GARMENT FINISHER AND MEANS FOR CONTROLLING FLOW OF PROCESSING FLUIDS THERETO

Frank H. Richterkessing, Louisville, Ky., assignor to W. M. Cissell Manufacturing Company, Louisville, Ky., a corporation of Kentucky

Filed Sept. 5, 1957; Ser. No. 682,147

18 Claims. (Cl. 223—70)

This invention relates generally to garment finishers of the type having a distendable, fluid-pervious bag into which air and steam are supplied. In particular, it relates to an improved finisher having means for readily selecting and controlling the flow of such processing fluids into the bag, both as to the timing of the flow thereof, and as to pressure of the air supplied, thus to increase the capability of the finisher to handle normally difficult garments, such as chamois or suede lined articles, as well as to improve the efficiency of the finisher in handling garments of lighter materials. Moreover, the invention, by reason of automatic control features embodied therein, is directed toward the feature of relieving the operator of the necessity of removing the acid at a fixed station during the cycle of finishing operation.

An object of the invention is to provide an improved finisher having means for supplying steam and full air pressure simultaneously into the finisher bag.

Another object is to provide an improved finisher having an air control means selectively adjustable from a position at which air is bled into the finisher bag in a small amount to a position in which air is forced therein in a large amount and under full pressure.

Another object is to provide an improved finisher having a solenoid operated steam supply valve and a motor driven air blower both controlled from a single timer arranged to energize initially the motor and solenoid simultaneously and to de-energize the motor after the solenoid de-energization and after expiration of a suitable drying period.

An object is to provide an improved damper in the air supply conduit of a garment finisher for preventing the condensation of steam within the finisher.

A further object is to provide an improved finisher having all control means manually operable from a single operating station and normally requiring no continual personal attention of the operator after the finishing cycle is initiated.

Other objects and advantages will become apparent as the description proceeds and when considered in conjunction with the accompanying drawings in which:

FIG. 1 is a perspective view of a complete garment finisher embodying the invention;

FIG. 2 is a diagrammatic view of the base assembly of the garment finisher, showing the electro-mechanical portions of the steam and air supply;

FIG. 3 is a side elevation view of a portion of the mechanical means for controlling air flow and positioned to permit maximum flow of air;

FIG. 4 is an end view of the apparatus shown in FIG. 3 and with the damper arm removed;

FIG. 5 is a side elevation view of a portion of the mechanical means for controlling air flow and positioned to permit maximum flow of air simultaneously with supply of steam into the bag;

FIG. 6 is an end view of the apparatus shown in FIG. 5 and with the damper arm removed;

FIG. 7 is a side view of the air supply conduit showing the mounting of the improved gravity biased damper therein;

FIG. 8 is an end view of the damper shown in FIG. 7;

FIG. 9 is an end elevation view of the mounting of the timer and the air selector means viewed from a position looking toward the normal operating station, and

FIG. 10 is a circuit diagram in greater detail of the circuit shown diagramatically in FIG. 2.

In carrying out my invention, I prefer to employ a bag type finisher having a removable inner form mounted for rotary movement upon a stationary base assembly. An electro-mechanical arrangement, including appropriate linkages, permits both the motor for driving the blower for supplying air and the solenoid for controlling a valve to release steam, to be operated in a cooperative manner and to function automatically after the selected position of a manually set timer and of a manually set air controller has once been established.

The settings of the timer and air controller are adapted to be chosen from a wide range of processing capacities according to the garments of a wide range of materials, for example, from sheers, delicate garments to heavy fabrics such as corduroy, chamois or suede garments, may be rapidly finished upon the same machine.

