥轨道板的高强度大刚度功能，减轻轨道板所受纵向温度力，满足铁路、轻轨、地铁等轨道交通高平顺性和高稳定性的要求。
1. 一种预制板式无砟轨道结构，它包括钢轨 (1)、扣件、预制轨道板 (2)、调整层 (3)、底座 (4)，其特征是，所述的轨道板板底设置限位凸台 (5) 或限位凹槽 (6)，所述限位凸台 (5) 或限位凹槽 (6) 为单个或多个。

2. 根据权利要求 1 所述的一种预制板式无砟轨道结构，所述板式无砟轨道结构沿线路纵向为单元分块式结构，相邻预制轨道板单元之间设有横向缝隙，预制轨道板位于底座上方，每块预制轨道板 (2) 与底座 (4) 之间采用限位凸台 (5) 和限位凹槽 (6) 的结构进行轨道纵向力的传递，及限制轨道板 (2) 相对底座 (4) 的纵向位移，限位凸台 (5) 和限位凹槽 (6) 分别位于预制轨道板底部和底座上表面上，或底座上表面和预制轨道板底部，所述调整层 (3) 位于底座 (4) 和预制轨道板 (2) 之间，预制轨道板 (2) 与调整层 (3) 之间对应面为平面。

3. 根据权利要求 1 所述的一种预制板式无砟轨道结构，其特征是，在限位凹台 (5) 的侧面安装弹性材料。

4. 根据权利要求 1 所述的一种预制板式无砟轨道结构，其特征是，所述调整层 (3) 采用自密实混凝土。

5. 根据权利要求 1 所述的一种预制板式无砟轨道结构，其特征是，所述调整层 (3) 和预制轨道板 (2) 对应面之间设置有隔离层或减振垫层 (10)。

6. 根据权利要求 1 所述的一种预制板式无砟轨道结构，其特征是，所述底座 (4) 沿纵向为单元分块式结构，相邻底座单元之间设有横向缝隙，每个底座单元长度可为一块或多块轨道板对应的长度。

7. 根据权利要求 1 至 6 中至少一项权利要求所述的一种预制板式无砟轨道结构，其特征是，所述相邻预置轨道板 (2) 之间无任何连接或填筑填充材料。
一种预制板块无砟轨道结构

技术领域

本发明涉及铁路轨道结构系统，尤其涉及一种预制板块无砟轨道结构，适用于铁路、轻轨、地铁等铁路路基、桥梁及隧道地段的无砟轨道铺设。

背景技术

目前铁路工程应用较多的无砟轨道型式主要有CRTS I 型双块式无砟轨道、CRTS II 型板式无砟轨道和CRTS III 型板式无砟轨道。CRTS I 型双块式无砟轨道由钢轨、扣件、双块式轨枕、道床板、支承层/底座板等组成。CRTS I 型双块式无砟轨道具有较高的整体性，并可降低轨枕的设计和制造技术，造价相对较低。CRTS I 型双块式无砟轨道浇筑道床板及预埋轨杆与道床板新老混凝土结合面容易产生裂纹，道床板为浇筑混凝土，施工效率相对较差，道床板施工质量控制相对困难，道床板表面排水坡施工困难；同时，轨道结构出现破坏性损伤时，可维修性相对较差。

CRTS I 型板式无砟轨道由钢轨、扣件、轨道板、水泥乳化沥青砂浆填充层、底座、凸型挡台及其周围填充树脂等组成。CRTS I 型板式无砟轨道具有较软的施工性能和可修性。CRTS I 型板式无砟轨道水泥乳化沥青砂浆性能稳定性和耐久性受原材料、施工工艺及气候条件影响较大，梁端凸型挡台受力最大，但梁端凸型挡台为半圆，抗变形能力及对于大跨度桥梁适应性相对较差。水泥乳化沥青砂浆材料导致无砟轨道建筑成本相对较高。

CRTS II 型板式无砟轨道由钢轨、扣件、轨道板、砂浆/支承层/底座等组成。CRTS II 型板式无砟轨道结构整体性和纵向连续性较好，轨道平顺性好。CRTS II 型板式无砟轨道跨越梁缝、桥梁、轨道系统受力复杂，且施工操作繁琐，轨道板为纵连结构，可维修性相对较差，梁端设置锚固结构，对于相邻路基结构的整体性产生一定的不利影响，且对于后期的工程调整适应性较差，轨道板精加工造价昂贵，建筑成本最高。

