wo 20147200888 A2 |1 N0FV0 00O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/200888 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

18 December 2014 (18.12.2014) WIPO I PCT
International Patent Classification:
GO6F 17/30 (2006.01)
International Application Number:
PCT/US2014/041486
International Filing Date: (74)
9 June 2014 (09.06.2014)
Filing Language: English
Publication Language: English (81)
Priority Data:
61/834,806 13 June 2013 (13.06.2013) Us
14/017,754 4 September 2013 (04.09.2013) Us
14/157,974 17 January 2014 (17.01.2014) Us
14/203,871 11 March 2014 (11.03.2014) Us
Applicant: DATAGRAVITY, INC. [US/US]; 10 Tara
Blvd., Suite 400, Nashua, New Hampshire 03062 (US).
Inventors: LONG, Paula; 2 Westgate Way, Amherst, New
Hampshire 03031 (US). MCCALL, Eric K.; 23 Callies
Common, Peterborough, New Hampshire 03458 (US). 4)

BOCHKOYV, Dmitry; 8 Pemigewasset Circle, Derry, New
Hampshire 03038 (US). ZELIKOV, Misha; 23 Hasentus
Circle, Needham, Massachusetts 02494 (US). PANNER,
Bryan Keith; 12 Nottingham Road, Windham, New
Hampshire 03087 (US). FERRIS, Andrew; 153 Hollis
Street, Pepperel, Massachusetts 01463 (US). GONCZI,
Istvan; 18 Osprey Drive, Berkley, Massachusetts 02779

(US). MCHALE, Gregory James; 356 Main Street,
Hampstead, New Hampshire 03841 (US). LACY, Janice
Ann; 64 Brook Street, Shrewsbury, Massachusetts 01545
(US). KANTETI, Kumar; 15 Pratt Street, South Grafton,
Massachusetts 01560 (US).

Agent: THIBODEAU, JR., David J.; Cesari and McK-
enna, LLP, 88 Black Falcon Avenue, Boston, Massachu-
setts 02210 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: LIVE RESTORE FOR A DATA INTELLIGENT STORAGE SYSTEM

TO/FROM CONNECTED COMPUTERS

LOCAL SITE
LOCAL SITE
100 REAL-TIVE DATA
Ty ROTEIONS ALY 7
[noas

DATA RESTORE

DATA SEARCH INTELLIGENCE

N
STORAGE SERVICES

)

DATA PROTECTION
(SYNCHRONOUS /
ASYNCHROHOUS)

REMOTE SITE

DATA RESTORE
DATA ANALYTICS

| PRIMARY AND REMOTE INTELLIGENCE STORAGE
Fe.1

(57) Abstract: A single system merges primary data storage, data protection, and intelligence. Intelligence is provided through in-
line data analytics, and data intelligence and analytics are gathered on protected data and prior analytics, and stored in discovery
points, all without impacting performance of primary storage. Real-time analysis is done in-line with the HA processing, enabling a
variety of data analytics that are then used as part of a live restore operation. Data content can be live restored at an object or block
level. Data recovery begins with metadata restoration, followed by near-instantaneous access to "hot" regions of data being restored,
allowing site operation to continue or resume while a restore is ongoing.

WO 2014/200888 A2 WAL 00T 000 0000 0 A

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Published:

KM, ML, MR, NE, SN, TD, TG). — without international search report and to be republished

upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486

LIVE RESTORE FOR A DATA INTELLIGENT STORAGE SYSTEM

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is subject to
copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise reserves all copyright rights

whatsoever. Copyright 2013, Data Gravity, Inc.

BACKGROUND

Field of Technology

This disclosure relates to computer storage systems, and more particularly to live data
restoration in methods and systems that unify primary storage, data protection, and data

analytics functions.

Background

Data storage solutions are large business and in large demand for many enterprises.
Storage solutions are often designed for specific purposes, and companies often utilize
separate systems as data silos dedicated to such purposes, such as primary storage (block and
file), backup storage, and storage for analytics. These three copies of storage are generally
kept on different devices and managed separately. The movement of data between these
three silos can be difficult because there is time involved in determining what changed
between the primary silo and backup or analytics silo. This leads to complex backup
strategies that attempt to compensate for the length of time required to move the data to the
backup and analytics silos. The involved timing covers both determination of what has
changed since the last time the data was captured, and moving the data to the new silos
typically over a network of some type. This process is usually resource intensive on the
primary storage system, consuming critical primary storage resources such as processor
cycles, memory, disk operations, and network bandwidth. For this reason, the data move to

backup and analytics is often scheduled for off hours and carefully managed to not interfere

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486

with daily operations. In addition to processing and timing complications in moving data to
backup and analytics systems, restore operations required in the case of failure or loss of
primary data can also be time consuming. Further, while the restore operation is occurring
primary data is generally not accessible.

In addition to the above timing and computation issues, analytics systems today, such
as those using Hadoop, are independent of the primary storage system in terms of security
and user account context. 'This complicates protection to data access, and generally loses
context of when the changes occurred and who made the changes. Many systems also require
multiple layers of additional third-party software to extract any information from the data.

Backup systems traditionally focus on recovery point objective (RPO) and recovery
time objective (RTO). RPO represents the maximum time period of acceptable risk of data
loss — for example, an RPO of 24 hours means on failure of primary storage, up to 24 hours
of data might be lost and unrecoverable. RTO represents the maximum acceptable time for
recovery after a failure before operation can resume — for example, an RTO of 24 hours mean
on failure of primary storage, restoration from backup will take up to 24 hours before the
primary system is restored and can resume normal operation.

Recovering or restoring from a backup system is generally a difficult and time-
consuming process. Recovering from backup generally requires identifying a file (or set of
files) and a timestamp (date). If the date or file is unknown, the already time-intensive
restoration process becomes greatly more complex. Searching data within a backup system
to identify a desired restoration without knowledge of the file and date is generally a trial-
and-error process, such as picking a date, restoring the backup from that date, searching the
restored data to identify if the data includes the desired item, and repeating the process until
the desired item is found.

Once a desired file is identified, a restore process starts. Access to the file is typically
not granted until the entire restore process is completed. This might result in many minutes
or even hours of wait time before users can start using the restored data. This time can be
significantly extended due to storage optimization techniques used when storing backup data.
For example, to maximize backup capacity backups may be compressed, requiring intensive
(and often complete-site) restoration to recover a single file.

There is some movement to merge backup and analytics systems into a single system
which uses the backup data for analytics. This has encountered additional problems, as
typically backup systems do not keep data in the same format as primary storage. Even if the

format is not a problem, issues remain with moving the data and breaking the connection

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486

between the primary storage and change insights. Additionally, applying analytics to backup
data has not overcome the problems around determining time and authorship of changes.
Description of Prior Art

United States Patent 7,412,577 "SHARED DATA MIRRORING APPARATUS,
METHOD, AND SYSTEM" (Boyd et al., August 12, 2008) discloses, in the Abstract, "A
network component is useful in tracking write activity by writing logs containing write
address information is described. The tracking component may be used in networked
systems employing data mirroring to record data block addresses written to a primary storage
volume during the time a data mirror is unavailable. ... At the time a data mirror is
reconstructed, the log written may be used to construct a list of block addresses pointing to
locations on a primary storage volume wherein data differs from a secondary storage volume
member of the mirror.” This solution improves data mirroring within a storage network.

United States Patent 7,756,837 "METHODS AND APPARATUS FOR SEARCHING
BACKUP DATA BASED ON CONTENT AND ATTRIBUTES" (Williams et al., July 13,
2010) discloses, in the Abstract, "Methods and apparatus are disclosed that permit the
transparent bridging of a broad range of backup storage devices, such that backup software
will identify an intermediate device as a one of those storage devices and will transparently
send their backup data-stream thereto as part of the existing standard backup process. Upon
receipt of a backup data-stream from the backup software, the methods and apparatus provide
for analysis of the data elements in the data-stream, collection of management information
about those data elements, and storage of the management information in an easily accessible
format for subsequent review and query by users and administrators of the original data.”
This solution provides indexing and search capabilities to backup data.

United States Patent 7,937,365 "METHOD AND SYSTEM FFOR SEARCHING
STORED DATA" (Prahlad et al., May 3, 2011) discloses, in the Abstract, "Systems and
methods for managing data associated with a data storage component coupled to multiple
computers over a network are further disclosed. Additionally, systems and methods for
accessing documents available through a network, wherein the documents are stored on one
or more data storage devices coupled to the network, are disclosed.” This solution provides
indexing, search, and access to data across multiple repositories including secondary storage.

United States Patent Application Publication 2009/0083336 "SEARCH BASED
DATA MANAGEMENT" (Srinivasan, March 26, 2009) discloses, in the Abstract, "The
invention includes a system including one or more storage devices including the data items a

metadata tagging component for associating metadata to each data item, a policy component

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486

defining one or more data management policies as a function of the metadata, a search engine
for generating a list of data items satisfying the data management policy, and a data
management application for applying the data management policy to each data item in the list
of data items generated by the search engine.” This solution creates metadata for “a
priority..., a owner..., a group..., a last accessed time..., a last modified time..., a created
time..., an archival time..., a logical location..., and a physical location of the data item.” A
search is performed of the metadata, and backup, retention, and archiving rules are applied to
the search results.

United States Patent 8,055,745 "METHODS AND APPARATUS FOR ACCESSING
DATA FROM A PRIMARY DATA STORAGE SYSTEM FOR SECONDARY STORAGE"
(Atluri, November 8, 2011) discloses, in the Abstract, "A system for providing secondary
data storage and recovery services for one or more networked host nodes includes a server
application for facilitating data backup and recovery services; a first data storage medium
accessible to the server application, a second data storage medium accessible to the server
application; at least one client application for mapping write locations allocated by the first
data storage medium to write locations representing a logical view of the first data storage
medium; and at least one machine instruction enabling direct read capability of the first data
storage medium by the server application for purposes of subsequent time-based storage of
the read data into the secondary data medium.” This solution splits (mirrors) data between
primary and backup storage, providing continuous backup rather than discrete (backup-
window) backups. Metadata including “source address, destination address, LUN, frame
sequence number, offset location, length of payload, and time received” specific to every data
frame is tracked, details of which are used in verification and compression.

Furopean Patent Publication EP0410630B1 according to the Abstract discloses an
apparatus and method for scheduling the storage backup of data sets in either an application
or system-managed storage context using an algorithm in which less data and a smaller
backup interval (window) are involved other than that used with prior art full, incremental or
combination backup policies. An incremental backup policy is sensitive to a pair of
adjustable parameters relating to the last backup, last update, and current date affecting each
data set and its storage group.

United States Patent Publication 2006/0117048 according to the Abstract discloses a
method and system for updating a filter's data after the filter's metadata file is restored. The
filter maintains an open handle to the metadata until the filter receives a request to have the

metadata restored. The filter then closes the open handle and allows the metadata to be

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486

restored. After the metadata is restored, data associated with the filter is rebuilt based on the
restored metadata.

United States Patent Publication 2013/0054523 according to the Abstract discloses
data objects replicated from a source storage managed by a source server to a target storage
managed by a target server. A source list is built of objects at the source server to replicate to
the target server. The target server is queried to obtain a target list of objects at the target
server. A replication list is built indicating objects on the source list not included on the target
list to transfer to the target server. For each object in the replication list, data for the object
not already at the target storage is sent to the target server and metadata on the object is sent
to the target server to cause the target server to include the metadata in an entry for the object
in a target server replication database. An entry for the object is added to a source server
replication database.

United States Patent 7,376,895 according to the Abstract discloses an integrated
multi-application data processing system for generating, storing, and retrieving data files,
each data file having a multi-dimensional array of data cells, and a program framework
providing a common user interface for at least one application program for user interaction
with one or more of the data files. Each of the data cells, which can contain a single data
object that includes an object type code and object content, has a unique multi-dimensional
cell address with respect to all cells in data files generated by the system. The object content
can be self-contained and/or defined in terms of object content of other data objects.

United States Patent 7,552,358 according to the Abstract discloses a method for
efficient backup and restore using metadata mapping which comprises maintaining a first
backup aggregation associated with a primary data object of a primary host at a secondary
host, wherein the first backup aggregation includes a first backup version of the primary data
object stored within a secondary data object at the secondary host. The method further
comprises generating a second backup aggregation, wherein the second backup aggregation
includes a second backup version of the primary data object and a backup metadata object
corresponding to the secondary data object. The backup metadata object includes a pointer to
the second backup version. The method may further comprise restoring the secondary data
object, wherein said restoring comprises using the pointer to access the second backup
version of the primary data object to restore at least a portion of the secondary data object.

United States Patent 8,032,707 according to the Abstract discloses techniques for
managing cache metadata providing a mapping between addresses on a storage medium (e.g.,

disk storage) and corresponding addresses on a cache device at data items are stored. In some

10

15

WO 2014/200888 PCT/US2014/041486

embodiments, cache metadata may be stored in a hierarchical data structure comprising a
plurality of hierarchy levels. Only a subset of the plurality of hierarchy levels may be loaded
to memory, thereby reducing the memory “footprint” of cache metadata and expediting the
process of restoring the cache metadata during startup operations. Startup may be further
expedited by using cache metadata to perform operations associated with reboot. Thereafter,
as requests to read data items on the storage medium are processed using cache metadata to
identify addresses at which the data items are stored in cache, the identified addresses may be
stored in memory.

