(54) 发明名称
用于执行受控的肌切开术的外科器械

(57) 摘要
用于执行受控的肌切开术的外科器械（1），尤其是执行肛门内括约肌切开术的外科器械，包括：近侧手柄部分（2），长的插入轴（3），其与所述手柄部分（2）连接并且从所述手柄部分（2）向远侧延伸，远侧切割末端（4），其设置在所述插入轴（3）的远端并且能够切割所述插入轴（3）远侧附近的组织，横向切割构件（5），其布置在所述插入轴（3）上并且能够切割所述插入轴（3）横向附近的组织，其中，所述横向切割构件（5）能够在静止位置和工作位置之间运动，在所述静止位置中，所述横向切割构件（5）朝着所述插入轴（3）缩回或者缩回到所述插入轴（3）内，在所述工作位置中，所述横向切割构件（5）从所述插入轴（3）横向伸出。
1. 一种用于执行受控的肌切开术的外科器械 (1)，包括：
 近侧手柄部分 (2)；
 细长的插入轴 (3)，其与所述近侧手柄部分 (2) 连接并且从所述近侧手柄部分 (2) 向远
 侧延伸；
 远侧切割末端 (4)，其设置在所述插入轴 (3) 的远端并且能够切割所述插入轴 (3) 远侧
 附近的组织；
 横向切割构件 (5)，其布置在所述插入轴 (3) 上并且能够切割所述插入轴 (3) 横向附近
 的组织；
 其特征在于，所述横向切割构件 (5) 能够在静止位置和工作位置之间运动，在所述静
 止位置中，所述横向切割构件 (5) 朝着所述插入轴 (3) 缩回或者缩回到所述插入轴 (3) 内，
 在所述工作位置中，所述横向切割构件 (5) 从所述插入轴 (3) 横向伸出。

2. 根据权利要求 1 所述的外科器械 (1)，其中，所述插入轴 (3) 包括用于以视觉或触觉
 方式控制所述插入轴 (3) 的插入深度的标记 (8)。

3. 根据权利要求 1 所述的外科器械 (1)，包括调节旋钮或游标 (11)，所述调节旋钮或游
 标 (11) 通过运动机构与所述横向切割构件 (5) 连接，其中，所述调节旋标 (11) 能够设置在
 多个不同位置 (RF2) 中，以便调节所述横向切割构件 (5) 的工作位置。

4. 根据权利要求 3 所述的外科器械 (1)，包括沿着所述调节旋钮或游标 (11) 的轨道设
 置的视觉或触觉标记 (12)，用于提供所述横向切割构件 (5) 的横向伸出的连续的视觉或触
 觉控制。

5. 根据权利要求 1 所述的外科器械 (1)，其中，所述远侧切割末端 (4) 和 / 或所述横向
 切割构件 (5) 包括能够将射频电流传输给组织以切割组织和凝结血液的电极末端。

6. 根据权利要求 5 所述的外科器械 (1)，其中，所述远侧切割末端 (4) 包括钝的射频供电
 电极，而所述横向切割构件 (5) 包括钩形的射频供电线。

7. 根据权利要求 5 或 6 所述的外科器械 (1)，包括与射频导体部件相互作用的射频启
 动按钮 (13)，所述射频导体部件将外部射频连接器 (9) 与所述远侧切割末端 (4) 连接并与
 所述横向切割构件 (5) 连接，以便选择性地对所述远侧切割末端 (4) 和所述横向切割构件
 (5) 通电或断电。

8. 根据权利要求 4 所述的外科器械 (1)，其中，所述远侧切割末端 (4) 和 / 或所述横向
 切割构件 (5) 包括能够将射频电流传输给组织以切割组织和凝结血液的电极末端。

9. 根据权利要求 8 所述的外科器械 (1)，其中，所述远侧切割末端 (4) 包括钝的射频供电
 电极，而所述横向切割构件 (5) 包括钩形的射频供电线。

10. 根据权利要求 8 或 9 所述的外科器械 (1)，包括与射频导体部件相互作用的射频启
 动按钮 (13)，所述射频导体部件将外部射频连接器 (9) 与所述远侧切割末端 (4) 连接并与
 所述横向切割构件 (5) 连接，以便选择性地对所述远侧切割末端 (4) 和所述横向切割构件
 (5) 通电或断电。