CRTS III 型板式无砟轨道由钢轨、扣件、轨道板、自密实混凝土和底座板组成。CRTS III 型板式无砟轨道采用自密实混凝土代替水泥乳化沥青砂浆，结构耐久性较好，造价相对较低。CRTS III 型板式无砟轨道在轨道板下预留竖向筋，使轨道板与自密实混凝土调整层连接为一个整体。轨道板与自密实混凝土调整层连接为一个整体后，两者共同受力。该整体共同承受弯矩 M，则该整体所受的最大拉应力为 \(\sigma = \frac{M}{6Bh^2} \)，其中 B 为该整体宽度，h 为轨道板（厚度 h1）与自密实混凝土调整层（厚度 h2）两个叠合层的组合厚度。应力分布见图 1，由图 1 可知，在所有荷载作用下，轨道板与自密实混凝土组成的这个整体在自密实混凝土底面受拉，轨道板顶面受压，即最大拉应力由自密实混凝土调整层来承受，而自密实混凝土调整层本身刚度比轨道板小，容许最大拉应力较预留的设计应力轨道板小。

发明内容

本发明的目的为了解决上述背景技术中存在的不足，提出一种适应铁路、轻轨、地
铁等轨道交通的预制轨道板式无砟轨道结构，使该结构力学传递途径清晰，受力合理，并具有更好的结构稳定性和耐久性，施工简单，维修方便，同时满足铁路、轻轨、地等轨道交通高平顺性和高稳定性的要求。

【0009】为实现上述目的，本发明采用如下技术方案：一种预制板式无砟轨道结构，它的包括钢轨 1，扣件、预制轨道板 2、调整层 3、底座 4，其特征是，所述的轨道板块底设置限位沿位台 5、或限位凹槽 6，所述限位沿位台 5 或限位凹槽 6 为单个或多个。

【0010】优选地，所述板块式无砟轨道结构沿线路纵向为单元分块式结构，相邻预制轨道板单元之间设有纵向间隙，预制轨道板位于底座上方，每块预制轨道板 2 与底座 4 之间采用限位沿位台 5 和限位凹槽 6 的结构进行轨道纵向力的传递，及限制轨道板 2 相对底座 4 的纵向位移，限位台 5 和限位凹槽 6 分别位于预制轨道板底部和底座上表面上，或底座上表面和预制轨道板底部，所述调整层 3 位于底座 4 和预制轨道板 2 之间，预制轨道板 2 与调整层 3 之间对位面为平面。

【0011】优选地，在限位沿位台 5 的侧面上安装弹性材料。

【0012】优选地，所述调整层 3 采用自密实混凝土。

【0013】优选地，所述调整层 3 和预制轨道板 2 对应面之间设置有隔离层或减振垫层 10。

【0014】优选地，所述底座 4 沿纵向为单元分块式结构，相邻底座单元之间设有横向间隙，每个底座单元长度可为一块或多块轨道板对应的长度。

【0015】在上述方案中，所述相邻预置轨道板 2 之间可以无任何连接或填筑填充材料。

【0016】一方面，由于本发明的调整层与轨道板之间对应面为平面，导致调整层与轨道板之间为相互分离的两层，与现有的轨道板下预埋门型筋与自密实混凝土调整层连接为一个整体结构相比，本发明能使自密实混凝土调整层所受拉应力减小，轨道板承受更高的拉应力，从结构设计和受力方面考虑更为合理。理由如下：

【0017】本发明所述轨道板与自密实混凝土调整层 3 由于没有连接，轨道板与自密实混凝土调整层 3 根据各自的刚度受力，其受力图见图 2。本发明的轨道板 2 一般为预制的 C60 预应力钢筋混凝土板，自密实混凝土调整层 3 为现浇的 C40 钢筋混凝土。假设轨道板 2 的弹性模量为 E1，厚度为 h1，调整层 3 的弹性模量为 E2，厚度为 h2。假设所有荷载作用下无砟轨道系统所承受的总弯矩值为 M，则轨道板与调整层各自承受的弯矩值分别为：

\[\sigma_1 = \frac{M}{6B_1h_1} = \frac{E_1h_1}{6B_1(E_1h_1^3 + E_2h_2^3)} \]

