
USOO8458728B2

(12) United States Patent (10) Patent No.: US 8.458,728 B2
Tian et al. (45) Date of Patent: *Jun. 4, 2013

(54) BROWSER-BASED USER INTERFACE AND (56) References Cited
CONTROL ARCHITECTURE WITH
PRIORITY ATTRIBUTES

(75) Inventors: Yong Tian, Cupertino, CA (US); Brian
Chin, Alameda, CA (US)

(73) Assignee: Access Co., Ltd., Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 203 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 12/809,982

(22) PCT Filed: Dec. 18, 2008

(86). PCT No.: PCT/US2008/087543

S371 (c)(1),
(2), (4) Date: Aug. 5, 2010

(87) PCT Pub. No.: WO2009/082673
PCT Pub. Date: Jul. 2, 2009

(65) Prior Publication Data

US 2010/O2996O7 A1 Nov. 25, 2010

Related U.S. Application Data
(63) Continuation-in-part of application No. 12/004,663,

filed on Dec. 20, 2007, now Pat. No. 8,266,635.

(51) Int. Cl.
G06F 9/44
GO6F 15/17

(52) U.S. Cl.
USPC ... 71.9/318; 709/217

(58) Field of Classification Search
USPC ... 719/328; 709/204
See application file for complete search history.

(2006.01)
(2006.01)

Browser Framework

Event A Triggered

Start loading URI of
Event A

Event B Triggered

Halt loading of Event A

Start loading URI of
Event B

U.S. PATENT DOCUMENTS

6,154,646 A 11/2000 Tran et al.
6,173,316 B1 1/2001 De Boor et al.
6,317,781 B1 11/2001 De Boor et al.
6,385,644 B1 5, 2002 Devine et al.
6,445,776 B1 9, 2002 Shank et al.
6,470,381 B2 10/2002 De Boor et al.

(Continued)

OTHER PUBLICATIONS

International Search Report and Written Opinion mailed Feb. 20.
2009, for PCT Application No. PCT/US08/87543 filed Dec. 18,
2008, 9 pages.

(Continued)

Primary Examiner — Andy Ho
Assistant Examiner — Abdou Seye
(74) Attorney, Agent, or Firm — Morrison & Foerster LLP

(57) ABSTRACT

A browser-enabled device includes a browser-based user
interface and control architecture, which has a browser core,
a browser framework, and a user interface. The user interface
is written using a markup language. In processing event reg
istrations, the browser framework receives an event registra
tion. The received event registration having a response unique
resource identifier (URI) content and a priority field. The
priority field of the received event registration is examined to
determine priority of the received event registration. If the
browser core is loading the response URI content of a prior
event registration and if the priority of the received event
registration is higher than the priority of the prior event reg
istration, then the loading of the response URI content of the
prior event registration is halted, and loading of the response
URI content of the received event registration is begun.

26 Claims, 2 Drawing Sheets

Browser Core

Browser progress loop 1

Browser progress loop 2

Browser progress loop in

Browser progress loop n+1

Browser progress loop 1

Browser progress loop 2

US 8,458,728 B2
Page 2

6,509,913
6,675.204
7,076,275
7,143,214
7,428,723
7,519,687
7,721,032

2004/0023646
2006/0026526
2007/0O38722
2007/0286.381
2009/O144756
2009/O165023

U.S. PATENT DOCUMENTS

B2 1, 2003
B2 1, 2004
B1 T/2006
B2* 11/2006
B2 9, 2008
B2 4, 2009
B2 5, 2010
A1 2, 2004
A1 2, 2006
A1* 2, 2007
A1 12, 2007
A1 6, 2009
A1 6, 2009

Martin, Jr. et al.
De Boor et al.
Karstens et al.
Hayes et al.
Greene et al.
Tsuda et al.
Bushell et al.
Inami et al.
Simister et al.
Yoshii et al.
Abramson et al.
Inami
Tian et al.

. 71 Of72

709/217

OTHER PUBLICATIONS

International Preliminary Report on Patentability and Written Opin
ion received for PCT Patent Application No. PCT/US2008/087543,
mailed on Jul. 1, 2010, 7 pages.
Non-Final Office Action received for U.S. Appl. No. 12/004,663,
mailed on Apr. 15, 2011, 17 pages.
Final Office Action received for U.S. Appl. No. 12/004,663, mailed
on Oct. 26, 2011, 13 pages.
Notice of Allowance received for U.S. Appl. No. 12/004,663, mailed
on May 11, 2012, 9 pages.

