ITALIAN PATENT OFFICE

Document No.

102011901982551A1

Publication Date

20130328

Applicant

PRIVITERA DOMENICO

Title

MOLA PERIFERICA PER LA LAVORAZIONE DI BORDI DI LASTRE

MOLA PERIFERICA PER LA LAVORAZIONE DI BORDI DI LASTRE

DESCRIZIONE

Il presente trovato ha per oggetto una mola periferica per la lavorazione di bordi di lastre.

Il campo nel quale l'invenzione si colloca è quello della lavorazione, ed in particolare della profilatura, del bordo di materiali vetrosi, ceramici e lapidei, naturali e sintetici.

Generalmente, la profilatura viene realizzata con utensili peculiari, ovvero le mole periferiche diamantate o abrasive, con cui vengono eseguite le fasi di taglio e sgrossatura, lappatura, lucidatura e brillantatura.

Tali mole periferiche vengono montate su macchine contornatrici, che possono essere manuali, automatiche e a controllo numerico.

Oggigiorno le mole periferiche diamantate o abrasive, di cui una indicata con A è esemplificata in figura 1, si compongono di:

- un corpo mola B su cui sono realizzati la camera per il passaggio dell'acqua interna per la refrigerazione dell'utensile, dove previsto, e gli attacchi di aggancio al mandrino/macchina

(normalmente si tratta di uno o più fori); le dimensioni e le forme del corpo mola dipendono dal tipo di macchina contornatrice utilizzata nella profilatura; il materiale impiegato per realizzare il corpo mola può essere materiale metallico, materia plastica (resinoide/gommosa), oppure della stessa composizione della parte abrasiva dell'utensile (corona o anello abrasivo, come di seguito descritto);

- una corona o anello abrasivo C, ovvero la parte che lavora a contatto con il bordo della lastra e che gli conferisce il profilo e le caratteristiche desiderati; tale corona può essere costituita da materiale sinterizzato diamantato o abrasivo metallico per l'utilizzo nella fase di taglio/sgrossatura; da materiale sinterizzato diamantato o abrasivo resinoide per l'utilizzo nella fase di lappatura; da materiale sinterizzato diamantato o abrasivo lucidante per l'utilizzo nella fase di lucidatura/brillantatura.

Tale corona abrasiva può avere una forma continua, oppure a settori, a seconda che si vogliano conferire all'utensile maggiori capacità di finitura (corona/anello continua) o di taglio

(corona/anello a settori).

La corona abrasiva è sagomata, in sezione secondo un profilo la cui forma è quella che darà il profilo desiderato al bordo E della lastra L da lavorare.

Le forme dei profili possono essere le più svariate a seconda delle richieste del mercato.

Sono poi presenti fori per il passaggio acqua D; la maggior parte delle mole periferiche lavora ad umido, con acqua oppure acqua addizionata con refrigerante.

Dove la refrigerazione può essere sia esterna che interna, sono realizzati sull'utensile una camera di contenimento dell'acqua, che proviene dal mandrino, sul corpo mola A, e dei fori/canali che, dal profilo dell'utensile/mola, arrivano fino alla camera di contenimento sul corpo mola.

In questo modo la superficie del profilo a contatto con il bordo della lastra durante la lavorazione/passaggio, risulta essere più pulita e meglio refrigerata.

Per realizzare un profilo specifico, sul bordo delle lastre di materiali sopra menzionati, si utilizzano delle mole periferiche

diamantate/abrasive.

In funzione delle loro caratteristiche tecniche (capacità di asportazione/taglienza e finitura), dovute al tipo di sinterizzato e alle dimensioni del diamante/abrasivo (granulometria) impiegati, vengono utilizzate in sequenza su macchine contornatrici, fino ad ottenere il profilo/grado di finitura desiderato.

A seconda del tipo di macchina contornatrice impiegata per la lavorazione, manuale, automatica, o a controllo numerico, gli utensili sono:

- montati tutti insieme in sequenza: in questo caso la lastra viene fatta scorrere lungo un sistema di nastri/cinghie trasportatrici ed il bordo viene lavorato in sequenza dai vari utensili;
- uno per volta su di un medesimo mandrino/motore: in questo caso la lastra rimane ferma e l'utensile viene fatto passare lungo il bordo attraverso un mandrino/motore che gira attorno alla lastra, spostato in modo manuale o automatico.

In entrambi i casi, la lavorazione del bordo per la realizzazione del profilo si compone delle sequenti fasi:

- taglio/sgrossatura, con utilizzo di utensili con alte capacità di asportazione, a legante metallico e diamanti, o altri elementi abrasivi, di elevata granulometria;
- lappatura, con utilizzo di utensili con capacità di taglio/finitura a legante metallico, o sostanza resinoide e diamanti, o altri elementi abrasivi, di medio/piccola granulometria;
- lucidatura o brillantatura, con utilizzo di utensili con alte capacità di finitura a legante resinoide e diamanti, o altri elementi abrasivi, di piccola granulometria.