United States Patent 8,140,573 according to the Abstract discloses that a metadata file
can be automatically generated based on a database instance and a user defined maximum
depth. The relationships between data objects that constitute a business object may be
visualized in a tree. The maximum depth limits the number of levels in the tree to traverse. A
metadata file describes the structure of a business object and relationships between sets of
data objects that constitute the business object. The structure defined in the metadata file can
be used to export instances of the business object from the database. The exported business

object instances can be imported to another database.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486

BRIEF SUMMARY

None of the above provides a storage solution with 1) integrated primary storage, data
protection, and data analytics which uses the analytics as part of a live restore process; 2)
restoring metadata as a first step immediately allowing access to objects before a complete
file, directory, block, or site level restore operation is complete; 3) prioritizes regions of user
data being restored based on previously gathered in-line analytics; 4) uses a restore link data
structure to maintain relationships between a file being restored in a primary pool, its source
data in an intelligence pool, and discovery point data containing previously gathered
analytics; 5) efficiently uses live block level restore operations for analogous restore at a site
level, all without requiring separate backup data streams, or additional servers and software
to coordinate operations between multiple systems. What is needed, therefore, is a solution
that overcomes the above-mentioned limitations and that includes the features enumerated
above.

The techniques disclosed herein merge primary data storage, data protection, and
intelligence into a single unified system. The unified system provides primary storage,
analytics, and analytics-based data protection without requiring separate solutions for each
aspect. Intelligence is provided through inline data analytics, with additional data
intelligence and analytics gathered on protected data and prior analytics, and stored in
discovery points, all without impacting performance of primary storage. As data is written, it
is mirrored as part of high availability (HA) processing.. Real-time analysis is done in-line
with the HA processing, enabling a variety of data analytics. Data content can be mined from
within files or blocks. The gathered intelligence is used to tag objects with extended
metadata, enabling both valuable search options and rapid restore options. Data recovery
begins with metadata restoration, followed by near-instantaneous access to “hot” regions of
data being restored, allowing site operation to continue or resume while a restore is ongoing.

With the disclosed system, a primary storage processor works in conjunction with an
intelligence processor to store and protect the data on separate sets of disks while gathering
intelligence as the data is created. Thus the disclosed storage system manages primary and
HA stream data, the ability to extract information about the data, the data usage, and collects
analytics around the data content. By using a single HA storage system to manage
everything, processors and IO capacity normally dormant or underutilized may be put to use
for gathering data intelligence, data protection, and delivering search and analytics. Data

extraction may include metadata extraction, content extraction, and fine grain block-level

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486

access and change tracking. For file based primary storage, analysis may track file and
metadata changes, including block-level changes, as data is written. For block based primary
storage, analysis may track block level access and changes. Further, the system is capable of
understanding data in a higher level application stream context, and performing tracking and
analysis at a block level that is similar to file level analysis. This enables stream-level
analysis such as for data being stored to a database. As data is written to intelligence storage,
a copy of the data that is in memory is analyzed in parallel for data intelligence. Unlike
traditional systems that are constrained by speed of data movement, this architecture allows
for rapid processing of the data. Using this initial intelligence scan of the data, the data can
then be post processed to gather more in-depth insights.

Analytics are available in near real time for end users. Preprocessed data is stored as
incremental metadata to individual data objects and in separate data structures that can be
queried. Unlike traditional data analytics systems, intelligence is not completely separated
from the original data source. Analytics metadata is stored within discovery points. Each
discovery point contains the analytics for the accessed and changed data associated with that
discovery point, and optionally a copy of the data that has changed since a prior discovery
point. By keeping the most commonly used intelligence as part of the metadata, the disclosed
system reduces the response time to end users' requests for intelligence dramatically. The
system also has access to added features of the data: who accessed or made a data change and
when was the data accessed or changed. These added features allow the intelligence system
to provide additional context for search and analysis.

An HA stream is used to create intelligence data, thereby providing a source for both
data analytics and real-time protection of the customer data. Discovery points are created
through the intelligence system based on the intelligence data, not primary storage data,
which removes impact on primary storage during discovery point creation. Discovery points
are stored on separate storage media from storage of the primary data stream. Discovery
point creation can be based on time, but also can be analytically implemented based on an
adaptive schedule. This adaptive behavior is achieved by actively monitoring access,
changes, and change rates over time. This is done at a share or volume level and may take
into account who owns and who accesses the data. The adaptive schedule may create
discovery points as a result of hitting a threshold of percent change across the total data or
across a designated portion of the total data, or after detecting anomalies in the amount of

data changes based on historical analysis of data change rates over time.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486

Retaining data within a discovery point enables live data recovery processes.
However, from a recovery standpoint, traditional RPO is changed. Discovery points are
created based on the intelligence data, which removes impact on primary storage during
discovery point creation. This protects data in real-time, reducing RPO to zero.

The system additionally minimizes RTO to near zero.

Two options for restoring data are available — object level restores or full site restores.

Object level restore recovers metadata using data and intelligence metadata about an
object within a discovery point. An object can be a file, directory, file share, volume, or a file
or directory within a complex object such as a file within a file system within a virtual
machine disk (VMDK), or a directory within an archive. As soon as the metadata is restored
for primary storage, the object appears restored to end users with input/output (I/O) access
granted. “Hot” data within the object, such as user data actively being accessed by an end
user or identified as prioritized for fast recovery based on previously gathered analytics over
time, is restored with priority to primary storage, while any remaining data is back-filled with
lower priority, ensuring the object will be fully restored. Data accessed within the object
during the restore may have a slight access performance reduction, but availability of the
restored object is near immediate.

Site level restore is to recover an entire site or portion of site, such as after a complete
or partial failure of primary storage. A site level restore is not as instant as an object level
restore, but is structured to enable site operation to resume quickly, potentially within a
matter of minutes. Traditional RTO is measured in days and hours. With a site level restore,
internal system metadata is quickly recreated for the site being restored, after which end users
may access data. As in the object level restore case, “hot” data being actively accessed or
analytically identified is given priority for data restoration while other data is back-filled at
lower priority, guaranteeing eventual complete restoration while also enabling rapid access
for recovered functionality. Site level restores, typically implemented as block level
operations, could take longer than object level restores before end user operation can continue
due to the larger scale of metadata required.

With either Object or Site level restore, while a restoration is in process, new data
changes may be made. All new changes are tracked and protected, and analytics gathered,

even if the entire restoration has not completed.

Features and Advantages

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
10

The disclosed system combines primary storage, data analytics, data protection, and
recovery into one system.

The disclosed system does not require additional data streams, additional servers or
other appliances, or additional software to be deployed beyond the ones traditionally found in
primary storage environments.

The disclosed system tracks data changes in real-time, which eliminates pre-
processing needed to perform data protection and avoids post-processing of data to detect
changes or querying application servers for data changes.

The disclosed system creates a full text index of stored data, along with automatically
created metadata tags which classify the data. This tagging enhances the data discovery
process.

The disclosed system retains analytics metadata for accessed and changed data and,
optionally, data changes in discovery points.

The disclosed system extends discovery point creation to be time based, percentage
based, and analytically adaptive. The system maintains a current working version of content
changes from the last discovery point, removing any risk-of-loss window on primary storage
failure.

The disclosed system eliminates back-up windows and back-up scheduling.

The disclosed system provides immediate data protection through real-time
redundancy of primary data.

The disclosed system creates content-specific intelligence of stored data, allowing for
rapid search and identification of desired discovery points and data within them.

The disclosed system enables real-time selective restore based on search of gathered
data intelligence.

The disclosed system tracks a rich set of operational behavior over time on the data
such as access patterns of users to allow for tracking maps of content to people.

The disclosed system may include off-site archival storage in addition to on-site data
protection, enabling both rapid recovery and long-term storage while maintaining near instant
restore, analytics, and searchability on the local site.

The disclosed system enables data intelligence gathering and analytics without any
impact to primary storage performance or availability.

The disclosed system provides a programming interface allowing connection by third

party data intelligence packages. This includes custom defined application programming

WO 2014/200888 PCT/US2014/041486
11

interfaces (APIs) as well as using traditional file and block access to manage, such as search,

query status, etc., and retrieve analytics.

The disclosed system enables near-instantaneous access to data, such as individual

files, directories, or file systems, being restored.
The disclosed system significantly reduces the time to resume operation after

initiating a full site recovery in case of complete primary or intelligence system loss.

5

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
12

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, closely related figures and items have the same number but different
alphabetic suffixes. Processes, states, statuses, and databases are named for their respective
functions.

FIG. 1 is a diagram showing interaction between a Primary Node, Intelligence Node,
and Remote Intelligence Node, and connected storage pools.

FIG. 2 is a view of an appliance device containing Primary and Intelligence Nodes.

FIG. 3 is a diagram showing the components of a Primary Node.

FIG. 4 is a diagram showing the components of an Intelligence Node.

FIG. 5 is a diagram showing the analytics flow process.

FIG. 6A is a diagram showing the structure of a change catalog;

FIG. 6B shows a discovery point.

FIG. 7 is a diagram showing adaptive allocation of available storage.

FIG. 8 is a diagram showing data protection flow from a Primary Node to an
Intelligence Node to a Remote Site.

FIG. 9 is a diagram showing a Primary Node and an Intelligence Node in an
independent deployment.

FIG. 10 is a diagram showing a Primary Node and an Intelligence Node in a shared
deployment.

FIG. 11 is a diagram showing data restore flow from an Intelligence Node or Remote
Site to a Primary Node, and from a Remote Site to an Intelligence Node.

FIG. 12 is a diagram showing process flow for data restore.

FIG. 13 shows a File Level Live Restore process for restoring a single object while a
user WRITE is in progress.

FIG. 14 is an algorithm for live restore of a file.

FIG. 15 is an algorithm for preparing a file for live restore.

FIG. 16 is an example of a file prepared for live restore.

FIG. 17 is an algorithm for handling user I/O to a file that is still in the process of
being live restored.

FIG. 18 is an algorithm for directory level restore.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
13

FIG. 19 illustrates storage layers in a site to be restored using a block level live
restore.

FIG. 20 is an algorithm for block level live restore.

FIG. 21 is an example of a block restore using a bitmap to track status.

FIG. 22 shows metadata and user data logical separation.

FIG. 23 is a site level restore algorithm.

FIG. 24 shows the states of a restore live site in process.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Terminology

The terminology and definitions of the prior art are not necessarily consistent with the
terminology and definitions used herein. Where there is a conflict, the following definitions
apply.

The present application concerns live restore techniques, and in particular how object
level live restore and block level live restore are performed. It would also concerns how
previously gathered, over-time analytics can enable prioritizing of “hot” regions during live
restore. Here, the definition of “hot” regions is changed from a traditional, access-based

definition to instead take into account content, identity, rules, etc.

Terminology

The terminology and definitions of the prior art are not necessarily consistent with the
terminology and definitions used herein. Where there is a conflict, the following definitions
apply.

Primary Storage: networked storage accessible to multiple computers/workstations.
The storage can be accessed via any networked device, either as files or blocks. Unless
explicitly stated, “primary storage” refers to both blocks and files.

Intelligence Storage: secondary storage containing gathered intelligence, discovery

points, and a redundant real-time copy of files and block data contained in Primary Storage.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
14

Primary Node: includes access protocols to communicate with an Intelligence Node,
Remote Sites, and Expansion Nodes; access protocols layer (for example, NFS, SMB,
iSCSI); protection and analytics in real-time (“PART”) layer; file and block storage layer
(file system, block volume); and connection to storage devices (RAID, DISK, etc.). A
Primary Node appears to system users as Primary Storage, and provides an interface and
controls to act as the access to Intelligence Storage.

Intelligence Node: includes access protocols to communicate with a Primary Node,
Remote Sites, and Expansion Nodes; data intelligence storage layer (intelligent data services
& rules processing); file and block storage layer (file system, block volume); and connection
to storage devices (RAID, long-term storage). In the preferred embodiment, intelligence
node data is accessed by users through a Primary Node, but in alternate embodiments
Intelligence Nodes may be directly accessed by users.

Discovery Point: A discovery point, created from a mirrored (high availability) copy
of primary data, contains data analytics for accessed and changed primary data since a prior
discovery point. A discovery point may contain the changed data, providing for a virtually
full but physically sparse copy of the primary data captured at a user-specified point in time
or dynamically based on change rate or other analytics. While primary data does not change
within a discovery point after the discovery point was created, analytics metadata stored in a
discovery point can be expanded as deeper levels of user data analysis are performed and
more analytics are gathered. Tracked primary data changes can be retained for the life of the
discovery point or can be removed at scheduled or dynamic intervals, such as after deep data
analysis is complete and desired analytics metadata is obtained. Removing primary data
allows for more efficient space utilization, while retaining primary data enables point-in-time
recovery of that version of data.

Change Catalog: an ordered set of real-time access and change information related to
a data object, tracked at a discovery point granularity. A change catalog tracks who, how,
when, and where aspects of a data object being accessed and/or modified. There is one
change catalog for every discovery point.

Remote Site: one or more off-site nodes in communication with local site primary or
intelligence nodes.

Pool: the collection of data storage connected to a node.

Object: a file, directory, share, volume, region within a volume, or an embedded
object. Objects can be complex, containing other embedded objects. For example, a file can

be a container containing other files, or a volume can have a file system on top of it which in

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
15

turn contains files. The system is capable of recognizing complex objects and tracking
changes at finer embedded object granularity.

Selective Restore: an automatic (policy based) or manual (customer initiated) restore
at an object level.

Site Restore: a manually initiated process to recreate primary or intelligence pool
content using a previously protected version of the data being restored.

Container: objects which may have other embedded objects, such as a file, directory,
file system, or volume.

Expansion Nodes: appliance having a processor, memory (RAM), network
connectivity, and storage devices, and connected to one or more primary or intelligence

nodes scaling the processing power and/or storage for connected nodes.

Operation

In the following detailed description, reference is made to the accompanying drawings
which form a part hereof, and in which are shown, by way of illustration, specific
embodiments in which the invention may be practiced. It is to be understood that other
embodiments may be used, and structural changes may be made without departing from the
scope of the present invention as defined by the claims.

