Title: Bispecific oligonucleotide for the treatment of CNS malignancies

Abstract: Pharmaceutical compositions for treatment of CNS malignancies comprising a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5 are provided. Methods of using the pharmaceutical composition in the treatment of CNS malignancy via various modes of administration are also provided.
BISPECIFIC Oligonucleotide for the Treatment of CNS Malignancies

FIELD OF THE INVENTION

This present application relates to antisense oligonucleotides for the treatment of central nervous system malignancies.

BACKGROUND OF THE INVENTION

Cancer of the central nervous system (CNS), including the brain, meninges and spinal cord, ranks as the 12th most common malignancy diagnosed in men and the 15th most common in women, with 30% higher incidence in men. It is estimated that there will be 18,400 new cases and 12,690 deaths from brain and other nervous system tumors in the United States in 2004.[1] The combined incidence of primary invasive CNS tumors in that country is 6.6 per 100,000 persons per year, with an estimated mortality of 4.7.[2] Worldwide, approximately 176,000 new cases of brain and other CNS tumors were diagnosed in the year 2000, with an estimated mortality of 128,000.[3]

The pediatric situation is more bleak than that of adult CNS malignancy because of the higher incidence in that age group. CNS malignancies represent almost 17% of all malignancies during childhood according to United States data. CNS cancer as a group was the second most frequent malignancy of childhood and the most common of the solid tumors.

The seriousness and treatability of primary brain malignancies is determined by a number of variables including histology, size of tumor, extent of the malignancy, the patient’s age and performance status, and the duration of symptoms.[4] Some primary brain tumors are curable by surgery alone, or by surgery and radiation therapy combined; but the remainder are not usually curable despite all the therapies combined.[5]

Further, radiation therapy can be debilitating in adults, but that of pediatric brain tumors is not only technically demanding but more importantly, debilitating in terms of growth and
neurologic development.[6,7] Very young children with CNS cancer, especially infants with ependymoma or PNET, have low survival rates.

Alternative treatments for CNS malignancy are needed to provide new avenues of treatment.

PCT publication WO 00/69454 discloses the use of IGFBP-2 modulators to inhibit cancer.

PCT publication WO 00/78341 discloses a method for the prophylaxis and/or treatment of disorders related to insulin growth factor-I.

PCT publication WO 01/05435 describes a method for treating hormone-regulated tumors (for example, breast and prostatic tumors) by administration of an antisense oligodeoxynucleotide which is complementary to a portion of the gene encoding IGFBP-5.

PCT publication WO 02/22642 describes a method as provided for the treatment of prostate and other endocrine tumors by administration of an antisense oligodeoxynucleotide which is complementary to a portion of the gene encoding IGFBP-2.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides compositions and methods for treating CNS malignancies in mammals, including humans.

In accordance with one aspect of the invention, there is provided a pharmaceutical composition for treatment of a CNS malignancy, the pharmaceutical composition
consisting essentially of an antisense oligonucleotide having a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is of sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5 may include a pharmaceutically acceptable carrier.

The sequence of bases may be selected from the group consisting of: SEQ ID. NOs: 1, 2, 3, 4, 5, 6 or 7, and may be chemically modified at the 3' and 5' end of the sequence of bases. The modifications may be methoxyl ethyl or “MOE”, and may occur on first and last 5 bases from said 3' end.

The sequence of bases may number from 10-30, or from 14-21.

In accordance of one aspect of the invention there is provided the use of an antisense oligonucleotide consisting essentially of a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5, for the treatment of CNS malignancy in a mammal.

There is further provided the use of this antisense oligonucleotide in the manufacture of a medicament for the treatment of CNS malignancy in a mammal.

According to another aspect of the invention, there is provided a method for inducing apoptosis in glioma cells by contacting said cells with an antisense oligonucleotide consisting essentially of a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is of sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5.

In one aspect substantially all of the antisense oligonucleotide is complementary to portions of the genes encoding IGFBP-2 and IGFBP-5.

