用于直接氧化烷烃气体的系统

摘要

一种用于经由烷烃（甲烷）的部分氧化来制造烷基氧化物（如，甲醇）的装置具有与管道式流动反应器流体相通的注人式混合的逆混反应室。在输入到管道式流动反应器中之前，注人式混合的逆混反应室引发烷基自由基。进料流的注人式混合搅动了逆混反应室。在一个实施方案中，可改变位置的隔板轴向移动以成比例地改变逆混反应室和管道式流动反应器的容积。在另一个实施方案中，管道式流动反应器具有可改变位置的骤冷输入。 “发刷”和圆锥形的输入插入件都促进了在注人式混合的逆混反应室中的进料流的湍流注人混合。冷凝洗涤器也用于处理来自反应系统的输出流。
1. 一种通过使来自含烷烃的气体进料流中的烷烃与来自含氧的气体进料流中的氧进行部分氧化反应来制造至少一种烷烃氧化物的装置，所述装置包括：

反应器系统，其具有与管道式流动反应器流体相通的注入式混合的逆混反应室；

其中所述烷烃选自由甲烷、乙烷、丙烷和丁烷组成的组；

所述注入式混合的逆混反应室具有烷烃气体输入、氧气输入和逆混反应室输出；

所述管道式流动反应器具有与所述逆混反应室输出流体相通的管道式流动反应器输入；

所述烷烃气体输入接收进入所述注入式混合的逆混反应室的所述含烷烃的气体进料流；

所述氧气输入接收进入所述注入式混合的逆混反应室的所述含氧的气体进料流；且

所述注入式混合的逆混反应室具有足以在所述注入式混合的逆混反应室内从所述烷烃引发烷基自由基且向所述管道式流动反应器输入提供所述烷基自由基的至少一部分的空间－时间，对应于所述含烷烃的气体进料流和所述含氧的气体进料流的总供给速率。

2. 如权利要求1所述的装置，其中所述烷烃包括甲烷，且所述烷烃氧化物包括甲醇。

3. 如权利要求2所述的装置，其中所述烷烃氧化物还包括甲醛。

4. 如权利要求1所述的装置，其中所述烷烃氧化物包括乙醇。

5. 如权利要求1所述的装置，其中所述烷烃气体输入和所述氧气输入被构建成通过注入式混合所述含烷烃的气体进料流和所述含氧的气体进料流来增强搅动所述注入式混合的逆混反应室。
6. 如权利要求1所述的装置，其中所述注入式混合的逆混反应室具有逆混反应室的外壳，且所述反应器系统还包括：

隔板，其可滑动密封地连接到所述逆混反应室的外壳；

其中所述注入式混合的逆混反应室具有由所述逆混反应室的外壳和所述隔板界定的注入式混合的逆混反应室的内部容积；

所述逆混反应室的外壳具有与所述隔板相对设置的外壳部分；且

在所述反应器系统的实时操作过程中，所述隔板是可滑动移动的以便在所述注入式混合的逆混反应室的外壳内朝所述外壳部分前收，以成比例地缩小所述注入式混合的逆混反应室的内部容积，且在所述反应器系统的实时操作过程中，所述隔板可替代地在所述注入式混合的逆混反应室的外壳内可滑动地移动，以使回缩离开所述外壳部分，以由此成比例地扩大所述注入式混合的逆混反应室的内部容积。

7. 如权利要求1所述的装置，其中所述反应器系统具有不超过40秒的空间－时间，对应于所述含烷烃的进料流和所述含氧的进料流的总供给速率。

8. 如权利要求1所述的装置，其中用于所述注入式混合的逆混反应室的空间－时间不超过1.5秒，对应于所述含烷烃的进料流和所述含氧的进料流的总供给速率。

9. 如权利要求1所述的装置，其中所述管道式流动反应器具有管道式流动反应器输出，且所述管道式流动反应器具有设置在所述管道式流动反应器输入和所述管道式流动反应器输出之间的用于接收冷却气体流的至少一个冷却气体输入，并由此骤冷所述管道式流动反应器。

10. 如权利要求9所述的装置，其中所述管道式流动反应器具有轴，且在所述管道式流动反应器的操作过程中，所述冷却气体输入是可沿着所述轴移动的。

11. 如权利要求9所述的装置，其中所述管道式流动反应器排放来自所述管道式流动反应器输出的反应产物流，且所述装置还包括与所述管道式流动反应器输出流体相通的洗涤器，用于通过使所述反应产物流与液体
吸收剂接触来冷凝所述反应产物流中的至少一种所述烷基氧化物。

12. 如权利要求11所述的装置，其中所述吸收剂还吸收所述反应产物流中的二氧化碳。

13. 如权利要求12所述的装置，其中所述烷烃包括甲烷，第一所述烷基氧化物包括甲醇，第二所述烷基氧化物包括甲酸，且所述吸收剂吸收所述反应产物流中的甲醇和甲酸。

14. 如权利要求1所述的装置，其中所述注入式混合的逆混反应室具有部分由具有注入式混合的逆混反应室的轴的圆柱表面界定的内部容积，且所述含氧的气体进料流从沿着所述轴且在不平行于所述轴的方位上设置的多个孔而输入到所述内部容积中。

15. 如权利要求14所述的装置，其中所述注入式混合的逆混反应室具有由具有轴的圆锥形表面界定的内部分流器。

所述分流器界定了所述轴的一端处的圆锥形底部，
所述圆锥形表面界定了所述轴的另一端处的顶端，
所述分流器的所述轴与所述注入式混合的逆混反应室的所述轴对齐，
所述分流器设置在所述外壳内，使得所述逆混反应室输出更接近所述顶端，而不是更接近所述圆锥形底部，且

所述含氧的进料流从多个孔输入到内部流空间中，所述多个孔沿着所述注入式混合的逆混反应室的轴且在不平行于所述注入式混合的逆混反应室的轴的方位上设置。

16. 如权利要求11所述的装置，其中所述含烷烃的气体进料流包括来自所述洗涤器的再循环流中的烷烃。

17. 如权利要求16所述的装置，其中所述再循环流提供所述含烷烃的气体进料流中约4:5到约20:21重量百分比的烷烃。

18. 如权利要求1所述的装置，其中所述装置还包括离心鼓风机，所述离心鼓风机设置成加压所述含烷烃的气体进料流以输入到所述注入式混合的逆混反应室中。
用于直接氧化烷烃气体的系统

相关申请的交叉引用


发明背景

本发明涉及一种在对形成期望的烷基氧化物（alkyl oxygenate）（尤其是甲醇）进行优化的条件下使天然气与氧化剂进行反应的装置。更具体地说，各实施方案用于使 C_1 - C_4 烷烃（甲烷、乙烷、丙烷和丁烷）反应生成烷基氧化物，且更具体地说，在主要应用中用于将甲烷直接氧化（在部分氧化的条件下）转化成甲醇。

目前用于制造甲醇的工业惯例是两步骤，Fischer - Tropsch 型化学方法。第一步是将天然气中的甲烷吸热重整为一氧化碳和氢气，接着是第二步骤，包括使一氧化碳和氢之间发生固体催化反应以生成甲醇。此技术是能量集中的，且此方法的工艺经济性只利于大规模的甲醇车间。

将甲烷转化成甲醇的方法和装置是已知的。将甲烷蒸气相转化成合成气 (CO 与 H_2 的混合物），接着催化转化成甲醇是已知的，如 Karavaev M. M., Leonov B.E., 等人在 “Technology of Synthetic Methanol”, Moscow,
“Chemistry” 1984，第 72-125 页中公开的。然而，为了实现此过程，需要提供复杂的装备，以满足纯化气体的高要求，需要消耗大量的能量来获得合成气以及其纯化，且此方法具有相当多的间歇阶段。而且，对产量小于 2000 吨/天的中小企业来说，这在经济上不可行。

俄罗斯专利第 2162460 号包括含烃气体源、用于压缩和加热气体的压缩机和加热器以及带压缩机的含氧气体源。它还包括带有交替的混合区和反应区的连续设置的反应器以及将含烃气体输送到反应器的第一混合区和将含氧气体输送到每一个混合区的设备、用于由进入加热器的加热的含烃气体的冷的含烃气体流冷却通过的反应混合物的回热式热交换器、冷却器-冷凝器、用于分离废气和液态产物以及随后分离甲醇的含烃气体的管线、以及用于将废热气体输送到初始的含烃气体的管线，以及用于将废的含氧产物输送到反应器的第一混合区的管线。

然而，在此装置中，由于热交换器固有的限制，不可能使含烃气体的高温放热的氧化反应的热迅速排放。这导致需要减少供给的含烃气体的量，且进而降低了含烃气体的转化程度。而且，即使采用氧作为氧化剂，也由于一氧化碳浓度的迅速增加而不可能提供含烃气体的有效重复循环。相当部分的供给氧因 CO 氧化成 CO₂而被浪费掉，且因此另外降低了初始的含烃气体转化成有用产物的程度，并使反应混合物进一步过热。此装置还要求燃烧额外的初始含烃气体，以便提供液态产物精馏的应用需要。因为在每一个反应器之后，需要冷却气-液混合物，以在下一个反应器之前分离液态产物并随后加热，所以此装置相当复杂，且增加了部件的数目。

在专利文献 RU2200731 中公开了另外一种用于生产甲醇的方法和装置，在该文献中，压缩的加热的含烃气体和压缩的含氧气体被引入连续设置的反应器的混合区中，并通过用冷凝水冷却反应混合物，由可控的热敏传感器来实现此反应，以便获得蒸汽，且通过逸出蒸汽的参数来调节反应混合物的冷却程度，这些参数应用在液相产物精馏阶段。