* cited by examiner

U.S. Patent Jun. 4, 2013 Sheet 1 of 2 US 8.458,728 B2

200
User Interface and

Control Architecture

210
User Interface

206
Browser

Framework

208
API

100
Browser-Enabled Device

102 106
Processor Output Device

104
204

Browser
Core

104 108
Memory Input Device

1 10
Additional Components

FIG. 1

Browser Framework Browser Core

Event A Triggered
Browser progress loop 1

Start loading URI of
Event A Browser progress loop 2

Browser progress loop in

Event B Triggered

Halt loading of Event A Browser progress loop n+1

Start loading URI of Browser progress loop 1
Event B

Browser progress loop 2

U.S. Patent Jun. 4, 2013 Sheet 2 of 2 US 8.458,728 B2

402
RECEIVE EVENT
REGISTRATION

404
EXAMINE PRIORITY
FIELD OF RECEIVED
EVENT REGISTRATION

406
IS BROWSER CORE 408

PROCESSING ANOTHER PROCESS CURRENT
EVENT EVENT

9

410
DETERMINE PRIORITY
OF EVENT BEING
PROCESSED

412
IS PRIORITY OF 414
CURRENT EVENT CONTINUE

HIGHER THAN EVENT PROCESSING EVENT
BEING PROCESSED BEING PROCESSED

416
PROCESS CURRENT

EVENT

US 8,458,728 B2
1.

BROWSER-BASED USER INTERFACE AND
CONTROL ARCHITECTURE WITH

PRIORITY ATTRIBUTES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a 35 U.S.C. S 371 National Stage filing
of International Patent Application No. PCT/US2008/
087543, filed Dec. 18, 2008, which is a continuation-in-part
of U.S. Nonprovisional Patent Application No. 12/004,663,
filed Dec. 20, 2007, both of which are hereby incorporated by
reference for all purposes.

BACKGROUND

1. Field
The present application generally relates to browser-en

abled devices, and, more particularly, to browser-enabled
devices having browser-based user interface and control
architectures with priority attributes.

2. Related Art
An ever increasing number of electronic devices (e.g.,

mobile phones, handhelds, home appliances, set top boxes,
etc.) include browser software. In some of these browser
enabled devices, the user interface and control architecture is
implemented using the browser Software (i.e., a browser
based interface and control architecture) rather than a full
function operating system (O/S).
The user interface portion of the browser-based interface

and control architecture can be written using a markup lan
guage (e.g., hypertext markup language (HTML), JavaScript,
etc.), which can be faster to write and more flexible than if
written using C/C++, as an example. However, markup lan
guages typically do not Support prioritization of events.

For example, if a mobile phone has a browser-based inter
face and control architecture and the user interface portion is
written using HTML, then the browser-based interface and
control architecture may not be able to interrupt an event that
is currently being performed (e.g., the downloading of a page)
to perform an event with a higher priority (e.g., an incoming
call). Thus, in this example, the user of the mobile phone may
not be informed about the incoming call until the download
ing of the page is completed. This may result in the incoming
call going unanswered, which may be undesirable.

With regard to mobile phones that support both telephony
and browsing functions, one conventional approach to allow
ing for an incoming call to halt the downloading of a page is
to perform the telephony and browsing functions on separate
threads (one thread for telephony functions and another
thread for browsing functions). This (running multiple
threads) requires the use of a full-function OS. It may be
undesirable, however, to use a full-function OS in some cir
cumstances. For example, it may be desirable for a browser
enabled device to use a less powerful processor and less
memory than are typically required to support a full-function
OS. Additionally, it may be desirable to run only a single
thread because of simplified programming model.

SUMMARY

In one exemplary embodiment, a browser-enabled device
includes a browser-based user interface and control architec
ture, which has a browser core, a browser framework, and a
user interface. The user interface is written using a markup
language. In processing event registrations, the browser
framework receives an event registration. The received event

10

15

25

30

35

40

45

50

55

60

65

2
registration having a response unique resource identifier
(URI) content and a priority field. The priority field of the
received event registration is examined to determine priority
of the received event registration. If the browser core is load
ing the response URI content of a prior event registration and
if the priority of the received event registration is higher than
the priority of the prior event registration, then the loading of
the response URI content of the prior event registration is
halted, and loading of the response URI content of the
received event registration is begun.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary browser-enabled
device;

FIG. 2 is a block diagram of an exemplary browser-based
user interface and control architecture of the exemplary
browser-enabled device of FIG. 1;

FIG. 3 is a sequence diagram illustrating the handling of
two event registrations by an exemplary browser framework
and an exemplary browser core of the exemplary browser
based user interface and control architecture of FIG. 2; and

FIG. 4 is a flow diagram illustrating an exemplary process
of handling event registrations.