Referring first to FIG. 1, the stationary base assembly includes a hollow base portion 10 having an air conduit 11 leading therethrough and receiving air from a blower 12 driven by electric motor 13. A form encased in a distendable, fluid-pervious bag 14 is rotatably mounted upon the base assembly and has rigidly fixed thereto a housing 15 serving to mount the handle for a front clamp and a series of improved lever actuated controls for adjusting the periphery of bag 14 to accommodate various sizes and styles of garments, all as more fully set forth in the copending application of Frank H. Richterkessing and Walter M. Ingold, Serial Number 673,560, filed July 22, 1957, and issued as U.S. Patent 2,889,969. By means of a rigid tube 16 extending from the controller portion 10, a conventional automatic timer 17, of the type shown in my copending application Serial No. 519,752, filed July 5, 1955, now abandoned, is mounted at an operating station closely adjacent the normal position of the control levers and handle on the rotatable portion of the apparatus, and in addition, an air controller 18, later to be described, is mounted alongside the timer, thus making available to the operator at a single station all of the controls which he normally employs in finishing a garment. Also mounted upon the base assembly is a solenoid enclosure 19 and a platform 20 for providing a convenient location at which the operator may deposit auxiliary devices, such as clamps, sleeves, and the like, without bending over. An armored cable 21 contains electrical leads between the solenoid enclosure and the motor, it being understood that electrical leads between the timer and solenoid enclosure are contained in the hollow tube 16. Motor 13 preferably runs at constant speed and drives blower 12 at constant speed, the pressure of air being supplied into the entrance of conduit 11 therefore being constant while the motor is running and the pressure of air entering bag 14 being regulated by the setting of a damper located in that conduit and later to be described. It will be understood that different air pressures are required in the bag depending upon the fabric of the garment being processed.

Considering now the diagrammatic showing in FIG. 2, a steam coil 22 is disposed within the base portion 10 above a support plate 23 which is spaced from the bottom of the base assembly and which bottom rests upon a floor. Steam is constantly supplied to the
top of the coil and withdrawn along with any condensate from the bottom of that coil. Adjacent the bottom end of the coil which may be provided with radiating fins, not shown, a connection leads into the interior of a steam supply column 24 resting upon plate 23 and having a bearing seat 25 at its upper end upon which the rotatable and its attachments is adapted to be seated, as more fully set forth in the accompanying application Serial Number 673,360 filed July 22, 1927. At an upper portion, the column has a steam distributing member 26 through which steam is dispersed into the interior of the bag when a steam release valve, not shown, contained therein, the column is opened by movement of a solenoid actuated rod 27, the valve being biased into normally closed position.

At its lower end, the rod is loosely attached to one arm 28 of a bell crank by means of a short hook portion 9 of the lower end of that rod, which hook extends through a hole near the end of that arm; the bell crank also being provided with a longer arm 29 which extends downwardly exteriorly of the base assembly, the entire bell crank being pivotally mounted upon the lower part of the steam column along the axis indicated at 8. Initially, rod 28 is attached to arm 29 in a intermediate position thereon solenoid 32 having terminals 33 and 34. Also pivotally attached to arm 29 adjacent the bottom thereof as by a loosely engaging hook portion is a cam 102 shown in dotted lines and it may be moved by a knob in the outer surface 10 of the timer casing in order to begin a cycle of operation, movement of that knob serving to wind a spring motor or equivalent means (not shown) which thereafter causes the cam to move during a selected time period to a starting position for the next cycle and at which starting position both switches will again be in open position.

When the operator sets the timer for supply of either air, or air and steam jointly, switch 96 is closed and a circuit is made from lead 40, relay terminal 92, conductor 103, timer terminal 97, through switch 96, timer terminals 98 and 101, return, conductor 105, relay terminal 95, solenoid 93, relay terminal 94 and return lead 41. Relay solenoid 93 then closes arm 89 upon relay terminal 90 and a shunt circuit is then made from lead 40, arm 89, relay terminal 90, conductor 106, motor 13, conductor 107, relay terminal 94 and return lead 41. The motor 13 driving blower 12 will continue to run so long as switch 96 remains closed.