还需要也适合于小规模加工的一步法，从而克服 Fischer Tropsch 法的工艺规模的限制，而且还使 “被阻断的气体 (stranded gas)” 成为有价值的商品。此方法利用了均匀的、气相的部分氧化反应，而这是通过使天然气与氧化剂，且氧化剂作为受限的反应物，接触来实施的。最富足的产物是源于甲烷的甲醇和甲醛，主要组分是天然气。通过氧化都是天然气的较少成分的甲烷、乙烷、丙烷以及更高级的烃形成了较少量的乙醇和其他氧化有机产物。这些反应产物都是液体，且以输送到中心位置，用以分离和/或随后用作燃料或化学中间产物。这种方法的中心特征在于可以在偏远位置处的油田内实施工艺化学。

美国专利 US4,618,732（Gesser 等人的 “通过受控氧化将天然气直接转化成甲醇 (Direct conversion of natural gas to methanol by controlled oxidation)”）描述了一种将天然气转化成甲醇的方法。甲醇的选择性被标示为因仔细地预混合甲烷和氧气，以及使用玻璃的反应器以便在反应过程中，与加工设备的相互作用最少。在进入用于开始反应的反应器之前，进行混合的需要标示在下面的摘录中：

“气体的混合优选在预混合室中进行或者 “越过” 相对小的体积，且在进入加热的反应区之前，通过短的预反应器部分。然而，当在高压下，在相对小的体积内混合气体时，通常将会形成层流，且氧或空气在通常的天然气流内形成窄的均匀流。氧或空气在到达反应区之前，很少有机会遍布反应流分散。虽然并不希望受到理论束缚，但是当其发生时，假定天然气先被氧化成甲醇，在氧流的外围，即富氧环境的外围，甲醇被进一步氧化成更高级的氧化产物。”

Gesser 的美国专利 US4,618,732 还强调需要从开始到完成混合之前，一直保持反应 ( “在将氧与天然气引入反应器之前，使它们混合”)。

美国专利 US4,982,023（Han 等人的 “甲烷氧化成甲醇 (Oxidation of methane to methanol)”）提出在甲烷直接氧化成甲醇的过程中发生了多个反应。在这方面，美国专利 US4,982,023 表明在此专利主题的讨论中稍微考虑了反应 - 动力学问题：

“形成甲醇的机理被认为是涉及过氧甲基自由基 (methylperoxy
radical) (CH₃OO)", 其提取甲烷中的氢。遗憾的是，直到现在，每次收率都受到限制。此受限的收率被合理解释为因与主要氧化产物 - 甲醇的更高的反应性相比，甲烷中 C - H 键的反应性低，因此当试图增大转化时，这会导致选择性地形成深度氧化产物 CO 和 CO₂。

美国专利 US4,982,023 还澄清了在反应之前，预混合甲烷和氧，这表示在下面的摘录中：“...就在被引入反应器之前，天然气和氧或空气保持分开直到混合。然而，如果期望的话，在反应之前，天然气和氧可以被预混合并被存储在一起”。

遗憾的是，在使反应技术规模化应用到制造级系统的方面，还不能可靠地重复有关甲醇选择性和甲烷非催化直接氧化成甲醇的单程收率的实验室结果。也一直未能满足对使甲烷非催化直接氧化成甲醇的有效且低成本的方法的需求。

概述

因此，本发明的目的是提供一种通过使来自含烷烃的气体进料流中的烷烃（甲烷、乙烷、丙烷和丁烷中的任意一种）与来自含氧的气体进料流中的氧进行部分氧化反应来制造至少一种烷烃氧化物（如，不限于，甲醇、甲醛和/或乙醇）的装置。该装置包括一种具有与管道式流动反应器流体相通的注入式混合的逆混反应室（injectively-mixed backmixing reaction chamber）的反应器系统，其中注入式混合的逆混反应室具有烷烃气体输入、氧气输入和逆混反应室输出；管道式流动反应器具有与逆混反应室输出流体相通的管道式流动反应器输入；烷烃气体输入接收进入注入式混合的逆混反应室的含烷烃的气体进料流；氧气输入接收进入注入式混合的逆混反应室的含氧的气体进料流；且注入式混合的逆混反应室具有足以在注入式混合的逆混反应室内从烷烃引发烷基自由基且向管道式流动反应器输入提供烷基自由基的至少一部分的空间 - 时间，对应于含烷烃的气体进料流和含氧的气体进料流的总供给速率。

在一个实施方案中，烷烃气体输入和氧气输入被设计成通过注入式混
合含烷烃的气体进料流和含氧的气体进料流来湍流搅动注入式混合的逆混反应室。

在另一个实施方案中，注入式混合的逆混反应室具有注入式混合的逆混反应室的外壳，且反应器系统还包括可滑动密封地连接到逆混反应室的外壳的隔板，其中注入式混合的逆混反应室具有由逆混反应室的外壳和隔板界定的注入式混合的逆混反应室的内部容积，逆混反应室的外壳具有与隔板相对设置的外壳部分；且在反应器系统的实时操作过程中，隔板是可滑动移动的以便在注入式混合的逆混反应室的外壳内朝外壳部分前，成比例地缩小注入式混合的逆混反应室的内部容积，以及在反应器系统的实时操作过程中，隔板可替代在注入式混合的逆混反应室的外壳内可滑动地移动，以便回缩离开外壳部分，以由此成比例地扩大注入式混合的逆混反应室的内部容积。

在一个方面，反应器系统具有不超过40秒的空间-时间，对应于含烷烃的进料流和含氧的进料流的总供给速率。在一个方面，用于注入式混合的逆混反应室的空间-时间不超过1.5秒，对应于含烷烃的进料流和含氧的进料流的总供给速率。

在另一个实施方案中，管道式流动反应器具有管道式流动反应器输出，且管道式流动反应器具有设置在管道式流动反应器输入和管道式流动反应器输出之间的用于接收冷却气体流的至少一个冷却气体输入，并由此骤冷管道式流动反应器。在此实施方案的各方面，管道式流动反应器具有轴，且在管道式流动反应器的操作过程中，冷却气体输入是可沿着轴移动的。

在另一个方面，管道式流动反应器排放来自管道式流动反应器输出的反应产物流，且该装置还包括与管道式流动反应器输出流体相通的洗涤器，用于通过使反应产物流与液体吸收剂接触来冷凝反应产物流中的至少一种烷基氧化物（如，甲醇和/或甲醛）。在另一个方面，吸收剂还包括反应产物流中的二氧化碳。

在又一个实施方案中，注入式混合的逆混反应室具有部分由具有注入式混合的逆混反应室的轴的圆柱表面界定的内部容积，且含氧的气体进料流从沿着轴且在不平行于轴的方位上设置的多个孔而输入到内部容积中。
在另一个相关的实施方案中，注入式混合的逆混反应室具有由具有轴的圆锥形表面界定的内部流分流器，分流器界定了轴的一端处的圆锥形底部，圆锥形表面界定了轴的另一端处的顶端，分流器的轴与注入式混合的逆混反应室的轴对齐，分流器设置在壳外，使得注入式混合的逆混反应室输出更接近顶端，而不是更接近圆锥形底部，且含氧的进料流从多个孔输入到内部流空间中，所述多个孔沿着注入式混合的逆混反应室的轴且在不平行于注入式混合的逆混反应室的轴的方位上设置。

在又一个方面，含烷烃的气体进料流包括来自洗涤器的再循环流中的烷烃。在优选的操作模式中，再循环流提供含烷烃的气体进料流中约 4:5 到约 20:21 重量百分比的烷烃。

在又一个方面，离心鼓风机设置成加压含烷烃的气体进料流以输入到注入式混合的逆混反应室中。

在所附的权利要求中特别提出了被认为是本发明特征的变异性特点。当结合附图阅读时，从下面的实施方案的描述将更好地理解本发明本身，不仅关于本发明的结构，还有其操作方法连同其额外的目的和优势。

附图简述

图 1 示意性地显示了用于根据本发明的教导制造烷基氧化物（如，不限于，甲醇）的装置的系统；

图 2 和 3 是相应地阐释了根据现有技术以及根据本发明的反应过程中，氧、甲醚和甲醇的浓度的视图；

图 4 表示描绘了系统的氧化产率随再循环比变化的图；

图 5 表示根据本发明的教导，C₁-C₄烷烃到烷基氧化物的可替代的车间；

图 6 表示图 5 中所显示的任选的制氧车间；

图 7 描绘了图 5 所示车间的气体处理部分；

图 8 描绘了图 5 所示车间的液体处理部分；

图 9 表示根据本发明的教导，C₁-C₄烷烃（如，不限于，甲烷）到烷
基氧化物（如，不限于，甲醇）的另一个可替代的车间；

图 10 表示根据本发明的教导，C_1-C_4 烷烃（如，不限于，甲烷）到烷基氧化物（如，不限于，甲醇）的另一个可替代的车间；

图 11 表示根据本发明的教导，C_1-C_4 烷烃（如，不限于，甲烷）到烷基氧化物（如，不限于，甲醇）的另一个可替代的车间；

图 12 呈现了具有紧密连接到管道式流动反应器的注入式混合的逆混反应室的反应器系统的一个实施方案的简化截面图；

图 13A 和 13B 呈现了简化截面图，详细显示了改变图 12 的注入式混合的逆混反应室的内部容积；

图 14A 呈现了图 12 的注入式混合的逆混反应室的可替代的设计的简化截面图；

图 14B 显示了具有改变的内部容积的图 12 的注入式混合的逆混反应室的视图，此内部容积不同于图 12 所示的内部容积；

图 15A 和 15B 呈现了用于图 12 和 20 的反应器系统实施方案的注入式混合的逆混反应室的“发刷”流体输送插入件（"hairbrush" fluid delivery insert）的简化截面图；

