可交联性聚苯醚树脂、制备方法及其用途

摘要

本发明涉及一种可交联性聚苯醚树脂，所述聚苯醚树脂具有化学式(F)的结构。本发明还公开了上述聚苯醚树脂的制备方法。采用本发明所述的可交联性聚苯醚树脂制备的高频电路基板玻璃化转变温度高，耐热性好，吸水率低，层间粘合力高，介电性能优异。
1. 一种可交联性聚苯醚树脂，其特征在于，所述聚苯醚树脂具有化学式 (F) 的结构：

其中，R_i 可相同或不同，选自 -H、C1-C3 的直链烷基、C1-C3 的支链烷基或

$$\begin{array}{c}
R_2 - O - C - R_3 \\
\end{array}$$

中的任意一种，R_i 选自 C1-C3 的直链烷基或 C1-C3 的支链烷基；
R_3 为芳香基、C1 ～ C3 的直链烷基或 C1 ～ C3 支链烷基中的任意一种；
Y_i 选自 -H、烷基和

$$\begin{array}{c}
\text{所组成的族群中的任意一种；}
\end{array}$$

R_i 为芳香基、C1 ～ C3 的直链烷基或 C1 ～ C3 支链烷基中的任意一种；
R_{10} 可相同或不同，选自 -OH、-H、烯丙基、碳数为 1 ～ 3 的烷基、-OR，

且至少有一个 R_{10} 为

$$\begin{array}{c}
\text{或}
\end{array}$$
R₇为芳香基、C₁～C₃的直链烷基或C₁～C₃的支链烷基；
R₆为

或

或

R₉为

\[\begin{align*}
\left(\text{CH}_2 \right)_6 & \quad \left(\text{CH}_2 \right)_{10} \\
\end{align*} \]
Y₂为苯基；

n₂、n₃为整数且满足 15 < n₂+n₃ < 50。

2. 一种如权利要求1所述的可交联性聚苯醚树脂的制备方法，其特征在于，所述方法包括如下步骤：

使具有化学式 (A) 结构的聚苯醚树脂与具有化学式 (B) 结构的含有端基基的酚类化合物在引发剂 C 作用下在溶剂中 T₁温度下反应时间为 t₁，从而得到具有化学式 (D) 结构的改性聚苯醚树脂，然后将具有化学式 (D) 结构的改性聚苯醚树脂与至少一种具有化学式 (E) 结构的马来酰亚胺化合物在溶剂中 T₂温度下反应时间为 t₂，得到具有化学式 (F) 结构的可交联性的聚苯醚树脂；

结构式如下所示：
其中：
R₁可相同或不同，选自 -H, C₁ ~ C₃ 的直链烷基、C₁ ~ C₃ 的支链烷基或
$R_2\text{O}^\text{OC}$

R_3中的任意一种；

R_2选自 C1-C3 的直链亚烷基或 C1-C3 的支链亚烷基；

R_3为芳香基、C1-C3 的直链烷基或 C1-C3 支链烷基中的任意一种；

R_4为芳香基、C1-C3 的直链烷基或 C1-C3 支链烷基中的任意一种；

R_5可相同或不同，选自 -OH、-H、

一个 R_5为 OH 或

R_6为

或

R_7为芳香基、C1-C3 的直链烷基或 C1-C3 支链烷基；

R_8可相同或不同，选自 -OH、-H、烯丙基、

-OR 所组成的族群，且至少有
有一个 R_6 为烯丙基或

R_6 为 $\left(\text{CH}_2\right)_{6} \quad \left(\text{CH}_2\right)_{10}$

$$
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{C}_3\text{H}_5 & \quad \text{C}_3\text{H}_5 \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{SO}_2 & \\
\text{O} & \quad \text{SO}_2
\end{align*}
$$
R₁ç可相同或不同，选自-OH、-H、烯丙基、碳数为1～3的烷基、-OR、-
且至少有一个 \(R_{10} \) 为

Y₁选自 -H、烷基和 \(\text{O} \) 所组成的族群；

\(Y_{6} \) 为苯基；

n₁为 83 ~ 167 的整数，n₂、n₃为整数且满足 15 < n₂ + n₃ < 50；

所述具有化学式 (A) 结构的聚苯醚树脂的数均分子量大于 10000。

3. 如权利要求 2 所述的方法，其特征在于，具有化学式 (A) 结构的聚苯醚树脂、具有化学式 (B) 结构的含有烯丙基的酚类化合物和引发剂 C 的质量之比为 100: (4 ~ 12): (4 ~ 12)。

4. 如权利要求 3 所述的方法，其特征在于，具有化学式 (A) 结构的聚苯醚树脂、具有化学式 (B) 结构的含有烯丙基的酚类化合物和引发剂 C 的质量之比为 100: (4 ~ 10): (4 ~ 10)。