If cam 102 has been turned only sufficiently to close switch 96, but not switch 99, then only air is supplied to the finisher and the steam valve solenoid remains inoperative. If, however, the cam has been turned sufficiently to close switch 99, then, in addition to the described circuits, another circuit is simultaneously made from lead 40, relay terminal 92, conductor 103, timer terminal 97, switch 96, timer terminals 98 and 101, switch 99, timer terminal 100, conductor 108, terminals 33 and 34, and a slight delay from the relay terminal 94 and return lead 41. Solenoid 32, of course, is then inactivated as soon as the cam uncovers the follower of switch 99 and permits it to reopen. In addition, after the cam uncovers the follower of switch 96, as when the drying cycle is completed, the circuit through the arm 89 returns to its normal position at a momentary break with relay terminal 90 and opening the shunt circuit to motor 13 which then comes to rest.

Referring now to FIGS. 7 and 8, the air conduit includes spaced side walls 43 and 44, a top wall 45 and a bottom wall 46, preferably has an inclined portion 47. Affixed to a transverse rod 48 journaled in the side walls of the conduit is an improved damper 49 which may comprise sheet metal. This damper extends substantially across the entire conduit, but has its side edges cut away from solenoid and motor rod walls thereof to provide narrow slits 50 and 51 which permit air to bleed through the damper even when the apparatus is not being operated. As will be apparent to those skilled in the art of damper construction, an operation of the damper may be actuated by a position control arm, as will later be described, and in this case, fills the interior of the bag between successive garment treatments. Such air of course, enters through blower 12, even when at rest, bleeds through slots 50 and 51 in the damper, passes over coll 22, and rises into the interior of the bag. Preferably, the damper also is provided with a small cut away upper corners 52 and 53 to aid in the flow of air at the minimum setting of the air controller later to be described. In order, however, to ensure a predetermined volume of air flow at that minimum setting, I provide improved seals which serve to limit air leakage in the ordinary configuration of the Electric Company CR1070-C146 known as G.E. size 1 Switchette. Cam followers for these switches cooperate with means such as flexible leaf springs biased to open switch positions, and are in turn actuated by movement of the cam in the timer. Terminals 98 and 100 are connected to the terminal 104. The rotatable cam 102 is normally moved manually by a knob in the outer surface of the timer casing in order to begin a cycle of operation, movement of that knob serving to wind a spring motor or equivalent means (not shown) which thereafter causes the cam to move during a selected time period to a starting position for the next cycle and at which starting position both switches will again be in open position.
under the pressure from blower 12. At its upper edge, I provide a curved portion 54 adapted to seat against a felt washer 55 carried by an adjustable plate 56 suitably mounted in slots in a partition 57, extending downwardly from the top wall of the air conduit. Similarly, at its lower edge, a curved portion 58 of the felt washer 59 carried by an adjustable plate 60 suitably mounted in slots in a partition 61 extending upwardly from the inclined bottom wall of the conduit.

With the above description of the damper in mind, reference may be made to FIGS. 3 to 6, inclusive. At the end of rod 48 adjacent the solenoid enclosure 19, a damper position control arm 62 terminating in a flat abutment portion 63 is provided. In closed position, this arm is spaced from the solenoid enclosure and in open position closely approaches that enclosure. As the arm moves to open damper position, however, it travels in the plane of an arresting extension 70 mounted upon a lever 71 which is pivoted at its lower end upon a pin 72 mounted in a projection 73 extending to one side from the bottom of solenoid enclosure 19. This lever may include a stepped configuration placing the upper end thereof inwardly of the lower end thereof and closely adjacent the side wall 43. Connected to the upper end of lever 71 is a flexible push-pull wire 74 extending from a rigid guide tube 75 mounted in a bracket 76 attached to wall 43. The wire, in turn, is encased in the tube 75 to a point closely adjacent the air controller 18 (FIG. 2) but with the final portion of the wire being exposed near its connection to that air controller in order to permit flexing of the wire about a comparatively short radius without binding in the tube.

