WO 2005/111803 A2 |0 |00 00 0 00O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

AT 0O R

(43) International Publication Date (10) International Publication Number
24 November 2005 (24.11.2005) PCT WO 2005/111803 A2
(51) International Patent Classification’: GOG6F 11/14 (74) Agents: DREGER, Duane, H. et al.; Cesari and
McKenna, LLP, 88 Black Falcon Avenue, Boston, MA
(21) International Application Number: 02210 (US).
PCT/US2005/013566
(81) Designated States (unless otherwise indicated, for every
(22) International Filing Date: 21 April 2005 (21.04.2005) kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(25) Filing Language: English CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(26) Publication Language: English KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
(30) Priority Data: PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
10/8336,090 30 April 2004 (30.04.2004) US TJ, ™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA, ZM, ZW.

(71) Applicant (for all designated States except US): NET-
WORK APPLIANCE, INC. [US/US]; 495 East Java (84) Designated States (unless otherwise indicated, for every

Drive, Sunnyvale, CA 94089 (US). kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(72) Inventor: EDWARDS, John, K.; 1173 Crandano Court, 7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Sunnyvale, CA 94087 (US). European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: EXTENSION OF WRITE ANYWHERE FILE LAYOUT WRITE ALLOCATION

(57) Abstract: A write allocation technique

START 1200 extends a conventional write allocation
procedure employed by a write anywhere file

SELECT PVBN AND VVBN | 1202 system of a storage system. A write allocator of

FOR ALLOCATED BLOCK] the file system implements the extended write

* allocation technique in response to an event in

ADJUST BLOCK ALLOCATION BITMAPS 1204 the file system. The extended write allocation

IN AGGREGATE TO RECORD SELECTEDPVBN [technique efficiently allocates blocks, and frees
‘ blocks, to and from a virtual volume (vvol)

of an aggregate. The aggregate is a physical

'&D{J,\ng[?Boé;EKC%LRLg gé{E)nggwgﬁ 1206 volume comprising one or more groups of disks,

T such as RAID groups, underlying one or more

vvols of the storage system. The aggregate has
its own physical volume block number (pvbn)
space and maintains metadata, such as block

INSERT VVID AND SELECTED VVBN IN ENTRY 11208
OF OWNER MAP DEFINED BY SELECTED PVBN

4 allocation structures, within that pvbn space.
INSERT SELECTED PVBN 1210 Each vvol also has its own virtual volume block
INTO CONTAINER MAP OF WWOL number (vvbn) space and maintains metadata,
* such as block allocation structures, within that
UPDATE INDIRECT BLOCK OR INODE vvbn space. The inventive technique extends
OF ALLOCATED BLOCK 1212 input/output efficiencies of the conventional
WITH POINTER(S) TO ALLOGATED BLOCK 12/16 write allocation procedure to comport with
Y 1914 INSERT an extended file system layout of the storage
SELECTED PVBN system.
HYBRID VWOL? INTO
INDIRECT BLOCK
N OR INODE
INSERT BOTH SELECTED PVBN AND | 1218

SELECTED VVBN INTO INDIRECT BLOCK OR INODE

|

WO 2005/111803 A2 I} H1I0 Y A0VOH0 0 000 000 AR

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, For two-letter codes and other abbreviations, refer to the "Guid-
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ance Notes on Codes and Abbreviations" appearing at the begin-
GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gagzette.

Published:
— without international search report and to be republished
upon receipt of that report

WO 2005/111803 PCT/US2005/013566

15

20

25

EXTENSION OF WRITE ANYWHERE FILE LAYOUT WRITE
ALLOCATION

FIELD OF THE INVENTION

The present invention relates to file systems and, more specifically, to write al-

location in a write anywhere file system.

BACKGROUND OF THE INVENTION

A storage system typically comprises one or more storage devices into which
information may be entered, and from which information may be obtained, as desired.
The storage system includes a storage operating system that functionally organizes the
system by, inter alia, invoking storage operations in support of a storage service im-
plemented by the system. The storage system may be implemented in accordance with
a variety of storage architectures including, but not limited to, a network-attached stor-
age environment, a storage area network and a disk assembly directly attached to a cli-
ent or host computer. The storage devices are typically disk drives organized as a disk
array, wherein the term "disk" commonly describes a self-contained rotating magnetic
media storage device. The term disk in this context is synonymous with hard disk drive

(HDD) or direct access storage device (DASD).

Storage of information on the disk array is preferably implemented as one or
more storage "volumes" of physical disks, defining an overall logical arrangement of
disk space. The disks within a volume are typically organized as one or more groups,
wherein each group may be operated as a Redundant Array of Independent (or Inex-
pensive) Disks (RAID). Most RAID implementations enhance the reliability/integrity
of data storage through the redundant writing of data "stripes" across a given number of
physical disks in the RAID group, and the appropriate storing of redundant information
(parity) with respect to the striped data. The physical disks of each RAID group may
include disks configured to store striped data (i.e., data disks) and disks configured to
store parity for the data (i.e., parity disks). The parity may thereafter be retrieved to
enable recovery of data lost when a disk fails. The term “RAID” and its various im-

plementations are well-known and disclosed in 4 Case for Redundant Arrays of Inex-

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-2 -

pensive Disks (RAID), by D. A. Patterson, G. A. Gibson and R. H. Katz, Proceedings of
the International Conference on Management of Data (SIGMOD), June 1988.

The storage operating system of the storage system may implement a high-level
module, such as a file system, to logically organize the information stored on the disks
as a hierarchical structure of directories, files and blocks. For example, each “on-disk”
file may be implemented as set of data structures, i.e., disk blocks, configured to store
information, such as the actual data for the file. These data blocks are organized within
a volume block number (vbn) space that is maintained by the file system. The file sys-
tem may also assign each data block in the file a corresponding “file offset” or file
block number (fbn). The file system typically assigns sequences of fbns on a per-file
basis, whereas vbns are assigned over a larger volume address space. The file system
organizes the data blocks within the vbn space as a "logical volume"; each logical vol-
ume may be, although is not necessarily, associated with its own file system. The file
system typically consists of a contiguous range of vbns from zero to n, for a file system

of size n-1 blocks.

A known type of file system is a write-anywhere file system that does not over-
write data on disks. If a data block is retrieved (read) from disk into a memory of the
storage system and “dirtied” (i.e., updated or modified) with new data, the data block is
thereafter stored (written) to a new location on disk to optimize write performance. A
write-anywhere file system may initially assume an optimal layout such that the data is
substantially contiguously arranged on disks. The optimal disk layout results in effi-
cient access operations, particularly for sequéntial read operations, directed to the disks.
An example of a write-anywhere file system that is configured to operate on a storage
system is the Write Anywhere File Layout (WAFL™) file system available from Net-

work Appliance, Inc., Sunnyvale, California.

The storage operating system may further implement a storage module, such as
a RAID system, that manages the storage and retrieval of the information to and from
the disks in accordance with input/output (I/O) operations. The RAID system is also
responsible for parity operations in the storage system. Note that the file system only
"sees" the data disks within its vbn space; the parity disks are "hidden" from the file

system and, thus, are only visible to the RAID system. The RAID system typically or-

WO 2005/111803 PCT/US2005/013566

10

15

20

25

30

-3 -

ganizes the RAID groups into one large "physical” disk (i.e., a physical volume), such
that the disk blocks are concatenated across all disks of all RAID groups. The logical
volume maintained by the file system is then “disposed over” (spread over) the physical

volume maintained by the RAID system.

The storage system may be configured to operate according to a client/server
model of information delivery to thereby allow many clients to access the directories,
files and blocks stored on the system. In this model, the client may comprise an appli-
cation, such as a database application, executing on a computer that “connects” to the
storage system over a computer network, such as a point-to-point link, shared local area
network, wide area network or virtual private network implemented over a public net-
work, such as the Internet. Each client may request the services of the file system by
issuing file system protocol messages (in the form of packets) to the storage system
over the network. By supporting a plurality of file system protocols, such as the con-
ventional Common Internet File System (CIFS) and the Network File System (NFS)

protocols, the utility of the storage system is enhanced.

When accessing a block of a file in response to servicing a client request, the
file system specifies a vbn that is translated at the file system/RAID system boundary
into a disk block number (dbn) location on a particular disk (disk, dbn) within a RAID
group of the physical volume. Each block in the vbn space and in the dbn space is
typically fixed, e.g., 4k bytes (kB), in size; accordingly, there is typically a one-to-one
mapping between the information stored on the disks in the dbn space and the informa-
tion organized by the file system in the vbn space. The (disk, dbn) location specified
by the RAID system is further translated by a disk driver system of the storage operat-
ing system into a plurality of sectors (e.g., a 4kB block with a RAID header translates
to 8 or 9 disk sectors of 512 or 520 bytes) on the specified disk.

The requested block is then retrieved from disk and stored in a buffer cache of
the memory as part of a buffer tree of the file. The buffer tree is an internal representa-
tion of blocks for a file stored in the buffer cache and maintained by the file system.
Broadly stated, the buffer tree has an inode at the root (top-level) of the file. An inode
is a data structure used to store information, such as metadata, about a file, whereas the

data blocks are structures used to store the actual data for the file. The information

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-4 -

contained in an inode may include, e.g., ownership of the file, access permission for the
file, size of the file, file type and references to locations on disk of the data blocks for
the file. The references to the locations of the file data are provided by pointers, which
may further reference indirect blocks that, in turn, reference the data blocks, depending
upon the quantity of data in the file. Each pointer may be embodied as a vbn to facili-
tate efficiency among the file system and the RAID system when accessing the data on
disks.

The RAID system maintains information about the geometry of the underlying
physical disks (e.g., the number of blocks in each disk) in raid labels stored on the
disks. The RAID system provides the disk geometry information to the file system for
use when creating and maintaining the vbn-to-disk,dbn mappings used to perform write
allocation operations and to translate vbns to disk locations for read operations. Block
allocation data structures, such as an active map, a snapmap, a space map and a sum-
mary map, are data structures that describe block usage within the file system, such as
the write-anywhere file system. These mapping data structures are independent of the

geometry and are used by a write allocator of the file system as existing infrastructure

for the logical volume.