5. 如权利要求 4 所述的方法，其特征在于，具有化学式 (A) 结构的聚苯醚树脂、具有化
权利要求书

6. 如权利要求2所述的方法，其特征在于，具有化学式(B)结构的含有烯丙基的酚类化合物与具有化学式(E)结构的双马来酰亚胺化合物的物质的量之比为1:1.2～1:4。

7. 如权利要求6所述的方法，其特征在于，具有化学式(B)结构的含有烯丙基的酚类化合物与具有化学式(E)结构的双马来酰亚胺化合物的物质的量之比为1:1.5～1:4。

8. 如权利要求7所述的方法，其特征在于，具有化学式(B)结构的含有烯丙基的酚类化合物与具有化学式(E)结构的双马来酰亚胺化合物的物质的量之比为1:1.6～1:3。

9. 如权利要求2所述的方法，其特征在于，所述溶剂为甲苯、二甲苯或三甲苯中的任意一种或者至少两种的混合物。

10. 如权利要求2所述的方法，其特征在于，所述溶剂与具有化学式(A)结构的聚苯醚树脂的质量比为1:1～10:1。

11. 如权利要求10所述的方法，其特征在于，所述溶剂与具有化学式(A)结构的聚苯醚树脂的质量比为1.8:1～9.2:1。

12. 如权利要求11所述的方法，其特征在于，所述溶剂与具有化学式(A)结构的聚苯醚树脂的质量比为2.3:1～8.7:1。

13. 如权利要求2或3所述的方法，其特征在于，所述T1为50～120℃。

14. 如权利要求13所述的方法，其特征在于，所述T1为58～112℃。

15. 如权利要求14所述的方法，其特征在于，所述T1为67～104℃。

16. 如权利要求2或3所述的方法，其特征在于，所述T2为120～160℃。

17. 如权利要求16所述的方法，其特征在于，所述T2为120～155℃。

18. 如权利要求17所述的方法，其特征在于，所述T2为120～150℃。

19. 如权利要求2或3所述的方法，其特征在于，所述反应时间t1为1～10小时。

20. 如权利要求19所述的方法，其特征在于，所述反应时间t1为1.4～9.4小时。

21. 如权利要求20所述的方法，其特征在于，所述反应时间t1为1.8～8.8小时。

22. 如权利要求2或3所述的方法，其特征在于，所述反应时间t2为0.3～10小时。

23. 如权利要求22所述的方法，其特征在于，所述反应时间t2为0.6～9.5小时。

24. 如权利要求23所述的方法，其特征在于，所述反应时间t2为1～9小时。

25. 如权利要求2或3所述的方法，其特征在于，所述引发剂为自由基引发剂，选自有机过氧化物或/和偶氮类引发剂。

26. 如权利要求25所述的方法，其特征在于，所述有机过氧化物，其特点为1小时半衰期为50～120℃，包括过氧化二碳酸双(2-乙基己酯)、过氧化二碳酸双(4-叔丁基环己酯)、过氧化二碳酸双十四酯、过氧化二碳酸双十六酯、过氧化苯并甲酰丙酮、过氧化对甲基异丙基苯甲酰丙酮、过氧化叔丁基过氧化苯甲酰丙酮、过氧化叔丁基过氧化苯甲酰丙酮、过氧化异丙基过氧化苯甲酰丙酮、过氧化苯甲酰丙酮、过氧化2-乙基己基过氧化苯甲酰丙酮、过氧化2-乙基己基过氧化苯甲酰丙酮、过氧化2-乙基己基过氧化苯甲酰丙酮、过氧化2-乙基己基过氧化苯甲酰丙酮、过氧化2-乙基己基过氧化苯甲酰丙酮、过氧化2-乙基己基过氧化苯甲酰丙酮。
（叔戊基过氧）环基烷，1, 1- 双（叔戊基过氧）-3, 3, 5- 三甲基环己烷任意一种或者至少两种的混合物。

27. 如权利要求 25 所述的方法，其特征在于，所述偶氮类引发剂选自偶氮二异丁腈、偶氮二异戊腈或者偶氮二异戊腈中的任意一种或者至少两种的混合物。

28. 一种聚苯醚树脂组合物，其特征在于，所述聚苯醚树脂组合物包括如权利要求 1 所述的具有化学式 (F) 结构的交联性聚苯醚树脂。

29. 一种树脂胶液，其特征在于，其是将如权利要求 28 所述的聚苯醚树脂组合物溶解或分散在溶剂中得到。

30. 一种预浸料，其特征在于，其是将增强材料浸润如权利要求 29 所述的树脂胶液后，干燥得到。

31. 一种覆铜板，其特征在于，所述覆铜板含有至少一张如权利要求 30 所述的预浸料。

32. 一种绝缘板，其特征在于，所述绝缘板含有至少一张如权利要求 30 所述的预浸料。

33. 一种高频电路基板，其特征在于，所述高频电路基板含有至少一张如权利要求 30 所述的预浸料。
可交联性聚苯醚树脂、制备方法及其用途

技术领域
[0001] 本发明涉及一种可交联性聚苯醚树脂、制备方法及其用途，特别涉及一种可交联性聚苯醚树脂的制备方法，其是将大分子聚苯醚树脂在再分配过程中予以改性，使其转变为热固性树脂。