DETAILED DESCRIPTION

The following description sets forth numerous specific
configurations, parameters and the like. It should be recog
nized, however, that such description is not intended as a
limitation on the scope of the present invention, but is instead
provided as a description of exemplary embodiments.

FIG. 1 depicts an exemplary embodiment of a browser
enabled device 100. As described above, browser-enabled
device 100 can be various types of devices, including mobile
phones, handhelds, home appliances, set top boxes, etc. It
should be recognized that browser-enabled device 100 can
Support any number of functions in addition to browsing
functions. For example, if browser-enabled device 100 is a
mobile phone, then browser-enable device 100 supports tele
phony and browsing functions, including Voice-over-IP
(VoIP) functions.
As depicted in FIG. 1, browser-enabled device 100 can

include a processor 102, memory 104, output device 106, and
input device 108. Processor 102 can be configured to perform
the steps of the processes described below. Memory 104 can
include various types of memories, including ROM, RAM,
flash, etc. Output device 106 can include a display to provide
output to a user. Input device 108 can include buttons, a full
keyboard, and the like to receive input from the user. It should
be recognized that output device 106 and input device 108 can
be integrated. For example, a touch-screen can be used both as
an output device and as an input device.

It should be recognized that browser-enabled device 100
can include any number of additional components 110
depending on the functions Supported on browser-enabled
device 100. For example, returning to the example of
browser-enabled device 100 being a mobile phone, additional
components 110 of browser-enabled device 100 can include
various telephony components, such as a speaker and micro
phone, to Support the telephony functions.
As described above, browser-enabled device 100 can

include a user interface and control architecture that is imple
mented using browser Software (i.e., a browser-based user
interface and control architecture). FIG. 2 depicts an exem
plary browser-based user interface and control architecture
200. Browser-based user interface and control architecture

US 8,458,728 B2
3

200 can be stored in memory 104 (FIG. 1) and executed by
processor 102 (FIG. 1). Browser-based user interface and
control architecture 200 can receive input from a user through
input device 108 (FIG.1) and provide output to a user through
output device 106 (FIG. 1).

In the present exemplary embodiment, browser-based user
interface and control architecture 200 includes an OS kernel
202, a browser core 204, a browser framework 206, and a user
interface 210. It should be recognized that browser-based user
interface and control architecture 200 can include any number
of additional components.
OS kernel 202 and browser core 204 can be written in any

desirable device native code. As described above, user inter
face 210, however, can be written using a markup language,
Such as HTML, JavaScript, etc. For information on a markup
language based man-machine interface, see U.S. Pat. No.
6,173,316, which is incorporated herein by reference in its
entirety for all purposes.

In the present exemplary embodiment, OS kernel 202 is not
a full-function OS. Thus, OS kernel 202 possesses limited
capabilities in comparison to a full-function OS. For example,
OS kernel 202 is capable of running only a single thread in
contrast to a full-function OS that can run multiple threads.
The limited capabilities of OS kernel 202 permit browser
enabled device 100 (FIG. 1) to operate with a less powerful
processor and less memory than if a full-function OS was
used. Additionally, it may be desirable to run only a single
thread because of simplified programming model. OS kernel
202, however, does possess, at a minimum, input and output
functions, a file system, and network capabilities.

Browser core 204 can include extensions or plug-ins to
map native OS commands to the markup language used to
write user interface 210 of browser-based user interface and
control architecture 200. Browser framework 206 controls
the event loops and calls on browser core 204 periodically to
process incoming events. The source code for user interface
210 can be stored as a file on browser enabled device 100
(FIG. 1), online, or generated in, by, or on a web server.

In the present exemplary embodiment, browser-based user
interface and control architecture 200 is configured to have
priority attributes (i.e., events are handled using a priority
based system). In particular, as depicted in FIG. 2, browser
framework 206 includes an application programming inter
face (API) 208 to register events. The events are registered
with a priority level and uniform resource identifier (URI),
which can include a uniform resource location and/or uni
form resource name (URL/URN) to load responses to the
eVentS.