图 16 呈现了用于图 12 和 20 的反应器系统实施方案的注入式混合的逆混反应室的圆锥形流体输送插入件的内部流体通道的简化截面图；

图 17A 和 17B 呈现了挡板细节的简化截面图，且挡板设置在图 12 和 20 的反应器系统实施方案的注入式混合的逆混反应室和管道式流动反应器之间的界面处；

图 18A 和 18B 呈现了图 12 和 20 的反应器系统实施方案的一种可改变位置的喷冷入口的细节和定位的简化截面图；

图 19A-19C 呈现了用于图 12 和 20 的反应器系统实施方案的管道式流动反应器的一系列温度曲线；

图 20 呈现了具有紧密连接管道式流动反应器的注入式混合的逆混反应室的反应器系统的可替代实施方案的简化截面图；
图 21 呈现了用于图 12 和 20 的反应器系统实施方案的注入式混合的逆混反应室和管道式流动反应器之间的界面的实施方案的隔板/挡板细节；

图 22A－22C 显示了用于图 20 的反应器系统实施方案的注入式混合的逆混反应室和管道式流动反应器之间的界面的轴向定位细节；

图 23 进一步显示了用于图 20 的反应器系统实施方案的喷冷入口的细节；

图 24A 和 24B 显示了用于图 20 的反应器系统实施方案的轴对视图细节；以及

图 25A 和 25B 显示了具有注入式混合的进入区、多位置喷冷和多位置温度感测的管道式流动反应器系统的视图。

优选实施方案的描述

在浏览此处提供的本发明的描述时，必须考虑下面的定义和非限制性的准则。

此处使用的标题（如“引言”和“概述”）和副标题（如“应用”）仅仅期望用于在本发明的公开内容内大体组织的主题，且并不期望限制本发明的公开内容或其任何一个方面。具体地，“引言”中公开的主题可以包括本发明范围内各方面的技术，且可以并不构成对现有技术的复述。“概述”中公开的主题并不是本发明的整个范围或其任意实施方案的详尽的或完整的公开内容。

此处引用的参考文献并不是要承认那些参考文献是现有技术，或与此处公开的本发明的可专利性相关。此说明书的描述部分引用的参考文献在此以引用方式全文并入。

虽然描述和具体的实施例标示了本发明的各实施方案，但是期望它们只是为了阐释的目的，而并不期望限制本发明的范围。而且，引用具有所述特点的多个实施方案并不排除具有额外特点的其他实施方案，或者合并了所述特点的不同组合的其他实施方案。
如此处所使用的，词汇“优选的”和“优选地”指本发明的在某种情形下，能给予某些益处的实施方案。然而，其他实施方案在相同的或其他情形下也可以是优选的。而且，引用一个或多个优选的实施方案并不意味着其他实施方案无用，且并不期望将其他实施方案排除在本发明的范围之外。

如此处所使用的，词汇“包括”及其变化形式，期望是非限制性的，以使列表中引用的项目并不是排除也可以用于本发明的组合物、材料、设备和方法中的其他类似的项目。

此处描述的实施例和其他实施方案是示例性的，且并不期望在描述本发明的组合物和方法的完整范围时受到限制。在本发明的范围内，可以对具体的实施方案、材料、组合物和方法进行不同的变化、修改和改动，获得大体类似的结果。

各实施方案涉及将至少一种 C_{1} - C_{4} 烷烃直接氧化转化成至少一种烷基氧化物。将甲烷直接氧化转化成甲醇是此技术的关键性转化目标。

一种根据本发明来制造甲醇的装置具有反应器 100，该反应器 100 有利于含烃气体的气相氧化，如图 1 所示。总体来看反应器 100，将加热的含烃气体流（来自阀 120 和加热器 136）和来自管线 29 的含氧气体引入反应器 100。正如下面的详细解释，含氧气体优选具有大于 80％的氧含量以减少因再循环过程导致的惰性气体的积聚。

任选地，在操作装置的过程中，反应器 100 还接收来自阀 120 和热交换器 121 的微冷的含烃气体以使降低反应温度。

所述装置具有在分离前用于冷却反应产物的设备 114。此外，部分冷凝器 122 结合气液热交换器，以进一步降低产物的温度。冷凝器 122 将 H_{2}O 和烃从烃 - CO_{2} 的混合物中分离。部分冷凝器 122 优选是等压而非等温的，以避免压力损失。反应产物流进入冷凝器 122，而液体流和气体流离开冷凝器 122。

块 139 表示设计成将污染物和产物从含烃再循环气体组分分离的设备。在这方面，设备 139 设计成将 CO_{2} 从还原产物流中除去。设备 139 可
以采取放气阀（purge valve）、吸收器、膜分离器或吸附器的形式。设想设备 139 可用于，如用放气阀来调节诸如 N₂ 的其他非反应性组分的百分数。

在系统被设计成回收甲醇时，气相还原产物物流离开等压冷凝器 122，并被传送到洗涤器 134。可以应用的其他可能的方法使用，如已知的各种胺物质来除去 CO₂ 和甲醇。

为了实现最小的吸收要求，可以更改甲醇流速或洗涤器塔的操作温度。如果希望在非常低的吸收剂流速下运转，则可以应用较低温度，例如 0℃。如果希望在室温或通过冷却水能达的温度下运转，则可以应用高的流速，例如 10 倍于 0℃时的流速。在任一情况下，富含甲醇的吸收剂流 14 通过甲醇蒸馏塔 138 完全再生。任选地，来自洗涤器 134 的流 14 可以通过冷凝器 122，以冷却产物流，并预热再循环的甲醇以改善甲醇蒸馏塔 138 的能效。

反应器 100 与用于供给压缩的和加热的含氧气体的压缩机 124 和加热器 126 连接。未处理的烃气（raw hydrocarbon- containing gas）与来自洗涤器 134 的净化的烃气混合，并且使用加热器 136 加热。如果未处理的烃具有高的 CO₂ 含量，则未处理的烃可以在进入洗涤器 134 之前与来自冷凝器 122 的还原产物烃流混合，以便在进入反应器之前除去污染物气体。

所述装置进一步具有用于精馏甲醇的设备，所述设备包括闪蒸槽 132、精馏塔 128 和容器 130，来自容器 130 的甲醇被供给，以储存或进一步处理。此精馏塔 128 用于将甲醇（较关键组分）从乙醇（非常关键的组分）和水（非关键组分）中分离。如前所述，希望非常关键的组分的一部分进入馏出物的流中（如福尔马林的商品规格所指示的）。对于甲醇精馏，通常是 99% 或更高的纯度，且用多个塔可达到 99.999% 的纯度。流 4 进入塔，馏出物流 5 和底部流 8 以液相形式离开塔。流 8 具有一些量的乙醇（如果生产超纯的甲醇，也许是甲醇），且将被用作商用福尔马林流（流 11 和福尔马林存储 191）的含水组成的主要成分。这样，在剩余物被排放到废液流之前，一些乙醇被回收。

被置于塔 128 和冷凝器 122 之间的是闪蒸槽 132，用于将 CO₂ 和甲醇从液态产物物流中除去。闪蒸槽 132 的目的是在进入甲醇精馏塔 128 之前，
使压力下降到合适的水平，并基本上将任何溶解的气体，通常是 CO_{2} 和甲醛，从液态产物物流除去。

在操作中，将具有例如高达 98% 含量的甲烷的未处理的含烃气体流和还原的烃产物流从用于制备气体的设备或任何其它源供给到加热器 136。在加热器 136 中将它们加热到温度 430－470℃。然后，将加热的含烃气体供给到反应器 100。通过压缩机 124 将具有例如 7-8MPa 压力并具有 80% 到 100% 比率，优选为 90% 到 95% 的氧的压缩空气也供给到反应器 100。在反应器 100 内发生甲烷到甲醇和/或甲醛的氧化反应。如先前所述的，反应物总体积的 2% 和 3% 之间的 O_{2} 与加热的含烃气体流反应。为了将系统内的 N_{2} 的量限制到，例如少于 30% - 40%，或减小清洗流的必要量以便实现同样的作用，优选地，O_{2} 流实质上是纯的，从而限制进入系统的 N_{2} 的量。

反应器中的任选的第二冷却的冷却剂流（或，换言之，是比气体温度低的冷却剂）被供给到反应器 100，如先前概述的。所述流由调节设备（阀）120 调节，调节设备 120 可形成为已知的气体供给调节设备、调节阀或类似物。这个冷却流可以主要由，如未处理的烃流、再循环流或上述两种流的一部分或其组合组成。调节器被设计成基于系统参数调节冷的含烃气体的体积或压力，上述系统参数例如，但不限于，压力、温度或系统内进一步向下游的位置处的反应产物百分数。

由冷却剂源供给的冷却剂的作用是降低部分氧化的甲烷的温度，以减少甲醛的持续氧化或分解。此冷却剂可以是易于与反应产物流分离的任意物质。例如，正如下面更好地描述的，冷却剂可以是未加热的烃或含甲烷气体流。

优选地，冷却剂可以是易于与反应产物分离的任意非氧化物质。就此而言，冷却剂可以是，如气态的或气溶胶的或雾化液体的 CO_{2}、甲醛、甲醇、水和/或蒸汽。另外设想冷却剂还可以是循环反应产物、水、蒸汽和/或未处理的烃气体的混合物。