背景技术
[0002] 聚苯醚 (PPO) 树脂具有优良的介电性能（仅次于 PTFE）及高的 Tg，因此有人尝试将 PPO 树脂引入 FR-4 中，以提高 FR-4 的电气性能，使之能用于高频基材材料中。但聚苯醚树脂为热塑性树脂，且会溶解于卤代烃及芳香族溶剂，同时因为 PPO 树脂分子量大，对称性高，导致其与环氧树脂结构差异大，使其与环氧树脂的相容性差，使得固化体系中出现 PPO 与环氧树脂的相分离现象，不利 PPO 在 CCL 上的运用。因此必须将 PPO 小分子化和改性为热固性树脂，以提高其耐溶剂性能、工艺性能与环氧树脂的相容性。

发明内容
[0004] 为了解决 PPO 树脂耐溶剂性能差，与环氧树脂相容性不佳、相分离，加工性能较差的问题，本发明的目的之一在于提供一种可交联性聚苯醚树脂，所述聚苯醚树脂中引入了缺电子的“-C＝C-”双键，并且使热塑性的聚苯醚树脂含有活性强的马来酰亚胺，从而转化为热固性的树脂。由于含有马来酰亚胺基团、在胺类固化剂存在条件下，使聚苯醚树脂与环氧树脂的相容性得到大幅提升，降低了固化反应温度，改善了其加工性能，提高了 PPO 树脂的耐溶剂性能，在工业生产中具有较大应用价值。
[0005] 为了达到上述目的，本发明采用了如下技术方案：
[0006] 一种可交联性聚苯醚树脂，所述聚苯醚树脂具有化学式 (F) 的结构：
[0007]
其中，R₁可相同或不同，选自-H、C₁-C₃ 的直链烷基、C₁-C₃ 的支链烷基或

其中的任意一种，R₂选自C₁-C₃ 的直链亚烷基或C₁-C₃ 的支链
亚烷基，R₃为芳香基、C₁～C₃ 的直链烷基或 C₁～C₃ 支链烷基中的任意一种，Y₁选自-H、
烷基和 R₄所组成的族群中的任意一种；

R₅为芳香基、C₁～C₃ 的直链烷基或 C₁～C₃ 支链烷基中的任意一种；
R₁₀可相同或不同，选自-OH、-H、烯丙基、碳数为 1～3 的烷基、-OR₁₀，
R_{10} 为芳香基、C1 ~ C3 的直链烷基或 C1 ~ C3 的支链烷基；
R_{9} 为

或

R_{9} 为

[0015]
[0016]
Y₂为苯基；
n₂、n₃为整数且满足 15 < n₂ + n₃ < 50。
本发明的目的之二在于提供一种如上所述的可交联性聚苯醚树脂的制备方法，所述方法首先将大分子的聚苯醚树脂由含有烯丙基的酚类化合物在配位试剂中进行分子化，引入了“富电子”的烯丙基，具体原理如下所示：
其中 $n_i < n_1$，为此，即达到了将 PPO 小分子化以增加其在溶剂中的溶解性，同时在改性 PPO 树脂一端接上烯丙基，烯丙基发生交联反应温度较高，可进行下一步的改性。

用含有缺电子的双键类的 BMI 树脂（双马来酰亚胺，BMA）与含有烯丙基的改性苯醚树脂发生加成反应，原理如下图所示，使热塑性的聚苯醚树脂末端含有活性强的马来酰亚胺，从而转化为反应性较强的热固性的树脂。由于末端含有马来酰亚胺基团，在胺类固化剂存在条件下，使聚苯醚树脂与环氧树脂的相容性得到大幅提高，以及降低了固化反应温度，在工业生产中具有较大应用价值。

上述反应方程式的撰写仅仅是便于所属领域的技术人员更加清楚地了解本发明的思路和反应原理，所述的 R 基团以及 n_i 以及 n_1 所属领域的技术人员可以根据现有技术中所公开的 PPO 树脂的改性方法来进行选择，其中 $n_i < n_1$。示例性的 R 基团为任意的有机基团，n_i 为 2 ~ 150 的整数，n_1 为 2 ~ 75 的任意整数。

