Title of the invention: Racing vehicle game
Abstract Title: Means to control the position of a vehicle on a track

Apparatus and a method of controlling the position of a vehicle on a track comprising a measurement sensor for measuring the lateral position of the vehicle on a track, a subtractor to produce an error signal based on the difference from the actual position to the desired track position, a second measurement sensor to measure the angle of the vehicle relative to the longitudinal axis of the track wherein a controller steers a vehicle based on the two measurements. An optical sensor may be used to measure position on a track with shaded greyscale or infrared markings. A velocity sensor may also be used to control the steering. Measurement of the angle of the vehicle may be performed by measurements of the position of the vehicle on the track at its front and rear.

Fig. 2
Racing Vehicle Game

The present invention relates to the field of racing vehicle games. More specifically, the present invention concerns methods for controlling the position of a vehicle on a track so as to provide a slotless racing vehicle game.

Traditionally, racing vehicle games involve the racing of model slot cars. Each car comprises a guide peg (or swiveling blade) that is configured to locate within a guide slot within a track that acts to define a lane for the car. Power for the car’s low-voltage electric motor is carried by metal strips located next to the slot and is picked up by contacts located at the front of the car alongside the guide peg. The voltage used to power the car can be varied by an operator changing a resistance value within a corresponding hand controller.

It is known to also incorporate optional features such as braking elements, electronic control devices and/or traction magnets to assist in the operation of the slot car. More recently, digital technology has been developed which allows for more than one slot car to share a lane.
The challenge in racing slot cars comes in the taking of curves and other obstacles at the highest speed that will not cause the car to lose its grip and spin sideways, or to “de-slot”, leaving the track all together. Although, the actual model cars and tracks can accurately replicate corresponding full scale vehicles and racing circuits the realism of racing model slot cars is severely limited by the inflexibility of the guide peg and the slots. Thus, unlike normal racing, variable positions across the width of a track cannot be adopted by the operator of the model car in order to gain a tactical advantage or to protect a racing line. In addition, there is no facility with traditional slotted tracks to incorporate additional racing hazards such as oil slicks, gravel pits or variable weather conditions.

It is recognised in the present invention that considerable advantage is to be gained in the provision of a slotless racing vehicle game.

It is therefore an object of an aspect of the present invention to obviate or at least mitigate the foregoing disadvantages of the racing vehicle games known in the art.

Summary of Invention

According to a first aspect of the present invention there is provided a method for controlling the position of a vehicle on a track wherein the method comprises the steps of:
- taking a first measurement of a lateral position of the vehicle on the track;
- comparing the first measured lateral position with a desired lateral position for the vehicle so as to produce an error signal;
- generating a first input signal for a steering servo of the vehicle so as to minimise the error signal;
- measuring the speed of the vehicle;
- employing the measured speed so as to compensate for speed dependent changes in a response of the vehicle to an output signal from the steering servo.

Preferable the step of taking the first measurement is carried out at the front of the vehicle. This step may comprise employing an optical sensor so as to measure light reflected from the track.

The step of measuring the speed of the vehicle may comprise measuring the back emf generated by a motor employed to drive the vehicle.
The step of compensating for speed dependent changes in the response of the vehicle comprises varying the gain of a controller that generates the first input signal for the steering servo.

It is preferable for the gain of the controller to be varied with the reciprocal of the square of the speed of the vehicle. In an alternative embodiment the gain of the controller is varied with the reciprocal of the square of the speed of the vehicle when the speed of the vehicle is above a predetermined value.

The method for controlling the position of the vehicle on the track may further comprise the step of measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track.

The method for controlling the position of the vehicle on the track may further comprise the step generating a second input signal for the steering servo so as to minimise the measured angle.

The step of measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track may comprise taking a second measurement of a lateral position of the vehicle on the track.

Preferable the step of taking the second measurement is carried out at the rear of the vehicle. This step may comprise employing an optical sensor so as to measure light reflected from the track.

The step of measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track may further comprise taking the second measurement of the lateral position of the vehicle on the track from the first measurement of the lateral position of the vehicle on the track.

According to a second aspect of the present invention there is provided a method for controlling the position of a vehicle on a track wherein the method comprises the steps of:

- taking a first measurement of a lateral position of the vehicle on the track;
- comparing the first measured lateral position with a desired lateral position for the vehicle so as to produce an error signal;
- generating a first input signal for a steering servo of the vehicle so as to minimise the error signal;
- measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track; and
- generating a second input signal for the steering servo so as to minimise the measured angle.

Preferable the step of taking the first measurement is carried out at the front of the vehicle. This step may comprise employing an optical sensor so as to measure light reflected from the track.

The step of measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track may comprise taking a second measurement of a lateral position of the vehicle on the track.

Preferable the step of taking the second measurement is carried out at the rear of the vehicle. This step may comprise employing an optical sensor so as to measure light reflected from the track.

The step of measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track may further comprise taking the second measurement of the lateral position of the vehicle on the track from the first measurement of the lateral position of the vehicle on the track.

The method for controlling the position of the vehicle on the track may further comprise the step of measuring the speed of the vehicle.

Preferably the measured speed is employed to compensate for speed dependent changes in a response of the vehicle to an output signal from the steering servo.

The step of compensating for speed dependent changes in the response of the vehicle comprises varying the gain of a controller that generates the first input signal for the steering servo. This step may further comprise varying the gain of a controller that generates the second input signal for the steering servo.
It is preferable for the gain of feedback controller to be varied with the reciprocal of the speed of the vehicle. In an alternative embodiment the gain of a controller is varied with the reciprocal of the speed of the vehicle when the speed of the vehicle is above a predetermined value.