根据该装置的预期操作模式，尤其是甲醇或甲醇和甲醛的预期生产，如果期望主要/专门生产甲醇，那么反应混合物在反应器中经历反应，而并
不引入冷的含烃气体。当希望生成甲醇和甲醛时，则引入冷的含烃气体。
通过引入冷的含烃气体来减小反应温度，如减小 30℃-90℃，以便通过减
少甲醛分解成 CO₂来保持分离的混合物中的甲醛含量。

将反应混合物输送到热交换器 114 中，以将热从排出反应器的反应混
合物传到到反应器输入流，并在进一步冷却之后，将反应混合物供给到部
分冷凝器 122 中。在部分冷凝器 122 中将混合物分离成高挥发性组分和低
挥发性组分（分别是干气和粗液），按照期望的，部分冷凝器 122 可将甲
醛之中的至少一些吸收入粗液流中。干气前行到洗涤器 134，而来自冷凝
器 122 的粗液供给到闪蒸槽 132。

洗涤器 134 起到除去来自干气流的 CO₂和甲醛的作用。就此而言，洗
涤器 134 在 7MPa-8MPa 的压力下和约 0℃到约 50℃的温度之间利用 H₂O
和甲醇来吸收 CO₂和甲醛。一旦除去 CO₂和甲醛，那么通过在反应器之前
或在反应器内将还原流与未处理的含烃气体流混合来再循环烃气体的还
原流，如所期望的。然后，在被如前所述的热交换器 116 和加热器 136 加
热后，将未处理的烃和还原流单独地或一起输入到反应室 100 中。

精馏塔 138 用于将二氧化碳（非关键组分）和甲醇（较关键组分）与
甲醇（非常关键的组分）和水（非关键组分）分离。富含甲醇蒸汽的流 14
进入精馏塔 138 内，并被分离成甲醛馏出物物流 16 和底部流 15。馏出物流
中的一些量的甲醇是期望的，因为甲醇用作生成商用级福尔马林（6% -
15%的乙醇稳定剂、37%的甲醛以及剩余的是水）的稳定剂。通过使一部
分非常关键的组分进入馏出物流，更容易实现分离；而且，在吸收剂再生
过程中所通常经历的工艺损失随后就抵消了，因为馏出物中的甲醇用于生
成福尔马林。流 15 由流 31 补充，以便替代输送到馏出物流，流 16 中的
任何甲醇。将流 31 与流 15 合并形成了流 17，然后，流 17 返回到洗涤器
134，作为再生的甲醇吸收剂。同时，甲醛馏出物，流 16 与来自闪蒸槽 132
的蒸汽，流 7 组合，以形成甲醛、甲醇和二氧化碳的混合物。

通过洗涤器 134 除去的甲醛、水、甲醇和 CO₂被输送到甲醛精馏塔 138。
精馏塔 138 将甲醛和 CO₂从甲醇-水物流中除去。少量的甲醇与所生成的甲醇组
合，并被输入到洗涤器 134 中，以从还原的烃流中除去额外量的 CO₂和甲
醛。

通过等压冷凝器 122 的操作，游离或无水甲醛被允许保持在气相中。只要甲醛保留在气体流中，液态甲醇产物流或粗液就包括甲醇、乙醇和水。在这种情况下，流出等压冷凝器 122 的液体流在任选地通过闪蒸槽 132 之后，可以绕开此工艺的甲醛精馏部分，并进入甲醇精馏塔。

图 2 和图 3 分别显示了不进行冷却和进行冷却时，反应中的氧、甲醛和甲醇的浓度的图表。

正如图 2 所看到的，约 2 秒钟反应时间后，氧基本上完全反应。此时，反应温度达到其最大值，且按其各自在反应混合物中的比例生成甲醇和甲醛。在反应结束时，甲醛是更稳定的产物，且在达到其最大浓度后，甲醛的浓度基本上是稳定的。甲醛的稳定性小一些，且因此升高温度（温度升高直到氧基本上完全被消耗）会略微减小其浓度。

在如图 3 所示通过引入冷的气体来进行冷却的反应中，当完成甲醇和甲醛的生成时，降低了反应最后时期的温度，以使抑制甲醛的分解。

图 4 表示描绘了系统的氧化速率随再循环烃气体的再循环比变化的曲线图。所显示的是描绘了使用具有 97% 的 CH₄ 和 1% 的 N₂ 的 Michigan Antrim 气体的曲线图。就此而言，此曲线图显示了使用相同的输入流显著增加了产物收率，而成本几乎不增加。因为系统有效地掌控压力，并合并工艺的能量用量，所以使能量需求最小，从而增强了整个系统的经济效果。

图 5 表示了甲烷到甲醇的可替代的装置 150。装置 150 建设成处理由共存的油气田 152 或气田 154 排放的气体中的甲烷。优选紧靠井眼设置的装置 150 通常由气体处理装置 156、液体处理装置 158 和制氧装置 160 形成。另外，与装置 150 配套的是废水处理装置 162 和公用装置（utility plant）164。

如图 6 所示，任选的制氧装置 160 可用于帮助调节反应器 100 内的烃流的部分氧化。制氧装置 160 具有连接到热交换器 163 的压缩机 161，热交换器 163 的作用是制备用于注入到多个吸收器 165 中的压缩氧。在通过吸收器之后，所生成的氧流被压缩，并直接前行到反应器 100。
通常参考图 7, 装置 156 的气体处理部分通常发挥如上所述的功效(参见图 1)。就此而言，气体处理装置 156 具有压缩机 170 和 172，用于升高引入的净化过的烃流 174 的压力。此流 174 随后被分开，并在反应器 100 中与氧反应，以部分氧化甲烷，如上所述。设想可以调节诸如反应时间以及反应器内的温度和压力的参数，以选择性地控制反应器 100 中生成的 CO₂、H₂O、甲醛以及甲醇的量。来自反应器的反应产物 176 随后转移到液体处理装置 158。

如图 8 所示，液体处理装置 158 通常发挥如上所述的功效，以将甲醇和甲醛与反应产物流 176 分离。显示的是相关的蒸馏器、混合机、闪蒸槽，它们用于分离反应产物流的组分材料，这如上面详细显示的。具体地说，当反应产物流是甲醇，且如果期望的话，还有甲醛时，从反应产物流中除去 CO₂。洗涤器 134（参见图 5）防止 CO₂聚积，并物理收集甲醛。洗涤器 134 可利用甲醇和水的混合物从烃气体再循环回路 135 中物理吸收甲醛和 CO₂。因为再循环回路 135 的操作压力高，所以使没有致冷就足以有效操作洗涤器 134 成为可能。这与传统的吸收方法所采用的低温学上的低温是不一样的。含有些许量的甲醛和 CO₂的作为“脏”气的气体进入洗涤器 134。这些组分将只以相对少的量存在，因此甲醇吸收剂的作用也是相对弱的。

如前所述, 设想可以选择性地调节反应器的输出，以便使装置 156 的气体处理部分所生成的甲醛的量最小。当可以排放 CO₂时，尤其设想可以在离井的预定距离处将来自反应产物的 CO₂注入地下，以增加井的输出。就此而言，设想可以在离井的任意合适的距离处注入 CO₂，以便允许增加地下的压力来增加井中的气或油的输出。另外，设想能够将 CO₂注入井眼空型（casement）中或近井眼区域中，以增加产气井或产油气的井的输出。

虽然显示为基于陆地的装置，但是特别设想，装置 150 能够配套有近海石油钻机。就此而言，装置 150 或者是在近海钻机上，或者是离钻机预定近的距离，如紧邻漂浮平台上的近海钻机。当是生成天然气的近海钻机的情形时，设想从含甲烷的烃流转化的甲醇将被注入含甲烷烃流的第二部分中，以改善来自近海油井的烃流向陆地的流动。注入甲醇，以减少管线
内氢氧化物的形成。当流到达海岸之后，与天然气相伴的甲醇随后将从含烃流中除去。

进一步设想其他反应产物的任意一种，即 CO₂、水或甲醇可以被直接注入到平台或基于地的井周围的烃类的地下形成物。具体地说，设想甲醇可以被注入到井周围的氢氧化物结构中，以便增加产天然气的井的天然气的输出。

暂时返回到图 5，设想可以将 CO₂注入到井的一个部分中，同时将甲醇或其他反应产物注入到井的其他部分。在天然气可能是被阻断的或可能具有大于 4% 的氢含量的情形时，可以设置设施，以掌控再循环回路内的氢累积。当任何特定的井 152、154 的输出低时，设想可以使用具有缩短工艺的单个装置 100。在这些情况中，只有与烃流的部分氧化相关的部分设施以及除去 CO₂ 的配套设施将被用在井附近。

除去的 CO₂ 可以被收集、排放或重新注入到地下。紧接着通过洗涤器除去天然气和相伴的 CO₂之后，剩余的液态产物可以液体形式从井位置输送到用于将甲醚、甲醇和水与废弃物流分离的另一处位置。就此而言，设想可以在离被阻断的天然气位置相当远的位置处设置使液体处理 (158) 成为最后过程的中央液体处理装置。这允许使用中央液体处理设施 158。还设想可以调节反应器的条件，以生成含有商用级福尔马林的液相。