Per sua natura ogni mola periferica utilizzata nelle varie fasi, lascia delle righe di lavorazione sul bordo della lastra.

Nei sistemi di lavoro sopra descritti, queste righe sono ancora più evidenti perché la rotazione della mola A, indicata dalla freccia G, e la direzione, indicata dalla freccia F, della lavorazione della lastra L, hanno lo stesso verso di avanzamento, e la mola opera su un piano P parallelo a quello della lastra da lavorare, come raffigurato in figura 2.

Per aumentare il grado di finitura che si vuole

ottenere, ovvero ridurre le cosiddette righe di lavorazione, vengono effettuati uno o più passaggi sul bordo della lastra da profilare, nella varie fasi di lavorazione.

Ciò può avvenire:

- lavorando il bordo con utensili con granulometrie di diamante/abrasivo sempre più piccole, ed è il sistema più utilizzato, e quanto maggiore è il numero di passaggi, tanto maggiore è il numero degli utensili impiegati per ottenere una migliore finitura del bordo/profilo;
- lavorando in oscillazione, ovvero con un movimento ausiliario della mola in direzione trasversale alla direzione di avanzamento della mola stessa; per lavorare in oscillazione, la mola viene montata su un mandrino che è predisposto per variare la sua altezza rispetto al piano di lavoro della lastra durante la profilatura (oscillazione).

Facendo lavorare in oscillazione uno o più utensili in una o più fasi/passaggi, le righe di lavorazione si riducono in modo più drastico e rapido, perché l'utensile che lavora in oscillazione, asporta le righe create

dall'utensile utilizzato nel passaggio precedente.

La realizzazione di un profilo specifico con i sistemi sopra descritti, al fine di avere un ottimo grado di finitura, ovvero con riduzione drastica e preferibilmente con eliminazione delle righe di lavorazione, presenta alcuni inconvenienti.

Un primo inconveniente è legato all'uso di mole con granulometrie sempre più piccole.

Infatti tale impiego di una pluralità di mole di granulometria diversa comporta tempi di comprendono lavorazione che sia i tempi di passaggio delle varie mole che di i tempi sostituzione di una mola con un'altra.

Inoltre, la pluralità di mole impiegate comporta rilevanti investimenti in termini di attrezzature.

Nel caso di mole che lavorano in oscillazione, è palese l'ulteriore inconveniente della non utilizzabilità di tale sistema per i profili sagomati, come esemplificato nelle figure da 3 a 5; in tal caso infatti è necessario ricorrere ad una mola periferica piana Al per la lavorazione in oscillazione della parte retta El del profilo (fig.3) e ad una mola periferica ulteriore A2 per

lavorare gli smussi E2 (fig.4).

Quindi, un passaggio ulteriore ed un utensile aggiuntivo, che comportano maggiori costi.

E' possibile utilizzare un unico utensile A3, come da figura 5, che lavora parte retta e smussi del profilo contemporaneamente, ma con il quale non è, comunque, possibile lavorare in oscillazione.

Il compito del presente trovato è quello di realizzare una mola periferica per la lavorazione di bordi di lastre, capace di ovviare agli inconvenienti citati della tecnica nota.

In particolare, nell'ambito di tale compito, un importante scopo del trovato è quello di realizzare una mola periferica capace di migliorare la lavorazione della superficie del bordo di una lastra, con ricorso a meno utensili ed impiego di minor tempo.

Un altro scopo del trovato è quello di mettere a punto una mola periferica facilmente montabile su mandrini e macchinari di lavorazione di tipo noto. Un ulteriore scopo del trovato è quello di mettere a punto una mola periferica di prestazioni e durata non inferiore alle mole di tipo noto.

Un altro scopo del trovato è quello di mettere a

punto una mola per la lavorazione di lastre in materiale vetroso, ceramico, lapideo, ed anche ligneo, metallico e plastico, nonchè altri materiali simili ed equivalenti.

Non ultimo scopo del trovato è quello di proporre una mola periferica per la lavorazione di bordi di lastre realizzabile con impianti e tecnologie note.

Questo compito, nonchè questi ed altri scopi che meglio appariranno in seguito, sono raggiunti da una mola periferica per la lavorazione di bordi di lastre, del tipo comprendente un corpo mola, fissare ad mandrino interno, da un 0 altra macchina, ed una corona abrasiva, esterna, atta ad operare a contatto con un bordo di una lastra, detta mola periferica caratterizzandosi per iΊ fatto che detta corona abrasiva è composta da almeno due porzioni aventi superficie abrasiva di di diversa capacità abrasiva - lucidante l'una rispetto all'altra, dette porzioni di abrasiva essendo giustapposte una all'altra secondo una superficie almeno in parte trasversale rispetto all'asse di rotazione della mola periferica stessa.