Specifically, the snapmap denotes a file including a bitmap associated with the
vacancy of blocks of a snapshot. The write-anywhere file system (such as the WAFL
file system) has the capability to generate a snapshot of its active file system. An "ac-
tive file system" is a file system to which data can be both written and read, or, more
generally, an active store that responds to both read and write I/0O operations. It should
be noted that “snapshot” is a trademark of Network Appliance, Inc. and is used for pur-
poses of this patent to designate a persistent consistency point (CP) image. A persistent
consistency point image (PCPI) is a space conservative, point-in-time read-only image
of data accessible by name that provides a consistent image of that data (such as a stor-
age system) at some previous time. More particularly, a PCPI is a point-in-time repre-
sentation of a storage element, such as an active file system, file or database, stored on
a storage device (e.g., on disk) or other persistent memory and having a name or other
identifier that distinguishes it from other PCPIs taken at other points in time. In the

case of the WAFL file system, a PCPI is always an active file system image that con-

WO 2005/111803 PCT/US2005/013566

20

25

30

-5-

tains complete information about the file system, including all metadata. A PCPI can
also include other information (metadata) about the active file system at the particular
point in time for which the image is taken. The terms “PCPI” and “snapshot” may be
used interchangeably through out this patent without derogation of Network Appli-

ance’s trademark rights.

The write-anywhere file system supports multiple snapshots that are generally
created on a regular schedule. Each snapshot refers to a copy of the file system that
diverges from the active file system over time as the active file system is modified. In
the case of the WAFL file system, the active file system diverges from the snapshots
since the snapshots stay in place as the active file system is written to new disk loca-
tions. Each snapshot is a restorable version of the storage element (e.g., the active file
system) created at a predetermined point in time and, as noted, is “read-only” accessi-
ble and "space-conservative". Space conservative denotes that common parts of the
storage element in multiple snapshots share the same file system blocks. Only the dif-
ferences among these various snapshots require extra storage blocks. The multiple

snapshots of a storage element are not independent copies, each consuming disk space;

therefore, creation of a snapshot on the file system is instantaneous, since no entity data

needs to be copied. Read-only accessibility denotes that a snapshot cannot be modified
because it is closely coupled to a single writable image in the active file system. The
closely coupled association between a file in the active file system and the same file in
a snapshot obviates the use of multiple "same" files. In the example of a WAFL file
system, snapshots are described in TR3002 File System Design for a NFS File Server
Appliance by David Hitz et al., published by Network Appliance, Inc. and in U.S. Pat-
ent No. 5,819,292 entitled Method for Maintaining Consistent States of a File System
and For Creating User-Accessible Read-Only Copies of a File System, by David Hitz et
al., each of which is hereby incorporated by reference as though full set forth herein.

The active map denotes a file including a bitmap associated with a free status of
the active file system. As noted, a logical volume may be associated with a file system;
the term “active file system” refers to a consistent state of a current file system. The
summary map denotes a file including an inclusive logical OR bitmap of all snapmaps.

By examining the active and summary maps, the file system can determine whether a

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-6 -

block is in use by either the active file system or any snapshot. The space map denotes
a file including an array of numbers that describe the number of storage blocks used
(counts of bits in ranges) in a block allocation area. In other words, the space map is
essentially a logical OR bitmap between the active and summary maps to provide a
condensed version of available "free block" areas within the vbn space. Examples of
snapshot and block allocation data structures, such as the active map, space map and -
summary map, are described in U.S. Patent Application Publication No. |
US2002/0083037 Al, titled Instant Snapshot, by Blake Lewis et al. and published on
June 27, 2002, which application is hereby incorporated by reference.

The write anywhere file system includes a write allocator that performs write al-
location of blocks in a logical volume in response to an event in the file system (e.g.,
dirtyirig of the blocks in a file). The write allocator uses the block allocation data struc-
tures to select free blocks within its vbn space to which to write the dirty blocks. The
selected blocks are generally in the same positions along the disks for each RAID group
(i.e., within a stripe) so as to optimize use of the parity disks. Stripes of positional
blocks may vary among other RAID groups to, e.g., allow overlapping of parity update
operations. When write allocating, the file system traverses a small portion of each
disk (corresponding to a few blocks in depth within each disk) to essentially "lay down"
a plurality of stripes per RAID group. In particular, the file system chooses vbns that
are on the same stripe per RAID group dming write allocation using the vbn-to-

disk,dbn mappings.

When write allocating within the volume, the write allocator typically works
down a RAID group, allocating all free blocks within the stripes it passes over. This is
efficient from a RAID system point of view in that more blocks are written per stripe.
It is also efficient from a file system point of view in that modifications to block alloca-
tion metadata are concentrated withi‘n a relatively small number of blocks. Typically,
only a few blocks of metadata are written at the write allocation point of each disk in
the volume. As used herein, the write allocation point denotes a general location on

each disk within the RAID group (e.g., a stripe) where write operations occur.

Write allocation is performed in accordance with a conventional write allocation

procedure using the block allocation bitmap structures to select free blocks within the

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-7 -

vbn space of the logical volume to which to write the dirty blocks. Specifically, the
write allocator examines the space map to determine appropriate blocks for writing data
on disks at the write allocation point. In addition, the write allocator examines the ac-
tive map to locate free blocks at the write allocation point. The write allocator may
also examine snapshotted copies of the active maps to determine snapshots that may be

in the process of being deleted.

According to the conventional write allocation procedure, the write allocator
chooses a vbn for a selected block, sets a bit in the active map to indicate that the block
is in use and increments a corresponding space map entry which records, in concen-
trated fashion, where blocks are used. The write allocator then places the chosen vbn
into an indirect block or inode file "parent" of the allocated block. Thereafter, the file
system “frees” the dirty block, effectively returning that block to the vbn space. To
free the dirty block, the file system typically examines the active map, space map and a
summary map. The file system then clears the bit in the active map corresponding to
the freed block, checks the corresponding bit in the summary map to determine if the

block is totally free and, if so, adjusts (decrements) the space map.

The present invention is directed to a technique that extends the conventional
write allocation procedure to comport with an extended file system layout of a storage

system.

SUMMARY OF THE INVENTION

The present invention is directed to a write allocation technique that extends a
conventional write allocation procedure employed by a write anywhere file system of a
storage system. A write allocator of the file system implements the extended write al-
location technique in response to an event in the file system. The extended write allo-
cation technique efficiently allocates blocks, and frees blocks, to and from a virtual
volume (vvol) of an aggregate. The aggregate is a physical volume comprising one or
more groups of disks, such as RAID groups, underlying one or more vvols of the stor-
age system. The aggregate has its own physical volume block number (pvbn) space
and maintains metadata, such as block allocation “bitmap” structures, within that pvbn

space. Each vvol also has its own virtual volume block number (vvbn) space and main-

WO 2005/111803 PCT/US2005/013566

20

25

30

-8 -

tains metadata, such as block allocation bitmap structures, within that vvbn space. The
inventive technique extends input/output (I/O) efficiencies of the conventional write
allocation procedure to comport with an extended file system layout of the storage sys-

tem.

According to the extended write allocation technique, block allocation proceeds
in parallel on the vvol and the aggregate when write allocating a block within the vvol,
with the write allocator selecting a pvbn in the aggregate and a vvbn in the vvol. The
write allocator adjusts the block allocation bitmap structures, such an active map and
space map, of the aggregate to record the selected pvbn and adjusts similar structures of
the vvol to record the selected vvbn. A virtual volume identifier (vvid) of the vvol and
the vvbn are inserted into an owner map of the aggregate at an entry defined by the se-
lected pvbn. The selected pvbn is also inserted into a container map of the vvol. Fi-
nally, an indirect block or inode file parent of the allocated block is updated with one or
more block pointers to the allocated block. The content of the update operation de-
pends on the vvol embodiment. For a "hybrid" vvol embodiment, the selected pvbn is
inserted in the indirect block or inode as a block pointer. However, for a "dual vbn
hybrid" vvol embodiment, both the pvbn and vvbn are inserted in the indirect block or

inode as block pointers.

When freeing a block from a vvol, the write allocator acquires the vvbn of the
corresponding block. In the dual vbn hybrid embodiment, the write allocator acquires
the vvbn directly from the indirect block or inode file parent of the freed block. In the
hybrid vvol embodiment, however, only the pvbn is available in the indirect block or
inode file parent of the freed block; accordingly, the write allocator accesses the owner
map of the aggregate in order to acquire the vvbn. Once the vvbn is acquired, the write
allocator clears the active map bit entry for the vvbn in the vvol, checks the summary
map entry for the vvbn in the vvol and decrements the space map of the vvol if the
vvbn is totally free. If the vvbn is totally free, the block may also be "freed" for return
to the aggregate. That is, the pvbn is cleared from the container map (at entry vvbn),
the active map entry for the pvbn is cleared in the aggregate, the summary map entry
for the pvbn is checked in the aggregate and the space map of the aggregate is decre-

mented, as appropriate.

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-9.