另一种方法的实施方案 900 呈现在图 9 中。空气 902 被输送至压缩机 934，然后在热交换器 904 中被冷却以输送至氮分离器 906 或氮分离器 908 的其中一个。氧气在储存在罐 962 中，并用压缩机 910 压缩以便在加热器 912 中加热之后，作为含氧进料流被引入到反应器系统 914 中。含烷烃的未处理的进料 926（至少一种 C1 - C4 烷烃，主要是甲烷或天然气）在压缩机 928 中被压缩，并与洗涤器 920 的烷烃再循环共混以进一步在压缩机 922 中压缩，并在热交换器 930 中与反应器产物流的反应器 936 进行热交换。再循环流优选将含烷烃的进料流中约 4: 5 到约 20: 21 重量百分数的烷烃提供给反应器 914。在一个实施方案中，将洗涤器 920 压缩到反应器系统 914 的数量级的压力 (参见图 12 到 24B，且所附的文本进一步详细描述了用于反应器系统 914 的反应器设计)，压缩机 922 可以是离心鼓风机
（非容积式压缩机）。在热交换器 930 中，在与反应器产物流的反应器 936 进行热交换之后，在热交换器 932 中加热相结合的未处理的烷烃和再循环流，以将合烷烃的进料流供给反应器系统 914。反应器系统 914 的总体方案进一步描述在图 12-24B 中。洗涤器 920 起到吸收二氧化碳和烷基氧化物（如，但不限于，甲醇、乙醇和甲醛）的作用，同时提供再循环流以便与新鲜的烷烃结合而将进料流供给压缩机 922。图 924 处进行的净化从反应器 - 洗涤器过程回路除去非反应性的惰性气体（如，但不限于，氮），以提高反应器系统 914 的有效使用。任选地，从图 938 也能够对反应器系统 914 进行冷却。液体从洗涤器 920 的底部前行到闪蒸槽 918，在闪蒸槽 918 中，顶部从 942 与产物流 940 分离（包括，但不限于，甲醇、乙醇和甲醛）。炉或热力氧化器 916 氧化废气，用以排放到大气中。方法 900 用于提供液态物质，以在另一位置处进一步处理成纯化的烷烃氧化物，或者提供用于燃料或精确的纯度并非关键所在的目标其他类似用途的烷烃氧化物混合物。

图 10 显示了另一种方法的总体方案 1000，且前段方法回路基本上类似于图 9 呈现的方法 900，但结合了现场蒸馏系统 1002，以在流 1004（用于洗涤器中的吸收剂）中分离甲醇，在流 1006 中分离纯化的水，以通过在分解槽（knockdown drum）1012 中以及生成纯化的甲醇 1008 和废物流 1010。在将反应器产物流的剩余部分引入洗涤器之前，分解槽 1012 使液体与反应器产物流先分离。

图 11 呈现了用于生成甲醇产物流和甲醛的方法实施方案 1100，且前段方法回路基本上类似于图 9 呈现的方法 900，但引入了现场甲醛蒸馏系统 1110 和甲醇蒸馏系统 1108 以生成甲醇产物流 1102。来自甲醇蒸馏系统 1108 的流冷却顶部的甲醛蒸馏系统 1110，以在吸收器 - 混合机 1116 中将二氧化碳（产物流 1106）和甲醛（产物流 1104）分离。至洗涤器的甲醇再循环流是从甲醇蒸馏系统 1108 抽吸的，并在冷却器 1112 中冷却，以提供高效率的洗涤器来冷凝反应器产物流。炉或热力氧化器 1114 氧化净化流（purge）以除去非反应性惰性气体（如，但不限于，氮）和来自反应器 - 洗涤器方法回路的一些烷烃（甲醇），并由此提高反应器的有效使用。
虽然，常规的管道式流动反应器可以与上述方法的任意一种一起使用，作为反应器 100 和/或反应器 914，优选的反应器实施方案描述在图 12 到 24B 的讨论中。

现在转向更深层次考虑反应中的动力学和用于提供改进的反应器系统的进一步实施方案，该改进的反应器系统用来实施天然气部分氧化成甲醇、甲醇和其他氧化物的总反应，若干适于小型的、隔离的天然气气源（被阻断的天然气）的紧凑型制造设施已经描述在图 1-11 中。用于这些方法的新颖的反应器系统从图 12 开始也被进一步描述，且更具体地说，总体描述在图 12 和 20 中。之所以开始考虑这些反应器样式是源于直接氧化反应自身的特性。

总体而言，反应方法包括在优化甲醇的形成，以及操控反应器的温度、总压力和燃料（如，但不限于，天然气）对氧化剂的比来控制反应产物的相对量的条件下，将天然气和氧化剂的混合物输送通过加热的、连续流的反应器系统。此反应是诸如天然气的 C1-C4 燃料被氧化剂、氧气、空气或其他适合的含氧化合物（优选地，空气中的氧或最优选，氧）部分氧化。混合物包含相当过量的燃料（如，不限于，天然气），以避免完全燃烧成不期望的产物，如二氧化碳和水。

反应是放热的支链反应。支链化经由链载体的二次增长而引起反应速率的加速。此类型反应的特征在于引发期（induction period），在引发期的过程中，链载体浓缩物累积到发生反应速率和温度非常快速地增长的位置。反应速率非常快速的增长是由于链载体的二次增长率，而温度非常快速的增长是由于反应速率所带来的产生热量的速率的增大。在完全消耗燃料（如，不限于，天然气）之前，完全消耗了氧化剂、有限的反应物，这限制了温度的增长。设置氧化剂对燃料（如，不限于，天然气）的比以使形成甲醇的选择性得以优化。

下面的反应条件有利于甲醇和其他氧化物的最佳选择性。在含烷烃的进料流与含氧的进料流相结合之后，反应混合物的组分应该是约 1mol％到约 10mol％的氧化剂，优选约 2mol％到约 5mol％的氧化剂，且最优选约 2.5mol％的氧化剂。反应器系统中的气体的总压力应该是在约 6MPa 到约
10MPa 的范围内，优选约 7.5MPa 到约 9MPa，且最优选约 8MPa。反应器系统的壁温应该是约 600K 到约 900K 的范围内，且更优选约 723K 到约 823K。反应器的总停留时间应该是约 1 秒到约 40 秒，更优选约 1 秒到约 10 秒，且优选约 1 秒到约 2.5 秒。

在这些条件下，甲醇的选择性在约 0.35 到至少 0.60 的范围内，且含烷烃进料流的其他氧化物是较低的选择性。甲醇的转化是约 10%，且天然气的其他烃组分的转化是相似的。在反应之后，进行未反应的烃的分离和再循环。

对连续的操作来说，燃料（如，C\textsubscript{1} - C\textsubscript{4} 烷烃或如天然气中提供的 C\textsubscript{1} - C\textsubscript{4}烷烃）和氧化剂必须充分混合。基于此目的，提供混合室/反应器，既彻底地混合反应组分，又引发烷基（如，不限于，甲基）自由基的生成，烷基自由基随后被包含在来自混合室的输出流中。因此，在这方面，混合室在反应器系统中有效地提供了注入式混合的逆混反应室（“逆混反应室”），该反应器系统具有与管道式流动反应器流相串的注入式混合的逆混反应室来实施总反应。虽然并未理想地落入经典的连续搅拌的罐式反应器模式或者未落入经典的管道式流动反应器模式，但是各实施样的注入式混合的逆混反应室具有标示了操作特征的许多方面，该操作特征具有比管道式流动反应器或活塞流反应器模式的亲和性大的连续搅拌釜式反应器或 CSTR 模式的亲和性（进一步表示为连续搅拌进料的釜式反应器（continuous feed stirred tank reactor）或 CFSTR；且又进一步表示为稳态逆混流反应器（steady-state backmix flow reactor））。注入式混合的逆混反应室具有约 0.05 秒到约 1.5 秒的空间 - 时间（优选地，预期空间 - 时间是约 0.1 秒），对应于含烷烃的进料流和含氧的进料流的总供给速度，使得进料可以被有效混合，以及使得在注入式混合的逆混反应室的产物流（甲烷、氧以及甲基自由基）被供给到管道式流动反应器中以进一步反应成甲醇之前，可以适应产生烷基自由基（如，不限于，甲基自由基）的初始引发期。在优选的实施方案中，注入式混合的逆混反应室被设计成能够注入式混合 C\textsubscript{1} - C\textsubscript{4}烷烃和含氧的进料流，以将这些流流流搅动到一起，并有效地湍流搅动注入式混合的逆混反应室。在这方面，认识到甲基自由基的产生是实
现将甲烷直接氧化成甲醇（一种相应的烷基氧化物）的一组动力学反应步骤中的第一步动力学反应，且在管道式流动反应器之前使用注入式混合的逆混反应室能够独立地优化此甲基自由基的引发步骤。源自 C₂－C₄烷烃的其他自由基在相似的条件下，通常应该具有比甲基自由基较短的引发期。随后的支链化动力学副反应（动力学副反应步骤）接下来将甲基自由基和注入式混合的逆混反应室的产物流中的其他组分转化成甲醇和其他产物；这些副反应在管道式流动反应器环境中得到最佳控制，管道式流动反应器环境通常接收现有系统中的混合的（但未反应的）甲烷（烷烃）和氧。

因此，反应器系统提供了若干自由度（如，不限于，反应器空间－时间，温度以及注入混合，这将在此处随后讨论）以增大初始动力学系列的副反应，且在独立于增大初始动力学系列的副反应的条件下，用于增大整个组的副反应中稍后的动力学系列副反应，这些副反应相结合以实现将至少一种 C₁－C₄烷烃全部直接氧化反应成至少一种相应的烷基氧化物。

相对于含烷烃的进料流中的甲烷，混合室/反应器（注入式混合的逆混反应室）中的甲基自由基的引发明显背离于诸如美国专利 US4,982,023 和美国专利 US4,618,732 等文献的现有教导，这两个文献注明为背景技术，它们标示进料流仅在被引入反应器之前被混合。