在上述反应原理基础上，为了制备得到可交联性聚苯醚树脂，本发明采用了如下技术方案：
一种可交联性聚苯醚树脂的制备方法，所述方法包括如下步骤：

1. 使具有化学式 (A) 结构的聚苯醚树脂与具有化学式 (B) 结构的含有烯丙基的酚类化合物在引发剂 C 作用下在溶剂中 T_1 温度下反应时间为 t_1，从而得到具有化学式 (D) 结构的改性聚苯醚树脂，然后将具有化学式 (D) 结构的改性聚苯醚树脂与至少一种具有化学式 (E) 结构的双马来酰亚胺化合物在溶剂中 T_2 温度下反应时间为 t_2，得到具有化学式 (F) 结构的可交联性的聚苯醚树脂。
[0029]
其中:

R₁可相同或不同，选自-H、Cl～C₃的直链烷基、Cl～C₃的支链烷基或

R₂—O——C——R₃中的任意一种；

R₂选自Cl-C₃的直链亚烷基或Cl～C₃的支链亚烷基；

R₃为芳香基、Cl～C₃的直链烷基或Cl～C₃支链烷基中的任意一种；

R₄为芳香基、Cl～C₃的直链烷基或Cl～C₃支链烷基中的任意一种；

R₅可相同或不同，选自-OH、-H、OR,所组成的族群，且至少有一个R₅为OH或

R₆为

-CH₃
-CH₂-、

CF₃

或

R₇为芳香基、Cl～C₃的直链烷基或Cl～C₃的支链烷基；

R₈可相同或不同，选自-OH、-H、烯丙基、
$Y_1\left[\begin{array}{c}
R_1 \\
R_1 \\
R_1 \\
\end{array}\right]_{n_3} O - Y_2 - R_6$

$\text{OR}_6 \text{所组成的族群, 且至少有一}$

个 R_6 为烯丙基或

$\left(\text{CH}_2\right)_6 \quad \left(\text{CH}_2\right)_{10}$

[0039] R_6 为

[0040]

$\begin{array}{c}
\text{CH}_2 - \text{CH}_2 - \text{CH} - \text{CH}_3 \\
\text{CH}_3 \\
\text{C}_2\text{H}_5 \\
\text{C}_2\text{H}_5 \\
\text{SO}_2 \\
\text{SO}_2 \\
\text{O} - \text{SO}_2 - \text{O} - \text{C}_6\text{H}_4
\end{array}$
[0042] \(R_{10} \) 可相同或不同，选自 -OH、-H、烯丙基、碳数为 1～3 的烷基、-OR、

[0043]

\[
\begin{array}{c}
\text{Y}_1 \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}
\]

且至少有一个 \(R_{10} \) 为

[0044]

[0045] \(Y_3 \) 选自 -H、烷基和 \(\text{R} \) 所组成的族群；

[0046] \(Y_3 \) 为苯基；

[0047] \(n_3 \) 为 83～167 的整数，\(n_2 \)、\(n_3 \) 为整数且满足 \(15 < n_2 + n_3 < 50 \)；

[0048] 所述具有化学式 (A) 结构的聚苯醚树脂的数均分子量大于 10000。

[0049] 具有化学式 (A) 结构的聚苯醚树脂、具有化学式 (B) 结构的含有烯丙基的酚类化合物和引发剂 C 的质量之比为 100: (4～12): (4～12)，所述质量比如为 100:4:5.
具有化学式 (B) 结构的含有烯丙基的酚类化合物与具有化学式 (E) 结构的双马来酰亚胺化合物的物质的量之比为 1:0.8～1:4，例如 1:0.91:1.21.1.51.1.81:2.11.2.41:2.91:1.321.351.38，优选 1:1.2～1:4，进一步优选 1:1.5～1:3.5。

所述溶剂为甲苯、二甲苯或三甲苯中的任意一种或者至少两种的混合物。

所述混合物例如甲苯和二甲苯的混合物，甲苯和三甲苯的混合物，二甲苯和三甲苯的混合物，甲苯、二甲苯和三甲苯的混合物。

所述溶剂与具有化学式 (A) 结构的聚丙烯树脂的质量比为 1:1～10:1，例如 1.5:1.21.2.5:1.31.3.5:1.41.4.5:1.51.5:1.61.6.5:1.71.7.5:1.81.8.5:1.91.9.5:1，优选 1:8.1～9.2:1，进一步优选 2:3.1～8.7:1。

所述 T1 为 50～120℃，例如 55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃，优选 58～112℃，进一步优选 67～104℃。

所述 T1 为 120～160℃，例如 123℃、128℃、131℃、134℃、137℃、143℃、147℃、145℃、149℃、152℃、155℃、158℃、159℃，优选 120～155℃，进一步优选 120～150℃。