Ulteriori caratteristiche e vantaggi del trovato risulteranno maggiormente dalla descrizione di quattro forme di esecuzione preferita, ma non esclusiva, della mola periferica secondo il trovato, illustrate, a titolo indicativo e non limitativo, negli uniti disegni, in cui:

- la figura 1 illustra una mola periferica di tipo noto;
- la figura 2 rappresenta, in vista prospettica esemplificativa di come lavora una mola di tipo noto;
- le figure da 3 a 5 rappresentano altri altre applicazioni di mole periferiche di tipo noto;
- la figura 6 è una vista prospettica di una mola periferica secondo il trovato in una sua prima forma realizzativa;
- la figura 7 rappresenta un esploso schematico della mola di figura 6;
- la figura 8 rappresenta una vista prospettica di una mola periferica secondo il trovato in una sua seconda forma realizzativa;
- la figura 9 rappresenta un esploso schematico della mola di figura 8;
- la figura 10 è una rappresentazione

esemplificativa del funzionamento della mola secondo il trovato;

- la figura 11 è una vista prospettica di una mola periferica secondo il trovato in una sua terza forma realizzativa;
- la figura 12 è una vista prospettica di una mola periferica secondo il trovato in una sua quarta forma realizzativa.

Con riferimento alle figure citate, una mola periferica per la lavorazione di bordi di lastre, secondo il trovato, è indicata nel suo complesso con il numero 10.

Tale mola 10, in una sua prima forma realizzativa come da figure 1 e 2, comprende un corpo mola 11, interno, da fissare ad un mandrino o altra macchina, non illustrate per semplicità e da intendersi di tipo noto, ed una corona abrasiva 12, esterna, atta ad operare a contatto con un bordo di una lastra.

La peculiarità della mola periferica 10 secondo il trovato risiede nel fatto che la corona abrasiva 12 è composta da due porzioni 13 e 14 rispettivamente, aventi rispettive superfici abrasive 15 e 16 di diversa capacità abrasiva -

lucidante l'una rispetto all'altra, ed in particolare di diverso grado di granulometria una rispetto all'altra.

Si distingue la generica capacità abrasiva - lucidante dalla granulometria in quanto la qualità della finitura è definita dalle capacità abrasive della polvere di diamante assommata alle capacità abrasive del legante in cui tale polvere è mescolata, ed il legante coopera alla finitura.

porzioni di corona abrasiva 13 е 14 all'altra giustapposte una con rispettive 17 18 superfici di contatto е sviluppantesi trasversalmente rispetto all'asse di rotazione X della mola periferica 10 stessa.

Il corpo mola 11 è dato da un elemento tubolare, ad esempio realizzato in resina, o in alluminio, o in una mescola di resina con polvere di alluminio, su cui sono realizzati fori di refrigerazione 20 per il passaggio acqua.

Le superfici di contatto 17 e 18, in tale esempio realizzativo, sono parallele ad un piano P1 che è inclinato di un angolo W rispetto ad un piano P2 ortogonale all'asse di rotazione X.

In particolare, tale piano inclinato P1 passa sia

per un punto dello spigolo perimetrale superiore 23 della prima porzione 13 che per un punto dello spigolo perimetrale inferiore 24 della seconda porzione 14.

Le due porzioni 13 e 14 della corona 12 presentano fori passanti 21 e 22 corrispondenti ai fori di refrigerazione 20 del corpo mola 11.

Sono da intendersi ricomprese nel trovato anche le varianti realizzative in cui il corpo mola e la corona 12 non presentino alcun foro di refrigerazione.

porzioni 13 е 14 sostanzialmente Tali sono superfici abrasive 15 16 anulari, con le sagomate, a titolo esemplificativo, per la lavorazione di un bordo lastra con smussi su entrambi gli spigoli.

Una prima porzione 13 presenta ad esempio, una superficie abrasiva 15 con alte capacità di asportazione, a legante metallico e diamanti, o altri elementi abrasivi, di elevata granulometria; la seconda porzione 14 presenta invece una superficie abrasiva 16 con capacità di taglio/finitura a legante metallico, o sostanza resinoide, e diamanti, o altri elementi abrasivi,

di medio/piccola granulometria.

La peculiare sagoma delle due porzioni 13 e 14 determina una alternanza delle superfici abrasive 15 e 16 a contatto con il bordo della lastra, avente un andamento sostanzialmente sinusoidale, come da figura 10.