将反应物以分离的流供给到混合室/反应器（注入式混合的逆混反应室）中。当反应物出现在注入式混合的逆混反应室中时，接着就将被供给到管道式流动反应器中。必须进行彻底地混合，并实现注入式混合的逆混反应室中反应物浓度的均匀分布或基本上均匀分布的目标。这是必须的，以避免氧化期望的产物－甲醇和其他氧化物。否则，这种氧化将出现在存在相对高的氧化剂浓度的不完全混合的区域内，且产物收率成比例地减少。在这方面，与管道式流动反应器中的停留时间相比，注入式混合的逆混反应室中的混合时间必须相对短小。鉴于总体来看，反应器系统的优选的总停留时间是约 1 秒到约 2.5 秒，那么在注入式混合的逆混反应室中的停留时间必须是至少 0.1 秒。在这方面，可以用至少 1ms 实现气体实际的湍流混合。虽然存在若干用于实现令人满意的混合的实施方案，这将在下
文描述，但是采用最短停留时间的优选实施方案采用了利用分流器散流器圆锥体（diverter diffuser cone）而形成的基本上相对的湍性射流，所述分流器散流器圆锥体具有其最靠近管道式流动反应器的趋向于尖端的侧面（apex—tending side）（尖端）。鉴于烷基（如，甲基）自由基的高反应性，圆锥体的目的是使注入式混合的逆混反应室的容纳物的各分段（sub-portion）的长停留时间最短。

在反应的化学环境中，反应器壁必须是惰性的。反应器结构材料必须是钢，优选是不锈钢，以承受必要的总压。在钢表面降低了甲醇选择性的情况下，钢优选被涂布有惰性涂层，如 Teflon™，或有机蜡。将 Pyrex™或石英衬套插入反应器中也提供了相对惰性的表面。

限流挡板设置在注入式混合的逆混反应室的输出中以增大注入式混合的逆混反应室和管道式流动反应器之间的压力降，且由此在注入式混合的逆混反应室中获得期望的停留时间的精细转转变特征（fine turning feature）（控制自由度）。在优选的实施方案中，限流挡板（带孔的隔板，用于形成流体通道）可方便地轴向移动，使得在工艺运行的情形之前或者在工艺运行的过程中，可替代的挡板位置可以布置在注入式混合的逆混反应室的定制构建的有空间 时间内。在优选的实施方案中，限流挡板被进一步靠近可方便地轴向移动的阻隔部件（blocking component），使得在工艺运行的情形之前或者在工艺运行的过程中，可变的挡板（隔板）通道可以通过部分阻塞注入式混合的逆混反应室的定制构建的有效空间 时间内的挡板（隔板）内的孔来界定，这个特征提供了运行控制的另一个自由度。

现在转向全面评述管道式流动反应器，温度最大值的轴向位置对反应器的入口温度、总流速和反应物组分非常敏感。这些量中任意一种的波动都可能造成反应器“热点”的位置移动。在极端情况下，“热点”可以移出反应器容器，并由此对性能造成不利地影响。因此，在一个实施方案中，管道式流动反应器优选配置有经由滑动密封件沿轴向（沿着反应器内一般流的轴）平移的热电偶。在另一个实施方案中，设置成测量管道式流动反应器的沿轴流动的温度曲线的多个热电偶能够监测温度。热电偶组监测反应器内轴向的气相温度分布，且热电偶的监测结果还用于控制反应器。
甲醇、甲酸和其他氧化物可以在管道式流动反应器的高温下进行热分解，这导致了产物损失。通过冷却紧邻“热点”下游的位置处的反应器管壁冷却物能使得这种分解最小化。因为壁的冷却并不是充分响应的，所以优选的实施方案采用了通过管来注入冷却气体，而该管的轴向位置可通过滑动密封件来改变。冷却气体优选是天然气，但也可以使用二氧化碳、氮气或别的惰性物质。

图 12 呈现了反应器系统 1200 的简化的截面图。该系统具有紧密连接到管道式流动反应器 1204 的插入式混合的逆混反应室 1202，以使所提供的具有与管道式流动反应器流体相通的插入式混合的逆混反应室的反应器系统用于结合图 1-11 所述方法的其中一种。反应器系统的主室和反应器部分沿着轴 1220 对齐，插入式混合的逆混反应室具有外壳 1206（与隔板 1232 相互配合界定了具有圆柱形表面的内部容积 1234）。管道式流动反应器 1204 具有外壳 1210，外壳 1210 与可滑动的管道式流动反应器 1204 的具有外壳 1208 的部分和隔板 1232 相互配合界定了内部容积 1248。含烷烃的气体进料流（第一流体流）通过烷烃气体输入 1222 以及如图所示的类似的烷烃输入进入。含氧的气体进料流（第二流体流）通过氧气输入 1224 和圆锥形的分流器/分配器 1226 进入。圆锥形的分流器/分配器 1226 具有连接到外壳 1206 的与隔板 1232 相对设置的一部分圆锥形底部（图 16 的底部 1614）。通过隔板（挡板）1232 和通道 1270（图 17A 和 17B 更详细地显示了其相关的流体通道）以及任选的阻隔部件 1230 形成了逆混反应室的输出。隔板（挡板）1232 和任选的（用于定义在实时操作反应器系统中的可变通道）阻隔部件 1230 提供了诸如通道 1270 的通道，以便注入式混合的逆混反应室 1202 的产物流供给到管道式流动反应器 1204。因此，管道式流动反应器 1204 具有在隔板（挡板）1232 和阻隔部件 1230 处通过通道 1270 与逆混反应室 1202 的输出流体相通的管道式流动反应器的输入。烷烃气体的输入 1222（连同如图所示的类似的烷烃气体输入）和氧气的输入 1224 以及圆锥形分流器/分配器 1226 和氧输入孔 1228（连同如图所示的类似的烷烃气体输入）被被设计成（相对于含烷烃的和含氧的进料流的流动定位并依尺寸设计成）通过注入混合含烷烃的气体进料流与含氧的气体进料流而在注入式混合的逆混反应室 1202 的内部容积 1234 内湍流。
搅动反应组分。

管道式流动反应器 1204 具有管道式流动反应器输出 1260，且管道式流动反应器 1204 具有设置在源于隔板 1232 处的通道（通道 1270）的管道式流动反应器的输入和管道式流动反应器的输出 1260 之间的冷却气体输入 1274，用于接收冷却气体流（冷却气体流在冷却输入端 1236 进入，然后在前行到冷却气体输入 1274 之前进入冷却气体内部的输入端 1250），并从而骤冷管道式流动反应器 1204。在这方面，在一个实施方案中，冷却气体输入 1274 是具有至少一个孔 1274 的细长管（参见图 18A 和 18B，表示相对于轴 1220 的详细截面图），用于将骤冷流传送入反应器空间 1248 内。

管 1262 与引导管 1264 相互配合。在一个实施方案中，管 1262 在引导管 1264 内旋转以调整输送到一位置的骤冷量。在可替代的实施方案中，管 1262 是可沿轴向滑动的（相对于轴 1220）以定位在管道式流动反应器 1204 内，并提供局部骤冷。在又一个实施方案中，管 1262 在引导管 1264 内旋转以调整输送到一位置的骤冷量，且也是可沿轴向滑动的（相对于轴 1220）以定位在管道式流动反应器 1204 内，并提供局部骤冷。因此，骤冷部件（包括附图标记 1262、1250、1236、1264 和 1274）提供用于操控在管道式流动反应器 1204 内沿着轴 1220 的温度曲线的自由度。在一个实施方案中，诸如热电偶 1216 的热电偶和如图所示的类似的热电偶提供了温度曲线的测量。在另一个实施方案中，滑动热电偶 1214（具有热电偶传感器 1272 并用滑动密封件 1212 密封到外壳 1210）提供了温度曲线的测量。图 12 显示了具有固定式热电偶的实施方案，固定式热电偶如热电偶 1216 以及滑动热电偶 1214（具有热电偶头 1272）。

管道式流动反应器 1204 具有外壳 1210，该外壳 1210 与可滑动的管道式流动反应器 1204 的具有外壳 1208 且也具有隔板 1232（和任选的阻隔部件 1230，其用于提供通道 1270 作为截面积可变的通道的）的部分相互配合来界定内部容积 1248。隔板 1232 和阻隔部件 1230 可滑动密封地连接到逆混反应室的外壳 1206，且因此，有效地连接到可滑动的管道式流动反应器 1204 的具有外壳 1208 的部分。因此，外壳部分 1208 用密封件 1244、1246 和 1238 可滑动密封地连接到外壳 1210，且还连接到外壳 1206，从而
与外部环境隔离。注入式混合的逆混反应室 1202 具有注入式混合的逆混反应室的由逆混反应室的外壳 1206 和隔板 1232（和任选的阻隔部件 1230）界定的内部容积 1234。因此，隔板 1232（和阻隔部件 1230）在反应器系统视图 1200 的实时操作过程中是可滑动移动的，以便在逆混反应室的外壳 1206 内侧输入 1224 前行，并由此成比例地缩小内部容积 1234，且可替代地，隔板 1232（和阻隔部件 1234）在实时操作过程中是可滑动移动的，以回缩离开输入 1224 并由此成比例地扩大内部容积 1234。在图 12 的实施方案中，管道式流动反应器 1204 具有由管道式流动反应器的外壳 1208 和 1210 以及隔板 1232（和阻隔部件 1230）界定的管道式流动反应器的内部容积 1248。因此，隔板 1232（和阻隔部件 1230）在反应器系统视图 1200 的实时操作过程中是可滑动移动的，以便当隔板 1232 背离输入 1224 移动时，成比例地缩小内部容积 1248，以及可替代地，在实时操作过程中，隔板 1232（和任选的阻隔部件 1230）是可滑动移动的，以便朝输入 1224 移动并由此成比例地扩大内部容积 1248。此可移动的界面能够有控制反应器系统视图 1200 内的在管道式流动反应器 1204 和注入式混合的逆混反应室 1202 之间的相对空间－时间（对气体来说，基本上等同于由移动穿过内部反应容积的体积流速分开的内部反应容积）的自由度。