The disclosed high availability (HA) storage system provides primary storage,
analytics, and Live Restore functions. Live restore is a technique used to optimize data
restoration. It can be used to recover user data in case of a failure or to recover previous
versions of the user data. The system provides primary storage access as block and/or file
level storage while avoiding single points of failure. The system collects analytics in real-
time while also protecting data in real-time on separate physical media, and includes options
for off-site data protection. The system implements deep analytics enabling restore, storage,
and data intelligence, and protects both customer data and associated analytics. The system
provides traditional file based and custom API methods for extracting analytics metadata.
The system employs Live Restore techniques at a file and at a block level to recover in case
of a failure or to recover a previous version of user data. This provides for near-instantaneous
restore at the object level, and significantly reduces wait-before-access time in case of
primary or intelligence node complete failure (e.g., a full site restore). A file or block level
Live Restore uses previously gathered analytics to prioritize data to be restored, while

allowing user I/O access to the data during restoration.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
16

Referring to FIG. 1, Primary Node 100 of the system connects within a network to
provide block and/or file level storage access to connected computing devices (not shown),
real-time data protection, and real-time analytics of primary data. Primary data is read from
and written to primary storage pool 110. The data can be written or read as files or blocks
depending on the access protocol being used. As the data is written it is automatically
mirrored and tracked for data protection as part of a HA process for the primary node. The
mirrored cache of the data is created for Intelligence Node 120. The Intelligence Node
enables data protection, analytics, and recovery. The Intelligence Node stores a real-time
copy of primary data, analytics and discovery points within intelligence pool 130. Discovery
points are automatically or manually created at any point by the Intelligence Node, and based
on fine grained change data enabling action to be taken immediately with no need to copy the
underlying primary data or do any post processing to determine what has changed since any
prior discovery point.

In a preferred embodiment, each Node is capable as acting as either a Primary Node,
an Intelligence Node, or both. For reliability and performance reasons, separate Primary and
Intelligence Nodes are desirable. In case of failure of either node, the other may take over
operation of both. Implementation without dual-capability (that is, operating solely a Primary
Node and solely an Intelligence Node) is possible but loss of service (to either primary or
intelligence storage) would occur on failure of such a node. In a preferred embodiment, each
one of the Nodes has a processor and local memory for storing and executing Node software,
a connection to physical storage media, and one or more network connections including at
least a dedicated high bandwidth and low latency communication path to other Nodes.

In a preferred embodiment, the Primary Node and Intelligence Node are physically
housed within a single device, creating a user impression of a single appliance. FIG. 2 shows
one such example, with Primary Node 100 and Intelligence Node 120 housed together to
appear as a single physical appliance. Implementation may be with any number of disks, for
example such as a four rack units (4U) housing containing up to twenty-four hard drives, with
separate physical storage devices connected to the system. Internally each node is completely
separated from the other with the exception of a backplane, with each node having a
dedicated (not shared) power supply, processor, memory, network connection, operating
media and optionally non-volatile memory. Separation enables continued operation, for
example the Intelligence Node may continue operating should the Primary Node fail, and

vice versa, but shared resource implementation is also possible.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
17

Primary Node

Also referring to FIG. 3, a node actively operating as Primary Node 100 operates
storage protocol server software 300, for example Common Internet File System (CIFS),
Network File System (NFS), Server Message Block (SMB), or Internet Small Computer
System Interface (iSCSI), so the Primary Node will appear as primary storage to network-
connected computer devices. The storage protocol server software also communicates with a
protection and analytics in real-time process (PART) 310 which intercepts and takes action
on every data access.

The PART 310 performs three main roles after intercepting any data access request:
mirroring primary data for HA, gathering in-line data analytics on primary data, and storing
primary data. The examples explained herein are directed to a file access perspective, but the
PART can similarly process block level accesses. When performing block access to a
volume, the PART can identify embedded objects and perform the same analysis that is
applied to file-level accesses. Intercepted access requests include read, modify (write data or
alter attributes, such as renaming, moving, or changing permissions), create, and delete. The
PART tracks and mirrors the request (and data) to the Intelligence Node. Communication
with the Intelligence Node is through synchronous or asynchronous inter-process
communication (IPC) 340 depending on configuration. IPC may including any suitable
protocols or connections, such as Remote Procedure Call (RPC) or a Board-to-Board (B2B)
high performance, low latency communication path that may be hardware specific. Any data
included with a data access request, such as included in write operations, is also mirrored to
the Intelligence Node as part of HA system operation. This mirroring establishes data
protection through real-time redundancy of primary storage. Additionally, the PART
executes in-line analysis of primary data, gathering real-time analytics. The PART sends
gathered real-time analytics to the Intelligence Node, where the analytics are added to a
change catalog maintained by the Intelligence Node. In addition to analytics, the PART
directs the request to an actual file system, for example Fourth Extended File System (EXT4)
or 7 File System (ZFS), or block volume for file or block storage access 330 to physical
storage devices.

The storage access function 330 (be it file system level or block level) performs the
access request on storage media, and returns the result to the PART for return to the
requesting system. In a preferred embodiment, the storage media includes disks attached to

the system, but other storage media solutions are possible.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
18

In a preferred embodiment, the Primary Node also includes the software necessary to
operate as an Intelligence Node in case of Intelligence Node failure.

In a preferred embodiment, the Primary Node also operates management software.
Preferably accessed through a browser interface (although any user interface provision
method may be used), the management software provides system administrators access to

configure and manage system users and access discovery points for the restore process.

Intelligence Node

Referring also to FIG. 4, a node actively operating as Intelligence Node 120 operates
Inter Process Communication (IPC) communication software 400 capable of communicating
with the Primary Node. The communication software includes an API to receive real time
analytics (change catalog entries) from the Primary Node, data change and access requests
(read, modify, create, delete) from the Primary Node, data protection and intelligence control
commands, and data restore commands. Data protection and intelligence control commands
include commands for creating discovery points, setting up management rules for managing
discovery points (including deletion), and searching and restoring content that has been
backed up. Data restore commands include commands for accessing previously backed up
data.

Data change requests that are received at the Intelligence Node are applied to that
node's copy of current data, thereby maintaining a real-time mirror of primary storage. This
implements real-time data protection for the current data.

For data analytics and data recovery purposes, the Intelligence Node maintains a
change catalog 600 containing real-time analytics gathered from accessed and changed data
since the last discovery point 650. A discovery point is also created by associating and storing
a change catalog together with reference to the mirrored copy of changed primary data since
the last discovery point as maintained in the intelligence pool. A more detailed discussion of
the change catalogs and discovery points is provided below.

The Intelligence Node implements file or block-level access 430 to its own pool 130
of physical storage. This intelligence storage pool retains the real-time copy of primary data
and discovery points. The stored intelligence data within discovery points includes in-line
analytics (change catalog) as received from the Primary Node and additional analytics 410

executed by the Intelligence Node.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
19

The real-time copy of primary data also enables distributed response processing
between the Primary and Intelligence Nodes. For example, load balancing between the
Primary and Intelligence Nodes may enable greater scalability. As both have real-time copies
of primary data, read requests may be balanced between the nodes, or alternatively directed to
both nodes with the fastest-to-respond used for the response. The Primary Node may act as a
controller for such distributed processing, or a separate controller may be used.

There is no requirement that the Primary 110 and Intelligence Data 130 reside on the
same appliance, they can be distributed to multiple discrete appliances deploying all the same
techniques with the exception that the communication method is performed over a network

transport instead of using the HA mechanisms within an array.

Analytics

Intelligence is at the core of the system. There are four types of intelligence functions
in the system: Data, Operational, Storage, and Recovery. All four use the same processing
engine and common analytics metadata to provide analysis both at fixed points and as
gathered over time. Data Intelligence 452 allows for intelligent user content management.
Operational Intelligence 456 analyzes the behavior of the system and application logs stored
on the system to provide insight into applications and security of the system. Storage
Intelligence 454 allows for intelligent storage system resource management, including
automatic storage allocation and reallocation including dynamically growing and shrinking
storage pools. Recovery Intelligence 450 allows for intelligent data protection and data
restore. All types of intelligence may be used for, or enable operation in conjunction with,
different types of analytics, such as, but not limited to, collaboration, trending, e-discovery,
audits, scoring, and similarity.

Analytics begin at the Primary Node, which tracks data access and data modifications,
system behavior, change rates, and other real-time analytics. It provides this real-time
analytics information to the Intelligence Node. Intelligence gathering determines time and
owner relationships with the data for collaboration and contextual information about the data.
The gathered intelligence is used for later search and reporting, and is tracked in change
catalogs associated with the data.

Referring now to FIG. 5 and to FIG. 6A, change catalogs 600 are created as part of in-
line real-time analytics 500 performed by the Primary Node 100, but change catalogs 600 are
then also further expanded by the Intelligence Node 120 performing further data processing,

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
20

and create the foundation for later search. The change catalog data is initially created in real-
time at the Primary Node (such as via PART 310) and includes extended information about
the specific data access, for example, allowing complete tracking of who/how/when/where
accessed, created, modified, or deleted a file or other data object. Traditional file metadata
includes only an owner, group, path, access rights, file size, and last modified timestamp.
This provides some, but not complete, information about a file. For example, it does not
identify who modified the file, how many modifications have occurred, or any information
about file accesses (such as viewing or reading a file) which do not modify the file. The
PART, operated by the Primary Node, intercepts every file access event. Thus the Primary
Node has the ability to track extended metadata about a file — including identification of
every modification and every access, even those which do not modify the file, by timestamp,
user, and type of access.

Referring also to FIG. 6A, this extended metadata is stored as a change catalog entry
610 that identifies the object being accessed, the actor (user performing an operation), and the
operation being performed. Additional information which may be in a change catalog entry
includes, but is not limited to, object name, owner, access control lists, and time of operation.
The change catalog 600 contains this extended metadata information, and serves as the
foundation of further analytics, such as performed later by the Intelligence Node. The change
catalog entry may also include security information, such as permission rights for access,
associated with the object. An administrator may configure the degree of tracking, or even
enable/disable tracking on a file location, user, group-specific, or other basis, and the Primary
Node is capable of incorporating all details of every file access into the change catalog
entries. These change catalog entries of enhanced metadata are gathered by the Primary
Node and transmitted to the Intelligence Node for storing and expanding with further
analytics.

With reference now also to FIG. 6B, the change catalog metadata tracks incremental
changes which are also linked to a discovery point 650. Every time a new discovery point is
created the current change catalog is closed off and stored within the discovery point. When
data is retained in the discovery point, the system may be configured to retain a copy of the
discovery point analytics metadata at the Intelligence Node even if that discovery point is
migrated off the Intelligence Node, enabling more efficient query processing.

A discovery point 650 is created by associating and storing a change catalog together
with the mirrored copy of changed primary data since the last discovery point in the

intelligence pool. After a discovery point creation, a new change catalog 600 is created

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
21

allowing gathering of new real-time analytics on primary data. Change catalogs and
discovery points are preferably maintained per volume or file system in primary storage, but
may also span multiple volumes or file systems. Discovery points allow deeper analytics on
a point in time version of primary data, and can also be used to recover a prior version of
primary data. A discovery point contains data analytics for accessed and changed data since
a prior discovery point. When created, a discovery point also contains a virtually full but
physically sparse copy of primary data at the time of creation of that discovery point. The
system uses data visible within discovery points to perform deeper data processing, creating
more analytics metadata. The analysis is done on accessed and changed data since a previous
discovery point, using the real-time analytics reflected in the change catalog. These newly
gathered deeper analytics are also stored within the discovery point. Primary data may be
retained for the life of the discovery point, or may be removed earlier, such as after the deep
data analysis is complete and desired analytics metadata obtained. Removing the primary
data allows for more efficient space utilization, while retaining the primary data enables
recovery of primary data at the point in time of the creation of the discovery point. From one
discovery point until the creation of a next discovery point, file changes, deletions, renames,
creations and such are tracked as cumulative modifications to from the prior discovery point,
so that only incremental changes are maintained. This creates a version of the data at each
discovery point. While the data is retained in a discovery point, the system is able to restore
data at the discovery point granularity. As change catalogs are stored with each discovery
point, information about change history between discovery points may be available through
analysis of the change catalog. To restore a data object at a particular point in time, a
discovery point is used. For long-term storage, discovery points may be moved to long-term
media such as tape or off-site storage as configured through the management software.
Discovery points can be deleted manually through a delete discovery point command,
or automatically based on time or analysis in order to save storage space or for off-site
migration. Deletion of discovery points is complicated by management of analytics
metadata. The analytics metadata stored within a discovery point contains information about
data changed within a period of time. If the stored analytics are deleted they can be lost. To
prevent this, the time period for analytics associated with one or more other discovery points
can be adjusted, and relevant portions of analytics metadata from a discovery point being
deleted extracted and merged with other analytics already stored within the other discovery

points.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
22

Returning attention now to FIG. 5, at the Intelligence Node, an adaptive parallel
processing engine, or Rule Engine 420, operates on the change catalog 600 to derive these
more complex analytics, including tracking changes and use over time. The Rule Engine
applies rules 510 to analyze content on the underlying primary data, enabling deeper analytics
on stored data. As an example, a second level dictionary can provide sentiment attributes to
an already indexed document. Regular expression processing may be applied to see if a
document contains information such as social security or credit card numbers. Each rule may
have a filter 530 to match content, and an action 540 to take based on results. Rules can be
nested, and used to answer user-specific questions. Another example may be to apply
locations where keywords appear, for example to search objects for a set of keywords such as
“mold” or “water damage,” and in all matches to search the objects for address or zip code
information. Rules are configurable by administrators or system users, allowing dynamic
rule creation and combination based on different applicable policies 520. Rules can be
combined in multiple ways to discover more complex information. Rules may also be
configured for actions based on results. For example, notifications may be set to trigger
based on detected access or content, and different retention policies may be applied based on
content or access patterns or other tracked metadata. Other actions may include, but are not
limited to, data retention, quarantine, data extraction, deletion, and data distribution. Results
of applied rules may be indexed or tracked for future analysis.