Embodiments of the second aspect of the invention may comprise features to implement the preferred or optional features of the first aspect of the invention or vice versa.

According to a third aspect of the present invention there is provided a method for controlling the position of a vehicle on a track wherein the method comprises the steps of:
- taking a first measurement of a lateral position of the vehicle on the track;
- comparing the first measured lateral position with a desired lateral position for the vehicle so as to produce an error signal;
- generating a first input signal for a steering servo of the vehicle so as to minimise the error signal;
- measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track;
- generating a second input signal for the steering servo so as to minimise the measured angle;
- measuring the speed of the vehicle; and
- employing the measured speed so as to compensate for speed dependent changes in a response of the vehicle to an output signal from the steering servo.

Embodiments of the third aspect of the invention may comprise features to implement the preferred or optional features of the first or second aspects of the invention or vice versa.

According to a fourth aspect of the present invention there is provided a racing track suitable for racing one or more vehicles wherein the racing track comprises an optically graded lateral profile.

Preferably the optically graded lateral profile moves from regions of low reflectivity at the inside of the track to regions of high reflectivity towards at the outside of the track.
The optically graded lateral profile may be greyscale, coloured or formed from an non-visible reflecting material e.g. an infra-red reflecting material.

The racing track may comprise paper with the optically graded lateral profile printed thereon. As a result the racing track can be rolled up or folded for storage or transport purposes and then simply rolled out or unfolded as and when required.

The track may comprise separate track sections adapted to be fitted together. Such an embodiment allows for racing tracks of different designs to be set up by a user through the reconfiguration of the track sections.

The track may further comprise one or more markings. The markings may be designed to be read by an optical sensor, or to obscure the reading process of an optical sensor. In this way the markings facilitate additional information e.g. lap times; to simulate hazards e.g. oil slicks, track debris, gravel pits; or to simulate changing handling conditions requiring a vehicle to make a pit stop e.g. a vehicle puncture or changing weather conditions.

According to a fifth aspect of the present invention there is provided a control circuit for controlling the position of a vehicle on a track wherein the control circuit comprises:

- a measurement sensor for measuring a first lateral position of the vehicle on the track;
- a subtractor employed to produce an error signal by comparing the first measured lateral position with a desired lateral position for the vehicle;
- a controller for generating a first input signal for a steering servo of the vehicle so as to minimise the error signal;
- velocity sensor for measuring the speed of the vehicle;
wherein the controller provides a means for employing the measured speed so as to compensate for speed dependent changes in a response of the vehicle to an output signal from the steering servo.

Preferably the control circuit further comprises a second measurement sensor for measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track. In this embodiment the controller also generates a second input signal for the steering servo so as to minimise the measured angle.
Embodiments of the fifth aspect of the invention may comprise features to implement the preferred or optional features of the first and second aspects of the invention or vice versa.

According to a sixth aspect of the present invention there is provided a control circuit for controlling the position of a vehicle on a track wherein the control circuit comprises:
- a measurement sensor for measuring a first lateral position of the vehicle on the track;
- a subtractor employed to produce an error signal by comparing the first measured lateral position with a desired lateral position for the vehicle;
- a controller for generating a first input signal for a steering servo of the vehicle so as to minimise the error signal;
- a second measurement sensor for measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track; and
- wherein the controller generates a second input signal for the steering servo so as to minimise the measured angle.

Preferably the control circuit further comprises a velocity sensor for measuring the speed of the vehicle. In this embodiment the controller also provides a means for employing the measured speed so as to compensate for speed dependent changes in a response of the vehicle to an output signal from the steering servo.

Embodiments of the sixth aspect of the invention may comprise features to implement the preferred or optional features of the first and second aspects of the invention or vice versa.

According to a seventh aspect of the present invention there is provide a racing vehicle wherein the racing vehicle comprises a control circuit in accordance with the fifth aspect of the present invention.

According to an eighth aspect of the present invention there is provide a racing vehicle wherein the racing vehicle comprises a control circuit in accordance with the sixth aspect of the present invention.
Brief Description of Drawings

Aspects and advantages of the present invention will become apparent upon reading the following detailed description and upon reference to the following drawings in which:

Figure 1 presents a schematic representation of a vehicle in accordance with an embodiment of the present invention;

Figure 2 presents a block diagram showing the response of the vehicle of Figure 1 to steering commands;

Figure 3 presents:
(a) a schematic representation of an optical sensor employed by the vehicle of Figure 1; and
(b) an electronic circuit of the optical sensor;

Figure 4 presents a plan view of an example racing track for the vehicle of Figure 1;

Figure 5 presents a block diagram showing a method employed to control the position of the vehicle of Figure 1 across the width of the track of Figure 4;

Figure 6 presents a schematic representation of a vehicle in accordance with an alternative embodiment of the present invention;

Figure 7 presents a block diagram showing the response of the vehicle of Figure 6 to steering commands;

Figure 8 presents:
(a) a first; and
(b) a second block diagram showing a method employed to control the position of the vehicle of Figure 6 across the width of the track of Figure 4;

Figure 9 shows a simplified block diagram of the method employed to control the position of the vehicle of Figure 6 across the width of the track of Figure 4.
Figure 10 presents a schematic representation of a vehicle in accordance with an alternative embodiment of the present invention;

Figure 11 presents a block diagram showing a first method employed to control the position of the vehicle of Figure 10 across the width of the track of Figure 4; and

Figure 12 presents a block diagram showing a second method employed to control the position of the vehicle of Figure 10 across the width of the track of Figure 4.