In tal modo la mola 10 secondo il trovato simula un movimento di abrasione oscillatorio per ciascuna delle due diverse superfici abrasive, che con la rotazione della mola 10 si alternano nella lavorazione del bordo della lastra, senza che il mandrino, su cui è montato l'utensile, trasli trasversalmente alla direzione di avanzamento della mola lungo il bordo della lastra.

Nelle figure 8 e 9 è rappresentata una seconda forma realizzativa di una mola periferica secondo il trovato, ivi indicata con 110.

Tale mola periferica 110 presenta una corona abrasiva 112 che è suddivisa in tre porzioni, rispettivamente 113, 114 e 130, aventi rispettive superfici abrasive 115, 116 e 131 di diverso grado di granulometria rispetto all'altra, oppure le due porzioni superiore ed inferiore 113 e 114 con eguale granulometria e la porzione centrale 130

con granulometria diversa.

Le porzioni di corona abrasiva 113, 114 e 130 sono giustapposte una all'altra con rispettive superfici di contatto 117, 118, 132 e 133 sviluppantisi trasversalmente rispetto ad un piano ortogonale all'asse di rotazione della mola periferica 110 stessa.

Le superfici di contatto 117, 118, 132 e 133, anche in tale esempio realizzativo, sono parallele ad un piano che è inclinato rispetto ad un piano ortogonale all'asse di rotazione, alla stregua di quanto sopra descritto per la prima forma realizzativa della mola periferica 10.

In particolare, i due piani inclinati P3 e P4 su cui giacciono le superfici di contatto, rispettivamente 117 e 132 sul primo piano P3, e 118 e 133 sul secondo piano P4, sono paralleli.

Il primo piano P3 passa per un punto dello spigolo perimetrale superiore 123 della prima porzione 113, mentre il secondo piano P4 passa per un punto dello spigolo perimetrale inferiore 124 della seconda porzione 114.

Anche le tre porzioni 113, 114 e 130 della corona 112 presentano fori passanti 121 e 122 corrispondenti ai fori di refrigerazione 120 del corpo mola 111.

Tali porzioni 113, 114 e 130 sono sostanzialmente anulari, con le superfici abrasive 115, 116 e 134 sagomate, a titolo esemplificativo, per la lavorazione di un bordo lastra con smussi su entrambi gli spigoli.

Una prima porzione 113 presenta ad esempio, una superficie abrasiva 115 con alte capacità asportazione, a legante metallico e diamanti, o altri elementi abrasivi, di elevata granulometria; seconda porzione 114 presenta invece una la superficie abrasiva 116 con alte capacità finitura a legante resinoide e diamanti, o altri elementi abrasivi, di piccola granulometria; terza porzione, centrale, 130, presenta una superficie abrasiva 134 di tipo intermedio tra le prime due, ovvero con capacità di taglio/finitura legante metallico, o sostanza resinoide, diamanti, o altri elementi abrasivi, di medio/piccola granulometria.

In figura 11 è esemplificata una terza forma realizzativa di una mola periferica secondo il trovato, ivi indicata con il numero 210.

Tale mola 210 presenta tre porzioni anulari 213, 214 e 230 giustapposte secondo piani inclinati tra loro paralleli, le quali porzioni anulari definiscono una superficie abrasiva complessiva di forma cilindrica, quindi adatta a bordi piani. In figura 12 è esemplificata una quarta forma realizzativa di una mola periferica secondo il trovato, ivi indicata con il numero 310.

Tale mola 310 presenta tre porzioni anulari 313, 314 e 330 giustapposte secondo piani inclinati tra loro paralleli, in particolare con le porzioni anulari prima 313 e seconda 314 a settori, 313a, 313b, 314a, 314b retti o inclinati, atti ad assicurare maggiore capacità di taglio e asportazione in generale.

In una forma realizzativa della mola secondo il trovato, non illustrata per semplicità, ma di intendersi realizzabile, il corpo mola è in pezzo unico con almeno una delle porzioni della corona.

In generale una mola periferica secondo il trovato, qui rappresentata come recante una corona abrasiva composta di due o tre porzioni, può essere realizzata anche con corona abrasiva di più porzioni, a seconda delle necessità

dell'utilizzatore.

Le varie porzioni anulari sono, ad esempio, realizzate separatamente e poi assemblate sul corpo mola.

In alternativa, le porzioni anulari vengono direttamente realizzate sul corpo mola in sequenza attraverso procedimenti di lavorazione a stadi successivi.

Le granulometrie delle porzioni anulari che compongono la corona abrasiva, possono essere più o meno differenti a seconda degli impieghi previsti per la mola.