As applied rules 510 identify results, such results may be indexed or tracked for other
analytical use. This additional metadata may be added to the change catalogs for the relevant
files or objects. The metadata may also be tracked as custom tags added to objects. Tags
may be stored as extended attributes of files, or metadata tracked in a separate analytics index
such as data in a directory or volume hidden from normal end user view, or in other data
stores for analytics. Rules, and therefore analytics, may be applied both to data tracked and
to the metadata generated by analytics. This enables analytics of both content and gathered
intelligence, allowing point-in-time and over-time analysis. The rules results and actions may
serve as feedback from one or more rules to one or more other rules (or even self-feedback to

the same rule), enabling multi-stage analysis and workflow processing.

Recovery Intelligence 450

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
23

Recovery Intelligence is the set of analytics implemented by Intelligence Node 120
around data protection. The purpose is to protect data and associated analytics. When data
reaches the Intelligence Node a mirrored copy is stored in the intelligence pool, creating
redundancy with primary storage, and these changes are tracked for use in discovery point
creation. Primary data, discovery points, and intelligence data are preferably separated on
actual physical media at the spindle or disk pool level, such that a failure of a single
individual physical device is always recoverable. As discovery points are created based on
change catalogs tracked at the Intelligence Node, they can be created at any time without any
impact on the performance of primary storage. This eliminates a need to schedule time-
windows for discovery point creation. Each discovery point includes incremental changes
from the prior discovery point, including data object changes and the analytics gathered and
associated with the data during such changes. Intelligent rules can be applied to automate
discovery point creation, such that, in addition to manual or time-based creation, discovery
point creation may be triggered by content changes. Such changes may be percentage based,
specific to percentage change of certain identifiable subsets of the entire data pool, based on
detected deviations from usage patterns such as increase in frequency of specific accesses, or
based on real-time analysis of data content.

At the creation of a discovery point, the change catalog accumulating real-time
changes is closed. The change catalog is then stored within the created discovery point, and a
new change catalog created for changes to be associated with a next created discovery point.
The analytics and data stored within discovery points enable efficient restores, allowing
search over multiple discovery points for specific object changes without requiring
restoration of the data objects from each discovery point. Such search can be based on any
analytics performed, such as data tracked in the extended metadata and content-based
analysis performed by application of the Rule Engine. The tracking further enables indexing
and partial restores — for example specific objects, or embedded objects within complex
objects, can be restored from a discovery point without a complete restore of all data from

that discovery point.

Data Intelligence 452

Data Intelligence is a set of analytics at the Intelligence Node analyzing content. Data

Intelligence operates through the Rule Engine, and can be applied to unstructured data, for

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
24

example file metadata such as document properties of Microsoft Office documents or the
actual content of such documents, semi-structured data such as log files or specific
applications such as Mail programs, structured data such as databases or other formats for
which schema may be known or discovered by the system, and recursive containers such as

virtual machines, file systems on file systems, file systems on volumes, or archives.

Storage Intelligence 454

Storage Intelligence is a set of analytics performed by the Intelligence Node analyzing
the entire system. Storage Intelligence operates through the Rule Engine to track total
storage and system use over time to both predict usage patterns and analyze capacity needs.
Referring also to FIG. 7, available physical storage can be dynamically adjusted, such as the
allocation of physical devices between primary storage 110 and intelligence data storage 130,
maximizing use of the system before expansion is required. The example shown in FIG. 7
illustrates allocating a portion of unused storage between a primary pool and an intelligence
pool. Similarly, space can be reclaimed from assigned pools when no longer needed. For
example, in reverse of the shown example, excess storage assigned but not used by the
primary pool can be identified and dynamically removed from the primary pool to a spare
pool or directly reallocated to an intelligence pool. This dynamic allocation and reallocation
occurs without degrading storage availability. Dynamic reallocation may move data within
portions of a data pool to ensure such degradation does not occur. The same dynamic
allocation may also be applied when expansions are added, enabling intelligent maximization
to storage resources to continue after expansion. Storage Intelligence may be applied to
improve resource usage efficiency, such as identifying processing demands, patterns of
system usage, and scheduling flexible high demand processes during periods of low usage.
For example, some Rule Engine analytics can be batched to run periodically, and

dynamically scheduled based on predicted system use.

Operational Intelligence 456

Operational Intelligence is done by integrating the application logs stored in primary
storage and determining usage patterns, errors, and/or anomalies in the logs. Operational
Intelligence also monitors access patterns for the data and alerts designated administrators on

inconsistent behavior such as possible signs of security issues.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
25

Intelligence Searching

With only the inline analytics, real-time searching is enabled for immediate results
such as: who, when, or who and when, was a specific file accessed; which files were accessed
by specific users; are access patterns consistent with appropriate file access rights; or which
files were modified (or viewed) within a certain time period. If additional in-line or
secondary analytics are enabled, the intelligence is expandable to include content-specific
search.

Searches are performed by users submitting user search queries 550 to the system, but also
taking security into account. There are at least two levels of access provided: super user
(administrator) and individual user. Super users and individual users are authenticated (for
example using Active Directory or a local user database). Individual users are able only to
see the results that they are authorized at the time of the search. Individual user rights may be
configured by authorized administrators, or default to match existing user rights. For
example, access to analytics for search purpose may be restricted by default to analytics
associated with data objects the user has or had permission to access in primary data. This
preserves permissions and data security of intelligence data which matches the permissions
and security for primary data without requiring manual account configuration of manual

access permission configuration of intelligence data. Super users are able to see all results.

Data Protection

Referring also to FIG. 8, data protection flows between different nodes. Customers
create data accessing Primary Node 100. Intelligence Node 120 protects customer data stored
on Primary Node 100 by storing a mirrored copy of primary data within the intelligence pool
130. Previous versions of primary data can be retained within discovery points that are stored
in the intelligence pool, further enhancing primary data protection. Fach discovery point may
include a crash consistent snapshot in time of customer data. Discovery points are created
based on policies 520 associated with primary storage (file systems or volumes). Policies use

fixed values (i.e. time passed or data change percentage) or previously gathered analytics as

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
26

the main triggers for creating discovery points. If a Remote Site is connected, data may
further flow from the Intelligence Node to the Remote Site, configured either for remote
intelligence 800 or complete disaster recovery 810.

Primary and Intelligence Nodes can be deployed in an independent deployment or a
shared deployment configuration, and both configurations can additionally be configured to
communicate with a Remote Site. For both configurations users are presented with a single
system management view. Referring also to FIG. 9, in an independent deployment Primary
Node 100 and Intelligence Node 120 operate as independent separate appliances, with the
Primary Node executing access requests to primary data independent of communications with
the Intelligence Node. Referring also to FIG. 10, in the preferred shared deployment Primary
Node 100 and Intelligence Node 120 are installed to be accessed and managed by users as if a
single physical appliance, with the Primary Node confirming communications with the
Intelligence Node on all data access requests. For both shared and independent deployments,
in the case of failure of one of the nodes, the other node can continue to operate acting as
both primary and intelligence nodes. When shared deployment is used the data protection
from Primary to Intelligence Nodes is continuous; there is no data loss in the event of a
Primary Node failure (full Node, or primary data pool) as HA stream data is delivered to the
Intelligence Node in real time. When independent deployment is used the data protection
from Primary to Intelligence Nodes may be real-time as in a shared configuration or
alternatively near-continuous. In the near-continuous case, the HA stream data delivery to
the Intelligence Node is delayed. This introduces a potential for some data loss in case of
Primary Node failure (full Node, or primary data pool), but network latency has minimal
impact on the primary 1O path performance. When independent deployment employs
delayed data protection, change catalog entries are transferred in real time from Primary to
Intelligence Nodes, but the mirror of primary data is delivered asynchronously creating the
possibility of data loss. The change catalogs can be used to identify what changes were lost
in the event of failure, by identifying received change catalog entries with no corresponding
receipt of primary data.

Nodes deployed at a remote site can add an additional level of data protection, and
communicate with the Intelligence Node. Remote Site deployment options are discussed
below under Off-Site Data Protection, although they may also be deployed on-site as

additional redundant protection.

Data Restore

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
27

Referring also to FIG. 11, data flows in the reverse direction during a restore process.
Data restore may be selective (object-level) or full site. The restore is live, providing near
instantaneous access to object level restored data, and significantly reduced wait time to
access data from a full site restore when compared to traditional restore systems. The restore
is fully protected, as any changes to restored data are tracked in real-time, even if the restore
process is still on-going.

Current primary data is always protected by storing a mirrored copy of primary data
in the intelligence pool 130. If primary data is retained in discovery points, users can restore
previous versions of their data. Users use selective restores to restore data at file, directory or
file system granularity using Object Live Restore 1100 either from Intelligence Node 120 to
Primary Node 100, from Remote Site to Primary Node 100 in a remote intelligence
configuration 800 or disaster recovery configuration 810, or from Remote Site to Intelligence
Node 120 in either a remote intelligence configuration 800 or disaster recovery configuration
810. Tull site restores utilize Block Live Restore 1110 to restore primary data from an
Intelligence Node 120 to a Primary Node 100 or to restore both primary and intelligence data
from a Remote Site in a disaster recovery configuration 810. A full site restore is most
commonly needed in the event of a complete data pool failure. For restore flow
consideration, current data (or current as of the selected discovery point to restore) is restored
to the Primary Node, and discovery points (that include analytics metadata and primary data)
are restored to the Intelligence node.

To perform a selective restore at an object level, a user selects a source discovery point 650
for the data restore. Selection may be direct if the specific discovery point is known, or based
on results of a search on the analytics metadata associated with each discovery point. The
searchable tags, content, classifications, etc. provide search access to, among other options,
file type, file application metadata (for example document author), owner, analytics assigned
tags (for example for files containing social security numbers), content search keywords, etc.
Once the discovery point is chosen, a restore process starts. Data can be restored into the
original container, overwriting the current version in primary storage, or into a different
container thereby creating a separate copy.

The Object Live restore process, which operates to enable selective restore, is a core
mechanism providing for rapid data restore at an object granularity. Users experience near-
instantaneous access to the data when such restore is performed. To accomplish this, the

node controlling the destination for the restore creates empty containers for what is being

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
28

restored based on the metadata. Any actively requested portions are immediately sourced by
requesting those specific portions from the restoring node. This creates immediately
available data for end users. Any additional data needed to complete the restore is transferred
with a priority assigned based on previously gathered over-time analytics. Such live restore
and access is enabled by operation of PART intercepting all file access requests, enabling
identification and prioritization of hot regions needing immediate restoration. Similarly,
accesses and modifications to the restored file are tracked even while the background restore
is ongoing, as these accesses are also intercepted by PART. Thus selective restore allows
immediate access to restored objects and also real-time protection of any changes, even
before the objects have been completely restored.

Referring also to FIG. 12, with selective object restores the restore process appears complete
to system users almost immediately after the restore request is made. Users search 1200
intelligence data, which internally queries 1205 metadata for restore analytics 1210, for a
desired discovery point. Once identified, the user may initiate 1215 a restore request. The
restore request, optionally along with related analytics metadata, is directed 1220 to the
PART. The PART begins the restore by extracting metadata relevant to the restore from the
discovery point. The file metadata includes file name, path, size, owner, group, and access
rights information for each file, and specific to any point in time. With the metadata restored,
the PART may provide file identification information, such as directory listings, without the
actual restored data moving to primary storage. This allows acknowledgement 1225 to the
user that the restore is complete, and operation 1230 of user input/output with the restored
data, even before complete restore of the actual data. Actual restore of the data may be
prioritized based on specific file access. For example, if specific file data not yet restored is
accessed, that file may be prioritized for immediate restore. When no priority restores are
occurring, general data restore of the entire data content may continue. In this fashion, users
experience and may access immediate results from restore requests, even if the complete data
restore requires a significant time period (such as minutes or hours).

A full site restore is used for bare-metal recovery, restoring chosen volumes and/or
file systems, and associated discovery points and analytics data in bulk. With any full site
restore the associated analytics metadata is also restored. There are two types of full site
restores. A complete site restore restores both primary and intelligence data from a remote
site. A primary-only site restore restores primary data from an Intelligence Node. To
perform a full site restore, users identify one or more volumes and/or file systems and

discovery point through direct selection or search and selection. Once file systems and

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
29

associated discovery points are selected, the restore process starts. With a complete site
restore, the version of the selected volumes and/or file systems in the selected discovery point
are restored to Primary and Intelligence Nodes, and discovery points are restored to the
Intelligence Node. With a primary-only site restore, the selected volumes and/or file systems
in the selected discovery point are restored to the Primary Node. Additionally with a
primary-only site restore, discovery points may be selected/de-selected for retention, with the
Intelligence Node retaining all discovery points selected for retention and deleting the others.
The Block Live restore process, which enables full site restore, is a core mechanism
that provides for rapid data restore at site granularity. Users experience dramatically reduced
wait time before data is accessible after initiating a full site restore. As an initial step,
metadata is copied, at a block storage level, for the volumes and/or file systems being
restored. This copying creates the main delay time before data is accessible. The metadata
identifies all objects being restored, both primary data and any discovery points. Once the
metadata is restored, virtual containers can be created for all data entities being restored. At
this point the primary data may be made available for user I/O access and normal operation.
Actively accessed files or extents (regions) within volumes are immediately sourced and
restored as block-level restores, creating priority restoration for actively accessed data. The
remainder of the site data is restored as a background process using priorities based on
previously gathered over-time analytics. As with selective restores, all accesses and
modifications are tracked enabling real-time protection even while the background restore is
ongoing. Such near-immediate access and real-time protection is enabled by PART
intercepting all data access requests. Based on metadata, PART can identify if access
requests are to already restored data, in which case operation continues as normal, or not-yet-
restored data, in which case appropriate data blocks are identified for priority immediate

restore.

