

Feb. 9, 1971

J. L. RAUDAT

3,561,189

SHIFTING GRID

Filed Feb. 7, 1969

2 Sheets-Sheet 1

Fig. 1

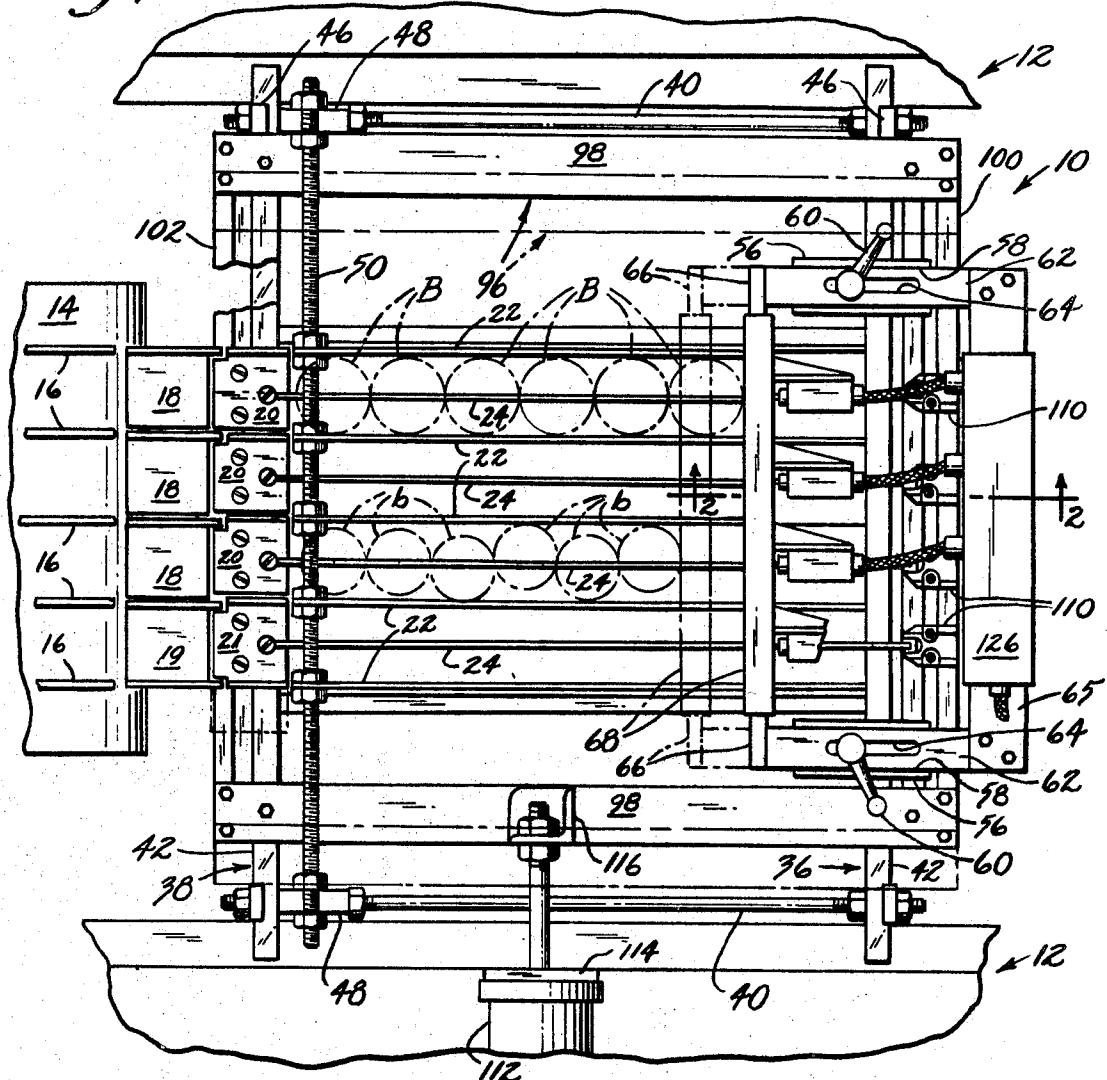
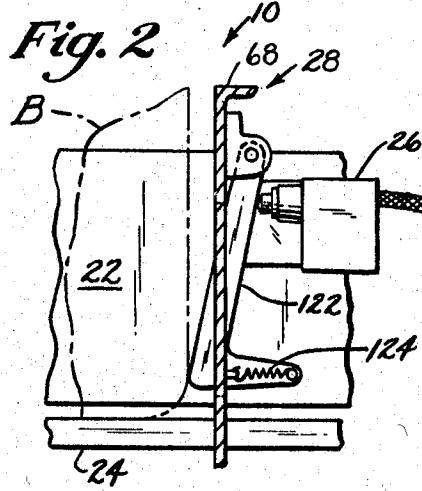