11. 根据权利要求 10 所述的外科器械 (1)，其中，所述射频启动按钮 (13) 容纳在所述
 调节旋标 (11) 中。

12. 根据权利要求 1 所述的外科器械 (1)，其中，所述横向切割构件 (5) 设置在所述插
 入轴 (3) 的远端附近。
13. 根据权利要求1所述的外科器械(1)，其中，所述插入轴(3)是基本刚性的和直的，并且具有限定了参考平面的细长的、平的形状，所述横向切割构件(5)能够相对于所述插入轴(3)的所述参考平面横向延伸。

14. 根据权利要求1所述的外科器械(1)，其中，所述手柄部分(2)包括近侧的握持部分(6)，所述握持部分(6)基本上平行于所述插入轴(3)并且相对于所述插入轴(3)横向偏移，由此在所述握持部分(6)和所述插入轴(3)之间限定台阶(25)。

15. 根据权利要求1所述的外科器械(1)，其中，所述手柄部分(2)通过细长的柔性轴部分被连接到所述插入轴(3)，所述柔性轴部分能够实现所述插入轴(3)的内窥镜引入。
用于执行受控的肌切开术的外科器械

技术领域
[0001] 本发明总的涉及外科切割或解剖器械，具体地涉及用于执行受控的肌切开术的外科器械，诸如用于对遭受肛裂的患者执行肛门内括约肌切开术。

背景技术
[0002] 肛裂是存在于通常发生在肛门的前侧或后侧的伤口或溃疡（例如由于便秘或腹泻的短暂发作引起）中的一种最常见的直肠疾病。肛裂的症状通常包括排便疼痛、便后疼痛和少量出血。常用的治疗方法是针对患者进行药物治疗，使用大便软化剂以及使用栓剂湿润肛管。虽然药物治疗会治愈大多数急性肛裂以及一些部分慢性肛裂，但是大多数的更慢性肛裂需要外科手术治疗。慢性肛裂的当前外科治疗的选择是肛门内括约肌切开术，尤其是涉及肛门内括约肌的切割的横向括约肌切开术，由此释放张力并允许肛裂痊愈。

[0003] 括约肌切开术可以以开放或封闭方式进行。在封闭式的括约肌切开术中，手术刀从旁路插入肛门的横向侧的括约肌间槽中，然后向中间旋转并且抽出手术刀以切割内括约肌。由于要求在括约肌切开术中伸入肛管中的距离等于肛裂的长度，通过经由肛门粘膜触摸内括约肌来控制手术刀的插入深度。而且，在将手术刀向中间旋转和向近侧回缩的过程中必须格外小心不要在肛门粘膜，因为粘膜的损伤可能导致痉挛。在开放式括约肌切开术中，括约肌间平面中形成0.5cm至1cm的切口。然后将内括约肌拉成直角，形成切口并且在直接视觉下切割。两个端部允许在被切割后离回。在内括约肌中产生的间隙范围可以通过肛门粘膜触摸，如在封闭的技术中那样。切口通过缝合予以封闭或让其自己痊愈。

[0004] 尽管用于执行括约肌切开术的已知技术和外科器械在释放肛门张力方面令人满意，由此使得大约90~95%的肛裂患者痊愈，但是这些已知技术和外科器械仍然具有一定程度的侵入性。手术刀在内括约肌和外括约肌之间的旋转可能导致无法控制的组织损伤，并且通过肛门粘膜手动触摸内括约肌无法提供对抗括约肌切开术的纵向范围的可靠控制。而且，在手术中对切口的径向（侧部-中端）范围的控制（其对于避免肛门粘膜的切割非常关键）依赖于医生的技术和经验。就开放式外科手术方法而言，在手术过程中，内括约肌变形并且相对于肛裂移动，这使肌肉切开术的控制更加复杂。侵入性较少并且可控性更好的手术可以进一步减少术后并发症，诸如痔疮和肛门失禁。