**Detailed Description**

Figure 1 presents a schematic representation of a vehicle 1 in accordance with an embodiment of the present invention. The vehicle 1 is shown on a racing track 2, further details of the track 2 being described below with reference to Figure 4.

The vehicle 1 can be seen to comprise a main body 3 at the front of which is mounted a set of steerable wheels 4 and to the rear of which is mounted a set of non-steerable wheels 5. Power for the vehicle is provided via a dc electric motor 6 configured to drive the non-steerable wheels 5. A first controller unit 7, for example a proportional–integral–derivative controller (PID controller), provides a means for an operator to remotely control the vehicle 1. A first optical sensor 8 is positioned at the front of the vehicle 1 in order to provide a means for determining the position of the vehicle 1 on the track 2. A velocity sensor 9 is located at the non-steerable wheels 5 and is employed to provide a means for measuring the speed of the vehicle 1. The steering angle (sa), and thus the direction of travel of the vehicle 1, is controlled by a steering servo (s) 10.

The way in which the position of the front of the vehicle (fp) across the track 2 is affected by the input signal 11 to the steering servo (s) 10 is represented by the block diagram 12 of Figure 2. In particular, the input signal 11 to the system (Input) is the signal fed to the steering servo (s) 10 which may take a number of forms, for example an analogue voltage, a pulse of certain width, or a binary number within a microcontroller. The output signal 13 from the steering servo (s) 10 represents the steering angle (sa) which results.
When an input signal 11 of a certain amplitude is applied to the steering servo (s) 10 it causes the steerable wheels 4 to rotate to an angle relative to the body 3 of the vehicle 1. Thus, while the vehicle 1 is moving forward at a certain speed (speed), the angle of the body 3 of the vehicle 1 to the track 2, the body angle (ba), will continually increase. It will be appreciated that the longer the wheelbase (wb) of the vehicle 1, the smaller the effect of the steering angle (sa) will be. Furthermore, the greater the speed at which the vehicle 1 is travelling the faster the body angle will change for a given steering angle (sa). These aspects are represented by the various blocks presented in Figure 2, as described in further detail below.

The output of the first sine block 14 is the sine of the input to that block, in other words it is the sine of the steering angle (sa). The block marked 1/wb 15 shows that the effect is inversely proportional to the wheelbase (wb) of the vehicle 1. The fact that the steering angle (sa) is proportional to the speed of the vehicle 1 is shown by the first multiplier block 16, with speed being provided as a secondary input. Finally, the fact that a fixed steering angle (sa) causes the body angle (ba) to continually increase, indicates the presence of a time integral action which is represented by the presence of the first, time integral block 17.

Once the input signal 11 has returned to zero the steerable wheels 4 will once more be aligned with the body 3 and so the body angle (ba) will remain at its current value. This non-zero value of the body angle (ba) will, however, cause the position of the front of the vehicle (fp) to continually increase. The rate of increase is once again proportional to speed, and again it is the sine of the body angle (ba) that is significant. These effects are shown by the remaining blocks of the block diagram 12 of Figure 2, namely the second sine block 18, the second multiplier block 19 and the second, time integral block 20.

Further details of the optical sensor 8 employed by the vehicle 1 are presented in Figure 3. In particular, Figure 3(a) presents a schematic representation of the optical sensor 8 while Figure 3(b) presents an electrical circuit for this component. The optical sensor 8 can be seen to comprise a light source 21 in the form of an LED and a detector 22 in the form of a phototransistor. Light 23 emitted by the light source 21 is initially directed towards the track 2. Following reflection from the track 2 the light 23 is then incident upon the detector 22. As explained in further detail below, the level of the light detected provides a diagnostic for measuring the position of the vehicle 1 across the width of the track 2.
The following method may be employed to compensate the optical sensor 8 for the effects of background light. The light source 21 may be turned off so as to allow a reading to be taken by detector 22. This reading can be accounted for by the presence of ambient light. By subtracting this reading from those recorded during the course of a race allows for the effects of ambient light to be removed from the vehicle control systems described in further detail below.

The velocity sensor 9 provides a means for measuring the speed of the vehicle 1 by employing a technique whereby the back emf of the dc electric motor 6 is measured. During normal operation the dc electric motor 6 draws electrical energy and converts it into mechanical energy in order to drive the vehicle 1. When the power to the dc electric motor 6 is interrupted the dc electric motor 6 acts as an electrical generator and the above process is reversed i.e. the dc electric motor 6 takes mechanical energy and converts it into electrical energy. The voltage observed when the dc electric motor 6 is operating as an electrical generator is directly proportional to the speed of the dc electric motor 6. Thus by periodically interrupting the electrical supply to the dc electric motor 6 (typically for a period of a few milliseconds) the velocity sensor 9 can be used to measure the speed of the vehicle 1 without significant disruption to the drive of the vehicle 1.

A remote control unit 24 provides an operator with the means for generating a command signal 25 for controlling the speed and lateral position of the vehicle 1 on the track 2. In particular, the remote control unit 24 comprises a throttle 26 which provides a means for generating a speed control component for the command signal 25 and a steering wheel 27, or joystick, which provides a means for generating a track position component for the command signal.