For example, an exemplary event registration is depicted
below for an event (EventType evt) with a priority field (UInt
priority) and URI field (String uri):

EventRegistration (EventType evt, UIntpriority, String uri)
It should be recognized that the above example is merely
exemplary. The format of the event registration can be differ
ent depending on the particulars of the programming lan
guage used to implement the browser-based user interface
and control architecture.

It should also be recognized that the event registration can
include any number of additional fields and/or parameters.
For example, the following exemplary event registration
includes a timeout parameter (UInt timeout):

EventRegistration (EventType evt, UInt priority, UInt tim
eout, String uri)

The timeout parameter can be used for a transient event. For
example, if the event is placed in a queue and not handled with
the specified timeout period, then the event is ignored and
removed from the queue.

10

15

25

30

35

40

45

50

55

60

65

4
If an event is triggered, browser framework 206 calls on

browser core 204 to load the response URI content of the
event. If a Subsequent event is triggered while the response
URI content of an earlier event is still being loaded, then
browser framework 206 checks the priority levels of the two
events. If the Subsequent event has a higher priority than the
earlier event, then browser framework 206 calls on browser
core 204 to halt the loading of the response URI content of the
earlier event and start to load the response URI content of the
Subsequent event. If the Subsequent event does not have a
higher priority than the earlier event, then the URI content of
the earlier event will continue to load.

For example, FIG. 3 depicts an event A that has been
triggered, which causes the URI content of event A to load
(browser progress loops 1, 2, n). Before loading is completed,
event B triggers. The browser framework checks the priority
levels of events A and B. If event B has a higher priority than
event A, then the browser framework calls on the browser core
to halt the loading of the response URI content of event A
(browser progress loop n+1) and start to load the response
URI content of event B (browser progress loops 1 and 2). If
event B does not have a higher priority than event A, then the
URI content of event A will continue to load.

FIG. 4 depicts an exemplary process 400 of handling event
registrations. Process 400 can be performed by processor 102
(FIG. 1).

In step 402, an event registration is received by the browser
framework. As noted above, the event registration includes a
priority field. In step 404, the priority field in the event reg
istration is examined by the browser framework.

In step 406, the browser framework determines if the
browser core is processing another event. If there is no other
event being processed, then the current event is processed on
the browser core in step 408. If there is another event being
processed, the browser framework determines the priority of
the event being processed in step 410.

In step 412, the browser framework compares the priority
of the current event to the priority of the event being pro
cessed. If the priority of the current event is higher than the
priority of the event being processed, then the current event is
processed in step 416. In particular, the browser framework
directs the browser core to halt the loading of the response
URI content of the event being processed and begin to load
the response URI content of the current event. If the priority
of the current event is not higher (i.e., lower or the same) than
the priority of the event being processed, then the event being
processed continues to be processed in step 414.

In one exemplary embodiment, the various events to be
processed by the browser core are assigned priorities in
advance. In particular, all events to be processed by the
browser core are defined in advance, such as when the
browser framework is being written. Priorities are then
assigned to the events. The assignment of priorities to events
can be stored in various formats, such as a table.

For example, assume again that browser-enabled device
100 (FIG. 1) is a mobile phone having telephony functions in
addition to browsing functions. It is desirable for all browsing
activity to be ceased when an incoming call is received. Thus,
an incoming call event can be assigned the highest priority
(e.g., priority 1), while all browsing related events are
assigned a lesser priority (e.g., priority 2 and below).

In one exemplary embodiment, event registrations can be
queued before being processed. The browser framework pro
cesses the event registrations from the queue based on their
priorities. In particular, the event priority in the queue with the
highest priority is the first event priority to be processed from
the queue. The queue can be stored in memory or any other

US 8,458,728 B2
5

desirable location. It should be recognized that the queue can
be managed according to various known techniques.
As described above, with reference again to FIG. 2, when

a Subsequent event has a higher priority than an earlier event,
browser framework 206 calls on browser core 204 to halt the
loading of the response URI content of the earlier event and
start to load the response URI content of the subsequent event
with the higher priority. It should be recognized that browser
core 204 need not be then dedicated to the subsequent event.
Instead, browser core 204 can switch between the two events.

For example, assume that the two events relate to two web
pages. In particular, assume that the earlier event relates to
web page A, while the Subsequent event relates to web page B.
As is well known, browser core 204 can load multiple web
pages simultaneously, Such as by alternating between loading
portions of the multiple web pages.