There is provided according to yet another aspect of the invention a method for treating a CNS malignancy in a subject suffering from a CNS malignancy, by administering to the subject an antisense oligonucleotide consisting essentially of a sequence of bases that is
complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is of sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5, in an amount effective to reduce effective levels of IGFBP-2 and IGFBP-5 in cells of the CNS malignancy. The amount of the antisense oligonucleotide administered may be between 300 mg and 750 mg, or between 10 mg and 100 mg.

The antisense oligonucleotide may be administered intratumorally, intrathecally, regional to the CNS malignancy, or systemically, or in a combination of ways. Further, the antisense oligonucleotide may be administered in combination with a chemotherapeutic agent, in combination with radiotherapy, or with surgery, or in combination of some or all of the therapies.

The CNS malignancy may be a glioma, and the mammal may be a human for all aspects of the invention.

Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

In drawings which illustrate embodiments of the invention,

Figure 1 shows a graphical representation of the results of the MTT assay of U87 glioma cells treated with 1000 nM OGX-225 with Oligofectamine™ transfection reagent, or 1000 nM of mismatched control oligonucleotide, in serum-free Opti-MEM™ media;

Figure 2 shows Western blots performed on concentrated conditioned media collected from U87 glioma cells treated for 48 hrs with 1000 nM mismatch control oligo (lane 1) or 1000 nM OGX-225 (lane 2) in serum-free Opti-MEM™ media;
Figure 3 shows Western blots performed on whole cell lysates collected from U87 glioma cells treated for 24 hrs with 1000 nM mismatch control oligo (lane 1) or 1000 nM OGX-25 (lane 2) in serum-free Opti-MEM™ media.

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides bispecific antisense oligonucleotides which comprise a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and that is sufficient in length to act as an inhibitor of the effective amount of IGFBP-2 and/or IGFBP-5 (in general at least 14 bases) for pharmaceutical and research applications. In some embodiments, as used in the specification and claims of this application, this language means that substantially all of the antisense oligonucleotide is complementary to a portion of each gene sequence.

15 As used in the specification and claims of this application, the phrase “a sequence of bases that is complementary to both the gene encoding IGFBP-2 and the gene encoding IGFBP-5” refers to a common sequence of bases in which the same bases that are complementary to the IGFBP-2 gene are also complementary to the IGFBP-5 gene, as opposed to a sequence in which distinct portions of the oligonucleotide are separately complementary to the two genes.

20 The invention does not, however, exclude minor modifications in sequence, such as the addition of one or two terminal bases, or single base substitutions which might depart from perfect complementarity, but which still function as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5.

25 “Sufficient length to act as an inhibitor” means that the antisense comprises as many bases as required to reduce the levels of IGFBP-2 and IGFBP-5, usually from 10 to 30 bases, preferably 14-21 bases.

30 Insulin-like growth factor-binding proteins (IGFBPs) are mediators in the biological response to insulin-like growth factor (IGF). To date, six IGFBPs have been identified
whose function is believed to involve modulation of the biological actions of the IGF through high affinity interactions. [8] However, some evidence suggests biological activity for IGFBPs that is independent of IGFs [9,10], and both stimulatory and inhibitory effects of IGFBPs on cell proliferation have been reported under various experimental conditions. [9,11,12,13] Thus, the precise role of IGFBPs remains controversial.

Antisense oligonucleotides may function by different mechanisms. The effective amount of IGFBP-2 or IGFBP-5 is the amount that is present in a functional state in the cell. Reduction of this amount by administration of antisense oligonucleotides may occur through restricting production of the IGFBP (at the transcription or translation level) or by degrading the IGFBP at a rate faster than it is being produced. Further, it will be appreciated that inhibition occurs when the IGFBP would otherwise be present if the antisense oligonucleotide had not been administered.

The antisense oligonucleotides of the invention may also be referred to throughout the application as “antisense”, “oligonucleotide”, “antisense oligodeoxynucleotide”, “bispecific antisense oligonucleotide”, or “OGX-225”.