发明内容
[0005] 因此，本发明的目的是提供一种用于受控地执行肌切开术的外科器械，尤其是用于执行肛门内括约肌切开术的外科器械，其允许更小倾向性地进行手术并且更好地控制肌切开术的位置和方位。

[0006] 根据本发明，一种用于执行受控的肌切开术的外科器械包括：近侧的手柄部分；细长的插入轴，其与所述手柄部分连接并且从所述手柄部分向远侧延伸；远侧切割末端，其设置在所述插入轴的远端上并且能够切割所述插入轴远侧的组织；横向切割构件，其布置在所述插入轴上并且能够切割在所述插入轴横向的组织；其中，所述横向切割构件能够在
静止位置和工作位置之间运动，在所述静止位置中，所述横向切割构件朝着所述插入轴缩回或者缩回到所述插入轴内，在所述工作位置中，所述横向切割构件沿横向从所述插入轴伸出。这使得医生能够在横向切割构件处于静止位置时通过远侧切割末端的切割动作将器械插入，随后将横向切割构件展开到其工作位置并且在向近侧缩回器械的过程中通过横向切割构件切割组织，并且无需在患者体内对器械进行任何旋转来执行横向切割。

[0007] 根据本发明的另一方面，插入轴包括视觉和/或触觉标记，优选的是刻度，其使医生能够在视觉上控制插入轴的远侧插入深度，尤其是远侧切割末端和横向切割构件的插入深度。这使得可以在肌切开术过程中提供切割深度的连续的视觉控制并且不必手动触摸。

[0008] 为了进一步提高肌切开术的精度，横向切割构件的工作（横向伸出的）位置可以调节，使得医生能够在执行肌切开术的过程中控制和调节组织切割的横向深度。有利地，外科器械包括与横向切割构件连接并且可以手动地进入多个不同的位置（对应于横向切割构件的伸出不同宽度的工作位置）的调节旋钮或旋钮。为了对横向切割深度进行更好地控制，有利地沿着调节旋钮或旋钮的轨道设置限定了刻度的视觉或触觉标记。

[0009] 插入轴是基本刚性的并且是直的或根据解剖学情况的需要是弯曲的，并且插入轴具有细长平整的、大致板形的并且优选远侧逐渐变细的形状，该形状限定了参考面，其中，横向切割构件可以有利地横向于（优选为垂直于）插入轴的参考平面展开。该特定的几何结构实现了在通过横向切割构件进行横向切割动作的过程中插入轴的稳定定位和受引导的缩回或推进。在该实施方式中，上述视觉标记优选地形成或应用在插入轴的两个相对的大侧面的一个或两个的外表面上。

[0010] 尽管远侧切割末端和横向切割构件可能被实施为带有锋利刃边或者带有锋利尖的刀片部分以便切割组织，但是根据本发明的优选实施方式，远侧切割末端和横向切割构件都包括适用于组织传输射频电流以切割组织和凝固血液的电极末端。单极或双极的射频末端可以有利地被使用。

[0011] 根据优选的实施方式，远侧切割末端包括钝的射频供电电极，而横向切割构件包括钩形的射频供电电极线，该电极线在工作位置中优选指向横向近侧方向。

[0012] 为了减少器械在患者体内的穿刺深度，横向切割构件有利地设置在插入轴的远端附近。

附图说明

[0013] 从附图和附图的详细描述将更容易理解本发明的这些和其他细节和优点，附图示出了本发明的实施方式，并且与上述本发明的一般性描述以及下面对本发明的详细描述一起用于解释本发明的原理。