Fig. 2

INVENTOR.

100

BY

BY
McCormick, Hanley & Huber
ATTORNEYS

Feb. 9, 1971

J. L. RAUDAT

3,561,189

SHIFTING GRID

Filed Feb. 7, 1969

2 Sheets-Sheet 2

Fig. 3

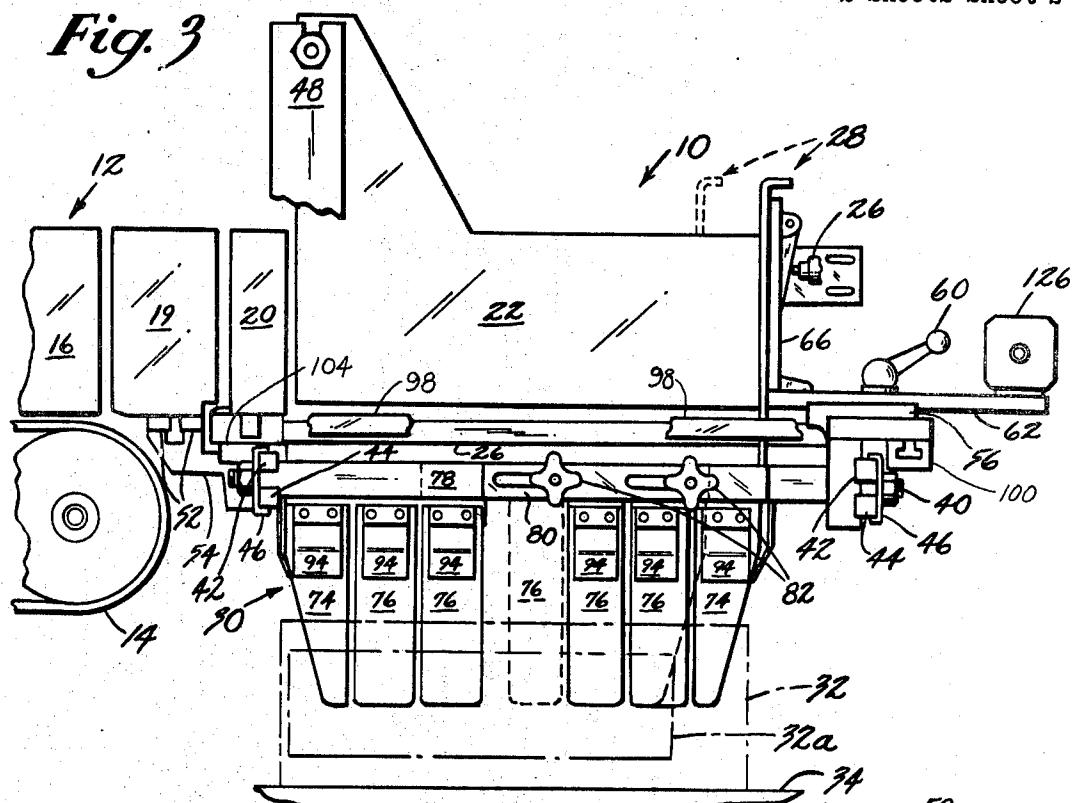
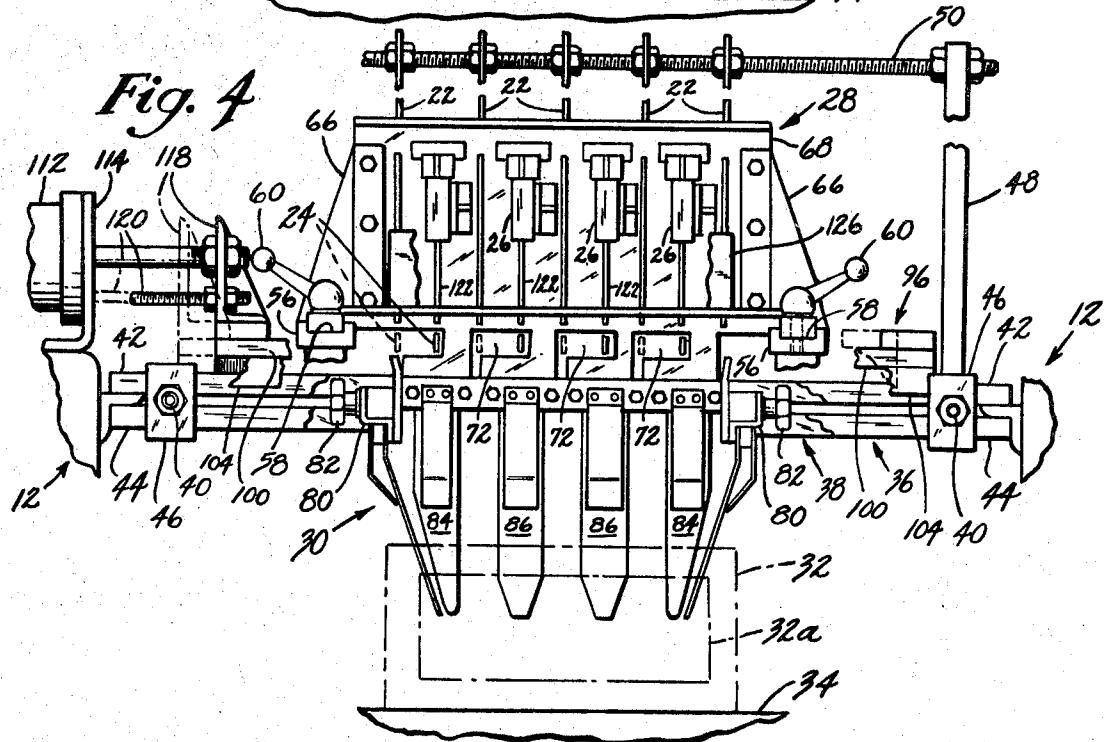



Fig. 4

United States Patent Office

3,561,189

Patented Feb. 9, 1971

1

3,561,189

SHIFTING GRID

John L. Raudat, North Madison, Conn., assignor to
Emhart Corporation, Bloomfield, Conn., a corporation
of Connecticut

Filed Feb. 7, 1969, Ser. No. 797,463

Int. Cl. B65b 35/30, 57/10

U.S. Cl. 53—61

8 Claims

ABSTRACT OF THE DISCLOSURE

A shifting grid mechanism for receiving a row arranged charge of bottles from a bottle packing machine and directing and controlling the gravity fall of the charge into a container and having an adjustable barrier or stop for adapting the grid to accommodate charges of various size. Charge detecting means for controlling the operation of the grid and a portion of a chute for directing the gravity fall of the charge are associated with the barrier and adjustable therewith.

BACKGROUND OF THE INVENTION

This invention relates in general to machines for packing bottles, cans and other like articles and deals more particularly with an improved shifting grid for use with such a machine to direct and control the gravity fall of a row arranged charge of articles into a container.