Antisense oligonucleotides are stretches of single-stranded DNA, usually chemically modified, whose sequence (3’ → 5’) is complementary to the sense sequence of a molecule of mRNA. Antisense molecules thereby effectively inhibit gene expression by forming RNA/DNA duplexes [14], and offer a more targeted option for cancer therapy than chemotherapy or radiation. Antisense is believed work by a variety of mechanisms, including physically blocking the ability of ribosomes to move along the messenger RNA, and hastening the rate at which the mRNA is degraded within the cytosol.

Antisense oligodeoxynucleotides (ODNs) are synthetic polymers made up of monomers of deoxynucleotides like those in DNA. In the present application, the term antisense oligonucleotides includes antisense oligodeoxynucleotides.

In order avoid digestion by DNase, antisense oligonucleotides and ODNs are often chemically modified. For example, phosphorothioate oligodeoxynucleotides are stabilized to resist nuclease digestion by substituting one of the non-bridging phosphoryl oxygen of
DNA with a sulfur. Increased antisense oligonucleotide stability can also be achieved using molecules with 2-methoxyethyl (MOE) substituted backbones as described generally in US Patent No. 6,451,991, incorporated by reference in those jurisdictions allowing such incorporation, and US Patent Published patent application US-2003-0158143-A1.

The antisense oligonucleotide may be a 5-10-5 gap-mer methoxyethyl modified (MOE) oligonucleotide corresponding to SEQ ID NO: 5 below. This embodiment may also be referred to as ISIS 289306.

Specific antisense oligonucleotides according to the invention comprise a series of bases as set forth in SEQ ID NO: 1-7. These sequences are set forth in Table 1.

<table>
<thead>
<tr>
<th>SEQ. ID NO.</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GGTGTAGACGCAGCCGCAGCG</td>
</tr>
<tr>
<td>2</td>
<td>GCAGCGCAGCCGCCCCTGG</td>
</tr>
<tr>
<td>3</td>
<td>GCAGCAGCCGCAGCCGGCTCC</td>
</tr>
<tr>
<td>4</td>
<td>AGCCGCAGCCGCCGGCTCT</td>
</tr>
<tr>
<td>5</td>
<td>CAGCAGCCGCAGCCGGCTCT</td>
</tr>
<tr>
<td>6</td>
<td>GCAGCAGCCGCAGCCGGCTCT</td>
</tr>
<tr>
<td>7</td>
<td>AGCCGCAGCCGCAGCCGGCTCT</td>
</tr>
</tbody>
</table>

The compositions of the present invention can be used for treatment of CNS malignancies in mammals, including humans, by administration of a bispecific antisense oligonucleotide in accordance with the invention. Administration of antisense oligonucleotides can be carried out using the various mechanisms known in the art, including naked administration, and administration in pharmaceutically acceptable carriers. For example, lipid carriers for antisense delivery are described in US Patent Nos. 5,855,911 and 5,417,978 which are incorporated herein by reference in those jurisdictions allowing such incorporation.

Administration

The treatment of primary brain tumors in children and adults requires different approaches in terms of dosages, treatment regimens, and supportive therapies. [15]
In general, the antisense oligonucleotide is administered by intravenous, intraperitoneal, intratumor, via the cerebral spinal fluid by lumbar puncture or Ommaya reservoir (a device with a fluid reservoir that is surgically implanted under the scalp with a catheter into a ventricle of the brain), subcutaneous or oral routes. Where the oligonucleotides are administered in a pharmaceutically acceptable carrier, the carrier is generally free from substances which produce toxic or other harmful reactions when administered to humans. Suitable carriers may include specialized delivery vehicles useful for nucleic acid delivery including lipid-based vehicles such as liposomes, the compositions of which may include other active components such as transfection aids. Such lipid vehicles include Oligofectamine™ and Lipofectamine™, which are commercially available.

One challenge for delivery of any therapeutic designed for the brain is the specialized barrier, the “blood brain barrier” (BBB), that protects the brain from viruses and mant chemicals. The walls of the vessels that carry blood into the brain form the barrier. Leaky blood vessels in the body allow many molecules to cross through to tissue, but the tight construction of the vessels in the brain normally guards against entry for all but blood gases such as oxygen and small nutritional molecules.