Le tipologie dei leganti con cui vengono realizzati i sinterizzati delle porzioni anulari possono ad esempio essere:

- leganti/sinterizzati metallici per una mola per taglio/sgrossatura;
- leganti/sinterizzati resinoidi per una mola per lappatura/lucidatura;
- leganti/sinterizzati lucidanti per una mola per lucidatura/brillantatura.

Il numero, le forme e le dimensioni delle porzioni anulari di cui si compone la corona abrasiva sono da intendersi poter essere di varie forme, in

funzione delle caratteristiche che si vogliono dare alla mola.

Un corretto ed appropriato connubio dei citati aspetti delle porzioni anulari che compongono la corona abrasiva, granulometria, tipo di legante, dimensioni e forma, atti a determinare passaggi alternati di superfici abrasive di caratteristiche differenti con contemporanea simulazione di un movimento oscillatorio, conferisce alla mola secondo il trovato una migliore capacità di taglienza/finitura rispetto ad un normale utensile presente sul mercato.

Una porzione anulare intermedia può essere anche data da uno spazio vuoto, oppure con un materiale inerte/lubrificante, oppure con un materiale più duro rispetto alle altre porzioni anulari; in tali casi si ottiene una migliore refrigerazione dell'utensile e una minore deformazione del suo profilo.

Una mola periferica secondo il trovato è particolarmente adatta per la profilatura di bordi di lastre in materiale vetroso, ceramico, lapideo o simile.

Si è in pratica constatato come il trovato

raggiunga il compito e gli scopi preposti.

In particolare, con il trovato si è messa a punto una mola periferica capace di ridurre se non eliminare più velocemente le righe di lavorazione sul bordo della lastra da profilare, e quindi di migliorare la qualità del bordo in tempi più rapidi rispetto a quanto realizzabile dalla tecnica nota con l'impiego di più mole diverse in serie, o con l'impiego di mandrini traslabili verticalmente per realizzare una lavorazione ad oscillazione.

In più, con il trovato si è messa a punto una mola periferica con corona abrasiva sagomabile per la lavorazione di profili non solo piatti ma anche complessi.

Inoltre, con il trovato si è messa a punto una mola periferica impiegabile su macchine contornatici di tipo noto, sia manuali, che automatiche, che a controllo numerico.

Ulteriormente, con il trovato si è messa a punto una mola periferica capace di un miglior grado di taglienza/finitura per singolo passaggio, rispetto ad un normale utensile.

Ancora, una mola periferica secondo il trovato

subisce, grazie all'interposizione tra due porzioni anulari superiore ed inferiore di una porzione intermedia di durezza maggiore rispetto alle altre, una minore deformazione ed è quindi capace di un migliore mantenimento delle tolleranze del profilo di lavorazione della corona abrasiva.

Inoltre, dal punto di vista dell'impatto economico, una mola periferica secondo il trovato consente di effettuare un minor numero di passaggi di lavorazione sul bordo lastra, ottenendo al contempo una migliore qualità del bordo, impiegando un minor numero di utensili rispetto ai sistemi di lavoro attuali in uso.

Ulteriormente, con il trovato si è messa a punto una mola periferica di durata maggiore e quindi capace di lavorare per un periodo maggiore realizzando profili le cui misure rientrano in pieno intervallo di tolleranza.

Ancora, con il trovato si è messa a punto una mola una mola realizzabile appositamente per la lavorazione di lastre in materiale vetroso, ceramico, lapideo, ed anche ligneo, metallico e plastico, nonchè altri materiali simili ed

equivalenti.

Non ultimo, con il trovato si è messa a punto una mola periferica realizzabile con impianti e tecnologie note.

Il trovato, così concepito, è suscettibile di numerose modifiche e varianti, tutte rientranti nell'ambito del concetto inventivo; inoltre, tutti i dettagli potranno essere sostituiti da altri elementi tecnicamente equivalenti.

In pratica, i materiali impiegati, nonché le dimensioni e le forme contingenti, potranno essere qualsiasi a seconda delle esigenze e dello stato della tecnica.

Ove le caratteristiche e le tecniche menzionate in qualsiasi rivendicazione siano seguite da segni di riferimento, tali segni sono stati apposti al solo scopo di aumentare l'intelligibilità delle rivendicazioni e di conseguenza tali segni di riferimento non hanno alcun effetto limitante sull'interpretazione di ciascun elemento identificato a titolo di esempio da tali segni di riferimento.