Bottles, cans or like articles are delivered to a packing machine of the aforescribed type in an upright position and are guided to a dividing mechanism which separates the articles into lanes for forming a desired charge pattern. Thereafter, the articles are conveyed to a charge forming area on a grid assembly. The assembled charge is loaded through the grid assembly and guided by one or more chutes into an empty space or container which has been raised to a loading position by a case feed lift table. The filled case is lowered and discharged from the case lift table and the cycle repeats itself. The grid assembly is made to handle articles in a limited range of sizes, as, for example, bottles in a limited range of diameters. To change the machine to handle articles outside of the given range, it is usually necessary to remove and replace the grid assembly with another grid assembly and make certain adjustments in the new grid assembly to accommodate the article to be packed. Removal and replacement of the grid assembly is, of course, a time consuming operation.

Accordingly, it is the general aim of the present invention to provide an improved grid assembly of the aforescribed character which may be rapidly and accurately adjusted to accommodate charges in a relatively wide range of sizes to extend the capability of an associated article packing machine.

SUMMARY OF THE INVENTION

In accordance with the present invention, a grid assembly is provided which includes a frame for receiving and assembling a row arranged charge of articles from an article packing machine and a chute for directing and controlling the gravity fall of the charge into a case or container. One end of the frame and the chute is adjustable through a range of positions to adapt the grid to accommodate charges in a relatively wide range of article sizes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a fragmentary plan view of a bottle packing machine showing a shifting grid embodying the present invention mounted thereon.

FIG. 2 is a somewhat enlarged fragmentary sectional view taken along the line 2—2 of FIG. 1.

2

FIG. 3 is a fragmentary side elevational view of the machine and grid of FIG. 1, portions of the grid supporting members shown broken away.

FIG. 4 is a fragmentary end elevational view of the machine and grid of FIG. 1, portions of the grid supporting members shown broken away.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the description which follows and in the drawings forming a part of this specification, a grid embodying the present invention and indicated generally at 10 is illustrated and described with reference to a bottle packing machine, however, it should be understood that the present grid assembly may also be used with apparatus for packing cans, containers or other articles made of various materials.

With the exception of the grid assembly of the present invention, the bottle packing machine indicated generally at 12 and partially shown in the drawings is conventional and need not be described in detail. In general the machine 12 comprises an in-feed conveyor 14 which transports bottles of uniform size indicated at B, B and b, b from a dividing mechanism (not shown) forwardly in parallel rows between stationary longitudinal guide plates 16, 16. The leading bottles in the rows of bottles enter the grid assembly between bottle guides 18, 18 and 19 which form a part of the grid. The leading bottles are blocked and held in place between the bottle guides by engagement with the rear surfaces of a series of transversely shiftable longitudinally extending pushers 20, 20 and 21 operated by means hereinafter described. The pushers are movable between a blocking or broken-line position, as shown in FIG. 1, wherein they block the advance of bottles between the bottle guides 18, 18 and 19 and a releasing position wherein they longitudinally align respectively with the bottle guides. In the latter position of the pushers, the rows of bottles are advanced by line pressure from between the stationary bottle guides 18, 18 and 19 and slide forwardly between longitudinal members or guide plates 22, 22 along riding strips or rails 24, 24 operatively associated with the pushers and also forming a part of the grid. The guide plates 22, 22 define a series of similar vertically open longitudinal spaces adapted for downward passage of rows of bottles.

When a predetermined and equal number of bottles (six bottles in the apparatus as shown) have been advanced along each rail 24, the front or leading bottle in each row actuates a detecting switch 26. The switches 26, 26 are carried by a longitudinally adjustable barrier or stop indicated generally at 28 and sense the presence of a full charge on the grid to control operation of the aforementioned means for shifting the pushers 20, 20 and 21. When all of the switches have been operated by the front or leading bottles, the said operating means shifts the pushers to their blocking position. The rails 24, 24 move with the pushers and slide transversely beneath the bottles to a releasing position wherein each of the rails is respectively vertically aligned with an associated one of the guide plates 22 whereupon the bottles fall by gravity through the open spaces defined by the plates 22, 22 and through an adjustable chute positioned therebelow and indicated generally at 30.