System Management

A management service allows creating and modifying user rights, node and physical
storage management, data intelligence configuration, manually creating and managing
discovery points or scheduling options for automatic discovery point management, and
provides access to the restore process. Different management software implementations are

possible, but a preferred method is implementation of management software 320 as a

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
30

management server within the Primary Node. The management server delivers user
management through a browser-based interface to authorized administrators.

The management service allows management of discovery points. Discovery points
may be manually created, scheduled for automatic creation based on time periods, or
configured for dynamic automatic creation based on previously gathered over-time analytics.
Archiving or migration to remote sites may also be triggered manually or scheduled for
automatic occurrence based on time periods, or configured for dynamic automatic occurrence
based on previously gathered over-time analytics.

The management service allows configuring the rule engine for data analytics. Such
rules may be applied to all new data changes, or also run on all data already stored in a
Intelligence Node. Rule priority may be set such that critical analysis is applied in-line at the
Intelligence Node to make important analytics instantly available with all data, while less
critical analysis may be batched and run periodically at lower priority.

In addition to a custom API available via traditional programming languages, the
system supports a file access based interface allowing query creation, execution, control, and
extraction of results through the standard file system APL. Query execution files can be
stored as special files in pre-identified locations. Such files may include information on
queries to be performed, when to perform, resources to use to perform, where to place or
store results, and what formats should be used to present the results (for example, raw data,
pdf, a specific report format, etc.). When a query is being executed by the system, a progress
folder may contain files with names and content that can be used to monitor progress. Users
may write custom scripts and tools to create, schedule, monitor, and extract results using such

standard file system operations.

Off-Site Data Protection

The Intelligence Node provides local protection to the primary data and analytics
metadata. An optional remote system may provide further redundancy as well as an option
for geographically remote protection of the primary data and analytics metadata.

In this discussion of such a solution, a primary location is considered to comprise
Primary and Intelligence Nodes as described earlier, and the Intelligence Node communicates
with a Remote Site system.

As with discovery points, with remote protection analytics metadata is associated and

transferred with the actual data (both for protection and restore). Remote Sites may be

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
31

configured to receive and store mirrors of Intelligence Node, thereby providing
geographically separate redundancy, or as an archival option. Data changes (a delta of data
and analytics) are sent from the Intelligence Node to the Remote Site, enabling a redundant
copy of primary storage and current analytics, with options to configure different rules for
discovery point creation enabling different archival options at the Remote Site. For archival
purposes, rules may be configured such that the local Intelligence Node retains discovery
points within a specified time period and frequency, and the Remote Site contains a different
set, such as spanning a longer time period and/or lower frequency. For example, the
Intelligence Node may be configured to retain hourly discovery points for the past thirty
days, while the Remote Site may be configured to retain daily discovery points for the past
two years. Global analytics are available across the data for the entire time period based on
the metadata retained at both nodes. Remote Site rules may further be configured at different
levels, such as at the system or user share or internal file system levels, allowing different
degrees and duration of protection within a larger data set.

Such off-site data protection provides two possible solutions: Disaster Recovery (DR)
and Remote Intelligence. Both solutions provide protection of customer data and analytics
metadata in case of a full primary location failure (both Primary and Intelligence failure on
the primary location). The Primary to Intelligence to Remote Site data flow extends data

protection to an additional level.

Remote Intelligence

As shown in FIG. 1, when operating normally with a Remote Intelligence
configuration, the local site Intelligence Node replicates data and analytics metadata to
Remote Site Intelligence Node 140. The Remote Intelligence Node may be configured to
receive discovery point data and analytics replicated from the Intelligence Node, such as
discovery points about to be aged off (deleted from) the Intelligence node, or to receive
copies of live change data and create the discovery points and related analytics directly at the
Remote Intelligence Node. Discovery points on the Remote Intelligence Node may be aged
out (deleted) and analytics metadata pruned based on configured policies operated by the
Rule Engine of the Remote Intelligence Node.

Data replication to a Remote Site may be done synchronously or asynchronously. In
the synchronous case, data is replicated in real-time and the Remote Site contains a complete

and up-to date copy of primary storage data. The advantage of such synchronous method is

10

15

20

25

WO 2014/200888 PCT/US2014/041486
32

that no data is lost in case of a complete failure (both primary and intelligence) at the local
site. However, local site performance can be significantly reduced because data must be
replicated to the Remote Site before a storage operation is acknowledged as completed.

The asynchronous case avoids the risk of performance impact on primary storage.
Data replication may be delayed, in which case the Remote Site contains a version of primary
storage data, but not up-to-date in real time. This avoids any performance impact, but
introduces a risk of some data loss in case of complete failure of the local site (both Primary
and Intelligence Node failure).

Object Live Restores can be performed for any discovery points on the local or
remote Intelligence Nodes. To an end user perspective, there is no distinction in recovery
data between a local or remote Intelligence Node — all discovery points on both Intelligence
Nodes are searchable and available for use in recovery through management interfaces
provides by the Primary Node.

In case of a complete local site system failure, the local site may be restored from the
Remote Site, allowing full operation as part of a full site restore process. Prior to restoration
of the local site, users can perform searches using the analytics metadata available at the
Remote Intelligence Node. Users may have read-only access to data stored within each
discovery point on the Remote Intelligence Node, or read-write access to their data stored
within each discovery point, depending upon policy configuration. However, in the read-
write case newly modified data might be not protected. Based on the chosen policy and
Remote Intelligence Node system capabilities, no, limited, or complete analytics may be
produced on the newly modified data. In one example, only a change catalog is maintained
for the newly modified data and no queries could be performed on the newly modified data.
In another example, full analytics metadata is produced but possible with much less
performance. For full operation utilizing the remote site after a local site failure, the disaster

recovery configuration is preferred.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
33

Detailed Discussion of Live Restore Techniques

The following sections describe the various Live Restore methods and apparatus in
more detail. As mentioned above, the processes are different depending on the context of the
Live Restore context being at an Object Level (file, directory, or file system level), or Site

Level (using block operations).

Object Level Live Restore

An Object Level live restore process and apparatus provides a mechanism to selectively
restore Files, Directories, or individual File Systems. A Single File Live Restore is the core
mechanism for all such Object Level live restores.

Traditional file systems have an identifier that is used to uniquely identify a file or a
directory efficiently. In discussion below we use the term “Objectld” to represent a file
system identifier that uniquely identifies a file or directory within a file system. Inode number
is an example of an Objectld that is used in Portable Operating System Interface (POSIX) -
compatible file systems. There is a typically an invalid Objectld that does not represent a

valid file or a directory. We will also use the abbreviation “OID” for Objectld.

Single File Live Restore

FIG. 13 shows a File level Live Restore process 1300 used for restoring a single file.

A version of file named “filel.xx” 1305 is being restored to a primary pool 110 from
the intelligence pool 130. The version is identified by file path and a “discovery point” 1310.
As explained above, a discovery point 1310 contains a point in time copy of the data and
previously gathered analytics. During the process of live restore, in one implementation, the
file is divided into equal size chunks called blocks 1320. A file is restored block by block
atomically. The size of the block does not change during data restore. The state of blocks
during live restore in this implementation are managed using a restore bitmap 1325. TFor each
block in the source file a bit in the bitmap buffer tracks whether a block has been restored.
For example, a bit with a value of 1 marks a block that has been restored, while a bit with
value of 0 marks a block that needs to be restored. In FIG. 13, Blocks A and B have already

been restored using a schedule based on previously gathered analytics, as stored in the source

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
34

discovery point. Here, Block C is currently being modified by a user I/O operation 1330.
Block C is restored, then data is merged with the users data, resulting in data C” which is then
stored within both the primary and HA copy. As file blocks are restored a Restore Bitmap is
updated to reflect the state of a restore.

In other implementations, the blocks 1320 may be of varying length. In such an
implementation, a list of ranges (extents) that have been restored can be maintained. The
ranges can be specified with a starting and ending offset, or in other ways.

In case of a Primary Pool 110 failure, no user data is lost since the Intelligence pool
130 contains enough information to recover the user data.

In case of an Intelligence Pool failure, the Primary pool contains the new user data. If
a remote / disaster recovery copy of the intelligence data is available, then the data within the
Primary pool and the recovery copy of the intelligence data can be used to completely
recover the user data.

The following algorithm (reproduced as FIG. 14) is one way to implement the general
steps involved in a single file restore (continue to refer to FIG. 13). Here, a file version of a
file to be restored is identified by a tuple S_Path and S_DP, where S_Path is a file path within
discovery point S_DP. D_Path identifies the destination where the source version is to be

restored.

Algorithm FileRestore(IN S_Path, IN S_DP, IN D_Path)
1. Prepare file for restore.

a. Call algorithm PrepareFileForRestore to create an empty destination file
D_Path and mark appropriate metadata allowing for the Live Restore to be
executed

b. (as described below in more detail)

2. Allow I/O access to the file before restore is complete

a. Call algorithm IoToFileBeingRestored to permit user access to data being
restored

b. (as described below in more detail)

3. Start background restore of data
a. File data is restored as a background process
b. Restore I/O is performed at a block by block level within the file

c. For each block restored, the restore map records restored blocks

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
35

i. In one implementation, the restore bitmap is a bitmap stored within an
extended attribute of a file, where each bit represents a block
d. Background data restore uses two principles to prioritize restore of the blocks
i. Blocks being actively restored in real-time
ii. Previously gathered analytics stored in the S_DP at the sub-object and
block level
1. An example of a sub-object could be a jpeg image within a
power point presentation that was accessed more frequently and
would be restored with a higher priority
2. An example of a block could be Master file table for NTFS file
system stored within a virtual disk file or an iSCSI LUN that is
accessed very early in a boot process and restored with higher
priority
4. As new data is being written to the file being actively restored
a. mirror the new and restored data providing for HA; so that new data is also

protected real-time with the standard HA techniques as described elsewhere.

Restore Bitmap

The restore bitmap is used to allow random I/O access to the file while it is being
restored. There are quite a few ways that one can maintain this bitmap. For example a bitmap
can be maintained in NVRAM for the entire duration of the restore operation. The bitmap can
also be maintained in a private extended attribute. Since the size of NVRAM is limited, the
first approach limits the number of files that can be actively restored and maximum size of
the file being restored. The extended attribute approach could be extended to support any size
of the file by using hierarchical bitmaps (similar to b-trees).

Each bit in the bitmap tracks the restore state for a region that is restored atomically.
A bit with value of 0 marks a region that needs to be restored, while a bit with a value of 1
marks a region that has been restored. A zero bitmap (all bits are zero) is created initially
indicating that no regions have been restored. As live restore continues and individual regions
are restored, the bitmap is updated to reflect the state of restore for each region. Typically this
would be at least of native file system block size, but can be multiples of it. A bit to bitmap

can also be dynamic from file to file based on the size of the file being restored to limit the

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
36

bitmap size. For example for smaller files, a bit might represent a region that is aligned with

native file system block, for larger files it could be multiples of native file system blocks

Restoring multiple files

A typical system should allow many files to be restored in parallel; indeed it should
accommodate the possibility that multiple files and multiple directories may be requested for
restore by many users at the same time. For all restores, the system uses a “Restorelink
Files” approach as discussed below. The system can employ a background process that scans
and/or monitors the RestoreLink directory for the creation of new RestoreLink files. When a
new restore is added, the background process detects the new file. Previously gathered
analytics, as stored in the Source discovery point, can dictate the prioritization and schedule
of a large number of files to be restored. The total number of files subject to the restoration
process can be much more than can be maintained in the memory. Such as system would
need a schema that allows scheduling a restore of large number of objects with an ability to
switch between them in real time when the set of objects to be restored cannot be maintained

in memory (RAM or NVRAM).

RestoreLink Files

In a preferred embodiment, the Live Restore requirement is implemented using a
Restorelink Files approach. However, other approaches are possible.

In this approach, each primary file system maintains a RestoreLink directory that
contains Restorelink Files. The RestoreLink directory is hidden from users and not
accessible by them. A RestoreLink File is created in the RestoreLink directory for each file
to be restored. The system employs a background process that scans/monitors the
Restorelink directory. This background process is responsible for detecting new
Restorelink files and prioritizing a restore based on previously gathered analytics.

The main advantage of the RestoreLink files approach is that it allows finding files to
be restored without the need to scan the file system namespace which would otherwise be
very expensive. A traditional file system directory scanning technique on the hidden directory
containing RestoreLink files can be used to continue the restoration process on a system

failure or determining next file to be restored and determining that all files have been

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
37

restored. A background process can also monitor the content of this directory triggering
active restores on files. A system can further utilize analytics to prioritize which files to be
restored first when performing a scan on the RestoreLink directory.
A Restorelink File contains a RestoreSource, RestoreSize, FileOID and Restore Bitmap
as follows:
RestoreSource = <DPsource, OlDsource>; where DPsource identifies a discovery point
containing the file to be used as the source for the restored file, as identified further by
OIDsource. RestoreSource thus uniquely identifies the source object for the restore
operation.
RestoreSize is a numerical value that records the source file size, or in other words size of
the data to be restored
FileOID is an object identifier of the file being restored (OID of the destination)
Restore Bitmap used to track progress of the restore operation.
These values could be stored as attributes on the file or data within the RestoreLink file. In
this discussion we assume that all values are stored as data within the RestoreLink file.
Each file to be restored also contains a RestoreLinkOID attribute that contains the
OID of the corresponding RestoreLink file. This is a private attribute that is not visible to the
users. This attribute is removed or invalidated once live restore completes. This allows
efficient access to the RestoreLink file when an I/O to a file being restored is performed.
Restorelink files are named using the OID of the file to be restored. In the preferred
embodiment a name is created as a concatenation of “RIL_" prefix and a textual
representation of OID of the file being restored.
The following algorithm (also shown in FIG. 15) is used to prepare a file for restore.