所述反应时间 t1 为 1～10 小时，例如 1.5 小时、2 小时、2.5 小时、3 小时、3.5 小时、4 小时、4.5 小时、5 小时、5.5 小时、6 小时、6.5 小时、7 小时、7.5 小时、8 小时、8.5 小时、9 小时、9.5 小时，优选 1.4～9.4 小时，进一步优选 1.8～8.8 小时。

所述反应时间 t2 为 0.3～10 小时，例如 0.5 小时、1.2 小时、1.8 小时、2.3 小时、2.8 小时、3.2 小时、3.5 小时、4.1 小时、4.6 小时、5 小时、5.5 小时、6 小时、6.5 小时、7 小时、7.5 小时、8 小时、8.5 小时、9 小时、9.6 小时，优选 0.6～9.5 小时，进一步优选 1～9 小时。

所述引发剂为自由基引发剂，选自有机过氧化物或/和偶氮类引发剂。

所述有机过氧化物选自 BPO、DCP、过氧-3,5,5-三甲基己酸叔戊酯、1,1-双（叔丁基过氧）环己烷、1,1-双（叔丁基过氧）-3,3,5-三甲基环己烷、2,5-二甲基-2,5-二（叔丁基过氧）-3-己炔、单过氧马来酸叔丁酯、单过氧邻苯二甲酸叔丁酯、2,5-二甲基-2,5-双（苯甲酰过氧）乙烷、过氧重碳酸二（2-苯氧乙基）酯、过氧化二琥珀酸、3,3,6,6,9,9-六甲基-1,2,4,5-四氧环壬烷、过氧苯甲酸叔戊酯、4,4-双（叔丁基过氧）戊酸正丁酯、叔丁基过氧化氢、叔丁基过氧化氢+叔丁基过氧化物、过氧化苯甲酸叔丁酯+过氧化二苯甲酸叔丁酯-1,1-双（叔丁基过氧）-3,3,5-三甲基环己烷、3,3-双（叔丁基过氧）丁酸乙酯+过氧化二（2-苯基己酸叔丁酯、2,5-二甲基-2,5-双（叔丁基过氧）-3-叔丁基过氧-3-苯基苯并（C）咔喃酮、过氧硬脂酸甲酸叔丁酯二（2-叔丁基过氧化环己基）苯、过氧化二月桂酰、枯基过氧化氢（过氧化氢异丙苯）、过氧化二叔戊基（二叔戊基过氧化物）、过氧化二叔丁基（二叔丁基过氧化物）、过氧重碳酸二环己酯、过氧重碳酸二环己酯、过氧二乙基乙酸叔丁酯、过氧化二（4-叔丁基环己基）酯、过氧化二吉酸、过氧化二正辛酸、过氧化二乙基己酸叔戊酯。
过氧新癸酸叔丁酯，1,1,3,3-四甲基过氧-2-乙基己酸丁酯，过氧重碳酸二（十六烷基）酯，过氧重碳酸二肉豆蔻酯（过氧重碳酸二（十四烷基）酯）或过氧化二正壬酰中的任意一种或者至少两种的混合物。所述混合物例如 BPO 和 DCP 的混合物，过氧-3,5,5-三甲基乙酸叔戊酯和1,1-双（叔丁基过氧）环己烷的混合物，1,1-双（叔丁基过氧）-3,3,5-三甲基环己烷和2,5-二甲基-2,5-双（叔丁基过氧）-3-己烷的混合物，单过氧马来酸叔丁酯和单过氧邻苯二甲酸叔丁酯的混合物，2,5-二甲基-2,5-双（苯甲酰过氧）己烷，过氧重碳酸二（2-苯氧乙基）酯和过氧化三琥珀酸的混合物，3,3,6,6,9-六甲基-1,2,4,5-四氧环壬烷，过氧苯甲酸叔戊酯，4,4-双（叔丁基过氧）戊酸正丁酯和叔丁基过氧化氢的混合物，叔丁基过氧化氢-β-二丁基过氧化物，过氧苯甲酸叔丁酯，过氧-2-苯甲基甲酸叔丁酯，1,1-双（叔丁基过氧）-3,3,5-三甲基环己烷和3,3-双（叔丁基过氧）丁酸乙酯的混合物，过氧-2-乙基己基酸叔丁酯，2,5-二甲基-2,5-双（叔丁基过氧）己烷，过氧化氢氯烷，3-叔丁基过氧-3-苯基苯并（C）呋喃酮和过氧硬脂酸叔丁酯的混合物，（2-叔丁基过氧化丙基）苯，过氧化-1-羟基环己基，过氧化二月桂酸，5-羟基环己基（过氧化环己基）和过氧化二月桂酸（二叔戊基过氧化物）的混合物，过氧化二丁基（二叔丁基过氧化物，过氧重碳酸二环己基，过氧重碳酸二正丙酯，过氧乙基乙酸叔丁酯和过氧-2-乙基己酸丁酯的混合物，过氧重碳酸二乙基酯，过氧-2-乙基己酸叔丁酯和过氧新癸酸叔丁酯，1,1,3,3-四甲基过氧-2-乙基己酸丁酯，过氧重碳酸二（十六烷基）酯，过氧重碳酸二肉豆蔻酯（过氧重碳酸二（十四烷基）酯）和过氧化二正壬酰的混合物。