The charge of bottles is received in a container or tray 32. A lift table 34 which may, for example, comprise a part of the packing machine 12 is adapted to elevate the cases in succession to a bottle receiving position beneath the grid and is lowered to discharge packed or filled cases and to receive empty cases from an empty case in-feed conveyor (not shown). Cases are, of course, raised or lowered in properly timed relation with the transverse shifting movement of the pushers 20, 20 and

21 by a suitable control means. Such control means are or may be conventional and a showing and description thereof is deemed unnecessary for a full understanding of the grid of the present invention.

The grid 10 may be adapted to accommodate charges of articles in a relatively wide range of sizes by adjusting the position of the barrier 28 to vary the length of the spaces defined by the plates 22, 22. In the drawings, the adjustable barrier 28 is shown in a full-line position corresponding to an adjusted position of the grid to accommodate bottles having a diameter substantially equal to the transverse spacing between adjacent guide plates 22, 22 in a row arranged charge with ix bottles in each row. The barrier is adjustable through a range of positions between its full and broken-line position. When the barrier 28 is adjusted to its broken-line position, the grid 10 accommodates rows of smaller bottles such as indicated at b, b arranged with six bottles in each row. The chute 30 is also adjustable to suit the container or tray for receiving the charge. In the drawings, the chute 30 is also shown in a broken-line position corresponding to the broken-line position of the barrier 28 for discharging a charge of bottles b, b into a container of appropriate size such as indicated at 32a.

Considering the grid 10 in further detail, the grid comprises a rectangular frame which has two parts or sections which include a lower section mounted on the frame of the machine 12 and an upper section supported on and slidably movable relative to the lower section. The lower section has longitudinally spaced transversely extending front and rear support members indicated generally at 36 and 38, respectively, connected together by transversely spaced and longitudinally extending threaded tie rods 40, 40. Preferably, and as shown, the front and rear support members 36 and 38 are of like construction and each comprises upper and lower generally rectangular bars 42 and 44 secured together in parallel but vertically spaced relationship by generally U-shaped clamp members 46, 46 fastened to the ends of the rods 40, 40. A support member 48 extends upwardly from each rod 40 generally adjacent the rear support member 38. The two support members 48, 48 are connected together at their upper ends by a transversely extending threaded rod 50 which passes through the guide plates 22, 22 and provides support for the latter plates as well as a means for adjusting the transverse spacing between them.

The lower grid section also provides support for the bottle guides 18, 18 and 19. Each guide 18 is formed from a generally L-shaped plate and includes a horizontally disposed portion and a vertically disposed portion. The bottle guide 19 at the right-hand side of the grid as viewed from the rear comprises a generally U-shaped plate which has a horizontally disposed portion and two vertically disposed portions. The bottle guides 18, 18 and 19 are secured in transversely spaced series by horizontally disposed support members 52, 52 carried by a pair of L-shaped brackets 54, 54 fastened to and extending rearwardly from the rear support member 38 as shown in FIG. 2.

The adjustable barrier 28 is supported at the forward end of the lower grid section by a pair of transversely spaced brackets 56, 56 fastened to the forward support member 36. Each bracket 56 has a horizontally disposed and longitudinally extending way 58 and carries a clamping screw 60. The barrier 28 includes a pair of longitudinally extending side members 62, 62. Each side member 62 is received in an associated way 58 and has a longitudinally elongated slot 64 through which one of the clamping screws 60 passes. A transversely extending cross member 65 connects the two side members at their forward ends. At its rear end, each side member 62 carries a vertically extending bracket 66. A plate 68 is bolted to the brackets 66, 66 and extends transversely

therebetween. To accommodate the guide plates 22, 22 a transversely spaced series of vertically disposed slots are formed in the plate 68. Additional horizontally disposed slots 72, 72 are also formed in the plate 68 to accommodate the movable rails 24, 24 as best shown in FIG. 3.