As shown in FIGS. 3 and 9, the air controller comprises a segmental disc-like plate member having a arcuate face portion and pivotally mounted for rocking movement upon a stationary pin 77 projecting laterally from tubing 16 adjacent the timer 17, which tubing provides a rigid support for the controller and at a convenient height. On its face portion, this controller is provided with indicator indicating visually to the operator the position of wire 74 and thereby the position of lever 71 and its arresting arm 70 at any given time. A compression spring 78 surrounding pin 77 and bearing against the controller body prevents slippage or inadvertent movement of the controller while forward and rearward stops 79 and 80, respectively, adapted to engage the body of timer 17, limit the movement of the air controller settings and reduce stresses upon lever 71 and upon the damper when engaged by the arresting arm 70. A short handle 81 is provided at one arcuate extremity of the air controller for manual use and at the other arcuate extremity a pin 82 is rotatably journaled in the end of stop 80 and has securely anchored thereto the end of pull-push wire 74.

Accordingly, with the air controller positioned with stop 79 in engagement with the timer housing, lever 71 is fully extended as seen in FIG. 3, the arresting arm 70 is in contact with damper control arm 62 holding the damper in fully closed position even against the pressure of air from blower 12, and a condition of minimum air supply, such as may be needed when a garment of sheer fabric is being processed, thus obtains. However, due to the construction of the damper, sufficient air is supplied to the bag to distort the same and to dry the garment.

Upon successive settings of the air controller with stop 79 farther and farther away from the setting for minimum air supply, the arresting arm is positioned farther and farther to the left in FIG. 3 until at a point of maximum air supply, such as may be needed when a garment of sheer fabric is being processed, thus obtains. However, due to the construction of the damper, sufficient air is supplied to the bag to distort the same and to dry the garment.

As shown in FIGS. 3 and 4, I provide a shift lever 36 pivotally mounted at its upper end upon a pin 35 projecting from the end of solenoid enclosure 19 and permitting swinging movement of the shift lever in a plane normal to the plane of movement of both the damper control arm 62 and escapement lever 71. Extending from the shift lever is a cam member 86, here shown as being of conical form, and normally held in the path of movement of stepped lever 71 as that lever reaches its position of maximum air supply. A tension spring 87 attached at one end to the bottom of the shift lever and at the other end to the base assures that with the shift lever in position for such engagement with lever 71. At its bottom portion, the shift lever guides the movement of damper-control arm-engage rod 35 which normally is in the same plane as the movement of damper abutment 63. Accordingly, when timer 17 energizes both motor 19 and solenoid 32 simultaneously, and with the air controller positioned at a setting between minimum and maximum air supply, as above described, the energization of the solenoid 32 pulls rod 35 to the right in FIG. 3 against abutment 63 on the damper arm and holds the damper closed until the solenoid 32 is de-energized. In this way, the damper remains in a non-operating condition, essentially of steam and before being subjected to the full pressure of heated air. In general, most garments may be most efficiently finished by this cycle, the steam being supplied for about 8-10 seconds and being followed by removal of the air drying treatment for about 60 seconds.

In accordance with my invention, I am not limited to this conventional cycle of treatment and when treating garments requiring both steam and full air pressure simultaneously, may readily supply these processing fluids merely by adjusting the air controller 18 in advance. By moving the air controller until stop 80 engages the timer housing, the wire 74 is pulled outwardly to a position at which a stepped portion of lever 71 engages against cam 86 and forces that cam to one side. As this occurs, shift lever 36 is pivoted about pin 85 and the bottom of the lever swings outwardly bringing the path of travel of rod 35 out of the plane of damper abutment 63. Thereafter, when the timer energizes the motor and solenoid 32 simultaneously, rod 35 passes by arm 62 and the damper rises to fully open position while steam is being supplied to the interior of the bag. The combined effect of steam and full air pressure serves to drive the steam quickly into the garment positioned on the bag and to shorten the time required for finishing a garment of the more difficult types above mentioned.

If the next garment to be finished is of a delicate material, the air controller is then reset to give a limited air pressure and spring 87 automatically returns the shift lever into normal position at which rod 35 is guided into contact with the abutment 63 to prevent steam and full air pressure being supplied simultaneously and which might damage the delicate material.