Racing Track

A plan view of an example racing track 2 for the vehicle 1 is presented in Figure 4. Reference to a longitudinal axis 28 of the track relates to an axis which extends around the length of the track, as illustrated by the dashed line presented in Figure 4, while reference to lateral movement of a vehicle 1 on the track 2 refers to movement substantially perpendicular to the longitudinal axis 28.
The width of the track 2 is formed so as to exhibit an optically graded lateral profile. In the presently described example the optically graded lateral profile is a greyscale profile (i.e. black to white) from the inside of the track 2 to the outside, so as to provide corresponding regions of relatively low reflectivity to high reflectivity for the light source 21 of the optical sensor 8. In this way the level of light 23 reflected onto the detector 22 from the light source 21 provides a diagnostic for determining the lateral position of the front of the vehicle (fp) on the track 2.

It will be appreciated by those skilled in the art that the racing track 2 need not necessarily comprise a greyscale, optically graded lateral profile. The track may be formed from any suitable colour providing that corresponding regions of relatively low reflectivity to high reflectivity for the optical sensor 8 can be formed. Furthermore, the track 2 need not comprise a visible colour at all, but may instead be formed from an infra red reflecting material with a corresponding infra red light source 21 being employed within the optical sensor 8.

It is preferable for the track 2 to be formed by a printing process whereby appropriate ink is applied to a thin paper. As a result the racing track 2 can be rolled up or folded for storage or transport purposes and then simply rolled out or unfolded as and when required.

The track 2 may be printed on separate paper sections and then laid out as appropriate when required for a race to take place. Such an embodiment would allow for racing tracks 2 of different designs to be set up by a user through the reconfiguration of the track sections.

It will also be appreciated by those skilled in the art that additional markings 29 may be incorporated within the track 2. These additional markings 29 may be designed to be read by the optical sensor 8, or to obscure the reading process of the optical sensor 8, so as to facilitate additional information e.g. lap timings; to simulate hazards e.g. oil slicks, track debris, gravel pits; or to simulate changing handling conditions requiring a vehicle to make a pit stop e.g. a vehicle puncture or changing weather conditions.
Velocity Sensor Control System

A control system 30 for controlling the position of the vehicle 1 on the track 2 will now be described with reference to the block diagram of Figure 5 and for a vehicle configured to travel anti-clockwise around the track 2.

The controller unit 7 is employed to receive the command signal 25 from the remote control unit 24. The speed control component of the command signal 25 is used to set the speed of operation of the dc electric motor 6 and hence the speed of the vehicle 1 while the track position component is employed by the steering servo (s) to set a desired lateral position for the first optical sensor 8 upon the track 2. For example, if the steering wheel 27 is in its zero position then the desired track position for the vehicle 1 is the centre of the track 2. If the steering wheel 27 is turned anticlockwise then a negative signal is generated which corresponding to a track position closer to the inside of the track 2 i.e. a darker area of the track 2. Similarly, if the steering wheel 27 is turned clockwise then a positive signal is generated which corresponding to a track position closer to the outside of the track 2 i.e. a lighter area of the track 2.

It will be appreciated by those skilled in the art that by inverting the above arrangement the vehicles 1 can be configured to operate in a clockwise direction around the track 2. In a further alternative embodiment, reversing the lateral graded shading of the track 2 would provide for a clockwise racing configuration.

A first subtractor 31 is then employed in a primary feedback path 32 for the steering servo (s) 10. The first subtractor 31 generates an error signal 33 that provides the input for the controller unit 7 by subtracting a primary feedback signal from the track position component of the command signal 25 and so allows for the controller unit 7 to provide a diagnostic of the deviation of the first optical sensor 8 from the desired position. The responsivity of a sensor is given by the relationship between its input and its output. In the presently described control system 30 the responsivity, denoted by Ks, is the relationship between the track positioned measured by the first optical sensor 8 and the output fed to the first subtractor 31. On receiving the error signal 33, the controller unit 7 then attempts to drive the steering servo (s) 10 so as to reposition the front of the vehicle 1 on the track 2 so as to minimise the error signal 33. In this way the vehicle 1 will travel around the track 2 while trying to maintain the lateral track position set by the track position component. If
the track position component is changed then the vehicle 1 will then attempt to reposition
itself on the track 2 to the corresponding new lateral position.

As described above, the rate at which the body angle (ba) increases at a given steering
angle (sa) and the position of the front of the vehicle (fp) both depend on the speed of the
vehicle 1. Thus the loop gain of the control system 30 depends upon the square of the
speed of the vehicle 1. It is therefore extremely difficult to tune the controller unit 7 of the
control system 30 so as to give a fast and stable response for all vehicle 1 speeds. By
way of example, a 1:20 scale vehicle 1 employing a steering servo (s) 10 having a
bandwidth of 10 Hz would typically have a mid range speed of 1.5 ms⁻¹. Although the
control system 30 can be arranged to be stable at this speed of operation its stability
quickly deteriorates as the vehicle's speed moves above or below this mid-range value.

A solution to this problem is to employ the output of the velocity sensor 9 so as to modify
the input to the steering servo (s) 10 from the controller unit 7 and thus compensate for the
speed dependency of the forward path gain of the control system 30. The simplest
modification is to make the gain of the controller unit 7 vary with the reciprocal of the
square of the speed of the vehicle 1. This is achieved by employing a processor unit 34
connected between the velocity sensor 9 and the controller unit 7. It is noted however that
this solution results in very high controller gains at low vehicle speeds.

In an alternative embodiment the processor unit 34 is employed to vary the gain of the
controller unit 7 with the reciprocal of the square of the speed of the vehicle 1 only when
the vehicle 1 is travelling above a predetermined minimum speed e.g. in the above
provided example a suitable minimum speed would be 0.5 ms⁻¹.