According to an aspect of the invention, freeing of blocks from a vvol may be
delayed to allow amortization of the cost among many accumulated update operations.
In particular, the inventive technique allows the file system to perform "delayed free"
operations from the vvol. A delayed free operation involves clearing of appropriate
block allocation bitmaps in the vvol, while delaying the clearing of the container map
of the vvol and block allocation bitmaps of the aggregate. When a sufficient number of
free blocks have been accumulated for the vvol (or portion of the vvol) all of the accu-
mulated blocks may be freed from a block of the container map at once. A space map
style optimization may be applied to the container map of the vvol to keep track of
"rich" areas for delayed free operations to improve the efficiency of these operations.
When clearing blocks of the vvol from the container map, a further optimization in-
volves not freeing the blocks in the aggregate immediately, but rather accumulating
them into a delete log file. The free blocks may be sorted in the delete log to minimize

the number of I/O operations associated with the allocation maps of the aggregate.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be better understood by
referring to the following description in conjunction with the accompanying drawings
in which like reference numerals indicate identical or functionally similar elements:

Fig. 1 is a schematic block diagram of an environment including a storage sys-
tem that may be advantageously used with the present invention;

Fig. 2 is a schematic block diagram of a storage operating system that may be
advantageously used with the present invention;

Fig. 3 is a schematic block diagram of an inode that may be advantageously
used with the present invention;

Fig. 4 is a schematic block diagram of a buffer tree of a file that may be advan-
tageously used with the present invention;

Fig. 5 is a schematic block diagram of an embodiment of an aggregate that may
be advantageously used with the present invention;

Fig. 6 is a schematic block diagram of an on-disk representation of an aggre-

gate;

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-10-

Fig. 7 is a functional block diagram of a write allocator configured to implement
an extended write allocation technique of the present invention;

Fig. 8 is a schematic block diagram of a partial buffer tree of a file that may be
advantageously used with the present invention;

Fig. 9 is a schematic block diagram of a container file that may be advanta-
geously used with the present invention; |

Fig. 10 is a schematic block diagram of a partial buffer tree of a file within a
virtual volume (vvol) of the aggregate that may be advantageously used with the pre-
sent invention;

Fig. 11 is a schematic block diagram of an owner map that may be advanta-
geously used with the present invention;

Fig. 12 is a flowchart illustrating a sequence of steps directed to allocating a
block within a vvol in accordance with the extended write allocation technique of the
present invention; and

Fig. 13 is a flowchart illustrating a sequence of steps directed to freeing a block

in accordance with the extended write allocation technique of the present invention.

DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS

Fig. 1 is a schematic block diagram of an environment 100 including a storage
system 120 that may be advantageously used with the present invention. The storage
system is a computer that provides storage service relating to the organization of infor-
mation on storage devices, such as disks 130 of a disk array 160. The storage system
120 comprises a processor 122, a memory 124, a network adapter 126 and a storage
adapter 128 interconnected by a system bus 125. The storage system 120 also includes
a storage operating system 200 that preferably implements a high-level module, such as
a file system, to logically organize the information as a hierarchical structure of directo-
ries, files and special types of files called virtual disks (hereinafter “blocks”) on the

disks.

In the illustrative embodiment, the memory 124 comprises storage locations that
are addressable by the processor and adapters for storing software program code. A

portion of the memory may be further organized as a “buffer cache” 170 for storing

WO 2005/111803 PCT/US2005/013566

10

15

20

25

30

-11-

data structures associated with the present invention. The processor and adapters may,
in turn, comprise processing elements and/or logic circuitry configured to execute the
software code and manipulate the data structures. Storage operating system 200, por-
tions of which are typically resident in memory and executed by the processing ele-
ments, functionally organizes the system 120 by, inter alia, invoking storage operations
executed by the storage system. It will be apparent to those skilled in the art that other
processing and memory means, including various computer readable media, may be
used for storing and executing program instructions pertaining to the inventive tech-

nique described herein.

The network adapter 126 comprises the mechanical, electrical and signaling cir-
cuitry needed to connect the storage system 120 to a client 110 over a computer net-
work 140, which may comprise a point-to-point connection or a shared medium, such
as a local area network. Illustratively, the computer network 140 may be embodied as
an Ethernet network or a Fibre Channel (FC) network. The client 110 may communi-
cate with the storage system over network 140 by exchanging discrete frames or pack-
ets of data according to pre-defined protocols, such as the Transmission Control Proto-

col/Internet Protocol (TCP/IP).

The client 110 may be a general-purpose computer configured to execute appli-
cations 112. Moreover, the client 110 may interact with the storage system 120 in ac-

cordance with a client/server model of information delivery. That is, the client may

request the services of the storage system, and the system may return the results of the

services requested by the client, by exchanging packets 150 over the network 140. The
clients may issue packets including file-based access protocols, such as the Common
Internet File System (CIFS) protocol or Network File System (NFS) protocol, over
TCP/IP when accessing information in the form of files and directories. Alternatively,
the client may issue packets including block-based access protocols, such as the Small
Computer Systems Interface (SCSI) protocol encapsulated over TCP (iSCSI) and SCSI
encapsulated over Fibre Channel (FCP), when accessing information in the form of
blocks.

The storage adapter 128 cooperates with the storage operating system 200 exe-

cuting on the system 120 to access information requested by a user (or client). The in-

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-12-

formation may be stored on any type of attached array of writable storage device media
such as video tape, optical, DVD, magnetic tape, bubble memory, electronic random
access memory, micro-electro mechanical and any other similar media adapted to store
information, including data and parity information. However, as illustratively de-
scribed herein, the information is preferably stored on the disks 130, such as HDD
and/or DASD, of array 160. The storage adapter includes input/output (I/O) interface
circuitry that couples to the disks over an I/O interconnect arrangement, such as a con-

ventional high-performance, FC serial link toi)ology.

Storage of information on array 160 is preferably implemented as one or more
storage “volumes” that comprise a collection of physical storage disks 130 cooperating
to define an overall logical arrangement of volume block number (vbn) space on the
volume(s). Each logical volume is generally, although not necessarily, associated with
its own file system. The disks within a logical volume/file system are typically organ-
ized as one or more groups, wherein each group may be operated as a Redundant Array
of Independent (or Inexpensive) Disks (RAID). Most RAID implementations, such as
a RAID-4 level implementation, enhance the reliability/integrity of data storage
through the redundant writing of data “stripes” across a given number of physical disks
in the RAID group, and the appropriate storing of parity information with respect to the
striped data. An illustrative example of a RAID implementation is a RAID-4 level im-

plementation, although it should be understood that other types and levels of RAID im-

plementations may be used in accordance with the inventive principles described

herein.

To facilitat¢ access to the disks 130, the storage operating system 200 imple-
ments a write-anywhere file system that cooperates with virtualization modules to “vir-
tualize” the storage space provided by disks 130. The file system logically organizes
the information as a hierarchical structure of named directories and files on the disks.
Each “on-disk” file may be implemented as set of disk blocks configured to store in-
formation, such as data, whereas the directory may be implemented as a specially for-
matted file in which names and links to other files and directories are stored. The vir-

tualization modules allow the file system to further logically organize information as a

WO 2005/111803 PCT/US2005/013566

20

25

30

-13-

hierarchical structure of blocks on the disks that are exported as named logical unit

numbers (luns).

In the illustrative embodiment, the storage operating system is preferably the
NetApp® Data ONTAP™ operating system available from Network Appliance, Inc.,
Sunnyvale, California that implements a Write Anywhere File Layout (WAFL™) file
system. However, it is expressly contemplated that any appropriate storage operating
system may be enhanced for use in accordance with the inventive principles described
herein. As such, where the term “WAFL” is employed, it should be taken broadly to
refer to any storage operating system that is otherwise adaptable to the teachings of this

invention.

Fig. 2 is a schematic block diagram of the storage operating system 200 that
may be advantageously used with the present invention. The storage operating system
comprises a series of software layers organized to form an integrated network protocol
stack or, more generally, a multi-protocol engine that provides data paths for clients to
access information stored on the storage system using block and file access protocols.
The protocol stack includes-a media access layer 210 of network drivers (e.g., gigabit
Ethernet drivers) that interfaces to network protocol layers, such as the IP layer 212 and
its supporting transport mechanisms, the TCP layer 214 and the User Datagram Proto-
col (UDP) layer 216. A file system protocol layer provides multi-protocol file access
and, to that end, includes support for the Direct Access File System (DAFS) protocol
218, the NFS protocol 220, the CIFS protocol 222 and the Hypertext Transfer Protocol
(HTTP) protocol 224. A VI layer 226 implements the VI architecture to provide direct
access transport (DAT) capabilities, such as RDMA, as required by the DAFS protocol
218.

An iSCSI driver layer 228 provides block protocol access over the TCP/IP net-
work protocol layers, while a FC driver layer 230 receives and transmits block access
requests and responses to and from the storage system. The FC and iSCSI drivers pro-
vide FC-specific and iSCSI-specific access control to the blocks and, thus, manage ex-
ports of luns to either iSCSI or FCP or, alternatively, to both iSCSI and FCP when ac-
cessing the blocks on the storage system. In addition, the storage operating system in-

cludes a storage module embodied as a RAID system 240 that manages the storage and

WO 2005/111803 PCT/US2005/013566

20

25

30

-14-

retrieval of information to and from the volumes/disks in accordance with I/O opera-
tions, and a disk driver system 250 that implements a disk access protocol such as, e.g.,
the SCSI protocol.

Bridging the disk software layers with the integrated network protocol stack
layers is a virtualization system that is implemented by a file system 280 interacting
with virtualization modules illustratively embodied as, e.g., vdisk module 290 and
SCSI target module 270. The vdisk module 290 is layered on the file system 280 to
enable access by administrative interfaces, such as a user interface (UI) 275, in re-
sponse to a user (system administrator) issuing commands to the storage system. The
SCSI target module 270 is disposed between the FC and iSCSI drivers 228, 230 and the
file system 280 to provide a translation layer of the virtualization system between the
block (lun) space and the file system space, where luns are represented as blocks. The
UI 275 is disposed over the storage operating system in a manner that enables adminis-

trative or user access to the various layers and systems.

The file system is illustratively a message-based system that provides logical
volume management capabilities for use in access to the information stored on the stor-
age devices, such as disks. That is, in addition to providing file system semantics, the
file system 280 provides functions normally associated with a volume manager. These
functions include (i) aggregation of the disks, (i1) aggregaﬁon of storage bandwidth of
the disks, and (iii) reliability guarantees, such as mirroring and/or parity (RAID). The
file system 280 illustratively implements the WAFL file system (hereinafter generally
the “write-anywhere file system™) having an on-disk format representation that is
block-based using, e.g., 4 kilobyte (kB) blocks and using index nodes (“inodes”) to
identify files and file éttributes (such as creation time, access permissions, size and
block location). The file system uses files to store metadata describing the layout of its
file system; these metadata files include, among others, an inode file. A file handle,

i.e., an identifier that includes an inode number, is used to retrieve an inode from disk.