[0060]所述偶氮类引发剂选自4,6-三叔丁基苯氧自由基，偶氮二异丁腈，偶氮二异庚腈或偶氮二异戊腈中的任意一种或者至少两种的混合物。所述混合物例如偶氮二异戊腈和偶氮二异戊腈的混合物，偶氮二异丁腈和4,6-三叔丁基苯氧自由基的混合物，偶氮二异丁腈和偶氮二异丁腈的混合物，偶氮二异戊腈和4,6-三叔丁基苯氧自由基的混合物，偶氮二异庚腈，偶氮二异戊腈和偶氮二异丁腈的混合物，偶氮二异丁腈4,6-三叔丁基苯氧自由基和偶氮二异庚腈的混合物。

[0061]本发明的目的之三在于提供一种聚苯醚树脂组合物，所述聚苯醚树脂组合物包括如上所述的具有化学式（F）结构的可交联型聚苯醚树脂。

[0062]所属领域的技术人员根据现有技术中所公开的聚苯醚树脂组合物，可自行选择聚苯醚树脂组合物的组成。例如，所述聚苯醚树脂组合物还可以包括环氧树脂、胺类固化剂、固化促进剂、无机填料、阻燃剂等。

[0063]所述环氧树脂选自苯酚酚醛型环氧、甲基苯酚酚醛型环氧、双酚 A 型酚醛环氧、双环戊二烯环氧、联苯环氧、萘系环氧树脂、含磷环氧树脂、含硅环氧树脂、缩水甘油胺型环氧树脂、脂环族类环氧树脂，聚乙二醇型环氧树脂，四苯酚乙烷缩水甘油醚或三酚甲烷型环氧树脂中的一种或者至少两种的混合物。

[0064]所述胺类固化剂选自芳香胺固化剂，优选二氨基二苯醚、二氨基二苯砜、二氨基二苯甲烷、间苯二甲酰或联苯胺中任意一种或者至少两种的混合物。

[0065]所述固化促进剂选自咪唑类化合物，优选2-甲基咪唑、2-乙基-4-甲基咪唑、
2-苯基咪唑或2-十一烷基咪唑中的任意一种或者至少两种的混合物。

【0066】所述无机填料选自氢氧化铝、勃姆石、二氧化硅、滑石粉、云母、硫酸钡、立德粉、碳酸钙、硅灰石、高岭土、水镁石、硅藻土、膨润土、或浮石粉中的任意一种或者至少两种的混合物。

【0067】所述阻燃剂选自卤系阻燃剂、磷系阻燃剂或无机阻燃剂中的一种或者至少两种的组合。

【0068】作为本发明所述聚苯醚树脂组合物之一的制备方法，可以通过公知的方法配伍、搅拌、混合所述的可交联性聚苯醚树脂、固化剂、环氧树脂、填料等进行搅拌制备得到。

【0069】本发明的目的之一在于提供一种树脂胶液，其是将如上所述的聚苯醚树脂组合物溶解或分散在溶剂中得到。

【0070】作为本发明中的溶剂，没有特别限定，作为具体例，可以举出甲醇、乙醇、丁醇等醇类、乙酸丁酯、丁基溶剂、乙二醇-甲醚、卡必醇、丁基卡必醇等醚类，丙酮、丁酮、甲基乙基酮、甲基异丁基酮、环己酮等酮类，甲苯、二甲苯、均三甲苯等芳香族烃类，乙酸乙基乙酸酯、醋酸乙酯等酯类，N, N-甲基甲酰胺、N, N-二甲基乙酰胺、N, N-甲基-2-吡咯烷酮等含氮类溶剂。上述溶剂可以单独使用一种，也可以两种或者两种以上混合使用，优选甲苯、二甲苯、均三甲苯等芳香族烃类溶剂与丙酮、丁酮、甲基乙基酮、甲基异丁基酮、环己酮等酮类溶剂混合使用。所述溶剂的使用量本领域技术人员可以根据自己的经验来选择，使得树脂胶液达到适用于使用的粘度即可。