The BBB can be overcome by conjugating the therapeutic onto molecules that already have brain access, for example docosahexaenoic acid (DHA). Alternately, the antisense may be conjugated to a targeting ligand present in the brain, such as insulin, transferrin, insulin-like growth factor I (IGF-I), insulin-like growth factor II (IGF-II), basic albumin, leptin, or prolactin. The targeting ligand may be an antibody that specifically binds to an insulin receptor, a transferrin receptor, an insulin-like growth factor I (IGF-IR) receptor, and insulin-like growth factor II receptor (IGF-IIR), or a leptin receptor.

Another method of promoting the delivery of a therapeutic across the BBB is BBB disruption, wherein the sugar mannitol or arabinose is used to cause the cells that line the vessel walls to shrink temporarily allowing a therapeutic to flow past the BBB to the brain tissue. For the purpose of improving the transfer of intravenously administered antisense
across the blood brain barrier, various adjuvant agents such as those described above may be used.

In addition to being administered systemically, the antisense may also be administered directly into the malignancy, into the vasculature of the malignancy, into the region of the malignancy or into the cerebrospinal fluid (intrathecally).

The amount of antisense oligonucleotide administered is one effective to reduce the effective amount of levels of IGFBP-2 and/or IGFBP-5 in the tumor cell of concern. As noted above, in the context of the present invention, applicants do not intend to be bound by any specific mechanism by which this reduction may occur, although it is noted that the reduction may occur as a result of reduced expression of IGFBP-2 and IGFBP-5 if the antisense molecule interferes with translation of the mRNA, or via an RNase mediated mechanism.

Specifically, a dose range of between 300 mg and 750 mg may be selected in the case of systemic administration, and the antisense oligonucleotide administered intravenously, for example, 1-3 times a week. The antisense oligonucleotide might for example be administered 3 times during week one and then weekly thereafter, until the desired clinical endpoint. In the case of intratumoral, intraregional, tumor vasculature, or CSF administration (intrathecal administration), the dosage will be lower, for example the dose range may be between 10 and 100 mg, or continuously infused intrathecally at rates of 1-5 mg/kg/day

It will be appreciated that the appropriate therapeutic amount will vary both with the effectiveness of the specific antisense oligonucleotide employed, and with the nature of any carrier used. The determination of appropriate amounts for any given composition is within the skill in the art, through standard series of tests designed to assess appropriate therapeutic levels.

The method for treating CNS malignancies in accordance with the invention may further include administration of chemotherapy agents and/or additional antisense oligonucleotides directed at different targets. For example, conventional chemotherapy
agents such as taxol (paclitaxel or docetaxel) and mitoxanthrone may be used. Similarly, combinations of the bispecific antisense oligonucleotide of the invention with other antisense sequences such as antisense Bcl-2 oligonucleotide, TRPM-2 (clusterin) oligonucleotide, IGFBP-2 or IGFBP-5 oligonucleotide may be used.

The methods of the invention may also include the use of radiotherapy before, during, or after the administration of the antisense therapeutic. Therapy involving surgically implanted carmustine-impregnated polymer combined with postoperative external beam radiation has been used in the treatment of high-grade gliomas. Dexamethasone, mannitol, and furosemide may be used to treat the peritumoral edema associated with brain tumors. Patients may also require treatment with corticosteroids, particularly if they are receiving radiation therapy. [16]

“CNS malignancy” refers to a primary cancer, neoplasm or tumor of the brain or related tissues that grows in an uncontrolled manner, possibly invading nearby tissue and/or metastasizing (spreading) to other sites via the bloodstream. Gliomas refer to tumors that begin in the glial (supportive) tissue of the CNS. The most common gliomas include astrocytomas, ependymomas, oligodendrogliomas, and tumors with mixtures of two or more of these cell types. CNS malignancy may be used interchangeably with “tumor”, or “brain cancer”.