Thus, in the present example, after halting the loading of
the response URI content of web page A, browser core 204
can begin the loading of the response URI content of web
page B. After beginning the loading of the response URI
content of web page B, browser core 204 can then return to
loading the response URI content of web page A. This process
of switching between the loading of the response URI con
tents of web pages A and B can continue until the response
URI content of web page B has been completely loaded. In
one exemplary embodiment, browser core 204 devotes longer
time for loading of the higher priority event than the lower
priority event. Web page B is then displayed on browser
enabled device 100 (FIG. 1), such as on output device 106
(FIG. 1).

In the example above, if web page A has already been
loaded and is being displayed on browser-enabled device 100
(FIG. 1), then browser core 204 can load the response URI
content of web page B in the background. When the response
URI content of web page B has been completely loaded,
browser-enabled device 100 (FIG. 1) switches from display
ing web page A to displaying web page B.

Although only certain exemplary embodiments of this
invention have been described in detail above, those skilled in
the art will readily appreciate that many modifications are
possible in the exemplary embodiments without materially
departing from the novel teachings and advantages of this
invention. For example, aspects of embodiments disclosed
above can be combined in other combinations to form addi
tional embodiments. Accordingly, all such modifications are
intended to be included within the scope of this invention.

We claim:
1. A computer-enabled method of processing event regis

trations in a browser-based user interface and control archi
tecture of a browser-enabled device, the browser-based user
interface and control architecture having a browser core, a
browser framework, and a user interface, the user interface
being written using a markup language, the method compris
ing:

receiving an event registration, by one or more processors,
the received event registration having a response unique
resource identifier (URI) content and a priority field, the
event registration being received by the browser frame
work;

examining, by the one or more processors, the priority field
of the received event registration to determine priority of
the received event registration;

if the browser core is loading the response URI content of
a prior event registration, then determining if the priority
of the received event registration is higher than the pri
ority of the prior event registration; and

10

15

25

30

35

40

45

50

55

60

65

6
if the priority of the received event registration is higher

than the priority of the prior event registration, then:
halting the loading of the response URI content of the

prior event registration and starting to load the
response URI content of the received event registra
tion, and

after starting to load the response URI content of the
received event registration, returning to loading the
response URI content of the prior event registration,

wherein the response URI content of the received event
registration includes at least a portion of the user
interface.

2. The method of claim 1, further comprising:
if the priority of the received event registration is not higher

than the priority of the prior event registration, then
continuing to load the response URI content of the prior
event registration.

3. The method of claim 1, further comprising:
queuing event registrations in a queue; and processing

event registrations from the queue based on the priorities
of the event registrations.

4. The method of claim 1, wherein the event registrations in
the queue include timeout parameters, and further compris
ing:

removing event registrations from the queue based on the
timeout parameters of the event registrations.

5. The method of claim 1, further comprising:
defining all events to be processed by the browser core; and

assigning priorities to the defined events.
6. The method of claim 5, wherein the defined events

includes:
a first set of events associated with telephony functions;

and
a second set of events associated with browsing functions.
7. The method of claim 6, wherein one of the first set of

events is an incoming call event, wherein the incoming call
event is assigned the highest priority.

8. The method of claim 1, wherein the browser-based user
interface and control architecture includes an operating sys
tem kernel capable of running only one thread at a time.

9. The method of claim 1, wherein the steps of receiving,
examining, determining, and halting are performed by an
application programming interface of the browser frame
work.

10. The method of claim 1, wherein the prior event regis
tration is related to a browsing function, and wherein the
received event registration is an incoming call event.

11. The method of claim 1, wherein the prior event regis
tration is related to a first web page, wherein the received
event registration is related to a second web page, and further
comprising:

alternating between loading the response URI contents of
the received and prior event registrations until the sec
ond web page has been completely loaded; and

when the second web page has been completely loaded,
instructing the display of the second web page on the
browser-enabled device.

12. The method of claim 1, wherein the prior event regis
tration is related to a first web page, wherein the received
event registration is related to a second web page, and further
comprising:
when the first web page has been loaded and is being

displayed on the browser-enabled device, loading the
response URI content of the received event registration
in background on the browser core; and

US 8,458,728 B2
7

when the second web page has been completely loaded,
instructing the browser-enabled device to switch from
displaying the first web page to displaying the second
web page.