[0014] 图1是根据本发明的第一实施方式的外科器械的从近侧看的等轴测图；

[0015] 图2是图1的外科器械的从远侧看的等轴测图；

[0016] 图3是图1的外科器械的俯视图；

[0017] 图4是图3的细节的放大图；

[0018] 图5是根据本发明实施方式的器械的其它细节的放大图；

[0019] 图6是根据本发明的第二实施方式的外科器械的等轴测图；

[0020] 图7是根据本发明的第三实施方式的外科器械的等轴测图。
具体实施方式

参照附图，图1和2绘出了根据本发明的第一实施方式的外科器械。外科器械1能够用于执行受控的肌切开术，例如用于执行肛门内括约肌切开术以治疗慢性肛裂。

在下面的描述中，如果没有另外指出，则术语“远侧”和“近侧”指的是医生的视点。

器械1包括大致细长的主体，该主体具有近侧的手柄部分2和从手柄部分2向远侧延伸的细长的插入轴3。纵切削导向长4设置在插入轴3的远端上并且能够切割插入轴3远侧附近的组织。另外，横向切削件5设置在插入轴3的远端28附近并且能够切割在插入轴3的横向附近的组织。横向切削件5能够在静止位置和工作位置之间运动，在所述静止位置中，所述横向切削件5朝着插入轴3缩回或者缩回至插入轴3内，在所述工作位置中，横向切削件5从插入轴3横向伸出。

手柄部分2具有横截面是大致矩形的平整的细长形状，并且包括近侧握持部分6和设有多个控制器（将在稍后描述）的远侧工作部分7。工作部分7连同与工作部分7相连的插入轴3在横向上相对于握持部分6沿着与由平的握持部分6限定的平面正交的方向偏移，由此在握持部分6和工作部分7之间限定了台阶25。由于在握持部分6的纵向轴线26与工作部分7和插入轴3的纵向轴线27之间产生的横向偏移，所述器械1非常适合于医生的手并且特别符合工效学要求，例如用于执行肛门内括约肌切开术。

插入轴3与手柄部分2的工作部分7连接并且与其轴向对准，并且插入轴3包括大致直的细长的主体，该细长的主体像手柄部分2一样是平的并且朝着其远端28和朝着两个相对的小侧面29、30逐渐变细。在该实施方式中，插入轴3具有大致椭圆形横截面形状。

在插入轴3的两个相对的大侧面31、32的外表面上设有定刻度的标记8。通过标记8可以控制插入轴3在工作过程中的穿透深度。在所示的实施方式中，绘出了从1cm至7cm的厘米刻度；当然，该刻度可以具有不同的长度单位（诸如英寸）的不同分辨率。

在插入轴3的远端28处设有平滑圆化的钝的射频（RF）电极构件，其构成上述远侧切割末端4。电极构件可以具体化为单个单极RF供电电极，或者替代地为两极双极RF供电电极。在单极RF系统的情况下，单极电极末端使火花在电极末端和组织之间行进。产生的电流被吸引到连接在患者身体上的接地对地。在双极RF系统中，两个紧密配对的电极末端用于将电流传输到邻近的组织。

远侧切割末端4连接到RF电导体（在图中没有示出），该电导体容纳在插入轴3和手柄部分2内。RF电导体从切割末端4延伸到设置在手柄部分2的远端的RF连接器9。优选地，RF连接器9包括允许将器械1连接到外部RF发生器的插座。替代地，RF连接器9能够容纳商业上可用的RF发生器的RF发射末端，该RF发射器又配有一个RF电流发生器。

横向切削件5能够在静止位置和工作位置之间运动，在静止位置中，横向切削
构件5朝着插入轴3缩回或者缩回至插入轴3内，在工作位置中，横向切割构件5从插入轴3横向伸出。在该实施方式中，横向切割构件5包括与RF电导体（图中未示出）连接的单极或双极高频电极构件，该单极或双极高频电极构件容纳在插入轴3和手柄部分2内并且从横向切割构件5延伸到上述RF连接器9，以便将横向切割构件5连接到外部RF电流发生器。