Second Optical Sensor Control System

In the absence of a further control method the dynamics of the control system 30 are set
primarily by the response of the steering servo (s) 10 and thus this system is effectively a
forth order, type two system. As is known to those skilled in the art such systems are not
particularly stable, and so it can prove difficult for the control system 30 to keep the vehicle
1 on the track 2, without further compensation. An alternative embodiment will now be
described wherein further stability compensation is achieved through the employment of a
second optical sensor located within the vehicle.
A vehicle 1b that incorporates a second optical sensor is presented schematically in Figure 6. The vehicle 1b can be seen to comprise many of the elements of the vehicle 1 presented in Figure 1, namely: a main body 3, a set of steerable wheels 4, a set of non-steerable wheels 5, a dc electric motor 6, a controller unit 7, a first optical sensor 8 positioned at the front of the vehicle 1b, and a steering servo (s) 10. However, in the presently described embodiment a second optical sensor 8b is located at the rear of the vehicle 1b. Also in the presently described embodiment there is no requirement for the velocity sensor 9.

Figure 7 presents a block diagram 35 showing the response of the vehicle 1b of Figure 6 to the command signal 25 generated by the remote control unit 24. The response block diagram of Figure 7 is similar to that discussed above in connection with the response of the vehicle 1, and as presented in Figure 2, with the exception that an arm 36 representing the position of the rear of the vehicle (rp) is now present.

A control system 37 for controlling the position of the vehicle 1b upon the track 2 is presented by the block diagram of Figure 8(a) and the equivalent block diagram of Figure 8(b). The controller unit 7 is again employed to receive the command signal 25 from the remote control unit 24 so as to set the desired speed and position of the front of the vehicle 1b on the track 2. The first subtractor 31 is again employed in a primary feedback path 32 for the steering servo (s) 10 so as to generate an error signal 33 which provides a diagnostic of the deviation of the front of the vehicle 1 from the desired position. The responsivity of on the primary feedback path 32, is again denoted by \( K_s \).

In addition, the control system 37 employs a secondary, or local, feedback path 38 to the steering servo (s) 10. The secondary feedback path 38 provides a second subtractor 39 located therein with the measured position of the rear of the vehicle (rp). The second subtractor 39 is configured to then provide a secondary feedback signal to the steering servo (s) 10 that equals the difference between the front and rear positions of the vehicle, namely \((fp) - (rp)\).

With reference to Figure 6, basic trigonometry shows us that the difference between the front (fp) and rear positions (rp) of the vehicle 1b on the track 2 is given by the sensor base (sb) multiplied by the sine of the body angle, or put another way:
\[(fp) - (rp) = (sb).\sin(ba) \tag{1}\]

Therefore, by measuring the front \((fp)\) and rear positions \((rp)\) of the vehicle 1b on the track 2, and calculating the difference between these values, allows for a secondary feedback signal to the steering servo \((s)\) 10 that is dependent upon the body angle \((ba)\), rather than just the steering angle \((sa)\). The secondary feedback loop thus acts to minimise the measured body angle so as to keep the vehicle 1b travelling parallel to the longitudinal axis 28 of the track 2.

In addition, since the first time integral block 17 is now contained within the secondary feedback loop this has the effect of converting this block so as to act as an exponential lag rather than a time integration. The control system 37 can therefore be considered a forth order, type one system which, as appreciated by those skilled in the art, is significantly more stable than a fourth order, type two system. Furthermore, the control system 37 also reduces the effects of speed on the stability of the system 37 since the part of the system that has a gain which changes with speed is now contained within the local feedback loop.

It will also be appreciated by those skilled in the art that both the steering angle \((sa)\) and body angle \((ba)\) will be typically 30° or less. As a result a further simplification to the control system 37 can be made by exploiting the fact that for small angles \(\theta\), \(\sin(\theta)\) is approximately equals to \(\theta\). A simplified effective control system 37a is therefore presented by the block diagram of Figure 9 wherein the first 14 and second 18 sine blocks are omitted.

In practice, it is found to be preferable for the stability of the control systems 37 and 37a if the responsivity on the of the secondary feedback path 38, \(K_{lf2}\), is made to be equal to the reciprocal of the responsivity of the steering servo \((s)\) 10. Together with the negation in the second subtractor 39 this results in the steering angle \((sa)\) being set equal and opposite to the body angle \((ba)\). The secondary feedback loop 38 thus makes the steerable wheels 4 point in the direction that the vehicle 1b should be travelling.

In the absence of the secondary feedback loop, if the front position of the vehicle \((fp)\) were at the correct position, but the vehicle were at an angle to the track 2 then as soon as the
vehicle 1b moved forward the front position of the vehicle (fp) would deviate from the
desired position before the overall feedback eventually brought it back into line. With the
addition of the second sensor 8b at the rear of the vehicle 1b and the secondary feedback
path 38 the steerable wheels 4 are automatically pointed along the track 2 and as the
vehicle 1b moves forward the rear position (rp) simply follows the front position (fp) to the
correct position across the track 2. Thus it can be considered that the control systems 37
and 37b anticipate the impending positional error of the vehicle 1b and then takes the
necessary action to correct this positional error before it occurs.