Support for the adjustable chute 30 is also provided by the lower grid section. The chute may take various forms but preferably and as shown it is comprised of a plurality of depending blade-like spring fingers arranged to form a generally rectangular chute for guiding the articles in the charge as they pass downwardly through the chute and into the container 32. The spring fingers which form the sides of the chute are designated generally at 74, 74 and 76, 76 and carried by transversely spaced and longitudinally extending tie rods 78, 78 fastened to and extending between the front and rear support members 36 and 38, respectively. The tie rods are generally vertically aligned with the outermost guide plates 22, 22. 10 As shown, the spring fingers which form each side of the chute are six in number, three being secured in fixed position to each tie rod 78, and three being longitudinally adjustable relative thereto. The adjustable side fingers on each side of the grid are located toward the forward end 15 of the grid and are fastened to a slotted support member 80 secured to an associated tie rod 78 by a pair of clamping screws 82, 82. The spring fingers which form each end of the chute 30 are designated at 84, 84 and 86, 86 as best shown in FIG. 3. The rear end portion of the chute 20 is formed by fingers 84, 84 and 86, 86 secured to and depending from the rear support member 38, whereas the fingers which form the forward end of the chute are supported by and adjustable with the plate 68. All of the spring fingers are bent to diverge downwardly and inwardly with respect to each other. Each spring finger has an associated auxiliary spring bearing inwardly against it to provide biasing reinforcement therefor. Typical auxiliary springs are indicated at 94, 94 in FIG. 3.

The upper or shifting portion of the grid comprises a 25 generally rectangular frame indicated generally at 96 and has longitudinally extending side members 98, 98 connected by longitudinally spaced and transversely extending front and rear cross members respectively indicated at 100 and 102. The upper grid section is supported on the 30 lower grid section by front and rear bearing blocks respectively indicated at 104, 104 which slidably engage the upper surfaces of the bars 42, 42. The pushers 20, 20 and 21 are fastened to the upper surface of the rear cross member 102 and are generally similar to the bottle 35 guides 18, 18 and 19 in that they comprise three generally L-shaped plates 20, 20 and a generally U-shaped plate 21 arranged in transverse series. Each rail 24 is connected at one end to an associated pusher plate and at its opposite end to a holder 110 fastened to the front support member 50. The upper grid section is arranged for transverse 40 shifting movement relative to the lower grid section between a load-receiving position indicated in full lines in FIG. 1 and a load-discharging position shown in broken lines. In the receiving position, the pushers are generally 45 aligned with the bottle guides and with the guide plates so that rows of bottles advanced by line pressure from the conveyor 14 may enter the load-forming area between the guide plates 16, 16 and slide forwardly along the rails 26, 26. When the upper grid section is shifted to its load-discharging position each rail 26 is respectively vertically 50 aligned with an associated one of the guide plates 22, 22 so that the rows of bottles comprising the charge fall freely into the container 32.

Various means may be provided for shifting the upper 55 grid section, however, in the presently preferred embodiment a fluid motor or pneumatic cylinder 112 is employed for this purpose. The cylinder is carried by a bracket 114 mounted on the frame of the machine 12 and includes a piston rod which is connected to a bracket 116 fastened to one of the side members 98. A threadably

adjustable stop rod 120 fastened to the bracket 116 engages the bracket 114 to limit the shifting of movement of the upper grid sections so that the rails are vertically aligned with the guide plates 22, 22 when the grid is shifted to its load-discharging position.