【0033】优选地，横向切割构件5包括钩形的RF发射线，该RF发射线以可滑动的方式容纳在具有出口孔的导座10中，该出口孔位于插入轴3的两个相对的大侧面31、32的一个的外表面中。优选地，导座10的出口孔设置在插入轴3的下侧面32上并且面向握持部分6相对于插入轴3横向偏移的方向，使得横向切割构件5在其工作位置时沿着握持部分6的偏移方向横向伸出。导座10可以在弯曲的（图11）以便适于弯曲的RF线的形状，或者替代地，导座10可以是直的（图10）并且RF线由可弹性变形的材料制成，使得在缩回导座10中时RF线被卷曲并且适应导座10的形状，而在离开直的导座10之后，RF线弹性地回复成其初始的钩形形状。如上所述，横向切割构件5在其工作位置采取或者具有钩形构型，该钩形构型从插入轴3的下侧面32沿着握持部分6相对于插入轴3的偏移方向横向伸出，并且钩形线的自由端23沿着大致侧向方向指向手柄部分2。该特定构型能够在将器械1从工作部位向近侧缩回时形成非常精确的横向切割，如稍后将描述的那样。

【0034】横向切割构件5在静止位置和工作位置之间的运动通过运动机构产生，该运动机构布置在手柄部分2内并且通过运动传递部件（例如容纳在插入轴3内的未示出的推杆和/或拉线）连接到横向切割构件5。运动机构能通过布置在手柄部分2的工作部分7上的调节旋钮或游标11手动地操作。优选地，调节游标11布置在工作部分7与大的下侧面32和小的上侧面31上，横向切割构件5从大的下侧面32伸出。换句话说，调节游标11面向插入轴3相对于手柄部分2的近侧握持部分6的横向偏移方向。如图5的放大图所示，调节游标11可以沿着器械1的纵向（远侧－近侧方向）平移并且选择性地设置在以下位置的一个中：

【0035】中间OFF位置34，在该位置中横向切割构件5以其静止位置完全缩回回到插入轴3的整个外壳（encumbrance）内，并且远侧切割末端4和横向切割构件5都被断电并且不能被通电。

【0036】多个不同的远侧RF2位置35，对应于可由医生选择的横向切割构件5的不同工作位置，以便调节横向切割构件5的横向伸出程度。当调节游标11被置于这些RF2位置的一个时，游标运动的范围通过运动传递部件传递至横向切口构件5，其将相应地被横向展开。当调节游标11在RF2位置35中，可以利用RF电流对横向切割构件5通电以横向切割组织，同时远侧切割末端4保持断电；

【0037】近侧的RF1位置36，在该位置中，横向切割构件5以其静止位置完全缩回回到插入轴3的整个外壳内，并且只有远侧切割末端4被通电而保持横向切割构件5断电。

【0038】有利地，沿着调节游标11的轨道设置指示调节游标11的OFF、RF1和不同RF2位置的视觉和/或触觉标记12，以实现对横向切割的深度和器械1的总体状态的永久视觉或触觉控制。在图中所示的实施方式中，标记12限定了用于调节处于工作位置的横向切割构件5的伸出范围的厘米刻度。当然，诸如英制单位的不同刻度也是可以的。通过RF启动按钮13可控制RF电流的供应，RF启动按钮13与RF导体部件中的开关协作，所述开关将外
部 RF 连接器 9 与远侧切割端 4 连接并且与横向切割构件 5 相连。

根据优选实施方式，RF 启动按钮 13 容纳在或一体形成在调节旋钮 11（如图 1 所示）中并和上下构造；

当调节旋钮 11 被设置在 OFF 位置 34 时，按钮 13 的压力启动不会引起任何电流供应（有利地，按钮 13 在旋钮 11 处于 OFF 位置时被机械锁定），并且远侧切割端 4 和横向切割构件 5 保持从 RF 连接器 9 电断开；

当调节旋钮 11 被设置在近侧 RF1 位置 36 时，RF 启动按钮 13 的压力启动将闭合相关的开关，由此将 RF 连接器 9 与远侧切割端 4 电连接，该远侧切割端 4 随后被通电并且将 RF 电流传输到插入轴远端 28 远侧附近的组织。在调节旋钮 11 的该位置中，优选地，中断并阻止向横向切割构件 5 供应 RF 电流。