基本上说，隔板 1232（和阻隔部件 1230）的特征所赋予的功能用于逆混反应室，在逆混反应室中，可以易于改动内部容积（由外壳的内表面，且也由可移动密封地连接到此内表面的任一部件的表面界定），使得可以改变时间－空间而不必改变流速、湍流和/或那些流体的压力降，上述空间－时间由逆混反应室设置，以使以气态流体在内部容积内流动的所组成的组分进行化学反应。在这方面，用于将内部容积从第一内部容积改变成第二内部容积的任何方法都有可能是有用的。例如，在一个概念化的实施方案中，隔板 1232 被轴向固定。圆锥形的分流器/分配器 1226 具有宽度足以可滑动密封住逆混反应室的外壳 1206 的底部，圆锥形的分流器/分配器 1226 具有互连到输入 1224 的可滑动管（未显示），且由此，圆锥形的分流器/分配器 1226 能在背离输入 1224 移动时，成比例地缩小内部容积 1234，而当朝向输入 1224 移动时，成比例地扩大内部容积 1234。在另一个概念化的实施方案中，外壳 1206 具有可移动的部分，该可移动的部分进入到室

27
中以缩小内部容积 1234,以至可替代地,其从室回缩以扩大内部容积 1234。在又一个概念化的实施方案中,内部的带隔膜的部件（internal diaphragmed component）通过改变其特征来成比例地改变内部体积 1234。

密封件 1246、密封件 1212、密封件 1244、密封件 1238、密封件 1242 和密封件 1240 都能够使反应器系统视图 1200 的可移动部件可移动地滑动。旋转部件 1218 能够在操作过程中使阻隔部件 1230 旋转。应该是明显的，各部件的移动（尤其在反应器系统视图 1200 的操作过程中）优选在变速电动机、杠杆、具有配套传动装置的杠杆和/或步进电动机以及配套的传动装置（未显示，但对本领域技术人员来说应该是明显的）的帮助下实现。

操作中,将含烷烃的进料流和含氧的进料流通过诸如输入 1222（含烷烃的进料流）和输入 1224（含氧的进料流）的输入端口输入到注入式混合的逆混反应室 1202 中。注入式混合的逆混反应室 1202 的内部条件被设置成在注入式混合的逆混反应室 1202 中引发烷基自由基的形成，以产生注入式混合的逆混反应室的产物流，用以输出并通过诸如隔板 1232 和阻隔部件 1230 内的通道 1270 的通道流体传输入管道式流动反应器 1204。将各部件依尺寸设计且设置成在进入流体中提供相当大分子的动量，使得在注入式混合的逆混反应室 1202 中形成进入混合和湍流反应流体。因此，经由通道 1270 供给到管道式流动反应器 1204 的注入式混合的逆混反应室的产物流包括氧、未反应的烷烃以及在注入式混合的逆混反应室 1202 中引发的烷基自由基的至少一部分。在这方面，烷烃到烷基氧化物的“反应”（主要是，甲烷到甲醇的“反应”）涉及很多个短期反应（此处也称为动力学系列副反应或动力学副反应）；的确，系统内发生的甲烷到甲醇的整个“反应”以及其他烷基的氧化中可以有效 60 个动力学系列副反应。

当烷烃分子接触分子氧时,最初的动力学副反应开始从烷烃引发烷基。烷基的这种引发似乎允许了比湍流混合两种流体进料流所需时间超出许多数量级的时间,且相对于在可以获得烷基自由基时发生的动力学系列副反应而言,还似乎是消耗时间的动力学系列副反应。因此,在单独的与管道式流动反应器流体相通的注入式混合的逆混反应室内处理此反应是有效
力的，在管道式流动反应器中，烷基的一致的（随时间且在稳态操作时）
部分将会基本上被传送（被供给至管道式流动反应器中），以提供能够发
生随后许多的平行且连续的动力学副反应的基础，这些副反应是大量放热
的，且要求一种对管道式流动反应器比对注入式混合的逆混反应室更可控
制的热控制方法。虽然在一个实施方案中，紧密连接到管道式流动反应器，
但是与管道式流动系统相比，注入式混合的逆混反应室在其空间 - 时间上
为反应组分提供了基本上通用的组分的和物理（温度、压力和分子动量）
的操作状态；这使得能够控制独立于管道式流动反应器的关键性的烷基引
发步骤，在管道式流动反应器中，沿着管道式流动反应器的轴线，反应组
分具有在轴向方向上（且可能在径向方向上）不同的组分和物理状态。

对技术人员应该是明显的，在诸如反应器系统视图 1200 的系统中扩
大掌控需要在增大空间 - 时间的情形下掌控提供可接受的分子动量的挑
战；如果减小分子动量，注入式混合的逆混反应室内的反应流体将会朝平
流范围迁移，且注入式混合的逆混反应室反应物流体的必要的宽容度由此
可能受到损害；因此，根据视图 1200 的反应器在用于使“被阻断的气体”
成为有价值的商品的小规模处理方面似乎是有效的。

整个反应器系统的空间 - 时间不超过 40 秒，且优选不超过 2.5 秒，对
应于含烷烃的进料流和含氧的进料流的总供给速率。注入式混合的逆混反
应室的反应空间 - 时间被控制到不超过 1.5 秒。

图 13A 和 13B 呈现了改变图 12 的注入式混合的逆混反应室 1202 的内
部容积的视图 1300 和 1350 的细节的简化截面图。在这方面，图 13A 呈现
了用于注入式混合的逆混反应室 1202 的可替代的视图 1300，其中描述了
用于含氧的进料流的“发刷”分配器 1308（在 15A 和 15B 中进一步详细
描述）。图 13A 的视图 1300 通常显示了处于完全扩张或延伸到外壳 1306
中的方位的隔板 1304 和任意的阻隔部件 1302。

图 13B 的反应器视图 1350 通常显示了处于插入到外壳 1306 中的方位
以缩小注入式混合的逆混反应室的相对于视图 1300 的容积（空间 - 时间）
的容积（和空间 - 时间，在稳态操作时）。

图 14A 呈现了用于图 12 的注入式混合的逆混反应室 1202 的另一个可
替代设计的简化截面图 1400。在这方面，半球形的头部分 1402 形成外壳的轮廓，且类似于插入的隔板的半球形轮廓。

图 14B 显示了具有改变的内部容积的图 12 的注入式混合的逆混反应室 1202 的视图 1450，此内部容积不同于图 12 所示的内部容积。将隔板 1232 和（任选的）阻隔热件 1230 描绘成处于插入到外壳 1206 中的方位，以缩小注入式混合的逆混反应室相对于视图 1200 的容积（空间－时间）的容积（和空间－时间，在稳态操作时）。

图 15A 和 15B 呈现了用于图 12 的注入式混合的逆混反应室 1202 的可替代设计的“发刷”流体输送插入件 1308 的对齐的截面图 1500 和 1550。在优选的实施方案中，轴 1504 与轴 1220 对齐，且视图 1500 显示了“发刷”分配器 1308 的相对于与轴 1504 垂直的平面的细节，以及视图 1550 显示了“发刷”分配器 1308 的相对于与轴 1504 平行的平面的细节。从沿着外壳 1206 的圆柱形表面的基本上中心线内的注入式混合的逆混反应室的轴以及当轴 1504 基本上与轴 1220 对齐时，沿着与注入式混合的逆混反应室的轴 1220 非平行的方位设置的多个孔（如，孔 1502）将含氧的进料流输入到内部的流空间 1234。

图 16 呈现了用于将含氧的进料流输送到图 12 的注入式混合的逆混反应室 1202 中的圆锥形流体输送插入件 1226 的内部的简化截面图 1600。内部流体分流器由具有轴 1602 的圆锥形表面 1604 界定。圆锥形底部 1614 在轴 1602 的一端处，且顶端 1612（如果圆锥体延伸的话，该端将最终会聚为圆锥体的顶点）在轴 1602 的另一端。如图 12 的视图 1200 所示，当圆锥分流器 1226 设置在圆锥形外壳 1206 内时，轴 1602 与注入式混合的逆混反应室的轴 1220 对齐，使得逆混反应室的输出（通道 1270）更接近顶端 1216，而不是圆锥形底部 1614。含氧的进料流被输送到入口 1610（从图 12 的入口 1214），然后从沿着注入式混合的逆混反应室的轴 1220（轴 1602）且与轴 1220 非平行的方位设置的多个孔 1608 输送入内部的流空间 1234 内。内部通道 1606 将含氧的进料流流动地传送给多个孔 1608。