It returns the OID of the new file created that will be live restored in FileOID parameter.

Algorithm PrepareFileForRestore(IN RestorePath, IN RestoreSource=<DPsource,
OlDsource>, OUT FileOID)
1. Obtain size to be restored from RestoreSource
2. Create a new file RestorePath that will be the destination for the restore, and obtain its
object id, returned in FileOID
3. Restore metadata on the file being restored (permissions, ownership, attributes, etc)

from the RestoreSource

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
38

4. Create a RestoreLink file with its object id RestoreLinkOid and name
“RL_<FileOID>”
5. Save RestoreSource, restore size, FileOID and an zero restore bitmap in the newly
created RestoreLink file
6. Save RestoreLink file OID in the RestoreLinkOid attribute on the file to be restore
FIG. 16 shows an example of a file prepared for a restore. A “RestoreLink™ directory 1610
contains a RestoreLink file “RI._400” having OID 200 that points to the restore source file
“filel.xx” having OID 35 stored within discovery point K 1620 having OID 25. It also points
to the file to be restored via OID 400, identifying file “restored.xx”. File “restored.xx” points

back to the restore link file “RL_400" with OID 200 via the RestoreLinkOID attribute.

I/O to a File Being Restored

At run-time the system uses caching techniques to optimize access to the information
about restores. This can include OIDs for files being restored, associated Restore bitmaps and
Restorelink files information. The system can also employ NVRAM or traditional Journaling
techniques to allow for atomic modification of the information needed while performing
operations atomically that involve multiple objects (files), i.e. restore bitmap, live restoring
the data and allowing user I/O while file data is being restored. These guarantee consistency
of file system data and metadata and simplify the recovery in case of errors.

We assume here that the region in the user I/0 perfectly aligns with the restore block
identified by a single bit — in other words, we assume that the 1/O is fully contained within a
restored block. If it is not, a variety of standard techniques could be used. For example one
can split a user I/O into multiple operations each of which is contained with the restore block
size.

The following algorithm (as depicted in FIG. 17) is used to perform I/O to a file
(identified by FlleOID) that is being restored. The arguments are as follows:

FileOID identifies the file to which user performs /O

I0_Region identifies I/O operation region

IO_Type identifies Read or Write operation

R_State is a portion of a restore bitmap that is used to identify the restore state of the

I/O region. This state is obtained from the corresponding RestoreLink file.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
39

Algorithm IoToFileBeingRestored(IN FileOID, IN IO_Region, IN R_State, IN I0_Type:
Read/Write)
1. Determine the restore state of the block from R_State
2. If the region has not been restored, restore the block that overlaps with the user I/O
a. Read data out of the source file and write it to the destination - the primary and
HA mirrored copy
b. Update the restore bitmap in corresponding RestoreLink file marking a region
restore completion
c. If all blocks are restored complete the restoration process
i. delete RestoreLink File
ii. Mark file restoration being done by deleting or invalidating
RestoteLinkOID
3. Proceed as a normal user I/O
a. In case of a READ, obtain the data and return to the user

b. In case of a WRITE update primary and HA mirror copy of the data

The following algorithm is used to perform an /O to a file (identified by FileOID).

If a file is not being live restored, the system performs file system /O as explained in
connection with the earlier drawings. That is, in case of a READ, the system reads the data
from the primary source and returns it to the user; in case of a WRITE, the system writes data
to the primary and HA copy. However, this process changes when a live restore attribute is

valid, as follows:

Algorithm File_I/O(IN FileOID, IN I0_Region, IN IO_Type: Read/Write)
1. Obtain RestoreLinkOID attribute from FileOID
2. Check if file FileOID is being live restored
a. [If RestoreLinkOID is not present or invalid, proceed as a normal 1O
i. In case of a READ, obtain the data and return to the user
ii. In case of a WRITE update primary and HA mirror copy of the data
3. If RestoreLinkOID is valid, obtain the restore state R_State for the 10O region
a. Load a portion of bitmap from the corresponding RestoreLink File (identified
by RestoreLinkOID). As each bit represents a region that was or needs to be
restored, the system can quickly determine the set of bits needed

4. Call IoToFileBeingRestored(FileOID, I0_Region, R_State, IO_Type)

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
40

Directory / File Restore

Directory and File System live restore processes can use the individual file restore
process described above.

A TFile System level live restore can be treated as a restore of its root directory.

A directory can contain many files and other sub-directories with more files. A simple
approach to implementing a directory restore can be locking the directory tree to be restored
and then performing live restore of individual files.

While live restore for a single file is almost instantaneous, the main problem with a
locking destination directory tree approach is that a source directory may contain many sub-
directories and files leading to lengthy cumulative live restore process. This might be
undesirable as the access to the destination directory is blocked while this process takes
places. One effect of this that user /O would timeout and applications that rely on these 1/Os
would stop operating properly. We describe a process that does not require locking of the
entire destination directory tree for the entire duration while preparing files for restore. When
restoring a directory tree, the destination must not exist or must be empty.

A typical file system has a deterministic way of traversing content of a directory. The
content of each source directory (including its sub-directories) is fixed for the duration of the
operation and can be traversed in a well-defined order. For sake of the discussion, we can
make a parallel with a tree traversal. Each directory could be treated as a node of a tree and
each file could be treated as a data content. The directory being restored can be described as a
multi-branch tree. The restore source directory is traversed using the traditional tree depth-
first order approach: sub-directories are visited first and then each file in the current directory
is live restored. While performing the traversal the system keeps track on the path it is
currently traversing. The main advantage of using the depth-first approach is that the path
information is bounded and small. For example, LINUX OS limits file path to 4 KiB
independently how many sub-directories appear on this path.

The algorithms below use the following inputs: RestoreSourceDp, RestoreSourceDir,
and RestorePathDir.

RestoreSourceDp is the discovery point containing data to be restored (source of the

restore data)

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
41

RestoreSourceDir is the directory in the RestoreSourceDp that is being restored. As
before with the files, the tuple <RestoreSourceDp, RestoreSourceDir> forms a version
of directory to be restored.

RestorePathDir is the path into which data is restored (destination directory).

While restoring a directory, the system keeps a private (not visible to the users) attribute
called RestorelnProgress on each directory being restored. This attribute records the source
information for the live restore <RestoreSourceDp, RestoreSourceDir>. Presence of this
attribute indicates that this directory file content live restore has not completed. An absence
of this attribute indicates that all files in the directory have been completely restored or live
restored (metadata completed and data is being restored) or this is a directory that did not
need restoration (this could happen when a directory is deleted and the created with the same
name). This attribute is used primarily to coordinate incoming namespace operations while
directory live restore is in progress. If a directory was deleted and re-created it does not have
this attribute present.

The following algorithm is used to initiate background traversal of the directory being
restored and then initiating live restore of each individual file. This algorithm (as depicted in
FIG. 18) is executed by the system in background. Fach sub-directory is accessed by its name
and not by its OID.

Algorithm DirectoryLiveRestore (IN RestoreSourceDp, IN RestoreSourceDir, IN
RestorePathDir)

1. For each sub-directory S in RestoreSourceDir

a. Atomically create sub-directory S in the RestorePathDir:
i. Create S
ii. Restore metadata of S from the source <RestoreSourceDp,
RestoreSourceDir>
iii. Record an attribute RestoreInProgress on S
b. Call DirectoryLiveRestore(RestoreSourceDp, complete path for S in
RestoreSourceDir, complete path for S in RestorePathDir)
2. C(all DirectoryContentLiveRestore(RestoreSourceDp, RestoreSourceDir,
RestorePathDir)
The system allows namespace operations on the directories being live restored. User access to
the directories can create conflicts with the directory live restore operation that is running in

background. Note that the operational conflict resolution for files was described above.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
42

When the system receives a path based operation, it traverses each sub-directory on
the path and performs live-restore of the content this sub-directory atomically if needed.

Each directory content is restored atomically with respect to rest of file system
operations. In this discussion “directory content” means all files within a directory. Sub-
directories are not restored immediately, instead each sub-directory is created as an object
with all its attributes being restored and also marked with RestorelnProgress attribute
indicating that their content needs to be restored at a later time.

The following algorithm describes this process. The algorithm is executed atomically
with respect to all other File System operations to RestorePathDir — access to this directory is
locked for all other file system operations. Fach sub-directory is accessed by its name and not
by its OID.

Algorithm DirectoryContentLiveRestore(IN RestoreSourceDp, IN
RestoreSourceDir, IN RestorePathDir)

1. If RestoreSourceDir has RestoreInProgress then
a. Live restore each file:
i. For each file IV in RestoreSourceDir call
PrepareFileForRestore(Complete path for F in
RestorePathDir, <complete path for F in RestoreSourceDir>,
RestoreSourceDp>)
b. TFor each sub-directory S in RestoreSourceDir:
i. If S does not exist in the RestorePathDir
ii. Create S
iii. Restore metadata of S from the source <RestoreSourceDp,
RestoreSourceDir>
iv. Record an attribute RestorelnProgress on S:
RestorelnProgress = <RestoreSourceDp, Complete path of
S in RestoreSourceDir)
¢. Mark directory live restore complete (remove RestorelnProgress
attribute)
The following algorithm is used to resolve name space (path) conflict when user I/O is
performed.

IO_Path identifies the object path within the file system name space used for an

operation.

fsOperation identifies file system operation requested by user.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
43

Algorithm ResolveNameSpaceOnLiveRestore(IN IO_Path, IN fsOperation)
1. Break the IO Path into individual tokens: IO _Path = <S1, S2, .., Sn>. Note that
Sn could be a directory or a file. Only the last token could be a file.
2. ForeachSi,i=1..n
a. If Si is Sn and is a file — resolve operation as described above as this file
already been processed from the Live Restore point of view
b. If Siis a directory and has RestorelnProgress, execute
DirectoryContentLiveRestore(RestoreSourceDp, RestoreSourceDir,
Complete path of Si)
When a user I/O arrives, a sub-path could have already been restored, in which case nothing
needs to be done. This can happen when a sub-path was restored by a previous user operation
or by the background directory live restore.
If the sub-path has not yet been restored, this means that this is the first user operation
to this sub-path and the background live restore has not restored it. In this case the system
locks the sub-path, and performs content live restore. When the background process catches

up with this path, it will quickly determine that nothing needs to be done and moves on.

Block Level Live Restore

As mentioned previously, live restores can also occur at the block level. This is the

preferred way to implement live restore to an entire site.

System Layers

The following definitions are used in describing a Block Level Live restore process.
Site P — primary site is being restored
Site R — remote (the intelligence node at the local location, or a remote location) site
that is used as the source for the site restore operation

Each site typically consists of the following functional layers: Physical Storage, File System,

and a Virtual Disk Layer. FIG. 19 shows the three storage layers and their interrelationship.

Physical Storage Layer (PSL) 1910 — the physical storage media, HDD, SSD, etc.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
44

File System Layer (I'SL) 1920 — this is the layer implementing file systems. The FSL
primarily uses storage for two reasons, to store file system metadata (internal file system and
namespace information) and user data. In absence of user file I/O, FSL only needs metadata
for its operation and does not access or modify storage extents used to store user data. Newer
FSL implementations tend to support so-called TRIM operations. TRIM operations are used
by FSL to notify physical storage that an extent is no longer is being used and can be
reclaimed by the PSL.

Virtual Disk Layer (VDL) 1930 — this is a layer that sits between Physical and File
System layers and is used to virtualize physical storage configuration. VDL consumes
physical storage and presents virtual disks to the File System layer. This allows site restore
between sites that do not have the same storage (disk) configuration. VDL is also used to
track extent allocation at each virtual disk presented to the file system layer. In this
embodiment, VDL is described as a separate logical layer from the FSL for simplicity of the
discussion. However, in some other implementation it could be implemented directly within
the PSL or FSL. The VDL can be responsible for maintaining separate logical constructs for
the metadata (MD) and user data (D) structures as described below.

A piece of information that can be extracted from File System is the extents that store
metadata. However, this can be expensive. In a better approach, a File System can be
implemented such that it stores its metadata on a separate storage device (or devices)
dedicated for metadata only use. When combined with the This approach, with the VDL
handling extent allocation tracking, allows quick identification of the metadata extents

allocated/used by the File System layer.

Block Live Restore

VDL implements a Block Live Restore operation. It is used to restore a set of extents
from one site to another. A list of extents is kept in an data Restore Extent Map. Given such a
map, VDL copies data from a remote site at logical block level. The general algorithm is
described below and shown in FIG. 20.

Site P is a site P as described above.

Site R is a site R as described above.

RestoreExtentMap is a data extent map keeping list of extents to be restored.

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
45

Algorithm BlockLiveRestore(IN RestoreExtentMap, IN Site_P, IN Site_R)
1. For each extent in RestoreExtentMap, read data from the remote location Site_R and
copy it locally to Site_P — (both primary and HA mirrored copy of the data are
copied)

2. Update RestoreExtentMap with the information about extents that have been restored

Restore Extent Bitmap

One can use a variety of methods to keep track of extents restored and not restored.
One approach is to use a bitmap. Use of a bitmap allows for random access to the extents
being restored. Use of a bitmap in this instance is similar to how it is used for file live
restore. Each bit in the Restore Extent Bitmap tracks the restore state for an extent that is
restored atomically. For example, a bit with value of 0 marks an extent that needs to be
restored, while a bit with a value of 1 marks an extent that has been restored. A zero bitmap
(all bits set to zero) is created initially indicating that no extent has yet been restored. As live
restore continues and individual extents are restored, the Restore Extent Bitmap is updated to
reflect the state of restore for each extent.