当调节旋钮 11 被设置在 RF2 位置 35 的一个中时，RF 启动按钮 13 的压力启动将闭合相关的开关，由此将 RF 连接器 9 与（延伸出的）横向切割构件 5 电连接，该横向切割构件 5 随后被通电并且将 RF 电流传输到在插入轴 3 横向附近的组织。在调节旋钮 11 的该位置中，中断并阻止向远侧切割端 4 的 RF 电流供应。

由于 RF 启动按钮 13 一体形成在控制横向切割构件 5 的位置的调节旋钮 11 中，医生可以仅用单手操作器械 1 并且例如使用另一只手另外地触摸器械通过肛门的穿刺深度。

横向切割构件 5 的机械运动机构和 RF 电流连接器以及开关将不具体描述，因为他们本身是常规的。如果使用调节旋钮来替代可滑动的调节旋钮 11，横向切割构件 5 的运动机构有利地包括将调节旋钮的转动转化成横向切割构件 5 的移动或转动的机构。在该情况下，标记 12 有利地围绕旋钮成角度地间隔布置，使得医生能够直接读出与旋钮的给定旋转位置对应的器械状态和或横向切割构件 5 的正确工作位置。图 2 和 3 是位于横向切割构件 5 完全横向推进处于工作位置时的构型的器械 1 的视图。在该构型中，钩形 RF 发射线的凹形侧面及其自由端 23 向近侧指向手柄部分 2。图 6、7 和 8 显示了本发明的另一实施方式，其中相同的附图标记表示相同的部件。

根据图 6 所示的实施方式，器械 1 包括手柄部分 2 和直的大致圆柱形的插入轴 3。手柄部分 2 设有可滑动的调节旋钮 11，以使横向切割构件 5 从插入轴 3 内的静止位置运动到工作位置，在工作位置中，横向切割构件 5 从插入轴 3 横向伸出。在该实施方式中，横向切割构件 5 包括基本直的 RF 发射电极，该发射电极在工作位置时从插入轴 3 沿着横向远侧方向延伸并且与调节旋钮 11 一样布置在器械的上侧面 31 上。通过设置在外部 RF 电流通路（未示出）处的手动控制器可以控制控制向远侧切割端 4 和横向切割构件 5 供应 RF 电流，该外部 RF 电流通路通过 RF 连接器线 14 连接到器械 1。根据本发明的另一方面，RF 连接器线 14 可以在器械内部延伸直到用于横向切割构件 5 的出口孔 37，而连接器线 14 的自由端 38 本身可构成横向切割构件 5。在该情况下，运动机构，即可滑动的旋钮 11，直接作用在 RF 连接器线 14 上以使其相对于插入轴 3 运动，从而向近侧缩回或推进自由端 38。参照第一实施方式（图 1 至 5）描述的其他特征，尤其是控制标记 8、12 可以类似地应用在图 6 的实施方式中。

图 7 显示了本发明的另一种实施方式，其中器械 1 的插入轴 3 通过容纳有 RF 连接器线（未示出）的柔性电缆 16 连接到外部 RF 发生器 15。优选地，柔性电缆 16 与刚性的插入轴 3 的近侧连接部分 17 以可拆卸的方式咬合连接，由此将外部 RF 连接器线与引向远
侧切割末端 4 和横向切割构件 5 的内部导线连接。用于使横向切割构件 5 在其静止位置和其工作位置之间运动的运动机构连接到容纳在柔性电缆 16 内的柔性传动部分，例如柔性推杆或拉线。该柔性传动部件连接到设置在外部 RF 电流发生器 15 的运动机构。在该实施方式中，插入轴 3 可以通过完全插入体中，并且通过设置在外部 RF 发生器上的手动控制器控制横向切割构件 5 的运动并且控制供应给远侧切割末端 4 和横向切割构件 5 的电流。该外部 RF 发生器放置在患者体外并且通过柔性电缆 16 连接到插入轴 3。