Velocity Sensor and Second Optical Sensor Control System

In a preferable alternative embodiment the control system for the vehicle employs a
combination of both of the above described control systems 30 and 37. By way of
example, Figure 10 presents a vehicle 1c that incorporates both the velocity sensor 9 and
the second optical sensor 8b. The remaining elements of the vehicle 1c correspond to
those presented in Figure 1 and Figure 6 in connection with the previously described
vehicles 1 and 1b and are thus marked with corresponding reference numerals.

A first control system 40 for controlling the position of the vehicle 1c upon the track 2 is
presented by the block diagram of Figure 11. As with the previously described systems 30
and 37, the controller unit 7 is employed to receive the command signal 25 from the
remote control unit 24 so as to set the desired speed and position of the front of the
vehicle 1c on the track 2. The first subtractor 31 is then employed in a primary feedback
path 32 to the steering servo (s) 10 so as to generate an error signal 33 which provides a
diagnostic of the deviation of the front of the vehicle 1 from the desired position. The
responsivity of the primary feedback path 32, is again denoted by Ks.

The secondary, or local, feedback path 38 again provides details of the position of the rear
of the vehicle (rp) to the second subtractor 39 located between the first controller unit 7
and the steering servo (s) 10. The second subtractor 39 is again configured such that the
secondary feedback loop acts to minimise the measured body angle of the vehicle 1c on
the track 2. The responsivity of the the secondary feedback path 38, Kf2, is again
preferably made to be equal to the reciprocal of the responsivity of the steering servo (s)
10. In order to provide a means for implementing velocity compensation within the
secondary feedback loop it should be noted that a second controller unit 7b is located
between the second subtractor 39 and the steering servo (s) 10.

In the presently described embodiment the gain of the primary feedback loop and the
secondary feedback loop are modified by the controller units 7 and 7b so as to vary with
the reciprocal of the speed of the vehicle 1c, rather than the reciprocal of the speed
squared, as was required within the control system 30. This is however achieved in a
similar manner, namely by employing processor units 34 and 34b connected between the
velocity sensor 9 and the first and second controller units 7 and 7b, respectively.

In an alternative embodiment the processor units 34 and 34b may be is employed to vary
the gain of the primary and secondary feedback loops via the controller units 7 and 7b,
respectively, with the reciprocal of the speed of the vehicle 1c only when the vehicle 1c is
travelling above a predetermined minimum speed.

A second control system 41 for controlling the position of the vehicle 1c upon the track 2 is
presented by the block diagram of Figure 12. This embodiment is similar in many respects
to the control system 40 presented in Figure 11 and discussed in detail above. The one
significant difference is that the second controller unit 7b is omitted such that the variation
of the gain of the secondary loop is carried within the feedback path 38 itself. This is a
less preferable solution since it requires different processing for the forward path controller
7 as changing the feedback path gain of the secondary feedback path 38 changes the
closed loop response of the secondary loop, and thus changes the loop gain of the primary
loop.

It will be appreciated by those skilled in the art that all in of the described embodiments the
vehicles the steering servo may be adapted such that instead of varying the angle of the
steerable wheels a change in direction of the vehicle is achieved by varying the relative
rotation of the wheels.

Furthermore, it will be appreciated that although the controller units 7 and 7b, subtractors
31 and 39 and the processor units 34 and 34b have all been presented as separate units
their functionality may be implemented directly with a single controller unit.
The racing vehicle game described above offers many advantages over those games known on the art. In the first instance a slotless track and vehicle combination is provided whereby the lateral position of a vehicle can be varied such that it can move across the full width of the track. This provides a more realistic racing vehicle game since the operator of the vehicle can manoeuvre it in order to gain a tactical advantage (e.g. to overtake or nudge an opponent or to protect a racing line) but without having to steer the car around the track.

Secondly, if a vehicle does come off of the track it can simply be driven back on and the operation of the control system for the vehicle on the track resumes. Thus, unlike slot cars there is no need for an operator to physically reposition their vehicle on the track in order for racing to resume.

The track itself also offers a number of significant advantages. In the first instance there is no limit to the number of vehicles that may be raced since there are no predetermined slots required for the operation of a vehicle. The track is highly flexible allowing for simple storage, transportation and deployment. The track is simple to produce and so significantly more cost effective than traditional slotted tracks known in the art. Finally the track allows for the incorporation of additional racing hazards such as oil slicks, track debris, gravel pits or variable weather conditions.

The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed. The described embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilise the invention in various embodiments and with various modifications as are suited to the particular use contemplated. Therefore, further modifications or improvements may be incorporated without departing from the scope of the invention as defined by the appended claims.
Claims

1. A method for controlling the position of a vehicle on a track wherein the method comprises the steps of:
   - taking a first measurement of a lateral position of the vehicle on the track;
   - comparing the first measured lateral position with a desired lateral position for the vehicle so as to produce an error signal;
   - generating a first input signal for a steering servo of the vehicle so as to minimise the error signal;
   - measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track; and
   - generating a second input signal for the steering servo so as to minimise the measured angle.

2. A method for controlling the position of a vehicle as claimed in claim 1 wherein the step of taking the first measurement is carried out at the front of the vehicle.

3. A method for controlling the position of a vehicle as claimed in claim 1 or claim 2 wherein the step of taking the first measurement comprises employing an optical sensor so as to measure light reflected from the track.

4. A method for controlling the position of a vehicle as claimed in any of the preceding claims wherein the step of measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track comprises taking a second measurement of a lateral position of the vehicle on the track.

5. A method for controlling the position of a vehicle as claimed in claim 4 wherein the step of taking the second measurement is carried out at the rear of the vehicle.