【0071】在如上所述的树脂组合物溶解或分散在溶剂的过程中，可以添加乳化剂。通过乳化剂进行分散，可以使无机填料等在胶液中分散均匀。

【0072】本发明的目的之五在于提供一种预浸料，其是将增强材料浸润如上所述的树脂胶液后，干燥得到。

【0073】所述增强材料如碳纤维、玻璃纤维布或芳族聚酰胺纤维及无纺布。碳纤维有日本东丽公司的T300、T700、T800，芳族聚酰胺纤维如Kevlar纤维，示例性的玻璃纤维布如7628玻璃布、2116玻璃布。

【0074】本发明的目的之六在于提供一种覆铜板，所述覆铜板含有至少一张如上所述的预浸料。覆铜板的制备为已有技术，所述领域的技术人员完全有能力根据现有技术中所公开的覆铜板的制备技术，制备得到本发明所述覆铜板。将该覆铜板应用于印刷电路板的制备时，具有优越的电气性能，其符合高速化和高热化的需求。

【0075】本发明的目的之七在于提供一种绝缘板，所述绝缘板含有至少一张如上所述的预浸料。

【0076】本发明的目的之八在于提供一种高频电路基板，所述高频电路基板含有至少一张如上所述的预浸料。

【0077】与现有技术相比，本发明具有如下有益效果：

【0078】（1）本发明将大分子量的聚苯醚树脂小分子化，并且将热塑性聚苯醚改性为端基含有双键的热固性树脂，得以改进聚苯醚与环氧树脂的相容性以及降低聚苯醚树脂的固化反应温度，在工业生产中具有较大应用价值；

【0079】（2）采用本发明所述的可交联性聚苯醚树脂的制备的高频电路基板玻璃化转变温度高、耐热性好、吸水率低、层间粘合力高、介电性能优异，非常适合制备高频电子设备的电路
具体实施方式

[0080] 为更好地说明本发明，便于理解本发明的技术方案，本发明的典型但非限制性的实施例如下：

[0081] (1) PPO 的再分配

[0082] 将 400g 甲苯于装有搅拌器、冷凝回流管、温度计的三颈瓶中搅拌加热至 102℃，然后加入 100g 数均分子量为 20000 的 PPO 树脂，当变为均一相后加入 6g 二烯丙基双酚 A(DABPA)，搅拌 30min，然后加入溶于甲苯中的 7.5g 过氧化异丁酸叔丁酯，并保持温度为 102℃，反应 180min。

[0083] (2) 改性的 PPO 与 BMI 反应

[0084] 在 (1) 中反应产物升温到 140 摄氏度，加入 13.9g 二苯甲烷型 BMI，待 BMI 溶解后反应 5h 后停止反应，倒出，冷却。

[0085] 重复以上操作，改变各种反应物的种类及比例，改变反应温度和反应时间，以及改变自由基引发剂的种类可以得到不同的可交联性的 PPO 树脂。将以上得到的 100g PPO 树脂与 200g 溴化环氧树脂，16g 固化剂 DDS，1.25g 固化促进剂 2-甲基唑，100g 硅油消泡剂、180g 溶剂二甲苯混合均匀，上胶，烘片后得到预浸料，两面覆铜箔固化后得到覆铜板，覆铜板性能测试结果如表 1 和表 2 所示：

[0086] 表 1

[0087]
说明书

实施例

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料</td>
<td>聚苯醚</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>烷基苯酚类化合物</td>
<td>2-甲基-6-烷基苯酚/12</td>
<td>DABPA/10</td>
<td>DABPA/7.5</td>
<td>DABPA/6</td>
<td>DABPA/4</td>
</tr>
<tr>
<td>引发剂</td>
<td>过氧化双(2,4-二氯苯甲酰)</td>
<td>过氧化2,4-二氯苯甲酰</td>
<td>过氧化亚乙酰</td>
<td>1,1-二叔丁基过氧化环己烷/7.5</td>
<td>BPO/6</td>
<td>BPO/4</td>
</tr>
<tr>
<td>BMI</td>
<td>34.8</td>
<td>17.4</td>
<td>15.7</td>
<td>13.9</td>
<td>17.4</td>
<td>18.6</td>
</tr>
<tr>
<td>二苯甲烷</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>400</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>反应条件</td>
<td>再分配温度 T_1 和时间 t_1(℃/h)</td>
<td>50/10</td>
<td>80/8</td>
<td>90/6</td>
<td>120/1</td>
<td>92/4</td>
</tr>
<tr>
<td></td>
<td>BMI 反应温度 T_2 和时间 t_2 (℃/h)</td>
<td>120/10</td>
<td>125/8</td>
<td>135/6</td>
<td>140/5</td>
<td>150/3</td>
</tr>
<tr>
<td>可交联性聚苯醚</td>
<td>摩尔数平均分子量 M_n</td>
<td>2260</td>
<td>2630</td>
<td>3380</td>
<td>3690</td>
<td>4380</td>
</tr>
<tr>
<td>固化条件</td>
<td>温度/时间 (℃/min)</td>
<td>190/120</td>
<td>190/120</td>
<td>190/120</td>
<td>190/120</td>
<td>190/120</td>
</tr>
<tr>
<td>板材性能</td>
<td>Dk/Df (1GHz)</td>
<td>4.05/0.0094</td>
<td>3.95/0.0087</td>
<td>3.78/0.0057</td>
<td>3.81/0.0063</td>
<td>3.70/0.0054</td>
</tr>
<tr>
<td></td>
<td>PCT/2h</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>T_g(DSC)</td>
<td>165.7</td>
<td>169.1</td>
<td>178.4</td>
<td>185.8</td>
<td>185.7</td>
</tr>
</tbody>
</table>