Broadly stated, all inodes of the write-anywhere file system are organized into
the inode file. A file system (FS) info block specifies the layout of information in the
file system and includes an inode of a file that includes all other inodes of the file sys-

tem. Each logical volume (file system) has an FS info block that is preferably stored at

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-15-

a fixed location within, e.g., a RAID group. The inode of the root FS info block may
directly reference (point to) blocks of the inode file or may reference indirect blocks of
the inode file that, in turn, reference direct blocks of the inode file. Within each direct
block of the inode file are embedded inodes, each of which may reference indirect

blocks that, in turn, reference data blocks of a file.

Operationally, a request from the client 110 is forwarded as a packet 150 over
the computer network 140 and onto the storage system 120 where it is received at the
network adapter 126. A network driver (of layer 210 or layer 230) processes the packet
and, if appropriate, passes it on to a network protocol and file access layer for addi-
tional processing prior to forwarding to the write-anywhere file system 280. Here, the
file system generates operations to load (retrieve) the requested data from disk 130 if it
is not resident “in core”, i.e., in the buffer cache 170. If the information is not in the
cache, the file system 280 indexes into the inode file using the inode number to access
an appropriate entry and retrieve a logical vbn. The file system then passes a message
structure including the logical vbn to the RAID system 240; the logical vbn is mapped
to a disk identifier and disk block number (disk,dbn) and sent to an appropriate driver
(e.g., SCSI) of the disk driver system 250. The disk driver accesses the dbn from the
speciﬁed‘disk 130 and loads the requested data block(s) in buffer cache 170 for proc-
essing by the storage system. Upon completion of the request, the storage system (and

operating system) returns a reply to the client 110 over the network 140.

It should be noted that the software “path” through the storage operating system
layers described above needed to perform data storage access for the client request re-
ceived at the storage system may alternatively be implemented in hardware. That is, in
an alternate embodiment of the invention, a storage access request data path may be
implemented as logic circuitry embodied within a field programmable gate array
(FPGA) or an application specific integrated circuit (ASIC). This type of hardware im-
plementation increases the performance of the storage service provided by storage sys-
tem 120 in response to a request issued by client 110. Moreover, in another alternate
embodiment of the invention, the processing elements of adapters 126, 128 may be
configured to offload some or all of the packet processing and storage access opera-

tions, respectively, from processor 122, to thereby increase the performance of the stor-

WO 2005/111803 PCT/US2005/013566

10

15

20

25

30

-16-

age service provided by the system. It is expressly contemplated that the various proc-
esses, architectures and procedures described herein can be implemented in hardware,

firmware or software.

As used herein, the term “‘storage operating system" generally refers to the com-
puter-executable code operable to perform a storage function in a storage system, e.g.,
that manages data access and may, in the case of a file server, implement file system
semantics. In this sense, the ONTAP software is an example of such a storage operat-
ing system implemented as a microkernel and including the WAFL layer to implement
the WAFL file system semantics and manage data access. The storage operating sys-
tem can also be implemented as an application program operating over a general-
purpose operating system, such as UNIX® or Windows NT®, or as a general-purpose
operating system with configurable functionality, which is configured for storage appli-

cations as described herein.

In addition, it will be understood to those skilled in the art that the inventive
technique described herein may apply to any type of special-purpose (e.g., file server,
filer or multi-protocol storage appliance) or general-purpose computer, including a
standalone computer or portion thereof, embodied as or including a storage system 120.
An example of a multi-protocol storage appliance that may be advantageously used
with the present invention is described in U.S. Patent Application Serial No.
10/215,917 titled, Multi-Protocol Storage Appliance that provides Integrated Support
for File and Block Access Protocols, filed on August 8, 2002. Moreover, the teachings
of this invention can be adapted to a variety of storage system architectures including,
but not limited to, a network-attached storage environment, a storage area network and
disk assembly directly-attached to a client or host computer. The term “storage sys-
tem” should therefore be taken broadly to include such arrangements in addition to any
subsystems configured to perform a storage function and associated with other equip-

ment or systems.

In the illustrative embodiment, a file is represented in the write-anywhere file
system as an inode data structure adapted for storage on the disks 130. Fig. 3 is a sche-
matic block diagram of an inode 300, which preferably includes a metadata section 310

and a data section 350. The information stored in the metadata section 310 of each

WO 2005/111803 PCT/US2005/013566

20

25

30

-17-

inode 300 describes the file and, as such, includes the type (e.g., regular, directory, vir-
tual disk) 312 of file, the size 314 of the file, time stamps (e.g., access and/or modifica-
tion) 316 for the file and ownership, i.e., user identifier (UID 318) and group ID (GID
320), of the file. The contents of the data section 350 of each inode, however, may be
interpreted differently depending upon the type of file (inode) defined within the type
field 312. For example, the data section 350 of a directory inode contains metadata
controlled by the file system, whereas the data section of a regular inode contains file
system data. In this latter case, the data section 350 includes a representation of the

data associated with the file.

Specifically, the data section 350 of a regular on-disk inode may include file
system data or pointers, the latter referencing 4kB data blocks on disk used to store the
file system data. Each pointer is preferably a logical vbn to facilitate efficiency among
the file system and the RAID system 240 when accessing the data on disks. Given the
restricted size (e.g., 128 bytes) of the inode, file system data having a size that is less
than or equal to 64 bytes is represented, in its entirety, within the data section of that
inode. However, if the file system data is greater than 64 bytes but less than or equal to
64kB, then the data section of the inode (e.g., a first level inode) comprises up to 16

pointers, each of which references a 4kB block of data on the disk.

Moreover, if the size of the data is greater than 64kB but less than or equal to 64
megabytes (MB), then each pointer in the data section 350 of the inode (e.g., a second
level inode) references an indirect block (e.g., a first level block) that contains 1024
pointers, each of which references a 4kB data block on disk. For file system data hav-
ing a size greater than 64MB, each pointer in the data section 350 of the inode (e.g., a
third level inode) references a double-indirect block (e.g., a second level block) that
contains 1024 pointers, each referencing an indirect (e.g., a first level) block. The indi-
rect block, in turn, that contains 1024 pointers, each of which references a 4kB data
block on disk. When accessing a file, each block of the file may be loaded from disk
130 into the buffer cache 170.

When an on-disk inode (or block) is loaded from disk 130 into buffer cache
170, its corresponding in core structure embeds the on-disk structure. For example, the

dotted line surrounding the inode 300 (Fig. 3) indicates the in core representation of the

WO 2005/111803 PCT/US2005/013566

20

25

30

-18-

on-disk inode structure. The in core structure is a block of memory that stores the on-
disk structure plus additional information needed to manage data in the memory (but
not on disk). The additional information may include, e.g., a “dirty” bit 360. After
data in the inode (or block) is updated/modified as instructed by, e.g., a write operation,
the modified data is marked “dirty” using the dirty bit 360 so that the inode (block) can
be subsequently “flushed” (stored) to disk. The in core and on-disk format structures of
the WAFL file system, including the inodes and inode file, are disclosed and described
in the previously incorporated U.S. Patent No. 5,819,292 titled Method for Maintaining
Consistent States of a File System and for Creating User-Accessible Read-Only Copies
of a File System by David Hitz et al., issued on October 6, 1998.

Fig. 4 is a schematic block diagram of a buffer tree of a file that may be advan-
tageously used with the present invention. The buffer tree is an internal representation
of blocks for a file (e.g., file A 400) loaded into the buffer cache 170 and maintained by
the write-anywhere file system 280. A root (top-level) inode 402, such as an embedded
inode, references indirect (e.g., level 1) blocks 404. The indirect blocks (and inode)
contain pointers 405 that ultimately reference data blocks 406 used to store the actual
data of file A. That is, the data of file A 400 are contained in data blocks and the loca-
tions of these blocks are stored in the indirect blocks of the file. Each level 1 indirect
block 404 may contain pointers to as many as 1024 data blocks. According to the
“write anywhere” nature of the file system, these blocks may be located anywhere on
the disks 130. |

The present invention is directed to a write allocation technique that extends a
conventional write allocation procedure employed by a write anywhere file system of a
storage system. A write allocator of the file system implements the extended write al-
location technique in response to an event in the file system (e.g., writing/updating of a
file). The extended write allocation technique efficiently allocates blocks, and frees
blocks, to and from a virtual volume (vvol) of an aggregate. The aggregate is a physi-
cal volume comprising one or more groups of disks, such as RAID groups, underlying
one or more vvols of the storage system. The aggregate has its own physical volume
block number (pvbn) space and maintains metadata, such as block allocation bitmap

structures, within that pvbn space. Each vvol also has its own virtual volume block

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-19-

number (vvbn) space and maintains metadata, such as block allocation bitmap struc-
tures, within that vvbn space. The inventive technique extends I/O efficiencies of the
conventional write allocation procedure to comport with an extended file system layout

of the storage system.

In the illustrative embodiment, pvbns are used as block pointers within buffer
trees of files (such as file 400) stored in a vvol. By utilizing pbvns (instead of vvbns)
as block pointers within the buffer trees, the extended file system layout facilitates effi-
cient read performance on read paths of those files. This illustrative "hybrid" vvol em-
bodiment involves the insertion of only the pvbn in the parent indirect block (e.g.,
inode or volinfo block). Use of pvbns avoids latency associated with translations from
vvbns-to-pvbns, e.g., when servicing file system (such as NFS, CIFS) requests. On a
read path of a logical volume, a “logical” volume (vol) info block has a pointer that ref-
erences an fsinfo block that, in turn, “points to” an inode file and its corresponding
buffer tree. The read path on a vvol is generally the same, following pvbns (instead of
vvbns) to find appropriate locations of blocks; in this context, the read path (and corre-
sponding read performance) of a vvol is substantially similar to that of a physical vol-
ume. Translation from pvbn-to-disk,dbn occurs at the file system/RAID system bound-
ary of the storage operating system 200.

In an alternate "dual vbn hybrid" vvol embodiment, both the pvbn and vvbn are
inserted in the parent indirect (e.g., level 1) blocks in a buffer tree of a file. Here, the
use of pvbns as block pointers in the indirect blocks provides efficiencies in the read
paths, while the use of vvbn block pointers provides efficient access to required meta-
data, such as per-volume block allocation information. That is, when freeing a block of
a file, the parent indirect block in the file contains readily available vvbn block point-
ers, which avoids the latency associated with accessing an owner map (described
herein) to perform pvbn-to-vvbn translations; yet, on the read path, the pvbn is avail-
able. A disadvantage of this dual vbn variant is the increased size of indirection data

(metadata) stored in each file.