RIVENDICAZIONI

- 1) Mola periferica (10) per la lavorazione di bordi di lastre, del tipo comprendente un corpo mola (11), interno, da fissare ad un mandrino o altra macchina, ed una corona abrasiva esterna, atta ad operare a contatto con un bordo di lastra, detta mola periferica caratterizzandosi per il fatto che detta corona abrasiva (12) è composta da almeno due porzioni (13, 14) aventi rispettive superfici abrasive (15, 16) di diversa capacità abrasiva - lucidante l'una rispetto all'altra, dette porzioni di corona abrasiva (13, 14) essendo giustapposte all'altra con superfici di contatto (17, sviluppantesi almeno in parte trasversalmente rispetto all'asse di rotazione (X) della mola periferica (10) stessa.
- 2) Mola periferica, secondo la rivendicazione 1, caratterizzata dal fatto che detto corpo mola (11) è dato da un elemento tubolare su cui sono realizzati fori di refrigerazione (20) per il passaggio acqua.
- 3) Mola periferica secondo le rivendicazioni precedenti, che si caratterizza per il fatto che

dette superfici di contatto (17, 18) sono parallele ad un piano (P1) che è inclinato di un angolo (W) rispetto ad un piano (P2) ortogonale all'asse di rotazione (X).

- 4) Mola periferica secondo le rivendicazioni precedenti, che si caratterizza per il fatto che detto piano inclinato (P1) passa sia per un punto dello spigolo perimetrale superiore (23) della prima porzione (13) che per un punto dello spigolo perimetrale inferiore (24) della seconda porzione (14).
- 5) Mola periferica secondo le rivendicazioni precedenti, che si caratterizza per il fatto che dette porzioni (13, 14) sono sostanzialmente anulari.
- 6) Mola periferica secondo le rivendicazioni precedenti, che si caratterizza per il fatto che una prima porzione (13) presenta una superficie abrasiva (15) con alte capacità di asportazione, a legante metallico e diamanti, o altri elementi abrasivi, di elevata granulometria, la seconda porzione (14) presentando una superficie abrasiva (16) con capacità di taglio/finitura a legante metallico, o sostanza resinoide, e diamanti, o

altri elementi abrasivi, di medio/piccola granulometria.

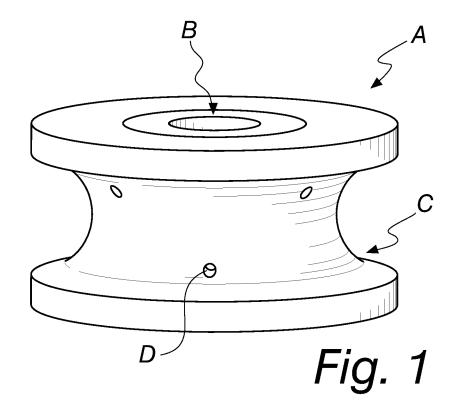
- 7) Mola periferica secondo le rivendicazioni precedenti, che si caratterizza per il fatto di presentare una corona abrasiva (112) che è suddivisa in tre porzioni (113, 114, 130) aventi rispettive superfici abrasive (115, 116, 131) di diverso grado di granulometria rispetto all'altra, oppure le due porzioni superiore ed inferiore (113, 114) con eguale granulometria e la porzione centrale (130) con granulometria diversa.
- 8) Mola periferica secondo la rivendicazione precedente, che si caratterizza per il fatto che dette porzioni di corona abrasiva (113, 114, 130) sono giustapposte una all'altra con rispettive superfici di contatto (117, 118, 132, 133) sviluppantisi trasversalmente rispetto ad un piano ortogonale all'asse di rotazione della mola periferica (110) stessa.
- 9) Mola periferica secondo le rivendicazioni precedenti, che si caratterizza per il fatto di presentare tre porzioni anulari (213, 214, 230) giustapposte secondo piani inclinati tra loro paralleli, le quali porzioni anulari definiscono

una superficie abrasiva complessiva di forma cilindrica.

10) Mola periferica secondo le rivendicazioni precedenti, che si caratterizza per il fatto di presentare tre porzioni anulari (313, 314, 330) giustapposte secondo piani inclinati tra loro paralleli, con le porzioni anulari prima (313) e seconda (314) a settori (313a, 313b, 314, 314b), retti o inclinati, atti ad assicurare maggiore capacità di taglio e asportazione in generale.