Specific CNS malignancies suitable for treatment using the compositions and methods of the invention include, but are not limited to: astrocytic tumors such as juvenile pilocytic, subependymal, well differentiated or moderately differentiated anaplastic astrocytoma; anaplastic astrocytoma; glioblastoma multiforme; ependymal tumors such as myxopapillary and well-differentiated ependymoma, anaplastic ependymoma, ependymoblastoma; oligodendroglial tumors including well-differentiated oligodendroglioma and anaplastic oligodendroglioma; mixed tumors such as mixed astrocytoma-ependymoma, mixed astrocytoma-oligodendroglioma, mixed astrocytoma-ependymoma-oligodendroglioma; medulloblastoma; and any other infiltrating or non-infiltrating CNS tumors or cancers.

The application is further described in the following non-limiting examples.
EXAMPLES

EXAMPLE 1

Growth Inhibition of U87 Glioma Cells by OGX-225

The effect of OGX-225, a bispecific antisense oligonucleotide targeting both IGFBP-2 and IGFBP-5, on the high-grade glioma cell line U87, was examined. The choice of cell line was based on the fact that microarray gene expression studies, IGFBP-2 is significantly overexpressed in high grade gliomas. Treatment of U87 cells with 1000 nM OGX-225 for 48 hrs resulted in a ~70% decrease in cell viability when compared to 1000 nM mismatch control.

EXAMPLE 2

OGX-225 Downregulates the Expression of Both IGFBP-2 and IGFBP-5

Western blots were performed on concentrated conditioned media collected from U87 glioma cells treated for 48 hrs with 1000 nM mismatch control oligo (Figure 2, lane 1) or 1000 nM OGX-225 (Figure 2, lane 2) in serum-free Opti-MEM™ media.

Growth inhibition by OGX-225 was associated with decreased production of both IGFBP-2 and IGFBP-5 in the conditioned media as shown in Figure 2.

EXAMPLE 3

OGX-225 Induces Apoptosis

Western blots were performed on whole cell lysates collected from U87 glioma cells treated for 24 hrs with 1000 nM mismatch control oligonucleotide (lane 1) or 1000 nM OGX-225 (lane 2) in serum-free Opti-MEM™ media. Poly(ADP-ribose) polymerase (PARP) cleavage as measured by Western blotting as shown in Figure 3 revealed that OGX-225 induced apoptosis in U87. Alpha-tubulin levels acted as a control.
EXAMPLE 4

OGX-225 Performs Better Than Monospecific Antisense Oligonucleotides

5 IGFBP-2 and IGFBP-5 monospecific antisense oligonucleotides were tested in prostate LNCaP and PC3 cells alongside the bispecific oligonucleotide OGX-225. OGX-225 demonstrated better activity than either of the monospecific antisense oligonucleotides alone.

EXAMPLE 5

Treatment of Patients with Glioma

Patients presenting with glioma are injected intravenously or into the cerebral spinal fluid with OGX-225 in sterile saline at doses of 300 mg to 750 mg (depending on the weight, age and gender of the patient) on day one, day three and day seven, then weekly until a satisfactory reduction in tumor size is noted.

While specific embodiments of the invention have been described and illustrated, such embodiments should be considered illustrative of the invention only and not as limiting the invention.

All of the cited documents are incorporated herein by reference in those jurisdictions allowing such incorporation.

References

CLAIMS

1. A pharmaceutical composition for treatment of a CNS malignancy, the pharmaceutical composition consisting essentially of an antisense oligonucleotide comprising a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is of sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5, and a pharmaceutically acceptable carrier.

2. The pharmaceutical composition of claim 1 wherein the CNS malignancy is a glioma.

3. The pharmaceutical composition of claim 1 wherein substantially all of said antisense oligonucleotide is complementary to portions of the genes encoding IGFBP-2 and IGFBP-5.

4. The pharmaceutical composition of claim 1 or 2 wherein said sequence of bases is selected from the group consisting of: SEQ ID. NOs: 1,2,3,4,5, 6 or 7.