轨道板承受的最大拉应力值为：

\[\sigma_1 = \frac{M}{6B_1h_1} = \frac{E_1h_1}{6B_1(E_1h_1^3 + E_2h_2^3)} \]

其中 B1 为轨道板的宽度，调整层承受的最大拉应力值为：

\[\sigma_2 = \frac{M}{6B_2h_2} = \frac{E_2h_2}{6B_2(E_1h_1^3 + E_2h_2^3)} \]

其中 B2 为调整层宽度。

【0018】一般情况下调整层与轨道板同宽，即 B1 = B2，由于轨道板的弹性模量和厚度均大于自密实混凝土的弹性模量和厚度，即轨道板的刚度大于自密实混凝土的刚度，可见轨道板所能承受的最大拉应力大于自密实混凝土承受的最大拉应力，即 \(\sigma_1 > \sigma_2 \)。 }

【0019】本发明与传统结构将轨道板与调整层 3 连接成一个整体相比，体现的是刚度逐层递减的设计理念，轨道板与自密实混凝土各尽其能，承担各自所能承担的荷载，即两者依据各自的能力发挥其最大作用。本发明能使自密实混凝土层所受拉应力减小，轨道板承受更
大的拉应力。

另一方面，由于本发明的预制轨道板 2 采用单元分块式结构，当温度荷载相同时，
本发明轨道板所受温度应力远小于连续式板式无砟轨道轨道板所受温度力。理由如下：

本发明轨道板受整体温度荷载变化时，仅受扣件和底座上凹槽或凸台对轨道板的
约束作用。轨道板受到的轴向温度力采用如下公式进行计算，下式中前面部分为由扣件引
起的轴向温度力，后面部分为由限位凸台 5 引起的轴向温度力：

\[F_{sw} = \frac{F_k \cdot N_k}{2} + \frac{k_l \cdot E_c \cdot A_c \cdot \Delta T \cdot L}{k_l \cdot L + E_c \cdot A_c} \]

\[\sigma_{sw} = \frac{F_{sw}}{A_c} \]

式中：\(F_{sw} \) ——轴向温度力；
\(\sigma_{sw} \) ——轴向温度应力；
\(F_k \) ——每组扣件的纵向阻力；
\(N_k \) ——单元轨道板上的扣件组数；
\(k_l \) ——轨道板限位凸台处弹性材料的弹性系数；
\(E_c \) ——轨道板混凝土的弹性模量；
\(A_c \) ——轨道板横断面面积；
\(\alpha_c \) ——轨道板混凝土的热膨胀系数；
\(\Delta T \) ——轨道板整体变化温度；
\(L \) ——限位凸台上受力弹性材料至板中的距离。

传统的连续结构无砟轨道中，连续轨道板受整体温度荷载作用下的纵向温度力为：

\[F_s = E'_{c} \cdot \alpha_c \cdot \Delta T_c \cdot A_c \]

式中：\(E'_{c} \) ——道床板混凝土的折减弹性模量；
\(\alpha_c \) ——混凝土的线膨胀系数；
\(\Delta T_c \) ——道床板的年整体变化温度；
\(A_c \) ——道床板的横断面面积。

假设轨道板的混凝土强度等级为 C60（弹性模量取 361000Mpa），轨道板长度、宽
度、厚度分别为 103100mm、21000mm、190mm，轨道板上每组扣件阻力取值为 110kN，整体温度
取 100℃。

分别计算单元分块式预制板式无砟轨道结构和连续式板式无砟轨道的轨道板轴
向温度力计算结果如表 1。

| 轨道板轴向温度应力（单位：MPa） |
|-----------------|-----------------|
| 无砟轨道类型 | 单元分块式 | 连续式 |
| 轴拉应力 | 0.2103 | 2.19 |
| 轴压应力 | 0.3610 | 3.610 |

由此可见，当温度荷载相同时，本发明单元分块式预制板式无砟轨道结构轨道板
所受温度应力远小于连续式板式无砟轨道轨道板所受温度力。

综上所述，本发明结构力学传递途径清晰，受力合理，并具有较好的结构稳定性和耐久性，能充分发挥轨道板的高强度大刚度功能，减轻轨道板所受纵向温度力，满足客运专线铁路高平顺性和高稳定性的要求。