In a copy-on-write file system data is never overwritten. Each modification is written
to a newly allocated block. For these file systems the information about extents being
restored (restored vs. need to be restored) can be implemented by using a single restore
watermark, where extents below the watermark have been restored and extents above
watermark have not.

If an I/O to an extent is received the following logic is used. The system protects

newly restored and newly written user data by creating HA copy of the data.

I/O to an Extent Being Live Restored

The following algorithm is used to perform user /O to a block (extent) that is being
restored.

I0_Region - identifies 1/O operation block

IO_Type — identifies Read or Write operation
Algorithm IoToBlockBeingRestored(IN 10_Region, IN IO_Type: Read/Write, IN
RestoreExtentMap , IN Site_P, IN Site_R)

1. Determine the restore extents that overlap with the user I/O using RestoreExtentMap

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
46

2. If extents have not been restored, restore needed extents
a. Read data out from the Site R source and write it to the destination Site P -
the primary and HA mirrored copy of the data
b. Update RestoreExtentMap, marking extent restore completion
c. If all extents are restored, complete the restoration process
3. Proceed as a normal 10
a. In case of a READ, obtain the data and return to the user
b. In case of a WRITE update primary and HA mirror copy of the data
C.
FIG. 21 illustrates an example of a block restore process 2100 when a Restore Extent Map is
used to track restore information on the extents and a user I/O in progress (Write).

Data extents are restored from the remote pool 130 (from System R) to the primary
pool 110 (to System P). The remote pool contains the user data to be restored 2110. In this
implementation, the remote pool is divided on extents. System R thus tracks information
about the used extents and this information is made available to the System R before the
restore process starts. Data in the pool is restored extent by extent, atomically. The restore
state of extents during live restore in this implementation is managed using an Restore Extent
Bitmap 2135. For each extent to be restored, the source pool (System R) maintains a bit in the
Restore Extent Bitmap to track whether an extent has been restored. A bit with a value of 1
marks an extent that has been restored, while a bit with value of 0 marks an extent that needs
to be restored.

In FIG. 21, Extents A and B in the primary data 2120 have already been restored
using a schedule based on previously gathered analytics, as stored in the source pool. Here,
Block C is currently being modified by a user I/O operation 2130. Block C is restored, then
data is merged with the users data, resulting in data C’ which is then stored within both the
primary and HA copy. As more of the file blocks are restored, the Restore Extent Bitmap is

updated to reflect the state of the live restore in process.

Handling of FFSL Issued TRIM Operation

As is described below, once the file system metadata is copied to the restore location,

users are allowed to access their data which may then result in modifying the file system

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
47

metadata. This can happen during the pruning of the file systems to be restored or later during
user /O to sites being restored. These operations can result in some of the metadata and data
regions used by file system being freed. This might also result in a TRIM operation being
issued to the VDL indicating that a region of a storage is no longer being in use by the FSL.
When a TRIM operation is received for the metadata region, the system processes it normally
as all metadata blocks have been restored. When a TRIM operation is received for a data
region, the system finds all extents indicated by the region that are present in the Restore
Extent Map and marks their restore as complete since they do not have to be restored. Notice
that if an extent is not found in the map, then the corresponding extent live restore has
completed or has not needed restore; in any case, no further actions on the restore map is
needed.

The following algorithm is used to maintain the Data Extent Restore Map when a
TRIM operation on a data region is received as a result of a user metadata prune or I/O
operations. The following arguments are used:

RestoreExtentMap as described above

TrimDataRegion is the data region marked by FSL as not being in use.

Algorithm ProcessTrim(IN RestoreExtentMap, IN TrimDataRegion)
1. For data each extent E in TrimDataRegion that is also in RestoreExtentMap mark

E restore state as complete (set corresponding bit to 1).

Site Restore

As been discussed briefly above, block live restore can also be applied to restoration
of an entire site. The description below assumes that the File System layer uses a dedicated
virtual device presented by VDL to store its metadata, and the FSL issues TRIM operations to
the storage layer below to notify it about unused extents.

FIG. 22 shows file system metadata (MD) 2210 and user data (DATA) 2220
separation and extent allocation tracking. There are logical regions of allocated space at the
FSL which map to allocated extents at the VDL, which in turn map to used physical storage.
The algorithm for site restore is as below (and shown in Fig. 23):

Algorithm SiteRestore (IN Site_P, IN Site_R)

10

15

20

25

30

WO 2014/200888 PCT/US2014/041486
48

1. Configure Virtual Disk layer at Site P matching configuration of what is being
presented by VDL at site R.

2. lIdentify allocated/used Metadata extents at site R and copy them to the corresponding
virtual device (s) to site P. Once this step completes, FSL on site P is ready to perform
its operations that do not involve user data.

3. Obtain information about allocated/used data extents from the VDL at site R. This
information is transferred to the VDL at site P. This information forms Restore Extent
Map.

4. Perform file system pruning. In this step, users identify file systems that do not need
to be restored. Not needed discovery points are also destroyed — for example, if site P
is a Primary controller/system, then all discovery points are destroyed. If site P is an
Intelligence controller/system, then user chosen discovery points are retained, while
the rest are destroyed. Deletion of files, systems, and discovery points are FSL-level
management operations that result in FSL. metadata being modified, however, since
all metadata has been restored, only site P metadata is modified. Another effect of
deletion is that FSL might declare some of the data blocks as being no longer in use
resulting in TRIM operations. As ISL issues TRIM operations, VDL updates its
Restore Extent Bitmap, marking extents not needed for the restore.

5. Schedule background Block Live Restore based on the information in the Restore
Extent Map.

6. Allow access to file systems by users.

FIG. 24 shows states of the P (primary) and R (Intelligence) after step 5.

The metadata was copied (only the used metadata extents were copied) from System
R to System P. Fully restored blocks (or blocks not needing restore) are solid filled. Blocks
that are marked as not being in use by FSL are identified with a cross pattern fill. Blocks that
will need to be restored are identified with vertical stripe fill. VDL on the system P, maintains
blocks to be restored (data needs to be copied from R to P) in Restore Extent Bitmap.

In the example shown in FIG. 23, a user has chosen not to restore FS, and all
discovery points for I'S; and I'S; have thus been deleted by the system. This resulted in some
of the metadata and data blocks being freed by the FSL and marked as no longer being in use.
The FSL therefore issued TRIM operations for these regions. Since metadata blocks have
fully been restored, the system process TRIM on the metadata blocks normally. Data blocks
that have been reported by F'SL as not being in use are marked as restore complete in the

Restore Extent Map and will not be restored. As the background restore progresses, VDL on

10

15

WO 2014/200888 PCT/US2014/041486
49

system P uses the Restore Extent Bitmap identifying the blocks to be restored and then to
read that data from the remote system R and write it locally.

Notice that the physical storage configurations of System R and System P do not have
to be the same. VDL abstracts the physical configuration presenting a virtual storage
configuration to the FSL on both systems. Available physical metadata storage on system P
must be at least the size of one at system R. Available physical data storage on system R must
be at least needed to restore data after pruning has been complete.

It is to be understood that the above description is intended to be illustrative, and not
restrictive. Many other embodiments will be apparent to those of skill in the art upon
reviewing the above description. As but one example, the algorithms specify general steps,
or one specific way of implementing a function or feature. Those of skill in the art will
recognize that other approaches are possible. It should also be understood that the algorithms
described are directed to the primary logic needed to carry out the stated functions. They do
not describe all possible variations in implementation; nor do they specify all possible
ancillary functions needed for a practical system such as invalid user-supplied inputs or
invalid operational states. For example, error states can be handled in any convenient way.

The scope of the invention should, therefore, be determined only with reference to the

appended claims, along with the full scope of equivalents to which such claims are entitled.

© 00 N OO Uk W N

=
o

11
12
13
14
15

WO 2014/200888 PCT/US2014/041486

50

CLAIMS

1. A primary storage, high availability and data analytics system comprising:
one or more processors programmed to operate primary node software; and
one or more processors programmed to operate intelligence node software;
wherein the primary node software:
intercepts data access requests,
mirrors, to the intelligence node software, to provide high availability for data included in the
data access requests,
executes in-line data analytics on the data access request, and
directs the data access requests to an actual file system or block volume on physical storage
media in a primary storage pool; and
wherein the intelligence node software:
stores the mirrored data in physical storage media in an intelligence storage pool separate from
the primary storage pool,
performs analytics on the mirrored data and/or previously performed in-line data analytics, and

creates discovery points within the intelligence storage pool.

2. The system of claim 1, wherein the primary node software further provides a user, web, or
programming interface to one or more users allowing access to and restoration from data stored by

the intelligence node software.

3. The system of claim 1, wherein the in-line data analytics include real-time identification of file
or data access and changes and tracking said in-line data analytics in a change catalog entry which is

sent to the intelligence node software.
4. The system of claim 3, wherein the in-line data analytics includes tracking, for all data
creations, accesses, and modifications, who, when, how, and where the creation, access, or

modification occurred.

5. The system of claim 3, wherein the change catalog entries are a form of metadata or data tags.

B WM

B WM

=

B WM

=

WO 2014/200888 PCT/US2014/041486

51

6. The system of claim 3, wherein each stored discovery point contains incremental changes of
data analytics from a prior discovery point until creation of a next discovery point, and optionally

incremental changes of data from the prior discovery point until creation of the next discovery point.

7. The system of claim 6, wherein the intelligence node software creates new discovery points
based on one or more of: time from last discovery point creation, percentage change across all of data
and/or analytics, percentage change across a subset of data and/or analytics, detected deviations from

usage patterns, real-time analysis of data content, user input, and user specified metrics.

8. The system of claim 3, wherein the intelligence node software further operates an adaptive
parallel processing engine to derive more complex analytics using previously gathered real-time
analytics, including tracking system and content changes and use over time, without any impact on

primary storage performance or availability.

9. The system of claim 8, wherein the intelligence node software further creates a full text index

of the mirrored data.

10. The system of claim 8, wherein the adaptive parallel processing engine utilizes a set of one or

more rules for analysis of data, operation of systems or applications, and/or already gathered analysis.

11. The system of claim 10, wherein the adaptive parallel processing engine applies multiple
rules in a time sequence, such that the analysis produced by application of one or more rules leads to

application of additional rules.

12. The system of claim 10, wherein the application of at least one rule triggers an immediate
action, schedules an action, or schedules a repetitive action, the actions including one or more of’;
creation of a temporary or permanent rule, notification, retention, quarantine, data extraction, or

modification of data.

13. The system of claim 10, wherein the already gathered analysis includes what is included in

the change catalog.

14. The system of claim 10, wherein the rules are configured to gather one or more of storage

intelligence for analyzing total storage and system usage over time, recovery intelligence for

N R W N

A WM R

AW N R =

v B W N

WO 2014/200888 PCT/US2014/041486

52

protecting data and gathered analytics, operational intelligence for analyzing application logs and
usage and security patterns, and data intelligence for extracting analytics from unstructured, semi-

structured, structured, and/or complex data.

15. The system of claim 14, wherein the gathered intelligence enables operation in conjunction
with additional analytics for one or more of collaboration, trending, e-discovery, audits, scoring, and

similarity.

16. The system of claim 10, wherein one or more rules extract additional analytics metadata from

data content.

17. The system of claim 16, wherein at least one of analytics metadata, tags, and content index is

searchable by one or more users.

18. The system of claim 2, wherein the processors operating the primary node software and the
processors operating the intelligence node software may be deployed in an independent configuration
or in a shared configuration, and in either configuration the primary node software presents a single

system management view to users.

19. The system of claim 6, wherein the primary node software further provides one or more of an
application programming interface, a file access based interface, a web interface, and a user interface

for searching the analytics stored in one or more discovery points.

20. The system of claim 19, wherein the in-line data analytics sent to the intelligence node
software include security permissions identifying access rights to associated data objects, and the
searchable analytics are restricted based on the security permissions for individual users, and are not

restricted for searches done by an administrator.

21. The system of claim 19, wherein the primary node software further provides for selective
restore at a file, directory, individual file system, or block volume granularity of data stored in a
selected discovery point, and/or for bare-metal restore of entire file systems or block volumes stored
in the selected discovery points, and/or for bare-metal restore of the entire set of selected discovery

points, wherein selection is from the search of analytics and/or a list of available discovery points.

N o kA Ww Ny

WO 2014/200888 PCT/US2014/041486

53

22. The system of claim 21, wherein the primary node software enables user access to the data
being restored as soon as associated metadata is restored independent of completion of restoration of

the actual data.

23. The system of claim 22, wherein the primary node software and intelligence node software
track, protect, and analyze data accesses, creations, and modifications to all data, including data being

restored, while a data restore is occurring.

24. The system of claim 22, wherein the primary node software and/or intelligence node software
use system access requests and gathered analytics metadata data to prioritize order of data restoration

during data restores.

25. The system of claim 14, wherein the storage intelligence further enables dynamic allocation
and/or reallocation of available physical storage between the primary storage pool and the intelligence

storage pool.

26. The system of claim 1, wherein the one or more processors operating primary node software

are the same one or more processors operating intelligence node software.

27. The system of claim 1, wherein the one or more processors operating primary node software
are further programmed to begin operation of intelligence node software in event of failure of the

intelligence node software on the one or more processors operating the intelligence node software.

28. The system of claim 1, wherein the one or more processors operating intelligence node
software are further programmed to begin operation of primary node software in event of failure of

the primary node software on the one or more processors operating the primary node software.