Fig. 5 is a schematic block diagram of an embodiment of an aggregate 500 that
may be advantageously used with the present invention. Luns (blocks) 502, directories

504, gtrees 506 and files 508 may be contained within vvols 510 that, in turn, are con-

WO 2005/111803 PCT/US2005/013566

10

15

20

25

30

-20-

tained within the aggregate 500. The aggregate 500 is illustratively layered on top of
the RAID system, which is represented by at least one RAID plex 550 (depending upon
whether the storage configuration is mirrored), wherein each plex 550 comprises at
least one RAID group 560. Each RAID group further comprises a plurality of disks
530, e.g., one or more data (D) disks and at least one (P) parity disk.

Whereas the aggregate 500 is analogous to a physical volume of a conventional
storage system, a vvol is analogous to a file within that physical volume. That is, the
aggregate 500 may include one or more files, wherein each file contains a vvol 510 and
wherein the sum of the storage space consumed by the vvols is physically smaller than
(or equal to) the size of the overall physical volume. The aggregate utilizes a “physi-
cal” pvbn space that defines a storage space of blocks provided by the disks of the
physical volume, while each embedded vvol (within a file) utilizes a “logical” vvbn
space to organize those blocks, e.g., as files. Each vvbn space is an independent set of
numbers that corresponds to locations within the file, which locations are then trans-
lated to dbns on disks. Since the vvol 510 is also a logical volume, it has its own block

allocation structures (e.g., active, space and summary maps) in its vvbn space.

Fig. 6 is a schematic block diagram of an on-disk representation of an aggregate
600. The storage operating system 200, e.g., the RAID system 240, assembles a physi-
cal volume of pvbns to create the aggregate 600, with pvbns 1 and 2 comprising a
“physical” volinfo block 602 for the aggregate. The volinfo block 602 contains block
pointers to fsinfo blocks 604, each of which may represent a snapshot of the aggregate.
Each fsinfo block 604 includes a block pointer to an inode file 606 that contains inodes
of a plurality of files, including an owner map 1100, an active map 612, a summary
map 614 and a space map 616, as well as other special metadata files. The inode file
606 further includes a root directory 620 and a “hidden” metadata root directory 630,
the latter of which includes a namespace having files related to a vvol in which users
cannot "see" the files. The hidden metadata root directory also includes a WAFL/fsid/
directory structure, as described herein, which contains a filesystem file 640 and stor-
age label file 690. Note that root directory 620 in the aggregate is empty; all files re-

lated to the aggregate are organized within the hidden metadata root directory 630.

WO 2005/111803 PCT/US2005/013566

10

15

20

25

30

-21-

The filesystem file 640 includes block pointers that reference various file sys-
tems embodied as vvols 650. The aggregate 600 maintains these vvols 650 at special
reserved inode numbers. Each vvol 650 also has. special reserved inode numbers within
its vvol space that are used for, among other things, the block allocation bitmap struc-
tures. As noted, the block allocation bitmap structures, e.g., active map 662, summary

map 664 and space map 666, are located in each vvol.

Specifically, each vvol 650 has the same inode file structure/content as the ag-
gregate, with the exception that there is no owner map and no WAFL/fsid/filesystem
file, storage label file directory structure in a hidden metadata root directory 680. To
that end, each vvol 650 has a volinfo block 652 that points to one or more fsinfo blocks
654, each of which may represent a snapshot of the vvol. Each fsinfo block, in turn,
points to an inode file 660 that, as noted, has the same inode structure/content as the
aggregate with the exceptions noted above. Each vvol 650 has its own inode file 660
and distinct inode space with corresponding inode numbers, as well as its own root
(fsid) directory 670 and subdirectories of files that can be exported separately from

other vvols.

The storage label file 690 contained within the hidden metadata root directory
630 of the aggregate is a small file that functions as an analog to a conventional raid
label. A raid label includes "physical" information about the storage system, such as
the volume name; that information is loaded into the storage label file 690. Illustra-
tively, the storage label file 690 includes the name 692 of the associated vvol 650, the
online/offline status 694 of the vvol, and other identity and state information 696 of the

associated vvol (whether it is in the process of being created or destroyed).

According to an aspect of the extended write allocation technique, block alloca-
tion proceeds (is performed) in parallel on the vvol and the aggregate when write allo-
cating a block within the vvgl, with the write allocator independently selecting a pvbn
in the aggregate and a vvbn in the vvol. In essence, the write allocator 700 moves
down physical disks of a RAID group and a logical disk of each vvol in parallel, select-
ing a pvbn and a vvbn for each write allocated block. Fig. 7 is a functional block dia-
gram of a write allocator 700 configured to implement the extended write allocation

technique of the present invention. The write allocator maintains a pvbn space 720 and

WO 2005/111803 PCT/US2005/013566

10

15

20

25

30

-22-

vvbn space 730 in accordance with the inventive technique. The write allocator selects
a pvbn for the file by selecting a disk 715 of a RAID group 725 that is "farthest back"
(from the last stripe), scanning that disk a certain depth and selecting all free blocks.
The write allocator then moves to a next disk in the RAID group and performs the same

procedure.

When selecting a vvbn, the file system views the vvbn space of a vvol as a large
“logical” disk 735, since the vvbn space 730 does not relate to the physical properties
of the disks within RAID group 725. The file system references a write allocation
point 740 in the logical disk 735 to select a vvbn from the vvbn space 730 of the vvol.
For each disk of a vvol, the file system constructs write allocations blocks (buffers) that
are used at the write allocation point 740. By treating the vvbn space as a large logical
disk, only one write allocation point is needed within the vvol, thereby limiting the

number of write allocation buffers that need to be written.

As described further herein, the write allocator adjusts the block allocation bit-
map structures, such the active map 612 and space map 616, of the aggregate to record
the selected pvbn and adjusts the active and space map structures 662, 666 of the vvol
to record the selected vvbn. A virtual volume identifier (vvid) and the vvbn are in-
serted into the owner map 1100 of the aggregate at an entry defined by the pvbn to re-
cord use of the pvbn. It should be noted that in the dual vbn hybrid embodiment, there
is no requirement for the owner map and, thus, updates of the owner map for the vvid
and vvbn can be avoided. That pvbn is also inserted into a container map 950 of the
vvol. Finally, an indirect block or inode file parent of the allocated block is updated
with a block pointer to the allocated block. The content of the update operation de-
pends on the vvol embodiment. For a hybrid vvol embodiment, the pvbn is inserted in
the parent indirect block (e.g., inode or volinfo block). However, for a dual vbn hybrid

vvol embodiment, both the pvbn and vvbn are inserted in the indirect block.

Specifically, when write allocating a block in a file of the aggregate (e.g., a con-
tainer file, a storage label file or active/summary/owner map files), only the aggregate's
bitmaps and buffers are used and affected. The write allocator 700 selects a pvbn,
marks the corresponding bits in the active map 612 of the aggregate as "in use" and

places the pvbn into a parent (indirect block or inode) of the block being write allo-

WO 2005/111803 PCT/US2005/013566

15

20

25

30

-23-

cated. Direct allocation of the container file occurs when write allocating the volinfo
block 652 of the vvol; such direct allocation is analogous to direct write operations to
the RAID system. When write allocating a block of a vvol, however, the write alloca-
tor selects (i) a pvbn in the aggregate (a "physical” block on disk) for storing data of the
allocated block and (ii) a vvbn (a "logical" block) in the vvol for enabling logical opera-

tions, such as a snapshot, on the data of the block.

Fig. 8 is a schematic block diagram of a partial buffer tree of a file 800 that may
be advantageously used with the present invention. Assume pvbn 3000 is selected for a
write allocated (level 0) block 804 of the file 800. Assume also that vvbn 5000 is se-
lected as the logical pointer associated with the physical pointer pvbn 3000 for the new
write allocated block 804. A next write allocated (level 0) block 806 in the file may be
assigned pvbn 3001 and vvbn 5002. For the illustrative hybrid vvol embodiment, the
write allocator 700 inserts the pvbns into the parent blocks of the write allocated
blocks, whereas for the alternate dual vbn hybrid vvol embodiment, the write allocator
inserts both the pvbns and vvbns into the parent blocks. Note that a parent block may
comprise indirect block of a file, an inode 802 of the file, or a volinfo block of a write

allocated fsinfo block of, e.g., a vvol.

Fig. 9 is a schematic block diagram illustrating a vvol embodied as container
file 900. The container file is a file in the aggregate having level 0 (data) blocks that
comprise all blocks used to hold data in a vvol; that is, the level 0 data blocks of the
container file contain all blocks used by a vvol. Level 1 (and higher) indirect blocks of
the container file reside in the aggregate and, as such, are considered aggregate blocks.
The container file is an internal (to the aggregate) feature that supports a vvol; illustra-
tively, there is one container file per vvol. The container file is a hidden file (not acces-
sible to a user) in the aggregate that holds every block in use by the vvol. When operat-
ing in a vvol, a vvbn identifies a file block number (fbn) location within the file and the
file system uses the indirect blocks of the hidden container file to translate the fbn into
a physical vbn (pvbn) location within the physical volume, which block can then be
retrieved from disk. As noted, the aggregate includes the illustrative hidden metadata

root directory 630 that contains subdirectories of vvols:

WAFL/fsid/filesystem file, storage label file

WO 2005/111803 PCT/US2005/013566

20

25

30

-24-

A “physical” file system (WAFL) directory includes a subdirectory for each
vvol in the aggregate, with the name of subdirectory being a file system identifier (fsid)
of the vvol. As further noted, each fsid subdirectory (vvol) has at least two files, a file-
system file 640 and a storage label file 690. The storage label file 690 is illustratively a
4kB file that contains metadata similar to that stored in a conventional raid label. In
other words, the storage label file is the analog of a raid label and, as such, contains in-
formation about the state of the vvol such as, e.g., the name of the vvol, a universal
unique identifier (uuid) and fsid of the vvol, whether it is online, being created or being

destroyed, etc.