图 8 和 9 表示了本发明的另一种实施方式，其中 RF 连接器 9 被构造能够容纳并且电接触设有自己的 RF 电流发生器（未示出）的外科 RF 笔 18。在该实施方式中，通过 RF 笔 18 的控制器直接控制横向切割构件 5 供应的 RF 电流。

图 9 表示了用于使横向切割构件 5 在静止位置和工作位置之间运动的运动机构 19。根据该实施方式，横向切割构件 5 包括连接到 RF 电导管 21 的弯曲刀片 20，该 RF 电导管 21 将弯曲刀片 20 与 RF 连接器部分 17 电连接并且因此与外部 RF 笔 18 电连接。弯曲刀片 20 可以旋转地固定在插入轴 3，以便围绕固定枢轴 22 从图中静止位置旋转到横向伸出的工作位置。可能的调节角度 11 通过刚性推拉杆 23 连接到弯曲刀片 20，该推拉杆 23 的远端在第二枢轴点 24 中与弯曲刀片 20 可旋转地连接，第二枢轴点 24 沿着横向轴调节枢轴 11 的移动方向的方向与固定枢轴 22 间隔开，使得调节枢轴 11 的近侧的移动引起弯曲刀片 20 从静止位置向工作位置旋转并且枢轴 11 向远侧的移动将引起弯曲刀片 20 旋转回到静止位置。

图 12 和 13 表示了根据本发明的用于执行肛门内括约肌切开术的外科器械 1 的使用。

器械 1 连接到 RF 电流发生器并且调节枢轴 11 设置在 OFF 位置。在肛门周围皮肤形成的切口 39，通过该皮肤切口将插入轴 3 的远侧末端 28 引到肛门粘膜 40 和内括约肌 41 之间。在插入过程中，器械 1 被定向成使得用于横向切割构件 5 的出口孔横向向外，即离开肛管 42 并且朝向肛门内括约肌 41。通过使调节枢轴 11 从 OFF 位置 34 移动到 RF1 位置 36 并且通过按压 RF 启动按钮 13，远侧切割末端 4 被 RF 通电，由此切割位于插入轴 3 前方远侧的组织。弯曲刀片 3 现在沿着内括约肌 41 的内侧向远侧推进到期望的位置。位于插入轴 3 上的标记 8 为插入轴 3 的远侧穿刺深度提供了直接的视觉控制。附带地且不是必须地，医生可以通过手动地触摸插入轴从肛管 42 穿过肛门粘膜 40 的远侧端来检测穿刺深度。

一旦器械的插入轴 3 已经被推进到期望位置，远侧切割末端 4 可以断电以便不损伤周围组织。这可以通过释放 RF 启动按钮 13 并且随后将调节枢轴 11 从 RF1 位置 36 移动到 OFF 位置 34 来完成。进一步将调节枢轴 11 向远侧移动到 RF2 位置 35 将引起运动机构将横向切割构件 5 从其静止位置沿横向展开到工作位置。由于可调节的运动机构，枢轴 11 可以进入多个不同的 RF2 位置，在这些位置中枢轴 11 例如通过咬合接合或者通过摩擦接合保持，横向切割构件 5 可以逐渐展开，例如从 1mm 展开到最大达到 7mm 并且能够通过咬合接合、摩擦力或者通过专门的锁定机构锁定在其期望的位置或最终位置。标记 12 提供了横向切割构件 5 的横向展开深度的连续视觉控制。通过按压 RF 启动按钮 13，横向切割构件 5 接通 RF 电流，使得其能够切割横向于切割轴 3 的组织。在横向切割构件 5 被通电的情况下，插入轴 3 稍微向近侧朝着肛管 43 缩回，由此使横向切割构件 5 切割内括约肌 41。这样
可进行在纵向结合和横向结合上受控的括约肌切开术。