图 17A 和 17B 呈现了界面挡板（1232/1230）的简化截面图，且挡板设置在图 12 的反应器系统的注入式混合的逆混反应室 1202 和管道式流动
反应器 1204 之间的界面处。在图 17A 的视图 1700 中，隔板 1702 具有至少一个孔 1704，该孔 1704 确定了用于使注入式混合的逆混反应室的物流从注入式混合的逆混反应室 1202 流体传输到管道式流动反应器 1204 的通道（参见图 12 中的通道 1270）。隔板 1702（图 12 中的隔板 1232）提供了具有至少一个孔 1704 的通道，而该孔 1704 具有截面积。在流动的流体中，具有孔 1704 的隔板 1702 界定了当流体从注入式混合的逆混反应室 1202 挂送到管道式流动反应器 1204 中时，用于在注入式混合的逆混反应室 1202 和管道式流动反应器 1204 之间产生压力降的挡板。在一个实施方案中，在“被调整的”反应器系统中，孔 1704 可以被准确地依尺寸设计使得不需要阻隔部件；这样的布置具有较少的操作自由度，但从密封和构建的观点来看，又较不复杂。对实时操作变化的由孔 1704 形成的有效通道来说，在可替代的实施方案中布置了阻隔部件 1230，如图 17B 和图 1750 所示，其中可以将阻隔部件 1230 旋转以“阻隔”孔 1704 的一部分截面积，其中一部分阻隔部件 1706（图 12 的阻隔部件 1230）显示为限制孔 1704 的通道（注意，可以将图 1750 构想成平行于轴 1220 且从管道式流动反应器 1204 朝向注入式混合的逆混反应室 1202 的视图的概念），并由此限制通道。

在优选的实施方案中，隔板（1232/1702）具有至少一个孔 1704 作为第一孔，且阻隔部件（1230/1706）具有至少一个第二孔（1708）。这些第一孔和第二孔优选具有基本上相同的尺寸，且第一孔 1704 和第二孔 1708 一起设置，以便以一种相对定位的形式使隔板（1232/1702）和阻隔部件（1230/1706）对齐设置，以将通道（1270）界定成具有基本上与第一孔的截面积等同的截面积。浏览 1750，考虑到孔 1704 的没有被使用阻隔部件 1706 的通道阻隔的部分也是孔 1708 的没有被使用隔板 1702 的通道阻隔的部分，这就可以得到理解。

相对于图 21，进一步讨论了不包括使用旋转部件 1218 的隔板（1232/1702）和阻隔部件（1230/1706）的组合的可替代实施方案。在此可替代实施方案中，隔板（1232/1702）相对于固定式阻隔部件（1230/1706）是可移动的，其中键槽 1710 提供了抵抗键 2110（图 21）的可轴向滑动的
限制（相对于轴 1220）以抑制阻隔部件（1230/1706）的旋转。在此实施
方案中，隔板（1232/1702）牢固地连接到外壳1208，但外壳1208还绕轴
1220旋转，以获得由孔1704和孔1708界定的可变通道1270。键2110固定
到外壳1206（未详细显示），且孔1714（图17A）为键2110提供了无阻
力的开口以输送入内部容积1248，使得隔板（1232/1702）和阻隔部件
（1230/1706）相对于入口1224轴向（轴1220）移动，且阻隔部件1230/1706
总是受到限制，而隔板1232/1702总是能够绕轴1220旋转。

球轴承1712在优选的实施方案中以增大可移动部件（隔板
1232/1702或阻隔部件1230/1706，这取决于其特定的实施方案）抵抗挡板
系统中的不可移动部件的平滑旋转。

图18A和18B呈现了用于图12的反应器系统的可改变位置的骤冷入
口1274的细节和定位的简化截面图1800、1850和1860。由于管截面1802
具有沿轴1220延伸的细长槽1808，因此在图1800中，将引导管1264显
示在相对于轴1220垂直的截面内。细长的槽难以显示在图12中，但以完
全敞开的通道1808描绘在图18A和18B中以展示轴的槽；骤冷管
1804/1262显示为具有孔1806/1274-参见图12中的入口通道1274-以显示
此孔的轴向尺寸基本上比引导管1802/1264的槽1808的轴向尺寸小。当
旋转孔1806以阻隔具有引导管1802/1264的内表面的通道（1274）时，图
1850所示的管1804/1262与引导管1802/1264共同配合，以便不将骤冷传
送至内部容积1248。在一个实施方案中，管1804/1262在引导管1802/1264
内是可轴向滑动的，以便沿着轴1220重新轴向设置孔1806/1274。接着，
图1860显示了在管1804/1262和引导管1802/1264之间径向旋转对准，使
得能够形成通道/入口1274。应注意，若干可替代组（未显示）的孔1806
可易于设置在管1804的不同径向位置，以提供随着在管道式流动反应器
1204内沿着轴1220的管1804/1262的径向方位变化的可替代的骤冷方式。

图19A-19C呈现了用于图12的在操作中的反应器系统的管道式流动
反应器的一系列温度曲线。在这方面，横坐标轴1904和纵坐标轴1906在
整个图19A、19B和19C中是相同的，且横坐标轴1904显示了沿着管道
式流动反应器1204的轴1220的距离，而纵坐标轴1906描绘了管道式流
动反应器 1204 的反应流体内的温度。轨迹 1902（图 19A）被构想成描绘了管道式流动反应器 1204 的温度曲线，且没有骤冷的益处。轨迹 1922（图 19B）被构想成描绘了管道式流动反应器 1204 的曲线，且来自位置 1938 的骤冷的益处基本上给予输出 1260。轨迹 1932（图 19C）被构想成描绘了管道式流动反应器 1204 的温度曲线，且只在位置 1938 处存在骤冷的益处。

前述讨论的动力学系列副反应将会改变它们的活性，这取决于管道式流动反应器 1204 内沿着轴 1220 的温度曲线。因此，来自管道式流动反应器 1204 的产物混合的每一个轨迹 1902、1922 和 1932 的每次不同的热曲线，成比例不同的能量，以及用于动力学系列副反应组中的单独的副反应的成比例不同的动力学活性是不同的。因此，骤冷管的设计为优化由 C_1 - C_4 含烃烃的进料流和含氧的进料流生的烷烃裂化物反应器系统产物流的组合物提供另外的自由度。


反应器系统视图 2000 的逆混反应室和管道式流动反应器沿着轴 2014 对齐。含烃烃的气体进料流（第一流体流）通过烃烃气体输入 2060 和如图所示的多个烃烃气体输入孔进入。含氧的气体进料流（第二流体流）通过氧气输入 2062 以及前面相对于图 15A 和 15B 讨论的发刷分配器进入。在可替代的实施方案中，圆锥形的分流器/分配器（图 16）用于含氧的气
体流。


在2040处以面向左的方位，横跨轴2014的垂直截面图2030进一步显示了孔内的细节，孔设置成用于将来自输入2060和2062的进料输入到逆混反应室中。

图21呈现了用于图20的反应器系统实施方案，以及还用于前面相对于图17A和17B讨论的图12的反应器系统的注入式混合的逆混反应室和管道式流动反应器之间的界面的可替代实施方案的隔板/挡板的细节2100。套筒2016是图20的重复，且具有凸螺纹2012/2212。正如相对于图17A和17B描述的可替代实施方案，阻隔部件2108因键2110的旋转而受到限制（正插入到槽1710（图17B中），且隔板2104不可滑动地连接到套筒2016。球轴承2106将隔板2104（套筒2016的末端）连接到阻隔部件2108。隔板2104（套筒2016）依靠非限制性的圆形孔1714（图17A）在键2110周围自如旋转。

如前所述，图22A-22C显示了用于图20的反应器系统实施方案的注入式混合的逆混反应室和管道式流动反应器之间的轴向定位的细节2200、2230和2260。套筒2016是图20的重复，且具有凸螺纹2012/2212。


图25A和25B显示了具有注入式混合的进入区（图25A&B中的区2520），多位置骤冷和多位置温度感测的两个管道式流动反应器系统实施
方案的图 2500 和 2550。图 25A 和 25B 中的混合区 2520 显示了具有全锥
体的象征性的圆锥形分配器的分流器 2502, 高度类似于图 16 以及还有图
12 的圆锥形分流器。图 25A 的系统图 2500 显示了外壳 2512 内的多个热电
偶（如热电偶 2510）和多个骤冷入口端（如骤冷入口端 2508）。图 25B 的
系统图 2550 显示了密封设置在由外壳 2514 界定的内部空间内的可改变位
置的热电偶 2504 和可改变位置的热电偶骤冷入口端 2506。因此，骤冷和
温度测量高度类似于图 12 和 25B 中的用于这些实施方案中的两个管道式
流动反应器。图 25A 和 25B 的系统用于提供高度类似于图 12 和 20 的实
施方案的反应器系统，除了图 25A 和 25B 中不存在界定了注入式混合的逆混
反应室和管道式流动反应器之间的清晰界面的分离的挡板组件。在这方面，
当与由操作图 12 和图 20 中任意一个系统得到的数据相比，由操作图
25A 和 25B 中任意一个系统得到的数据在标示相对于挡板界面（图 12 的
隔板 1232/部件 1230 或图 20 的带螺纹的挡板组件）的设置的效功方面是
有价值的。

应该理解，上述每一个元件，或者一起的两个或更多个元件也可以在
不同于上述类型的其他类型的方法和结构中找到有益的应用。虽然已经按
照用于生产甲酯的方法和装置所实施的阐释并描述了本发明，但并不期望
限制到所显示的细节，因为可以进行各种改动和结构上的变化，而并不会
以任何方式偏离本发明的主旨。

无需进一步的分析，前述内容如此充分地揭示了本发明的要点，以致
其他人可以通过运用目前的知识容易地使其适用于各种应用，而不会遗漏
从已有技术的观点来适当地构成发明的一般方面或特定方面的基本
特征的特点。新的且期望受到专利证书保护的所要求保护的内容在所附权
利要求中被提出。
图5
图21