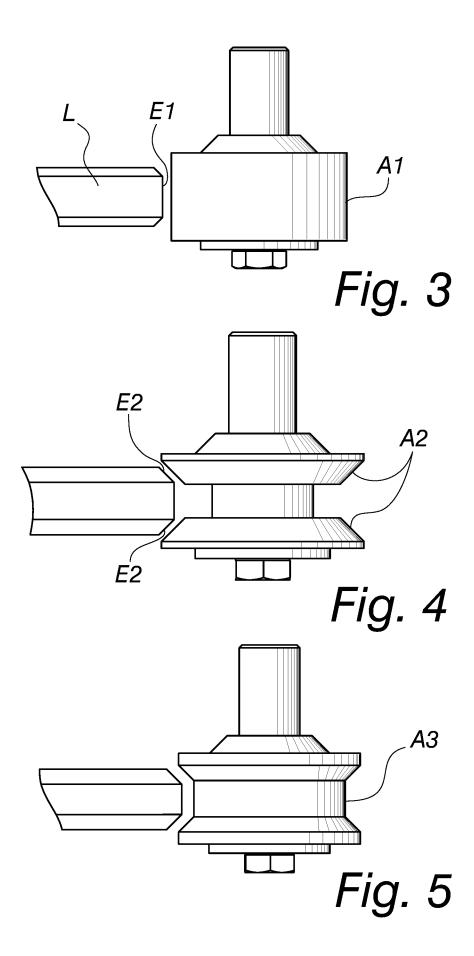
CLAIMS

- 1. A peripheral wheel (10) for machining the edges of slabs, of the type comprising an internal wheel body (11), to be fixed to a spindle or other machine, and an external abrasive ring (12), which is adapted to work in contact with an edge of a slab, said peripheral wheel being characterized in that said abrasive ring (12) is composed of at least two portions (13, 14) that have respective surfaces (15, 16) having different abrasive abrasive capacities - one polishing with respect to the other, said portions of abrasive ring (13, being juxtaposed with respect to each other with contact surfaces (17, 18) that extend at least partly transversely with respect to the axis of rotation (X) of said peripheral wheel (10).
- 2. The peripheral wheel according to claim 1, characterized in that said wheel body (11) is constituted by a tubular element on which refrigeration holes (20) for the passage of water are provided.
- 3. The peripheral wheel according to the preceding claims, characterized in that said contact surfaces (17, 18) are parallel to a plane

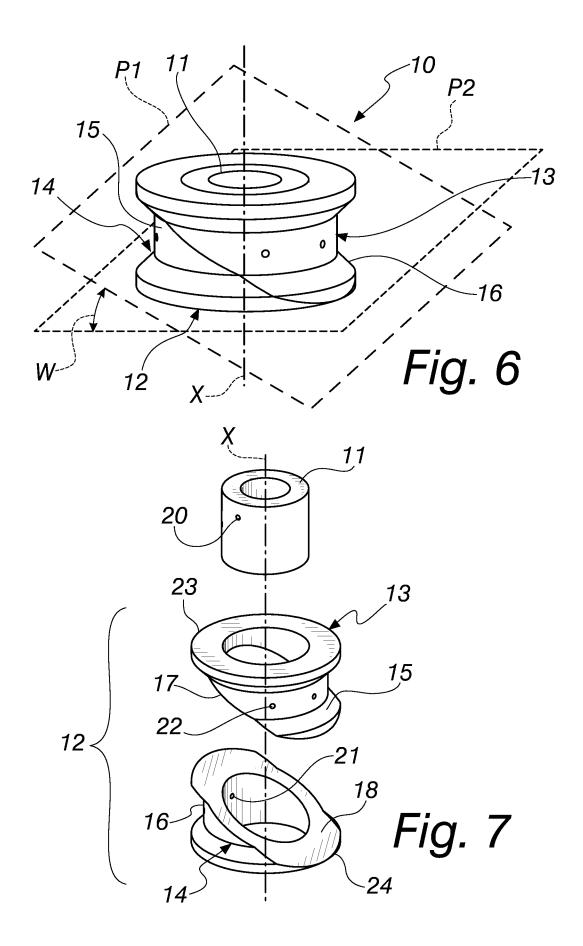

- (P1) which is inclined by an angle (W) with respect to a plane (P2) which is perpendicular to the axis of rotation (X).
- 4. The peripheral wheel according to the preceding claims, characterized in that said inclined plane (P1) passes both through a point of the upper perimetric rim (23) of the first portion (13) and through a point of the lower perimetric rim (24) of the second portion (14).
- 5. The peripheral wheel according to the preceding claims, characterized in that said portions (13, 14) are substantially annular.
- 6. The peripheral wheel according to the preceding claims, characterized in that a first portion (13) has an abrasive surface (15) with a high removal capacity, with metallic bonding agent and diamonds, or other abrasive elements, having a large particle size, the second portion (14) having an abrasive surface (16) with a cutting/finishing capacity with metallic bonding agent or resinoid substance and diamonds, or other abrasive elements, having a medium/small particle size.
 - 7. The peripheral wheel according to the