6. A method for controlling the position of a vehicle as claimed in claim 4 or claim 5 wherein the step of taking the second measurement comprises employing an optical sensor so as to measure light reflected from the track.

7. A method for controlling the position of a vehicle as claimed in any of claims 4 to 6 wherein the step of measuring the angle between the direction of propagation of
8. A method for controlling the position of a vehicle as claimed in any of the preceding claims wherein the method further comprises the step of measuring the speed of the vehicle.

9. A method for controlling the position of a vehicle as claimed in claim 8 wherein the measured speed is employed to compensate for speed dependent changes in a response of the vehicle to an output signal from the steering servo.

10. A method for controlling the position of a vehicle as claimed in claim 9 wherein the step of compensating for speed dependent changes in the response of the vehicle comprises varying the gain of a controller that generates the first input signal for the steering servo.

11. A method for controlling the position of a vehicle as claimed in claim 9 or claim 10 wherein the step of compensating for speed dependent changes in the response of the vehicle comprises varying the gain of a controller that generates the second input signal for the steering servo.

12. A method for controlling the position of a vehicle as claimed in claim 10 or claim 11 wherein the gain of the controller is varied with the reciprocal of the speed of the vehicle.

13. A method for controlling the position of a vehicle as claimed in claim 10 or claim 11 wherein the gain of the controller is varied with the reciprocal of the speed of the vehicle when the speed of the vehicle is above a predetermined value.

14. A control circuit for controlling the position of a vehicle on a track wherein the control circuit comprises:
   - a measurement sensor for measuring a first lateral position of the vehicle on the track;
- a subtractor employed to produce an error signal by comparing the first measured lateral position with a desired lateral position for the vehicle;
- a controller for generating a first input signal for a steering servo of the vehicle so as to minimise the error signal;
- a second measurement sensor for measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track; and
- wherein the controller generates a second input signal for the steering servo so as to minimise the measured angle.

15. A control circuit as claimed in claim 14 wherein the first or second measurement sensors comprises an optical sensor having a light source and a detector.

16. A control circuit as claimed in claim either claim 14 or claim 15 wherein the control circuit further comprises a velocity sensor for measuring the speed of the vehicle.

17. A control circuit as claimed in claim 16 wherein the controller provides a means for employing the measured speed so as to compensate for speed dependent changes in a response of the vehicle to an output signal from the steering servo.

18. A control circuit as claimed in claim 17 wherein the velocity sensor comprises a means for measuring the back emf of a motor employed to drive the vehicle.

19. A racing vehicle wherein the racing vehicle comprises a control circuit as claimed in any of claims 14 to 18.

20. A control circuit for controlling the position of a vehicle on a track substantially as described herein with reference to Figure 8, Figure 9, Figure 11 or Figure 12.

21. A racing vehicle substantially as described herein with reference to Figure 6 or Figure 10.
Amendments to the claims have been filed as follows:

1. A method for controlling the position of a vehicle on a track wherein the method comprises the steps of:
   - taking a first measurement of a lateral position of the vehicle on the track;
   - comparing the first measured lateral position with a desired lateral position for the vehicle so as to produce an error signal;
   - generating within a primary feedback loop of a steering servo a first input signal for the steering servo of the vehicle so as to minimise the error signal, the primary feedback loop having a first responsivity (Ks);
   - measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track; and
   - generating within a secondary feedback loop of the steering servo a second input signal for the steering servo so as to minimise the measured angle, the secondary feedback loop having a second responsivity (Ks2), wherein the second responsivity (Ks2) is made equal to the reciprocal of a responsivity of the steering servo.

2. A method for controlling the position of a vehicle as claimed in claim 1 wherein the step of taking the first measurement is carried out at the front of the vehicle.

3. A method for controlling the position of a vehicle as claimed in claim 1 or claim 2 wherein the step of taking the first measurement comprises employing an optical sensor so as to measure light reflected from the track.

4. A method for controlling the position of a vehicle as claimed in any of the preceding claims wherein the step of measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track comprises taking a second measurement of a lateral position of the vehicle on the track.

5. A method for controlling the position of a vehicle as claimed in claim 4 wherein the step of taking the second measurement is carried out at the rear of the vehicle.
6. A method for controlling the position of a vehicle as claimed in claim 4 or claim 5 wherein the step of taking the second measurement comprises employing an optical sensor so as to measure light reflected from the track.

7. A method for controlling the position of a vehicle as claimed in any of claims 4 to 6 wherein the step of measuring the angle between the direction of propagation of the vehicle and a longitudinal axis of the track further comprises taking the second measurement of the lateral position of the vehicle on the track from the first measurement of the lateral position of the vehicle on the track.

8. A method for controlling the position of a vehicle as claimed in any of the preceding claims wherein the method further comprises the step of measuring the speed of the vehicle.

9. A method for controlling the position of a vehicle as claimed in claim 8 wherein the measured speed is employed to compensate for speed dependent changes in a response of the vehicle to an output signal from the steering servo.

10. A method for controlling the position of a vehicle as claimed in claim 9 wherein the step of compensating for speed dependent changes in the response of the vehicle comprises varying the gain of a controller that generates the first input signal for the steering servo.

11. A method for controlling the position of a vehicle as claimed in claim 9 or claim 10 wherein the step of compensating for speed dependent changes in the response of the vehicle comprises varying the gain of a controller that generates the second input signal for the steering servo.

12. A method for controlling the position of a vehicle as claimed in claim 10 or claim 11 wherein the gain of the controller is varied with the reciprocal of the speed of the vehicle.