本发明具有以下优点：

1、轨道板设置凸台与凹槽配合结构作为限位装置，可保持轨道正确的几何形位，保证列车荷载、温度荷载等的有效传递，提高了轨道结构的稳定性；

2、轨道板采用工厂预制，施工简单，维修方便，容易获得高精度和高质量，提高了轨道结构的平顺性和耐久性；

3、轨道板、自密实混凝土和底座为分层结构，各层之间无粘结，使结构受力更加合理，可提高各层结构的耐久性；

4、调整层采用自密实混凝土，并配置有钢筋网片，可以减少混凝土开裂，提高了自密实混凝土调整层的耐久性；

5、轨道板与调整层之间设隔离层，维修方便，同时可根据减振要求设计为减震垫层，方便轨道减震需要；

6、底座采用单元分块式设计的钢筋混凝土结构，能减少混凝土底座不规则开裂，提高了底座的耐久性。

以下结合附图所示实施例对本发明特征做进一步详细描述，以便于同行业技术人员理解。

附图说明

图 1 是传统无砟轨道中轨道板与调整层连接为一个整体后应力分布图。

图 2 是本发明所述轨道板与调整层分离状态下应力分布图。

图 3 是本发明主视图。

图 4 是实施例 1 中图 3 的 A-A 剖视图。

图 5 是实施例 2 中图 3 的 A-A 剖视图。

图 6 是实施例 1 中图 3 的 B-B 剖视图。

图 7 是实施例 2 中图 3 的 B-B 剖视图。

具体实施方式

实施例 1：参见图 3、图 4 和图 6。本实施例由钢轨 1、扣件、预制轨道板 2、调整层 3、自密实混凝土底座 4 组成。其中，预制轨道板 2 位于底座 4 上面，自密实混凝土作为调整层 3 填充在底座与轨道板间，其中配置有钢筋网片。所述预制轨道板 2 沿纵向为单元分块式结构，相邻预制轨道板单元之间设有横向缝隙 7。所述底座 4 沿纵向也为单元分块式结构，相邻底座单元之间设有横向缝隙 8，每个底座单元上设有至少一个预制轨道板单元，本实施例的底座单元上设有两个预制轨道板单元。所述相邻预制轨道板单元之间的横向缝隙 7 与相邻底座单元之间的横向缝隙 8 可以对齐，也可以不对齐，本实施例为对齐状态。

实施例 2：在预制轨道板 2 下表面设有凸台 5，在底座 4 上与预制轨道板板上凸台 5 相对应处设置凹槽 6，凸台 5 与凹槽 6 相配合，所述限位凸台 5 或限位凹槽 6 的边界位于轨道板 2 周
边轮廓之内，使其能限制轨道板 2 在底座 4 上表面的横向位移和纵向位移。在限位凸台 5 的侧面安装弹性材料 9。在调整层 3 和预制轨道板 2 对应面之间设置有减震垫层或隔离层 10。减震垫层或隔离层 10 可采用土工布材料（或减振垫层）。

[0063] 底座 4 施工前应进行基础的验收，及清洁、预湿等，然后按设计图纸确定的位置尺寸安装底座钢筋网，进行分块浇筑，底座 4 高程控制、底座 4 上凹槽尺寸施工应保证精度。在底座 4 强度达到设计强度的 70%以上后，才可进行轨道板的安装。

[0064] 自密实混凝土调整层 3 内的钢筋网片在轨道板铺设前进行放置和绑扎。

[0065] 轨道板 2 采用工厂预制，轨道板上凸台 6 周围安装弹性材料 9，并用胶带纸封闭所有间隙。轨道板 2 铺设和精调采用专用施工设备，使轨道板位置在允许偏差范围内。轨道板 2 精调完成后设置轨道板 2 压紧装置，防止灌注自密实混凝土时板上浮。

[0066] 自密实混凝土调整层 3 施工应紧随轨道板 2 精调后进行，在灌注前进行轨道板 2 几何位置的确认和底座表面的预湿，架立自密实混凝土调整层 3 的模板，从一侧模板进行灌注，自密实混凝土灌注应保证混凝土的饱和度。

[0067] 本实施例在以上施工步骤完成后进行钢轨 1 的铺设、焊接、应力放散及锁定工作，然后进行轨道几何状态的精确调整。

[0068] 实施例 2：参见图 3、图 5 和图 6。本实施例与实施例 1 基本相同，不同之处在于，在预制轨道板 2 下表面设有凹槽 6，在底座 4 上与预制轨道板上凹槽 6 相对应处设置凸台 5，凸台 5 与凹槽 6 相配合。