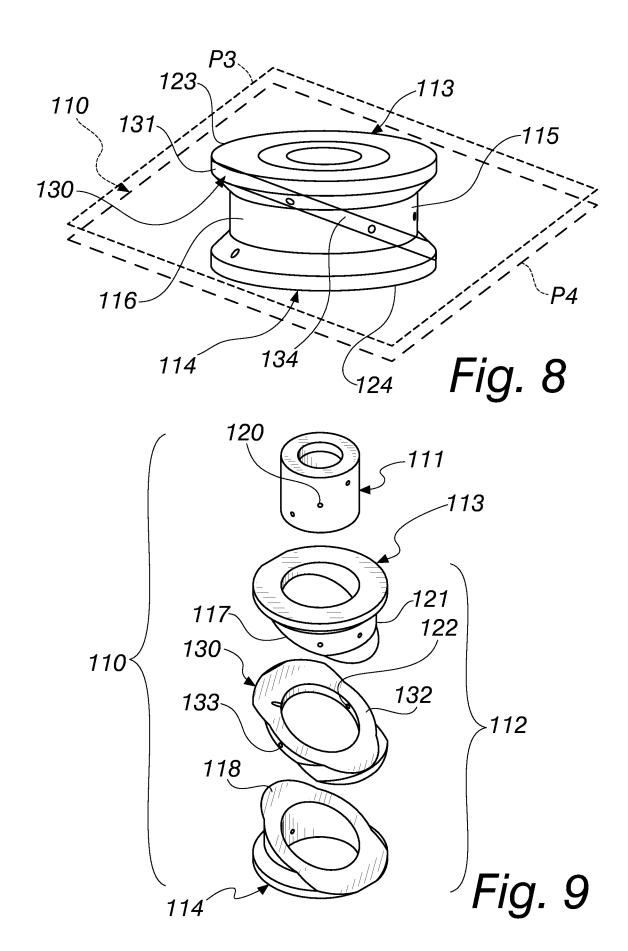

preceding claims, characterized in that it has an abrasive ring (112) which is divided into three portions (113, 114, 130) which have respective abrasive surfaces (115, 116, 131) having mutually different degrees of particle size, or the two upper and lower portions (113, 114) having an equal particle size and the central portion (130) having a different particle size.

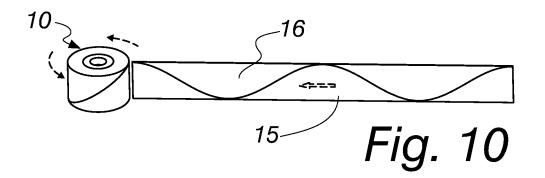
- 8. The peripheral wheel according to the preceding claim, characterized in that said abrasive ring portions (113, 114, 130) are mutually juxtaposed with respective contact surfaces (117, 118, 132, 133) that are extended transversely with respect to a plane which is perpendicular to the axis of rotation of said peripheral wheel (110).
- 9. The peripheral wheel according to the preceding claims, characterized in that it has three annular portions (213, 214, 230) which are juxtaposed according to mutually parallel inclined planes, said annular portions defining an overall abrasive surface that has a cylindrical shape.
- 10. The peripheral wheel according to the preceding claims, characterized in that it has

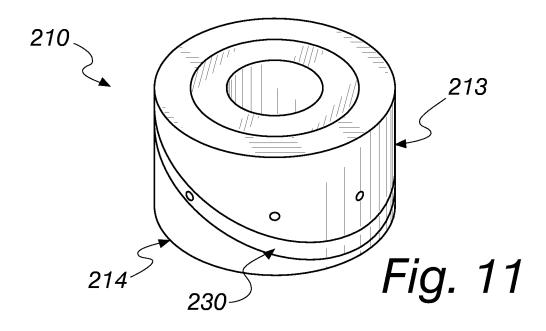

three portions (313, 314, 330) which are juxtaposed according to mutually parallel inclined planes, with the first annular portion (313) and the second annular portion (314) having sectors (313a, 313b, 314, 314b) which are straight or inclined and adapted to ensure greater cutting and removal capacity in general.

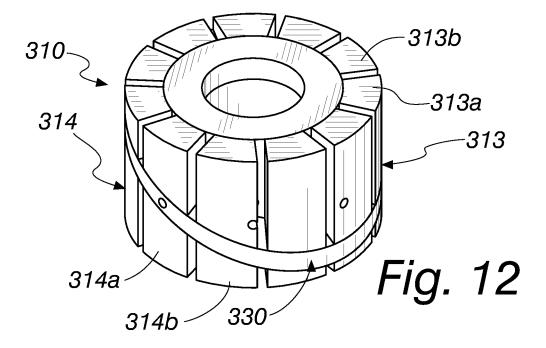
M334692 Tav. 1°




M334692 Tav. II $^{\circ}$


M334692 Tav. III $^{\circ}$




M334692 Tav. IV $^{\circ}$

M334692 Tav. V $^{\circ}$