5. The pharmaceutical composition of claim 4, wherein said sequence corresponds to SEQ. ID: NO: 5.

6. The pharmaceutical composition of any one of claims 1-5, wherein a 3' and a 5' end of said sequence of bases has chemical modifications.

7. The pharmaceutical composition of claim 5 wherein said modifications comprise methoxyl ethyl or “MOE”.

8. The pharmaceutical composition of claim 6 or 7, wherein said modifications occur on first and last 5 bases from said 3' end.

9. The pharmaceutical composition of claim 1 wherein said sequence of bases number from 10-30.
10. The pharmaceutical composition of claim 1 wherein said sequence of bases number from 14-21.

11. The use of an antisense oligonucleotide consisting essentially of a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5, for the treatment of CNS malignancy in a mammal.

12. The use of an antisense oligonucleotide consisting essentially of a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5, in the manufacture of a medicament for the treatment of CNS malignancy in a mammal.

13. The use of claim 11 or 12 wherein the mammal is man.

14. The use of claim 11 or 12 wherein the CNS malignancy is a glioma.

15. A method for inducing apoptosis in glioma cells comprising contacting said cells with an antisense oligonucleotide consisting essentially of a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is of sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5.

16. A method for treating a CNS malignancy in a subject suffering from a CNS malignancy, comprising administering to the subject an antisense oligonucleotide consisting essentially of a sequence of bases that is complementary to portions of both the gene encoding IGFBP-2 and the gene encoding IGFBP-5, and which is of sufficient length to act as an inhibitor of the effective amount of IGFBP-2 and IGFBP-5, in an amount effective to reduce effective levels of IGFBP-2 and IGFBP-5 in cells of the CNS malignancy.

17. The method of claim 16 wherein said amount is between 300 mg and 750 mg.
18. The method of claim 16 wherein said amount is between 10 mg and 100 mg.

19. The method of claim 16, wherein the antisense oligonucleotide is administered intratumorally.

20. The method of claim 16, wherein the antisense oligonucleotide is administered intrathecally.

21. The method of claim 16, wherein the antisense oligonucleotide is administered regional to said CNS malignancy.

22. The method of claim 16, wherein the antisense oligonucleotide is administered systemically.

23. The method of claim 16, wherein the antisense oligonucleotide is administered in combination with a chemotherapeutic agent.

24. The method of claim 16, wherein the antisense oligonucleotide is administered in combination with radiotherapy.

25. The method of claim 16, wherein the antisense oligonucleotide is administered in combination with surgery.

26. The method of any one of claims 16-25 wherein said CNS malignancy is a glioma.

27. The method of any one of claims 16-25 wherein said mammal is a human.
cleaved PARP
α-tubulin

Fig. 3
SEQUENCE LISTING

<THE UNIVERSITY OF BRITISH COLUMBIA>
<GLEAVE, MARTIN E>
<POLLAK, MICHAEL N>
<LEAVITT, RANDY J>

<BISPECIFIC OLIGONUCLEOTIDE FOR THE TREATMENT OF CNS MALIGNANCIES>

<80021-734>
<PCT/CA2004/001778>
<2004-09-30>
<US 60/507,128>
<2003-10-01>

<7>

<PatentIn version 3.3>

<1>
<17>
<DNA>
<artificial>

<ANTIENSE>

<400> 1
<gtgtagcgc ccgcacg>

<17>

<210> 2
<211> 16
<DNA>
<artificial>

<ANTIENSE>

<400> 2
<gcacgcagc cccctgg>

<16>

<210> 3
<211> 22
<DNA>
<artificial>

<ANTIENSE>

<400> 3
<gcacgcagc ccgcgccgct cc>

<22>

SUBSTITUTE SHEET (RULE 26)
<210> 4
<211> 18
<212> DNA
<213> artificial

<220>
<223> ANTISENSE

<400> 4
agccgcagcc cggtcct

<210> 5
<211> 20
<212> DNA
<213> artificial

<220>
<223> ANTISENSE

<400> 5
cagcagccgc agccggctc

<210> 6
<211> 20
<212> DNA
<213> artificial

<220>
<223> ANTISENSE

<400> 6
gcagcagccg cagccggctc

<210> 7
<211> 20
<212> DNA
<213> artificial

<220>
<223> ANTISENSE

<400> 7
agcagcgcga gcggctc
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claims Nos.: 15-27 because they relate to subject matter not required to be searched by this Authority; namely:
Remarks: Claims 15-27 are directed to methods for treatment of cells in a human or animal body which does not require examination. However, a search has been carried out based on the alleged effects and/or use of the antisense oligonucleotide in the claims.