【0052】在该特定方式下，通过将器械引到括约肌表面和内括约肌之间来执行括约肌切开术时，有利的是使横向切割构件 5 向内括约肌表面并且通过插入轴 3 有效地从括约肌表面隔开。该特征有利地排除了括约肌表面在括约肌切开术中受到损伤的危险，由此防止术后感染的发生。如本领域技术人员可迅速理解的那样，根据本发明的器械不需要在执行通过内括约肌的横向切割之前使切割器械在伤口内旋转并且允许对器械的远侧末端的插入深度和横向切割构件的横向伸入范围进行连续的视觉控制。因此，医生可以很容易控制内括约肌的纵向和横向切割范围并且使其与患者的个人解剖状况相适应。而且，切口小于或已有装置形成的切口。由于高频传送切割装置，组织被切割并且血液被凝固，由此减少了血液的溢出量。根据本发明的外科器械满足肌切开术的标准化，尤其是肛内括约肌切开术的标准化，并且由于切口内括约肌的精度更高，与常规技术和器械相比，术后并发症（诸如失禁、手术失效和肛裂复发）被减少。

【0053】根据用于执行肛门括约肌切开术的一种替代方法，器械 1 连接到 RF 电源发生器并且调节游标 11 被设置在 OFF 位置。在肛门周围皮肤中形成小的切口并且通过该皮肤切口将插入轴 3 的远侧末端引到位于肛门内括约肌和肛门外括约肌之间的括约肌间平面中。在插入过程中，器械被定位成使得用于横向切割构件 5 的出口孔面向中间，即朝向肛管并且朝向邻近的有壁切割的肛门内括约肌。通过使调节游标 11 从 OFF 位置移动到 RF1 位置并且通过按压 RF 启动按钮 13，远侧切割末端 4 被 RF 通电，从而允许切割位于插入轴 3 前方远侧的组织。现在插入轴 3 在括约肌间平面中被朝向远侧推进到期望的位置。在插入轴 3 上的标记 8 为插入轴 3 的远侧穿刺深度提供了直接的视觉反馈。附带地且不是必须地，医生可以使用手动触摸插入轴从肛管穿过肛门括约肌的远侧尖端来控制穿刺深度。

【0054】一旦器械的插入轴已经被推进到期望位置，远侧切割末端 4 可以断电以便不损伤周围组织。这可以通过释放 RF 启动按钮 13 并且随后将调节游标 11 从 RF1 位置移动至 OFF 位置来完成。将调节游标 11 进一步向远侧移动到 RF2 位置将引起运动机构将横向切割构件 5 从其静止位置沿横向展开到工作位置。由于可调节的运动机构，游标 11 可以进入多个不同的 RF2 位置，在这些位置中游标 11 如同通过咬合接合或者通过摩擦接合保持，横向切割构件 5 可以逐渐展开，例如从 1mm 展开到最大 7mm 并且能够通过咬合接合、摩擦力或者通过专门的锁定机构锁定在期望的中间位置或最终位置。标记 12 提供了横向切割构件 5 的横向展开深度的连续视觉反馈。通过按压 RF 启动按钮 13，横向切割构件 5 被接通 RF 电流，使得其能够切割横向于切割轴 3 的组织。在横向切割构件 5 被通电的条件下，插入轴 3 稍微向近侧朝着肛管回缩，由此使横向切割构件 5 切割内括约肌。这样可以进行在纵向结合和横向结合上受控的括约肌切开术。用于执行受控的肛内括约肌切开术的该替代方法的优点与以上参考图 12 和 13 所示的方法描述的优点类似。

【0055】虽然详细地描述了本发明的优选实施方案，但是申请人的目的不是将权利要求书的范围限制到这些特定实施方案，而是涵盖落在本发明范围内的所有修改和替代结构。

【0056】例如，尽管在优选的实施方案中，远侧握持部分 6 基本上平行于插入轴 3 并且相对于插入轴 3 横向偏移，由此在握持部分 6 和插入轴 3 之间限定了台阶 25，但是根据一种替代的实施方案，远侧握持部分 6 可以基本上与插入轴 3 对准。

【0057】根据本发明的另一种改良方式，器械的握持部分或手柄部分和插入轴可以通过细
长的柔性轴连接，从而实现插轴的内窥镜引入，例如用于执行腔内粘膜切除术（EMR）和/或类似于或不同于 EMR 的其他切除术或切割术。