It will now be apparent that by this invention, I am able to increase the capabilities of a garment finisher to handle a wide variety of types of garments on the same machine in an efficient manner and without diminishing the advantages found in the garment finisher described in a pending application, Serial No. 586,710.

To recapitulate, the objectives of the invention are thus accomplished since by means of the timer, the solenoid 32 and the motor for the blower are, during any given cycle, both energized initially simultaneously. The steam valve is opened while the solenoid 32 is energized, but the damper may selectively be either open or substantially closed while the steam is being supplied to the garment air supply. Full air pressure is supplied, depending upon prior positioning of the shift lever. Even when that lever is set to hold the damper closed during steam supply, the damper itself permits sufficient air to bleed therethrough to minimize condensation of the steam upon the parts of the apparatus and to force the steam with a light pressure through the bag and
3,006,516

7 into the garment. Conversely, when the lever is set to permit full opening of the damper during steam supply, full air pressure may be applied to the bag and garment along with the steam and thus, the steam is forced into the garment, even though it may be of a heavy material, such as suede or chamois. When the solenoid 32 is de-
ergized, the steam-actuating rod 35 is withdrawn. The blower motor, however, remains energized, due to the timer set-
ting and the damper then swings open to the extent per-
mitted by the prior positioning of lever 71. So long as the motor continues to operate, heating air is then forced into the bag for drying the garment. Even after the motor stops operating, air bleeding through slots 59 and 51 in the damper rises by convection currents into the form and serves to minimize condensation of moisture.

While I have shown a particular embodiment of the in-
vention it will be understood, of course, that I do not
wish to be limited thereto, since many modifications may
be made. I, therefore, contemplate, by the appended
claims to cover any said modifications as fall within the
t true spirit and scope of my invention.

What I claim as new and desire to secure by Letters Patent of the United States is:

1. A garment finisher having a distendable, fluid-privious bag, a stationary base assembly, a blower for direct-
ing air under pressure through said base assembly and
into said bag, a steam source for furnishing steam into said bag and having a steam control valve, a motor for driving said blower, means including a normally closed

damper mounted in said base assembly between said
blower and bag and openable under pressure of air sup-
plied from said blower, a form mounted on said assembly
and supporting said bag, a solenoid for actuating said
steam control valve, and means including a timer having
an electrical circuit to said motor and to said solenoid
and adapted to operate said motor concurrently with,
and subsequent to valve-actuation operation of said solenoid
whereby air may be furnished selectively under pressure
into said bag concurrently with, and subsequent to steam
flow therein.

2. Apparatus as defined in claim 1 including, air con-
troller means for varying the extent of opening of said
damper thereby to regulate the flow of air into said bag.

3. Apparatus as defined in claim 2, wherein said timer
and air controller means for varying said damper are
mounted for manual control at a single operating station.

4. In a garment finisher having a distendable, fluid-
pervious bag, a stationary base assembly, a form for sup-
porting said bag upon said base assembly, a steam coil in
said base assembly, means connected to said coil and
adapted for selectively releasing steam into said bag, an
air conduit for directing air over said coil and into said
bag in heated condition and means for supplying air into
said conduit; the improvement comprising means for pre-
venting collection of steam condensate upon said bag and
form including a damper pivotally mounted in, and
wholly enclosed by, said air conduit between said steam
coil and said air supply means and normally resting in
closed position for preventing movement within said air
conduit and having at least one side edge spaced from a wall of said air conduit to provide a space permitting said air to bleed therethrough with said damper in closed position and in a predeter-
mined quantity serving to insure a convection current of
heated air into said bag sufficient to prevent condensa-
tion of steam therein.

5. Apparatus as defined in claim 4 wherein said means
for supplying air includes a motor driven blower, a man-
ually operable air controller having means projecting into
the path of movement of the damper structure thereby to
regulate operation of said damper to a selected point within the range of fully open to fully closed
position, said damper being pivotally mounted at an upper
portion thereof and being adapted to be lifted by the pres-
sure of air supplied from said blower to a setting selected
by said air controller, and said space within said conduit
between said one side edge of said damper and said wall
of said conduit being of a size insufficient to pass sufficient
air to cause damage to shear garments placed on said bag
and receiving heated air under pressure from said blower
while said damper is said closed position.