2. [] Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.:
because they are dependant claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observation where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant’s protest.

[] No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2004/001778

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7: A61K 48/00; A61K 31/7088; A61K 31/7115; A61P 25/00; A61P 35/00

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched: A61K 48/00; A61K 31/7088; A61K 31/7115; A61P 25/00; A61P 35/00

Electronic database consulted during the international search (name of database, and, where practicable, search terms used)

Canadian Patent Database, Delphion, Pubmed, USPTO, Biosis, Geneseq, Genbank (search terms: IGFBP2, IGFBP5, insulin growth factor binding protein, IGF-I binding protein, somatomedin binding protein, antisense, oligonucleotide, cancer, CNS, Gleave, Pollak, Levitt)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>MIYAKE H ET AL 1 Jun 2000 Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates growth factor-I activity and accelerates progression to androgen independence in prostate cancer models. CANCER RES 60:3058-3064</td>
<td>1-27</td>
</tr>
<tr>
<td>Y</td>
<td>WO 0105435 (The University of British Columbia) GLEAVE M 25 Jan 2001 Whole document</td>
<td>1-27</td>
</tr>
<tr>
<td>Y</td>
<td>WO 0222642 (The University of British Columbia) GLEAVE M ET AL 21 Mar 2002 Whole document</td>
<td>1-27</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. Patent family members are listed in annex.

* Special categories of cited documents:
 - "A" - document defining the general state of the art which is not considered to be of particular relevance
 - "E" - earlier application or patent but published on or after the international filing date
 - "L" - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" - document referring to an oral disclosure, use, exhibition or other means
 - "P" - document published prior to the international filing date but later than the priority date claimed

T - later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X - document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y - document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& - document of the same patent family

<table>
<thead>
<tr>
<th>Date of the actual completion of the international-type search</th>
<th>Date of mailing of the international-type search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 December 2004</td>
<td>31 January 2005 (31-01-2005)</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/ Commissioner of Patents

Canadian Patent Office - PCT

Ottawa/Gatineau KIA 9C9

Facsimile No. 1-819-953-9358

Authorized officer

Debora Fujimoto (819) 997-1855

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>ZUMKELLER W
Sep 2002
IGFs and IGF-binding proteins as diagnostic markers and biological modulators in brain tumors. EXPERT REV MOL DIAGN 2(5):473-477.
Abstract; page 474, column 1, third paragraph, through column 2, first paragraph</td>
<td>1-27</td>
</tr>
<tr>
<td>Y</td>
<td>WO 03030826 (Isis Pharmaceuticals, Inc.)
FREIER SM
17 Apr 2003</td>
<td>1-27</td>
</tr>
<tr>
<td></td>
<td>Whole document</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>WO 03062421 (The University of British Columbia)
GLEAVE M & SIGNAEVSKY M
01 Oct 2003</td>
<td>1-27</td>
</tr>
<tr>
<td></td>
<td>Whole document</td>
<td></td>
</tr>
<tr>
<td>Patent Document Cited in Search Report</td>
<td>Publication Date</td>
<td>Patent Family Member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU56144500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2375467 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1200579 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU0201868 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL146565D E20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2003504418 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20020259 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ516701 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO0105435 A2</td>
</tr>
<tr>
<td>WO0222642</td>
<td>21-03-2002</td>
<td>AU 0190920 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2421087 AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU0302120 AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL154529 A0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2004532794 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20031160 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20031160 A0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ20034274 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US200400072776 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1442140 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6750019 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO03030826 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1465995 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003138143 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO03062421 A1</td>
</tr>
</tbody>
</table>