13. A method for controlling the position of a vehicle as claimed in claim 10 or claim 11 wherein the gain of the controller is varied with the reciprocal of the speed of the vehicle when the speed of the vehicle is above a predetermined value.
14. A control circuit for controlling the position of a vehicle on a track wherein the control
   circuit comprises:
   - a measurement sensor for measuring a first lateral position of the vehicle on the
     track;
   - a subtractor employed to produce an error signal by comparing the first measured
     lateral position with a desired lateral position for the vehicle;
   - a controller for generating a first input signal within a primary feedback loop of a
     steering servo of the vehicle so as to minimise the error signal, the primary feedback
     loop having a first responsivity (K_s);
   - a second measurement sensor for measuring the angle between the direction of
     propagation of the vehicle and a longitudinal axis of the track; and
   - wherein the controller generates a second input signal within a secondary feedback
     loop of the steering servo so as to minimise the measured angle, the secondary
     feedback loop having a second responsivity (K_{f2});
   - wherein the second responsivity (K_{f2}) is made equal to the reciprocal of a
     responsivity of the steering servo.

15. A control circuit as claimed in claim 14 wherein the first or second measurement
    sensors comprises an optical sensor having a light source and a detector.

16. A control circuit as claimed in claim either claim 14 or claim 15 wherein the control
    circuit further comprises a velocity sensor for measuring the speed of the vehicle.

17. A control circuit as claimed in claim 16 wherein the controller provides a means for
    employing the measured speed so as to compensate for speed dependent changes
    in a response of the vehicle to an output signal from the steering servo.

18. A control circuit as claimed in claim 17 wherein a variation of a gain of the controller
    when generating the first input signal provides the means for employing the
    measured speed so as to compensate for speed dependent changes in a response
    of the vehicle to an output signal from the steering servo.

19. A control circuit as claimed in either of claims 17 or 18 wherein a variation of the gain
    of the controller when generating the second input signal provides the means for
employing the measured speed so as to compensate for speed dependent changes
in a response of the vehicle to an output signal from the steering servo.

20. A control circuit as claimed in either of claims 18 or 19 wherein the gain of the
controller is varied with the reciprocal of the speed of the vehicle.

21. A control circuit as claimed in any of claims 16 to 20 wherein the velocity sensor
comprises a means for measuring the back emf of a motor employed to drive the
vehicle.

22. A racing vehicle wherein the racing vehicle comprises a control circuit as claimed in
any of claims 14 to 21.

23. A control circuit for controlling the position of a vehicle on a track substantially as
described herein with reference to Figure 8, Figure 9, Figure 11 or Figure 12.

24. A racing vehicle substantially as described herein with reference to Figure 6 or
Figure 10.
Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

<table>
<thead>
<tr>
<th>Category</th>
<th>Relevant to claims</th>
<th>Identity of document and passage or figure of particular relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1-8, 14-16 and 19</td>
<td>GB2448470 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROSS, See in particular page 2</td>
</tr>
<tr>
<td>X</td>
<td>1-19</td>
<td>US5765116 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WILSON, See figure 12 and supporting description in column 12 in particular</td>
</tr>
<tr>
<td>X</td>
<td>1-11 and 14-19</td>
<td>EP0479271 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DONALD, See in particular the paragraph beginning on line 45 of page 4</td>
</tr>
<tr>
<td>X</td>
<td>1, 4, 5, 8, 14-16 and 19</td>
<td>US2010/035684 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KOTLARIK, See paragraphs 7 and 54 in particular</td>
</tr>
<tr>
<td>X</td>
<td>1, 2, 4, 8, 14, 16 and 19</td>
<td>US5175480 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCKEEFERY, See whole document</td>
</tr>
<tr>
<td>X</td>
<td>1, 2, 4, 5, 7, 14 and 19</td>
<td>US3669209 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BROOKE, See in particular lines 43-53 of column 7</td>
</tr>
<tr>
<td>X</td>
<td>1, 2, 4, 5, 7-11, 14 and 16-19</td>
<td>US4307329 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAYLOR, See column 1 in particular</td>
</tr>
<tr>
<td>X</td>
<td>1, 2, 8-11, 14 and 16-19</td>
<td>US2008/091318 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DENG, See whole document</td>
</tr>
</tbody>
</table>

Categories:

<table>
<thead>
<tr>
<th>X</th>
<th>Document indicating lack of novelty or inventive step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Document indicating lack of inventive step if combined with one or more other documents of same category.</td>
</tr>
<tr>
<td>&amp;</td>
<td>Member of the same patent family</td>
</tr>
<tr>
<td>A</td>
<td>Document indicating technological background and/or state of the art.</td>
</tr>
<tr>
<td>P</td>
<td>Document published on or after the declared priority date but before the filing date of this invention.</td>
</tr>
<tr>
<td>E</td>
<td>Patent document published on or after, but with priority date earlier than, the filing date of this application.</td>
</tr>
</tbody>
</table>

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX:
Worldwide search of patent documents classified in the following areas of the IPC
A63H; B62D; G05D

The following online and other databases have been used in the preparation of this search report
EPODOC and WPI

**International Classification:**

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Subgroup</th>
<th>Valid From</th>
</tr>
</thead>
<tbody>
<tr>
<td>A63H</td>
<td>0018/16</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>A63H</td>
<td>0017/36</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>B62D</td>
<td>0015/02</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>G05D</td>
<td>0001/02</td>
<td>01/01/2006</td>
</tr>
</tbody>
</table>