6. Apparatus as defined in claim 4 including, a top seal
and a bottom seal mounted in said air conduit and adapted
respectively to contact the top and bottom edges of said
damper while occupying its closed position, thereby to
assist in supplying air in said predetermined quantity to said bag.

7. In a garment finisher having a distendable, fluid-
pervious bag, a stationary base assembly, a form for sup-
porting said bag upon said base assembly, an air conduit
for directing air into said bag, a blower for supplying air
at constant pressure into said conduit, a damper in said
 conduit biased to closed position and adapted to be lifted
to open position by pressure of air supplied by said blower,
a damper control arm mounted exteriorly of said conduit,
a manually adjustable air controller, a pivoted lever
mounted adjacent said conduit and having an extension
disposed in the plane of movement of said damper control
arm for movement into and out of the path of movement
of said arm, and means connecting said air controller
and one end of said lever for selectively positioning said
extension for engagement with said control arm as said
damper is lifted by the pressure of air from said blower,
thereby to predetermine the pressure of air supplied to said bag.

8. Apparatus as defined in claim 7 wherein said air
controller is disposed at an operating station remote from
said damper and wherein said connecting means comprises
a flexible push-pull wire.

9. In a garment finisher having a distendable, fluid-
pervious bag, a stationary base assembly, a form for sup-
porting said bag on said assembly, an air conduit for
directing air into said bag, a motor driven blower for sup-
plying air at constant pressure into said conduit, a damper
in said conduit biased to closed position and adapted to
be lifted to open position by pressure of air supplied by
said blower, a damper control arm mounted exteriorly
of said conduit, a steam source for furnishing steam
into said bag and having a steam control valve, means
including a solenoid for actuating said steam control
valve, a manually adjustable timer having an electrical
circuit to said solenoid and to said blower motor, a

damper-control-arm-engaging rod connected to said sole-
noid and operable simultaneously therewith, and a shift
lever loosely attached to and journaling said rod, said
lever being adapted to move between a first position
in which said rod is guided by said lever into abutting rela-
tion with said damper control arm while said timer is
energizing both said solenoid and said blower motor thus
to hold said damper closed against said air pressure and
a second position in which said rod is guided by said
lever out of the path of said control arm while said timer

10. Apparatus as defined in claim 9 wherein said timer
and air controller means are mounted adjacent each other
thereby to provide a single operating station for the oper-
or of the finisher.

11. In a garment finisher having a distendable, fluid-
pervious bag, a stationary base assembly, a form for sup-
porting said bag on said assembly, an air conduit for
directing air into said bag, a motor driven blower for sup-
plying air at constant pressure into said conduit, a damper
in said conduit biased to closed position and adapted to
be lifted to open position by pressure of air supplied by
said blower, a damper control arm mounted exteriorly
of said conduit, a manually adjustable air controller, a piv-

oted lever mounted adjacent said conduit, means connecting said air controller and said lever, a steam source for furnishing steam into said bag and having a steam control valve, means including a solenoid for actuating said steam control valve, a manually adjustable timer having an electrical circuit to said solenoid and to said blower motor, a damper-control-arm-engaging rod connected to said solenoid and operable simultaneously therewith, a shift lever loosely attached to and journalling said rod and movable between a first position in which said rod is guided into engagement with said damper arm and a second position in which said rod is guided out of engagement therewith, and a cam member rigidly affixed to said shift lever in the path of movement of said pivoted lever and engaged thereby when said pivoted lever is moved to one extreme position by said air controller, whereby upon movement of said air controller to said extreme position said cam moves said shift lever to guide said rod out of the path of said damper arm and to permit supply of air at full pressure into said bag simultaneously with supply of steam thereinto as said motor and solenoid are energized simultaneously by said timer.