The filesystem file 640 is a large sparse file that contains all blocks owned by a
vvol and, as such, is referred to as the container file for the vvol. The container file 900
is assigned a new type and has an inode 902 that is assigned an inode number equal to a
vvid of the vvol, e.g., container file 900 has an inode number 113. The container file is
essentially one large, sparse virtual disk and, since it contains all blocks owned by its
vvol, a block with vvbn X in the vvol can be found at fbn X in the container file. For

example, vvbn 5005 in a vvol can be found at fbn 5005 in its container file 900.

Fig. 10 is a schematic block diagram of a partial buffer tree of a file 1000 within
a vvol of the aggregate that may be advantageously used with the present invention.
The buffer tree includes a top-level inode 1002 that has a block pointer to a level 1 indi-
rect block (L1,1) 1004 which, in turn, has block pointers that reference level 0 blocks
(L0,1) 1006 and (L0,2) 1008. Note that in the hybrid vvol embodiment, the block
pointers comprise pvbns (as illustrated), whereas in the dual vbn hybrid vvol embodi-
ment the block pointers comprise pvbn,vvbn pairs. All of the blocks of the buffer tree,
including the level 1 (L1) and level 0 (L0) blocks of the file 1000, as well as all inode
file blocks, fsinfo blocks and volinfo blocks in a vvol, are located within level 0 blocks
of the corresponding container file 900. For example, the level 0 blocks 906-910 of the
container file 900 hold (L0,1), (L0,2), and (L1,1), respectively.

Assume that level 0 block 910 of the container file 900 has an fbn 5005 and a
"parent" indirect (level 1) block 905 of that level 0 block has a block pointer referenc-
ing the level 0 block, wherein the block pointer has a pvbn 3005. Thus, location fbn
5005 of the container file 900 is pvbn 3005 (on disk). Notably, the block numbers are

WO 2005/111803 PCT/US2005/013566

15

20

25

30

-25-

maintained at the first indirect level (level 1) of the container file 900; e.g., to locate
block 5005 in the container file, the file system layer accesses the 5005™ entry at level 1
of the container file and that indirect block provides the pvbn 3005 for fbn 5005.

In other words, level 1 indirect blocks of the container file 900 contain the
pvbns for blocks in the file and, thus, provides a “forward” mapping of vvbns of a vvol
to pvbns of the aggregate. The level 1 indirect blocks of the container file 900 are thus
configured as a container map 950 for the vvol; there is preferably one container map
950 per vvol. Specifically, the container map provides block pointers from fbn loca-
tions within the container file to pvbn locations on disk. Furthermore, there is a one-to-
one correspondence between fbn locations in the container file and vvbn locations in a
vvol; this allows applications that need to access the vvol to find blocks on disk via the
vvbn space. Accordingly, the write allocator inserts pvbn 3000 at block location (vvbn)
5000 of the container map 950 for the vvol and pvbn 3001 at block location (vvbn)
5002 of that map.

Each vvol has its own vvbn space that contains its own version of all file system
metadata files, including block allocation (bitmap) structures that are sized to that
space. As noted, the indirect blocks of files within a vvol illustratively contain pvbns in
the underlying aggregate rather than (or in addition to) vvbns. For example, when up-
dating/modifying data (i.e., “dirtying”) of an “old” block in a file during write alloca-
tion, the file system selects a new block and frees the old block, which involves clear-
ing bits of the block allocation bitmaps for the old block in the logical volume’s vbn
(now pvbn) space. In essence, the file system 280 only knows that a particular physical
block (pvbn) has been dirtied. However, freeing blocks within the vvol requires use of
a vvbn to clear the appropriate bits in the vvbn-oriented block allocation files. There-
fore, in the absence of a vvbn, a "backward” mapping (pvbn-to-vvbn) mechanism is

needed at the aggregate level.

In the illustrative embodiment, mapping metadata provides a backward mapping
between each pvbn in the aggregate to (i) a vvid that "owns" the pvbn and (ii) the vvbn
of the vvol in which the pvbn is located. The backward mapping metadata is preferably
sized to the pvbn space of the aggregate; this does not present a scalability concern,

since the mapping metadata for each of vvol can be interleaved into a single file, re-

WO 2005/111803 PCT/US2005/013566

10

15

20

25

30

-26-

ferred to as an owner map 1100, in the aggregate. Fig. 11 is a schematic block diagram
of an owner map 1100 that may be advantageously used with the present invention.
The owner map 1100 may be embodied as a data structure having a plurality of entries

1110; there is preferably one entry 1110 for each block in the aggregate.

In the illustrative embodiment, each entry 1110 has a 4-byte vvid and a 4-byte
vvbn, and is indexed by a pvbn. That is, for a given block in the aggregate, the owner
entry 1110 indicates which vvol owns the block and which pvbn it maps to in the vvbn
space. As such, the write allocator inserts (vvid 113, vvbn 5000) at entry pvbvn 3000
of the owner map 1100. In addition, the write allocator inserts (vvid 113, vvbn 5002) at
entry pvbn 3001 of the owner map 1100. Thus when indexing into the owner map
1100 at pvbn 3000, the file system 280 accesses a vvol having an inode 113 (which is
container file 900) and then accesses block location 5000 within that file. Each entry
1110 of the owner map 1100 is only valid for blocks that are in use; therefore, updates
to the owner map are optimized to occur at a write allocation point. In general, a vvol
only owns those blocks used in the contained file system. There may be situations
where the vvol owns blocks the contained file system is not using. Allocated blocks

that are not owned by any vvol illustratively have owner map entries (0, 0).

Fig. 12 is a flowchart illustrating a sequence of steps directed to allocating a
block within a vvol in accordance with the extended write allocation technique of the
present invention. According to the technique, block allocation is preferably performed
in parallel on the vvol and the aggregate. The sequence starts at Step 1200 and pro-
ceeds to Step 1202 where the write allocator selects a pvbn in the aggregate and a vvbn
in the vvol, as described above. In Step 1204, the write allocator adjusts the block al-
location bitmap structures, such active map 612 and space map 616, of the aggregate to
record the selected pvbn and, in Step 1206, adjusts similar bitmap structures 662, 666
of the vvol to record the selected vvbn. In Step 1208, the write allocator inserts a vvid
of the vvol and the vvbn into the owner map 1100 of the aggregate at an entry defined
by the pvbn. Note that in the dual vbn hybrid embodiment, there is no requirement for
the owner map and, thus, the insertions to the owner map (Step 1208) may be elimi-
nated/avoided. In Step 1210, the write allocator inserts the pvbn into the container map

950 of the vvol. In Step 1212, the write allocator updates an indirect block or inode file

WO 2005/111803 PCT/US2005/013566

20

25

30

227-

parent of the allocated block with block pointer(s) to the allocated block, wherein the
content of the update operation depends on the type of vvol. Specifically, in Step 1214,
a determination is made as to whether the vvol is a hybrid vvol. If so, the pvbn is in-
serted in the indirect block or inode as a block pointer in Step 1216. If not, the vvol is
a dual vbn hybrid and, as such, both the pvbn and vvbn are inserted in the indirect

block or inode as block pointers in Step 1218. The sequence then ends at Step 1220.

Another aspect of the present invention involves freeing of a block. When free-
ing a block of the hybrid vvol embodiment, the applicable vbn is the pvbn of the aggre-
gate. The write allocator 700 locates the container map entry for the block and uses it
to find the corresponding vvbn. The write allocator then loads the active, summary and
space map buffers for both the pvbns and vvbns, and loads the owner map entry. The
allocator 700 clears the active map block of the vvol, checks the summary map and ad-
justs the space map if the block is freed. This, in turn, requires clearing of the container
entry and the active map in the aggregate, examining of the summary map and adjust-

ing of the space map, if necessary.

Assume block (pvbn 3001, vvbn 5002) of a dual vbn hybrid vvol embodiment is
dirtied and is prepared for subsequent write allocation. When dirtying (overwriting) a
block, the file system 280 frees the old block and writes to a new block. At a next con-
sistency point, the write allocator selects a new pvbn (e.g., 4001) and a new vvbn (e.g.,
6002), as described above. The write allocator frees the dirty block using the container

map 950 and owner map 1100, the latter enabling pvbn-to-vvbn translation.

Broadly stated, the write allocator accesses the owner map 1100 at pvbn 3001 to
obtain vvid 113 (the inode number of the container file 300) and the appropriate vvbn
5002 (the fbn location within the container file). The allocator 700 clears bit 5002 in
the active map for the vvol and examines the summary map of the vvol to determine the
state of bit 5002. If that bit is also cleared in the summary map, then vvbn block 5002
is totally free in the vvol (not used in any snapshot) and may be released from the con-
tainer file 900 and returned to the aggregate. Note that the vvol (container file 900)
may choose to keep that block within its vvbn space instead of returning it to the aggre-
gate. However, if the bit is set in the summary map, block 5002 is still used in at least

one snapshot and the container file "holds on" to that block at the vvol level.

WO 2005/111803 PCT/US2005/013566

20

25

30

-28-

Assuming vvbn block 5002 is totally free, the write allocator clears block vvbn
5002, pvbn 3001 in the container map 950. The allocator accesses the level 1 blocks of
the container file (the container map 950) using the size of the container file (vvol) to
compute the levels of indirection needed in the file. The write allocator also clears the
corresponding bits in the active/summary maps of the aggregate to return block pvbn
3001 to the aggregate; otherwise, the allocator could delay this action. In any event, the
write allocator inserts new pvbn 4001 into vvbn block 6002 of the container map and

loads entry pvbn 4001 with (vvid 113, vvbn 6002) in the owner map.