[0088]

<table>
<thead>
<tr>
<th></th>
<th>173.5</th>
<th>178.5</th>
<th>190.2</th>
<th>202.5</th>
<th>191.5</th>
<th>189.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_d(5% loss)</td>
<td>352.3</td>
<td>358.4</td>
<td>360.2</td>
<td>361.2</td>
<td>363.2</td>
<td>363.2</td>
</tr>
<tr>
<td>层间粘合力</td>
<td>1.15-2.00</td>
<td>1.25-2.17</td>
<td>1.05-1.87</td>
<td>1.12-2.05</td>
<td>1.32-2.28</td>
<td>1.32-2.28</td>
</tr>
<tr>
<td>表面硬度</td>
<td>1.65</td>
<td>1.61</td>
<td>1.63</td>
<td>1.51</td>
<td>1.43</td>
<td>1.47</td>
</tr>
<tr>
<td>吸水率%</td>
<td>0.015</td>
<td>0.011</td>
<td>0.010</td>
<td>0.010</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>T_288/min</td>
<td>29.2</td>
<td>30.6</td>
<td>40.1</td>
<td>39.5</td>
<td>43.2</td>
<td>35.8</td>
</tr>
</tbody>
</table>

[0089] 表 2

[0090]
<table>
<thead>
<tr>
<th></th>
<th>对比例</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>原料</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原料聚苯醚</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>DABPA</td>
<td>20</td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>双酚 A</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>6</td>
</tr>
<tr>
<td>BPO</td>
<td>15</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>二甲苯</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>反应条件</td>
<td>再分配温度 T1 和时间 t1 (℃/h)</td>
<td>70/10</td>
<td>90/5</td>
<td>100/2</td>
</tr>
<tr>
<td>BMI 反应温度 T2 和时间 t2 (℃/h)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>固化程序</td>
<td>温度/时间 (℃/min)</td>
<td>200/200</td>
<td>200/200</td>
<td>200/200</td>
</tr>
<tr>
<td>板材性能</td>
<td>Dk/DF (1GHz)</td>
<td>4.13/0.011</td>
<td>3.95/0.010</td>
<td>3.90/0.009</td>
</tr>
<tr>
<td>PCT/2h</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>Td(DSC)</td>
<td>147.8</td>
<td>146.8</td>
<td>147.8</td>
<td>149.3</td>
</tr>
<tr>
<td>Td(DMA)</td>
<td>157.7</td>
<td>164.3</td>
<td>169.2</td>
<td>170.9</td>
</tr>
<tr>
<td>Td (5% loss)</td>
<td>337.2</td>
<td>335.1</td>
<td>336.1</td>
<td>332.1</td>
</tr>
<tr>
<td>层间粘合度</td>
<td>1.28-2.13</td>
<td>1.44-1.69</td>
<td>1.23-1.73</td>
<td>0.88-1.30</td>
</tr>
<tr>
<td>耐破强度</td>
<td>1.43</td>
<td>1.46</td>
<td>1.66</td>
<td>0.86</td>
</tr>
<tr>
<td>吸水率/%</td>
<td>0.09</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>T288/min</td>
<td>10.8</td>
<td>15.9</td>
<td>18.0</td>
<td>9.7</td>
</tr>
</tbody>
</table>

[0091] 应该注意到，并理解，在不脱离后附的权利要求所要求的本发明的精神和范围的情况下，能够对上述详细描述的本发明做各种修改和改进。因此，要求保护的技术方案的范围不受所给出的任何特定示范教导的限制。

[0092] 申请人声明，本发明通过上述实施例来说明本发明的详细方法，但本发明并不局限于上述详细方法，即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了，对本发明的任何改进，对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等，均落在本发明的保护范围和公开范围之内。