12. Apparatus as defined in claim 11 wherein said damper-control-arm-engaging rod has a length sufficient to engage said damper arm when in closed damper position during actuation of said solenoid and to hold said damper closed when said shift lever cam is out of contact with said pivoted lever.

13. Apparatus as defined in claim 11 including resilient means for normally holding said shift lever cam in one extreme path of movement of said pivoted lever.

14. Apparatus as defined in claim 11 wherein said shift lever is mounted for movement in a plane normal to the plane of movement of said pivoted lever.

15. In a garment finisher having a distendable, fluid-pervious bag, a stationary base assembly, a form for supporting said bag upon said assembly, an air conduit for directing air into said bag, a blower for supplying air at constant pressure into said conduit, a damper in said conduit biased to closed position and adapted to be lifted to open position settings by pressure of air supplied by said blower, a damper control arm mounted exteriorly of said conduit, manually adjustable air controller means for establishing the pressure at which air is supplied to said bag from said conduit and including a support attached to said base assembly, a plate mounted upon said support for rocking movement thereon, a flexible push-pull wire attached to said plate, a guide tube enclosing a substantial portion of said wire and extending to a point adjacent said air conduit, a pivoted lever mounted adjacent said conduit and having an extension disposed in the plane of movement of said damper control arm, said lever being attached to and operable by said wire whereby, upon movement of said plate said lever may be selectively positioned to bring said extension into a position at which said damper control arm abuts against said extension and restrains said damper to a maximum opening corresponding to the predetermined air pressure selected for said bag.

16. Apparatus as defined in claim 15, wherein said plate is provided with indicia for indicating visually the location of said extension with respect to said damper control arm.

17. A garment finisher having a distendable, fluid-pervious bag, a stationary base assembly, a blower for directing air under pressure through said base assembly and into said bag, a steam source for furnishing steam into said bag and having a steam control valve, a motor for driving said blower, means including a regulatable damper structure mounted in said base assembly between said blower and said bag for controlling the air pressure within said bag by regulating the volume of air supplied into said bag, means including an adjustable member for selectively controlling the extent of opening of said damper structure during operation of said blower, a form mounted on said base assembly and supporting said bag, a solenoid for actuating said steam control valve, and means including a timer having an electrical circuit to said motor and to said solenoid and adapted to operate said motor concurrently with, and subsequent to, valve-actuation operation of said solenoid whereby air may be furnished selectively under pressure into said bag concurrently with, and subsequent to, steam flow thereinto and at a volume and pressure commensurate with the setting of said adjustable member.

18. A garment finisher having a distendable, fluid-pervious bag, a stationary base assembly, a blower for directing air under pressure through said base assembly and into said bag, a steam source for furnishing steam into said bag and having a steam control valve, a solenoid for actuating said valve, a motor for driving said blower, an electrical circuit including said motor and said solenoid, means controlled by the operator of said machine and including a timer means in said circuit for activating and inactivating said solenoid and said motor, the circuit through said timer means providing for predetermined periods of activation of said solenoid and said motor and for automatic inactivation thereof at the conclusion of said predetermined periods, at least a portion of said respective periods of activation including a simultaneous activation of both said solenoid and said motor, an adjustable damper means in said base assembly between said blower and said bag, and means operable independently of said timer means for selectively varying the setting of said damper means.

References Cited in the file of this patent

UNITED STATES PATENTS

1,752,830 Bliss ---------------- Apr. 1, 1930
2,326,775 Frentzel -------------- Aug. 17, 1943
2,348,950 Anderson -------------- May 16, 1944
2,378,565 Locke et al. --------- June 19, 1945
2,410,485 Dunah ---------------- Nov. 5, 1946
2,460,732 Brenner et al. ------ Feb. 1, 1949
2,606,272 Platt ---------------- Aug. 5, 1952
2,805,009 Jackson -------------- Sept. 3, 1957
2,883,092 McMillan ------------ Apr. 21, 1959