Fig. 13 is a flowchart illustrating a sequence of steps directed to freeing a block
in accordance with the extended write allocation technique of the present invention.
The sequence starts at Step 1300 and proceeds to Step 1302 where a determination is
made as to whether the vvol is a hybrid vvol. If not, the write allocator acquires the
vvbn of the freed block directly from the indirect block or inode file patent of the freed
block in Step 1304. However, if the vvol is a hybrid vvol, only the pvbn is available in
the indirect block or inode file parent of the freed block; accordingly, the write alloca-
tor accesses the owner map 1100 of the aggregate to acquire the vvbn in Step 1306.
The write allocator uses the acquired vvbn to clear a bit entry of the vvol active map
662 for the vvbn in Step 1308 and, in Step 1310, to check the appropriate bit entry of
the vvol summary map 664 for the vvbn to determine whether the vvbn is totally free in
the vvol. If the vvbn is not totally free, e.g., the bit entry is not cleared, (Step 1312), the
container file holds on to (retains) that vvbn block at the vvol level in Step 1314 and the

sequence ends at Step 1328.

However, if the vvbn is totally free in the vvol, e.g., the bit entry of the vvol
summary map is cleared, the block may also be "freed" for return to the aggregate. In
Step 1316, the write allocator decrements the space map 666 of the vvol and, in Step
1318, clears the pvbn of the freed block from the container map 950 (at entry vvbn of
the freed block) of vvol to thereby free (release) the freed block from the vvol. In Step
1320, the allocator 700 clears the appropriate pvbn bit entry of the aggregate active
map 612 and, in Step 1322, checks the appropriate entry of the aggregate summary map
614 for the pvbn to determine whether the pvbn is totally free. If the pvbn is not totally
free, e.g., the bit entry is not cleared, (Step 1324), the sequence ends at Step 1328.

WO 2005/111803 PCT/US2005/013566

10

15

20

25

30

-29.

However, if the pvbn is totally free, e.g., the bit entry is cleared, the write allocator dec-

rements the aggregate space map 666 in Step 1326 and the sequence ends at Step 1328.

In an aspect of the inventive technique, the file system 280 may perform a "de-
layed free" operation from the vvol that essentially delays release of a free block from a
vvol to the aggregate. In the illustrative embodiment, the file system decides whether
to do a delayed free operation when it is preparing to free the block within the vvol.
Releasing of freed blocks from a vvol may be delayed to allow amortization of the cost
among many accumulated update operations. The decision as to whether to release the
free block depends on how many delayed free block operations are pending and how
much free space is available in the aggregate. The number of delayed free operations

from the container file is maintained in the storage label file for the vvol.

If the delayed free operation is not performed, the file system frees the block
within the vvol, but leaves the block as owned by the vvol within the aggregate. If the
delayed free operation is performed, the file system clears appropriate block allocation
bitmaps in the vvol, but delays clearing of the container map 950 of the vvol and block
allocation bitmaps of the aggregate. When a sufficient number of free blocks have
been accumulated for the vvol (or portion of the vvol) all of the accumulated blocks
may be freed from a block of the container map at once. In general, it is efficient to

free all accumulated unused blocks from a container map block at a time.

A space map style optimization may be applied to the container map 950 of the
vvol to keep track of "rich" areas for delayed free operations to improve the efficiency
of these operations. The space map style optimization indicates how many delayed
frees are in different regions of the vvol. When clearing blocks of a vvol from the con-
tainer map, a further optimization involves not freeing the blocks in the aggregate im-
mediately, but rather accumulating them into a delete log file in the aggregate. When a
sufficient number of free blocks are accumulated, they may be sorted and freed in block
order. This optimization minimizes the number of I/O operations associated with the

container map and block allocation bitmaps of the aggregate.

In sum, the extended write allocation technique described herein has a number
of novel features. By write allocating at a write allocation point of disks within a RAID

group, the present technique realizes RAID efficiencies because blocks are selected

WO 2005/111803 PCT/US2005/013566

10

20

25

30

-30-

within a stripe and all write block allocations occur within a few active map blocks.
This results in a concentrated area of bits being set in the active map blocks, e.g., a plu-
rality of bits is set in an active map block on each disk. Thus, relatively little metadata
is dirtied to perform write allocation. In particular, the present technique dirties meta-
data blocks in a narrow span of the active map; update operations to the owner map
1100 of the aggregate are also concentrated, according to a feature of the present tech-
nique. Note that the owner map is changed only during write allocation. When freeing

a block, a "stale" entry/value is left in the owner map.

While there has been shown and described illustrative embodiments of a write
allocation technique that extends a conventional write allocation procedure employed
by a write anywhere file system of a storage system, it is to be understood that various
other adaptations and modifications may be made within the spirit and scope of the in-
vention. For example, an alternate embodiment of the invention is directed to "paired
volume" write allocation. In the paired volume embodiment, the value of the vvbn is
always equal to the value of the pvbn, e.g., pvbn 20 in an indirect block has a vvbn 20.
In other words, a vvol may be maintained so that its vvbns map to similar pvbns (e.g.,
vvbn 28383 = pvbn 28383). This embodiment improves write allocation efficiency,
since the file system 280 only needs to choose a pvbn for the new block and use that
pvbn value for the vvbn. The paired volume embodiment thus obviates the need to
translate a pvbn to a vvbn using the owner map 1100 since they are the same value.
However, all of the data in a vvol is updated at the write allocation point of the disks
and the block allocation data for the vvol must be the same size as the aggregate, im-

pacting snapshot performance for the vvol.

The paired volume embodiment is particularly useful for upgrade and revert op-
erations, i.e., allowing reversion back to an old version of the file system. To revert,
the volinfo block (e.g., block 1 in the container file) is "stomped into" the volinfo block
of the aggregate, thereby creating a reverted vvol. An upgrade involves moving pvbns
of a vvol to the container file and constructing a new aggregate under that container
file. By maintaining pvbn values equal to vvbn values, all indirect blocks in the con-
tainer file include pvbns and all block allocation bit maps are in synchronization with

the vvbn space since that space corresponds directly to the pvbn space. Therefore, the

WO 2005/111803 PCT/US2005/013566

10

-31-

block allocation bitmaps that specify which blocks are in use are synchronized to the

information stored in the indirect blocks (pvbns).

The foregoing description has been directed to specific embodiments of this in-
vention. It will be apparent, however, that other variations and modifications may be
made to the described embodiments, with the attainment of some or all of their advan-
tages. For instance, it is expressly contemplated that the teachings of this invention can
be implemented as software, including a computer-readable medium having program
instructions executing on a computer, hardware, firmware, or a combination thereof.
Accordingly this description is to be taken only by way of example and not to other-
wise limit the scope of the invention. Therefore, it is the object of the appended claims
to cover all such variations and modifications as come within the true spirit and scope

of the invention.

What is claimed is:

WO 2005/111803 PCT/US2005/013566

10

11

12

-32-

CLAIMS

1. A method for performing write allocation in a storage system, the method compris-
ing the steps of:

allocating a first block to a virtual volume (vvol) from an aggregate in the stor-
age system, wherein block allocation is performed in parallel on the vvol and the ag-
gregate; and

freeing a second block from the vvol to the aggregate.

2. The method of Claim 1 wherein the step of allocating comprises the steps of:

selecting a physical volume block number (pvbn) for the first block from a pvbn
space of the aggregate and a virtual volume block number (vvbn) for the first block
from a vvbn space of the vvol;

adjusting block allocation bitmap structures of the aggregate to record the se-
lected pvbn and block allocation bitmap structures of the vvol to record the selected
vvbn;

inserting the selected vvbn and a virtual volume identifier (vvid) of the vvol into
an owner map of the aggregate at an entry defined by the selected pvbn;

inserting the selected pvbn into a container map of the vvol; and

updating an indirect block or inode file parent of the first block with one or

more block pointers to the first block.

3. The method of Claim 2 wherein the step of updating comprises the steps of:
determining whether the vvol is embodied as a hybrid vvol;
if the vvol is a hybrid vvol, inserting the selected pvbn into the indirect block or
inode as the block pointer; and
if the vvol is a dual vbn hybrid vvol, inserting both the selected pvbn and the se-

lected vvbn in the indirect block or inode as block pointers.

4. The method of Claim 2 wherein the step of freeing comprises the steps of:

determining whether the vvol is embodied as a hybrid vvol;

WO 2005/111803 PCT/US2005/013566

-33-
3 if the vvol is a hybrid vvol, acquiring a vvbn of the second block from the
4 owner map of the aggregate; and
5 if the vvol is a dual vbn hybrid vvol, acquiring the vvbn of the second block di-

6 rectly from an indirect block or inode of the second block.

1 5. The method of Claim 4 wherein the block allocation bitmap structures of the aggre-

2 gate and the vvol include an active map, a summary map and a space map.

6. The method of Claim 5 wherein the step of freeing further comprises the steps of:

2 clearing a bit entry of the vvol active map for the acquired vvbn;
3 checking a bit entry of the vvol summary map for the acquired vvbn; and
4 if the bit entry is not cleared in the vvol summary map, retaining the acquired

s vvbn at a container file of the vvol.

1 7. The method of Claim 6 wherein the step of freeing further comprises the steps of:

2 if the bit entry is cleared in the vvol summary map, decrementing the vvol space
3 map; and

4 clearing a pvbn of the second block from the container map of vvol to thereby

s free the second block from the vvol.

8. The method of Claim 7 wherein the step of freeing further comprises the steps of:

2 clearing a bit entry of the aggregate active map for the cleared pvbn;
3 checking a bit entry of the aggregate summary map for the cleared pvbn; and
4 if the bit entry is cleared, decrementing the aggregate space map.

9. The method of Claim 6 wherein the step of freeing further comprises the step of, if
2 the bit entry is cleared in the vvol summary map, delaying release of the second block

3 from the vvol to the aggregate.

10. A system adapted to perform write allocation in a storage system having a plurality

2 of disks, the system comprising:

WO 2005/111803 PCT/US2005/013566

-34-

a file system executing on the storage system, the file system adapted to logi-
cally organize information stored on the disks as a physical volume block number
(pvbn) space and a virtual volume block number (vvbn) space;

an aggregate including one or more groups of disks adapted to utilize the pvbn
space to define a storage space of blocks provided by the disks;

at least one virtual volume (vvol) contained within the aggregate, the vvol
adapted to utilize the vvbn space to organize the blocks within files;

block allocation bitmap structures configured to provide disk geometry informa-
tion, the block allocation bitmap structures maintained by the file system for the aggre-
gate and the vvol; and

a write allocator of the file system configured to allocate a first block to the vvol

from the aggregate and free a second block from the vvol to the aggregate.