Movement of the upper grid section is occasioned by the detector assembly which comprises the aforementioned switches 26, 26. As previously noted these switches are carried by the adjustable barrier 28 and are longitudinally adjustable therewith. The switches 26, 26 are mounted in transversely spaced series on the plate 68 as best shown in FIGS. 1 and 4, each switch being associated with a lane defined by a pair of guide plates 22, 22. The mounting arrangement of a typical switch 26 is shown in FIG. 3. The switch is mounted on the forward side of the plate 68. An operating finger 122 pivotally mounted on the forward side of the plate 68 projects rearwardly through a slot in the plate and is biased rearwardly or in a clockwise direction by a spring 124 as shown in FIG. 4. Thus the arm 122 is arranged to pivot in a counter-clockwise direction in response to contact by a bottle B and thereby actuate the switch 26. Each switch 26 is electrically connected to a junction box 126 which is in turn electrically connected to the control system for the machine and to an electrically controlled solenoid valve (not shown) for operating the air cylinder 112. Preferably the switches 26, 26 are electrically interconnected so that all of the switches must be actuated to operate the air cylinder 112 and thereby shift the grid to its load discharging position.

What is claimed is:

1. A grid for receiving a charge of articles of generally uniform size arranged in longitudinal rows in an article packing machine and for controlling the gravity fall of the charge into a container, said grid comprising a charge receiving frame defining a series of similar vertically open longitudinally extending spaces respectively adapted for downward passage of rows of articles, adjustable stop means for varying the longitudinal extent of said spaces to accommodate rows of various length, article support means movable between a receiving position wherein the rows of articles are supported in said spaces and a discharging position wherein the rows of articles are free to fall downwardly through said spaces under the influence of gravity, and means defining a chute disposed below said spaces for receiving the charge from said frame and directing the downward passage of the charge into a container or the like, said chute defining means having a portion thereof associated with said stop means and longitudinally adjustable therewith to vary the length of said chute.

2. A grid as set forth in claim 1 including detecting means responsive to the presence of a charge in said frame for controlling the movement of said support means.

3. A grid as set forth in claim 2 wherein said detecting means is carried by and longitudinally adjustable with said stop means.

4. A grid as set forth in claim 1 wherein said stop means comprises a longitudinally adjustable barrier extending transversely of said frame and partially defining said spaces.

5. A grid as set forth in claim 4 wherein said barrier comprises a part of said frame and said chute defining means comprises a plurality of blade-like fingers depending from said frame, at least one of said fingers depending from said barrier and longitudinally adjustable therewith.

6. A grid as set forth in claim 2 wherein said detecting means comprises a transversely spaced series of electrical switches mounted on said stop means, each of said switches being associated with one of said spaces for sensing the presence of a row of articles in said one space.

7. A grid as set forth in claim 1 wherein said frame includes one part adapted to be supported in fixed relation to the packing machine and another part movable relative to said one part, said stop means being associated with said one part, said support means being associated with said other part.

8. A grid for receiving a charge of articles of generally uniform size arranged in longitudinal rows in an article packing machine and for controlling the gravity fall of said charge into a container, said grid comprising a charge receiving frame defining a series of similar vertically open longitudinally extending spaces respectively adapted for

30 downward passage of rows of articles, said frame including a transversely extending barrier partially defining said spaces, said barrier being longitudinally adjustable for varying the longitudinal extent of said spaces to accommodate rows of various length, article support means mov-

35 able between a receiving position wherein said rows of articles are supported in said spaces and a discharging position wherein said rows of articles are free to fall downwardly through said spaces under the influence of gravity, and a plurality of bladelike fingers depending from said frame and defining a chute for directing the downward passage of said charge into a container or the like, at least one of said fingers depending from said barrier for longitudinal adjustment therewith.

References Cited

UNITED STATES PATENTS

3,250,371 5/1966 Cella et al. ----- 53—61X
3,353,331 11/1967 Rowekamp ----- 53—61X

50 TRAVIS S. McGEEHEE, Primary Examiner

U.S. Cl. X.R.

53—166, 248