13. A non-transitory computer-readable storage medium
having computer-executable instructions for processing
event registrations in a browser-based user interface and con
trol architecture of a browser-enabled device, the browser
based user interface and control architecture having a browser
core, a browser framework, and a user interface, the user
interface being written using a markup language, comprising
instructions for:

receiving an event registration, the received event registra
tion having a response unique resource identifier (URI)
content and a priority field, the event registration being
received by the browser framework;

examining the priority field of the received event registra
tion to determine priority of the received event registra
tion;

if the browser core is loading the response URI content of
a prior event registration, then determining if the priority
of the received event registration is higher than the pri
ority of the prior event registration; and

if the priority of the received event registration is higher
than the priority of the prior event registration, then:
halting the loading of the response URI content of the

prior event registration and starting to load the
response URI content of the received event registra
tion, and

after starting to load the response URI content of the
received event registration, returning to loading the
response URI content of the prior event registration,

wherein the response URI content of the received event
registration includes at least a portion of the user
interface.

14. The computer-readable storage medium of claim 13,
further comprising instructions for:

if the priority of the received event registration is not higher
than the priority of the prior event registration, then
continuing to load the response URI content of the prior
event registration.

15. The computer-readable storage medium of claim 13,
further comprising instructions for:

queuing event registrations in a queue; and
processing event registrations from the queue based on the

priorities of the event registrations.
16. The computer-readable storage medium of claim 13,

wherein the browser-based user interface and control archi
tecture includes an operating system kernel capable of run
ning only one thread at a time.

17. The computer-readable storage medium of claim 13,
wherein the prior event registration is related to a first web
page, wherein the received event registration is related to a
second web page, and further comprising instructions for:

alternating between loading the response URI contents of
the received and prior event registrations until the sec
ond web page has been completely loaded; and

when the second web page has been completely loaded,
instructing the display of the second web page on the
browser-enabled device.

18. The computer-readable storage medium of claim 13,
wherein the prior event registration is related to a first web
page, wherein the received event registration is related to a
second web page, and further comprising instructions for:
when the first web page has been loaded and is being

displayed on the browser-enabled device, loading the

10

15

25

30

35

40

45

50

55

60

65

8
response URI content of the received event registration
in background on the browser core; and

when the second web page has been completely loaded,
instructing the browser-enabled device to switch from
displaying the first web page to displaying the second
web page.

19. A browser-enabled device, comprising:
a processor;
memory; and
a browser-based user interface and control architecture

comprising:
an operating system kernel;
a browser core;
a user interface written using the markup language; and
a browser framework, the browser framework having an

application programming interface (API) configured
tO:

receive an event registration, the event registration
having a response unique resource identifier (URI)
content and a priority field;

examine the priority field of the event registration to
determine priority of the received event registra
tion;

if the browser core is loading the response URI con
tent of a prior event registration, then determine if
the priority of the received event registration is
higher than the priority of the prior event registra
tion; and

if the priority of the received event registration is
higher than the priority of the prior event registra
tion, then:
halt loading of the response URI content of the

prior event registration and start loading the
response URI content of the received event reg
istration, and

after starting to load the response URI content of
the received event registration, return to loading
the response URI content of the prior event reg
istration,

wherein the response URI content of the received
event registration includes at least a portion of
the user interface.

20. The browser-enabled device of claim 19, further com
prising:

a queue configured to store event registrations, wherein the
API is configured to process event registrations from the
queue based on the priorities of the event registrations.

21. The browser-enabled device of claim 19, further com
prising:

a table having an assignment of priorities to events to be
processed by the browser framework.

22. The browser-enabled device of claim 21, wherein an
incoming call event is assigned the highest priority.

23. The browser-enabled device of claim 19, wherein the
operating system kernel is capable of running only one thread
at a time.

24. The browser-enabled device of claim 19, further com
prising:

telephony components, wherein the event of the prior event
registration is related to a browsing function, and
wherein the event of the received event registration is an
incoming call event.

25. The browser-enabled device of claim 19, wherein the
prior event registration is related to a first web page, wherein
the received event registration is related to a second web page,
and wherein the API is further configured to:

US 8,458,728 B2
9

alternate between loading the response URI contents of the
received and prior event registrations until the second
web page has been completely loaded; and

when the second web page has been completely loaded,
instruct the display of the second web page on the 5
browser-enabled device.

26. The browser-enabled device of claim 19, wherein the
prior event registration is related to a first web page, wherein
the received event registration is related to a second web page,
and wherein the API is further configured to: 10
when the first web page has been loaded and is being

displayed on the browser-enabled device, load the
response URI content of the received event registration
in background on the browser core; and

when the second web page has been completely loaded, 15
instruct the browser-enabled device to switch from dis
playing the first web page to displaying the second web
page.