11. The system of Claim 10 wherein the block allocation bitmap structures of the ag-

gregate and the vvol include an active map, a summary map and a space map.

12. The system of Claim 11 wherein the write allocator allocates the first block to the
vvol by implementing a write allocation technique that (i) selects a pvbn for the block
from the pvbn space of the aggregate and a vvbn for the block from a vvbn space of the
vvol and (ii) adjusts the block allocation bitmap structures of the aggregate to record
the selected pvbn and block allocation bitmap structures of the vvol to record the se-

lected vvbn.

13. The system of Claim 12 further comprising an owner map of the aggregate that
provides a backward mapping between the selected pvbn in the aggregate to a virtual
volume identifier (vvid) that owns the selected pvbn and the selected vvbn of the vvol

in which the pvbn is located.

14. The system of Claim 13 wherein the write allocator allocates the first block to the
vvol by implementing the write allocation technique that further inserts the selected

vvbn and vvid of the vvol into the owner map at an entry defined by the selected pvbn.

WO 2005/111803 PCT/US2005/013566

-35-

1 15. The system of Claim 14 further comprising a container map of the vvol that pro-
2 vides a forward mapping of the selected vvbn of the vvol to the selected pvbn of the

3 aggregate.

1 16. The system of Claim 15 wherein the write allocator allocates the first block to the
2 vvol by implementing the write allocation technique that further inserts the selected

3 pvbn into the container map of the vvol.

1 17. The system of Claim 16 further comprising a buffer tree configured to provide a

2 representation of blocks for a file in a memory of the storage system.

1 18. The system of Claim 17 wherein the write allocator allocates the first block to the
2 vvol by implementing a write allocation technique that further updates an indirect block
3 orinode file parent of the first block in the buffer tree with one or more block pointers

4 to the block.

1 19. Apparatus for performing write allocation in a storage system, the apparatus com-
2 prising:

3 means for allocating a first block to a virtual volume (vvol) from an aggregate
4 inthe storage system; and

5 means for freeing a second block from the vvol to the aggregate.

1 20. A computer readable medium containing executable program instructions for per-

2 forming write allocation in a storage system, the executable instructions comprising one
3 or more program instructions for:

4 allocating a first block to a virtual volume (vvol) from an aggregate in the stor-

s age system; and

6 freeing a second block from the vvol to the aggregate.

PCT/US2005/013566

WO 2005/111803

1/11

091 AVHYV MSIA

o€l o€}

EE

l Ol
8z} 9z} ow_ AN
y3ldvav y3ldvay NOILYDIddY
I9VY0LS YYOMLIN 1IN0V
7 0L IN3ND
Gel 051
{
00¢ -~
0L} 4}
JHOVD W3LSAS ¥0SS3D0Yd 001
a344na | [oNILYy3do
39VH0LS -
¥ZL AMOW3W W3LSAS

JOVH0LS

PCT/US2005/013566

WO 2005/111803

2/11

¢ Old

o ¥4 01g
057 SS300V SS300V
INILSAS VIQ3aw Vid3n
HIANG — —
SSIq e 4%
05z __d __{ d
04 v1g ale | 7ig
dol dan | dol
— MN.N =5
ove 9%¢
WILSAS 1S08! | = |z o | N
avy 02 dlIH [S41D | SAN [—
I1NAONW 8¢
1394VL I1S2S S4vd
082 W3ILSAS 3114 00Z
HOLYO0TTV LM
062 3J1NAOW MXMSIAA

Gl¢C

In

00¢

WO 2005/111803 PCT/US2005/013566
3/11

META DATA SECTION 310

|

|

!

I

C|TYPE 312

| -SizE 314

|| TIME STAMPS 316
| up 318

| -Gib 320

DATA SECTION 350

DIRTY BIT 360

WO 2005/111803

LEVEL
1
BLOCKS

LEVEL
0
BLOCKS

4/11

PCT/US2005/013566

INODE 402

POINTER
405

POINTER
405

/

AN

INDIRECT BLOCK INDIRECT BLOCK
404 404

POINTER |, , .| POINTER POINTER |, , .| POINTER

405 405 405 405
DATA DATA DATA DATA
BLOCK| e+ [BLOCK| |[BLOCK| e |BLOCK
406 406 406 406 -

FILEA 400

FIG.

4

WO 2005/111803 PCT/US2005/013566
5/11

560

\-RAID GROUP

VVOL 510
FILE
508

500

RAID PLEX 550
FIG. 5

QTREE
506

AGGREGATE

VVOL 510
DIR
504

LUN
502

F
—

560

RAID GROUP/‘

PCT/US2005/013566

WO 2005/111803

6/11

969 LVLS ANV ALILN3IQI- - 069 3114 139V IOVHOLS
¥69 SNLYLS INITJ40/aNITNO-
269 INYN TOAA- 1 0¥9 3714 WILSASI A
aIS4/14YM >

089 059 TOAA 0€9
AMOLOMIA ANMOLO3MIa

100Y 100¥

vLva v.iva

V13N V13w

NIAAIH |« NIAAIH |« 9 ‘94

0.9 029
A¥0L03¥Id AM0103MId

100Y |« 100Y |«

999 919

dviN dvIN

J0VdS | 69 J0VdS |- 09

0078 M2019

99 O4NISH 19 O4NISA

dviN - dviN .
AIVAINNS . AIYWNNS .

299 4 099 59 259 Z19 909 09 209
dviN 1 314 0074 ¥o018 || dVA 3714 ¥2019 001
JAILDY |« 3JAONI |« O4NISA O4NITOA ALY [3JAONI |«{ O4NISA O4NITOA
: 004} X
dvIA 009
059 TOAA - HINMO |

WO 2005/111803 PCT/US2005/013566
7111

R 125
V=" |=|" V|

715 7157 715
e PVBN SPACE 720 —» PVBN 3000
ALLOCATOR 735 PVBN 3001
700
L
0
?
WRITE g
ALLOCATION —{ & | VWBN SPACE —= VVBN 5000
POINT 730 VVBN 5002
740 D
|
S
K
FIG. 7
802
INODE
PvBN | | pvBN
3000 3001

804 / o 806

WRITE VVBN NEXT WRITE | VVBN
ALLOCATED | 5000 - | ALLOCATED | 5002
LEVELO LEVELO
BLOCK BLOCK

FILE 800
FIG. 8

WO 2005/111803

8/11

902

PCT/US2005/013566

/4
INODE
NUMBER
113
CONTAINER
MAP 950
A A W N \
KN 905 \
: LEVEL 1 LEVEL 1 LEVEL 1 LEVEL 1 !
! INDIRECT INDIRECT || INDIRECT INDIRECT | !
! BLOCK BLOCK BLOCK BLOCK !
1
: PVBN 3000 pvBN 3001 ||| [PvBN 3005 PVBN 4001 || !
{ WVBN VVBN VVBN |
' 5000 5002 6002 '
906 . 908 910.,
LEVEL 0 LEVEL 0 0 ALTI;EAV[BELLC?CK LEVEL 0
DATA BLOCK DATA BLOCK 10 DATA
(L0.1) (L0.2) e s BLOCK
CONTAINER FILE 900
FIG. 9
OWNER
MAP
1100
PVBN —»= (WVID, VVBN)
3000 — (113,5000) >1110
3001 —= (113,5002)
4001 —= (113,6002)

FIG. 11

WO 2005/111803

9/11

L

PCT/US2005/013566

1002

INODE

\

1004

LEVEL 1

INDIRECT BLOCK

(L1, 1)

PVBN
3000

PVBN
3001

1006\\///

LEVEL 0
DATA BLOCK
(L0, 1)

\\\ 1008

LEVEL 0
DATA BLOCK
(L0, 2)

FILE 1000

FIG. 10

WO 2005/111803 PCT/US2005/013566
10/11

(_ START)-1200
1

SELECT PVBN AND VVBN -1202
FOR ALLOCATED BLOCK
\
ADJUST BLOCK ALLOCATION BITMAPS 1204
INAGGREGATE TO RECORD SELECTED PVBN

\

ADJUST BLOCK ALLOCATION BITMAPS 1206
IN VVOL TO RECORD SELECTED VVBN

Y

INSERT VVID AND SELECTED VVBN IN ENTRY
OF OWNER MAP DEFINED BY SELECTED PVBN

Y

INSERT SELECTED PVBN |,1210

1208

INTO CONTAINER MAP OF VVOL

Y

UPDATE INDIRECT BLOCK OR INODE
OF ALLOCATED BLOCK

1212

WITH POINTER(S) TO ALLOCATED BLOCK 1%16
' 1214 INSERT
SELECTED PVBN
HYBRID VVOL? INTO
INDIRECT BLOCK
OR INODE

INSERT BOTH SELECTED PVBN AND 1918
SELECTED VVBN INTO INDIRECT BLOCK OR INODE

END 1220

FIG. 12

WO 2005/111803

HYBRID VVOL?

Yy

11/11

PCT/US2005/013566

1304
/

ACQUIRE VVBN
OF FREED BLOCK
FROM INDIRECT BLOCK

OF FREED BLOCK

ACQUIRE VVBN OF FREED BLOCK
FROM OWNER MAP

OR INODE
|,1306

CLEAR VVBN BIT IN ACTIVE MAP OF VWOL }4308

\

CHECK SUMMARY MAP OF VWWOL

'A%

Yy

TOTALLY FREE IN VVOL
?

1312

BN

1314
/

|,131o
HOLD ONTO VVBN
IN CONTAINER FILE
OF WOL

DECREMENT SPACE MAP OF VVOL

\

4

CLEAR PVBN FROM CO

NTAINER MAP OF WOL

CLEAR PVBN BIT INACTIVE MAP OF AGGREGATE |,1320

{

CHECK SUMMARY MAP OF AGGREGATE I,1322

Y

MAP OF AGGREGATE }4326

1328

FIG. 13

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