29. A method for integrated primary data storage, mirroring, and analytics comprising the
steps of,
at a primary node:
receiving, over a network connection from a connected computer, a data access request that
includes request data;
performing in-line analytics in real time on the data access request and any request data;

forwarding the in-line analytics, data access request, and request data to an intelligence node; and

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

~N o R W

WO 2014/200888 PCT/US2014/041486

54

responding to the data access request by forwarding the request data to, or retrieving the request
data from, a primary storage pool, without first waiting for an acknowledgement from the intelligence
node;

at the intelligence node:

if the data access request was for a write of the request data, mirroring the request data to an
intelligence storage pool;

storing the extended metadata in the intelligence pool;

if the data access request includes changes to the request data, storing change data in the
intelligence pool as a change entry in a change catalog, where the change entry includes one or more
of an identifier for the changed request data, the user who initiated the data access request, and a time
of the access request;

storing the in-line analytics in the intelligence pool;

performing additional analytics on the data access request, request data, and/or in-line analytics to
provide extended metadata; and

storing in the intelligence pool, at determined point in time, a discovery point including the
contents of the change catalog, identifiers for changed data stored in the primary storage pool, and the

extended metadata.

30. A method for handling data in a data storage system comprising:
receiving a copy of data access requests and metadata concerning the data access
requests;
executes further analytics on the metadata associated with the data access requests to
provide further analytics data; and
consolidating the metadata and the further analytics for storage as consolidated metadata

and further analytics data in a storage device.
31. The method of claim 30 wherein the copy of data access requests is received from a primary
node, and an intelligence node provides the storage device for storing the consolidated metadata and
further analytics data.

32. The method of claim 1 wherein the primary node and intelligence node are co-located.

33. The method of claim 31 wherein the primary node and intelligence node are located remotely

from one another.

© 00 N OO Uk W N

B WM

=

o Uk W N

WO 2014/200888 PCT/US2014/041486

55

34. The method of claim 31 wherein a single processing node implements the primary node and
intelligence node, and the intelligence node executes when the single processing node is not occupied

with functions of the primary node.

35. The method of claim 30 wherein the metadata includes one or more of:
extended information concerning the data access request;
who initiated a data access request;
how many modifications have occurred;
aggregate size of the modifications;
a data object name;
data object owner;
access control list; or

time of the data access request.

36. The method of claim 31 wherein the intelligence node further
directs the data access requests to an intelligence pool; and
creates discovery points associating the consolidated metadata and further analytics data with

an intelligence pool copy of the data.

37. The method of claim 36 wherein the intelligence node further
performs deeper analytics on the discovery points, including content extraction and/or

analysis of information stored in the discovery points.

38. The method of claim 36 wherein the intelligence node further
compares metadata related to two or more discovery points associated with data access

requests occurring at two or more different times.

39. The method of claim 38 further comprising:
executing one or more rules on at least one of the change catalog, metadata, and extracted
content information to perform an additional operation that include one or more of:
applying a rule that includes a filter to match content and an associated action;
tracking changes in the data or metadata over time;

applying sentiment attributes to an indexed document;

T O e e
0 N OO U R WN R O VW 0 N

~N o Bk W R WY R WY R W N R, W N R

WO 2014/200888 PCT/US2014/041486

56

processing of a regular expression;
content transformation;
content analysis; or
triggering an action based on detected access or content wherein the action
further comprises one or more of:
data retention;
quarantine;
data extraction;
deletion;
data distribution;
alerts; or

other actions.

40. The method of claim 39 wherein a result of executing one or more rules provides complex

analytics stored as additional metadata appended to one or more change catalogs.

41. The method of claim 31 wherein the intelligence node further provides:
selective restore of the primary node using the analytics metadata associated with a

discovery point.

42. The method of claim 41 wherein the selective restore is in response to discovering a

predetermined pattern in the data or metadata.

43. The method of claim 31 wherein the intelligence node further controls replication of the data,

associated analytics, and a linkage between the data and associated analytics to a remote location.

44. The method of claim 43 further comprising:
selective replication of analytics metadata at the remote location based on one or more of:
size of the analytics metadata;
complexity of a metadata production process;
priorities; or

processing load.

O 00 N OO Uk~ W N

=
o

11
12
13
14
15
16
17

v A W N R

WO 2014/200888 PCT/US2014/041486

57

45. A method for restoring data in a data-intelligent storage system that includes a primary storage
node and intelligence storage node, each such node programmed to operate software, wherein
a. the primary node software:
i. intercepts data access requests;
ii. mirrors data to the intelligence node referenced in the data access
requests to provide high availability for data included in the data access requests;
iii. executes in-line analytics on the data access requests to provide analytics
metadata; and
iv. directs the data access requests to a primary storage pool;
b. the intelligence node software:
i. stores mirrored data to an intelligence storage pool;
ii. performs analytics on mirrored data and/or previously executed in-line
analytics
iii. creates discovery points within the intelligence pool; and
¢. upon indication of a need to restore data, the primary node and intelligence node
cooperating to perform a live restore operation to the primary pool from the intelligence

pool using the analytics metadata.

46. The method of claim 45 additionally comprising:
a. restoring only object metadata first as a foreground process;
b. allowing user I/O access to objects prior to user data associated with the object
being completely restored; and

c. restoring user data as a background process.

47. The method of claim 46 additionally comprising:

prioritizing user data being restored based on the analytics metadata.

48. The method of claim 46 additionally comprising:
using the analytics metadata and user I/O operations to prioritize regions of a user data object being

restored.

49. The method of claim 47 additionally comprising:

a. restoring multiple objects at a time; and

0O N O 1B W N

B WM

=

WO 2014/200888 PCT/US2014/041486

58

b. restoring user data using the analytics metadata and user I/O to determine a priority for restoring

the multiple objects.

50. The method of claim 45 additionally comprising:
a. intercept subsequent live file requests; and

b. force live restore from a discovery point, wherein the discovery point further includes source data.

51. The method of claim 47 additionally comprising:
using a restore bitmap to track restore progress to allow random I/O to the object before the object is

completely restored.

52. The method of claim 51 wherein the restore bitmap represents regions that support automatic

atomic restoration.

53. The method of claim 45 additionally comprising:

a. obtaining a size of a file to be restored from the intelligence pool;

b. creating a new file in a RestorePath in the primary pool with an object identifier FlleOID;

d. restoring metadata for a user data object to be restored;

e. creating a RestoreLink file having an object identifier and a RestoreL.inkOID;

f. saving at least the restore size, FileOID and zero restore bitmap in the RestoreLink file; and
2. saving the RestoreLinkOID on a corresponding attribute in new file being restored in the primary

pool.

54. The method of claim 45 additionally comprising:

performing a live restore operation on an individual file.

55. The method of claim 54 wherein the file live restore operation further comprises:
a. restoring metadata related to the file atomically;
b. allowing user I/O to the file being restored;

¢. continuing to restore user data related to the file as a background task.

56. The method of claim 54 wherein the file live restore operation further comprises:
a. prioritizing restore of individual blocks within the file being restored based on user I/0 and the

previously gathered analytics.

v A W N R

AW N e

N oo s W R =

B WM

=

WO 2014/200888 PCT/US2014/041486

59

57. The method of claim 45 wherein the intelligence node software further performs a directory / file
system live restore operation on a directory and/or file system level to restore multiple files and/or

directories in parallel.

58. The method of claim 57 wherein the directory / file system live restore operation further
comprises:

a. creating directory / file system metadata;

b. allowing user I/O to the file system / directory being live restored as a background task; and

c. restoring individual files as a file live restore operation.

59. The method of claim 57 wherein the directory / file system live restore operation further
comprises:
a. prioritizing restoration of multiple files within a directory / file system based on user 1/O and the

previously gathered analytics.

60. The method of claim 45 additionally comprising perform block level live restore for restoring

data extents from a recovery site to a primary site.

61. The method of claim 60 wherein the block level live restore further comprises:
a. restoring metadata for the site atomically, including system metadata for file
systems and discovery points;
b. transferring an allocated extents map from a Virtual Disk Layer (VDL) on the
recovery site to the VDL on the primary site; and
c. allowing user 1/0 to the primary site while performing restore of user data each

extent as a background task.

62. The method of claim 61 additionally comprising:
a. pruning resulting metadata; and
b. resolving TRIM operations to the VDL as result of either such pruning or as a

result of allowing user I/O to the site while it is being restored.

63. The method of claim 60 wherein the block level live restore further comprises:

a. prioritizing restore of each extent based on the user I/O and previously gathered analytics.

PCT/US2014/041486

WO 2014/200888

1/25

[91

J9VHOLS DNIITTIINT JLOWTY ANV AYVWINd

so.._..m_.u.z.m_.@._.d.d.u._z_

STIIAS 39VHOLS
\EEE\
_\ SILLLTVNY
\xﬁ_e

v

0

121

LIS 110WIY

SILIATYNY VLV
401534 Viva

| >

¢ |
(SNONOUKDNASY

/ SNONOYHNAS)
NOID1104d VIva

,ﬂ_.o.@._-u.u._%_@z_ 100d 134 0LL100d RIYWIid
STHIAYIS J9VH0LS STIAYIS J9VH0LS
azazEz_ Hyvasviva ANVWINd
\ \ OIS VIV |
\&E\EE m @
Xa_;zﬁ i ST
i % |
s =1 N\ sl
\\\\;\\ \R\ SISKTVNY 3 NOID3L0¥d * o
01 VLVQ IWILTVIY 0L
) S0

S¥3LNdW0) GILDINNOD WO4/0L

WO 2014/200888 PCT/US2014/041486

oy T oy T

TTTT

d

@)
===11118

O

oo 1141l

—5) o [O
—3) o [[
A

FIG. 2

PRIMARY

==|C T

INTELLIGENCE

|| 7 FABRIC
1l
LI HoSr raBRic

BACK VIEW OF THE STORAGE APPLIANCE

 —

—

al | P4 al 1al

WO 2014/200888

PCT/US2014/041486

3/25
PRIMARY NODE 100
(s) Ca |
| PRIMARY | ;
i STORAGE i1 MANAGEMENT :
M) Chers SOPVARE
(sl M =
| TN |Bio0y
BLOCK/FILE
/ PART 41 STORAGE
310) ACCESS
ZIN-LINE BLOCK 330
g VOLUME =
’:Z:Z:Z:Z"""""" """""""" N 'Z """""""""""""""""""""""
RAID i RRC
" PHYSICAL | %Zf,
STORAGE {i | B2B =
REMOTE T
DISK =

PRIMARY NODE COMPONENTS

FIG. 3

WO 2014/200888

4/25

INTELLIGENCE NODE 120 4.'|50 4?2 4I54
(]

________________________)
- N\ L N AF
RULE RECOVERY / i FILE

ENGINE 420 || INTELLIGENCE/|ii) SYSTEM |BLOCK/FILE:
> <+ / 2 STORAGE |
SEARCH/ DATA /| BLOCK ACCESS |
REPORTING || INTELLIGENCE {!| VOLUME 80 |
(BN)(STORAGE ||
METADATA STORE|| INTELLIGENCE |:i ;
‘ 756 (41 PHYSICAL |
Q| OPERATIONAL |} STORAGE !
INTELLIGENCE | : ACCESS |
| ANALYTICS 410 10
l RPC 1PC
B2B 400

PCT/US2014/041486

INTELLIGENCE NODE COMPONENTS

CHANGE CATALOGS
600

DISCOVERY POINTS
650

INTELLIGENCE POOL
130

FIG.4

PCT/US2014/041486
5/25

WO 2014/200888

¢

MOH ILKTNY
SOOIV
JONVHD
o T
30LS S| (- -
v | (v | owas | &) Gonoa) Kanuiondo
Quasn J | wsn | 3 . y
T | MW ST
- |
150 J A Cb IV
DNIOITHIN] o o
1 TNoLLvEd0 e [NV i) |, | BEEE
1 “ YAMV ® AU 0CS I A0y | 90TLYD
TNIITTHLN] 4N/ SULAVNY m m J9NVHD
AL S CEC L
oo I
o Y YOVEQE J0VISLIINW

0Z1 300N IINIITIALNI 001 300N AYYWIYd

WO 2014/200888 PCT/US2014/041486

6/25
)
CHANGE ENTRY 610

CHANGE
A0 I
— 9 =2 S EZEZE
=== E|5|E|E|F|E|F

.

CHANGE CATALOG

FIG. 6A

WO 2014/200888 PCT/US2014/041486

1/25

DISCOVERY POINT 650

CHANGE CATALOG

(POINTER) TO MIRRORED
COPY OF CHANGED PRIMARY
DATA

ANALYTICS METADATA
-RECEIVED FROM PRIMARY NODE
-RESULTS FROM ADDITIONAL ANALYTICS

DISCOVERY POINT

FIG. 6B

PCT/US2014/041486

WO 2014/200888

8/25

/91

| NOLLYDOTIV)VdS JAILdVAY INIWAQTdIA AFYVHS

IIIIIIIIII

||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||

\
-
-
-
.-
..
-
\\\©
.
.
.
.
.
.
.
.
.
.
.
4

IIIIIIIIIIIIIII

SIWNTOA STUVHS

=fws

OO s |
wmO0 @@

4191 -100d AYVWINd
"

IIIIII

SINMI0A STUVHS

= &

ass

mE@Ooo o

NOLLYDOTTY
1VdS © (i -
ILLAVAY

DNIITHINI I9VY0LS

001 918:100d AVWI4d |

IIIIII

PCT/US2014/041486

WO 2014/200888

g 914

M0T4 NOIDD3L0¥d Y1Va

18 NOLLVANILINGD AYIA0)3Y H3LSVSIA

9/25

8@ NOLLVINIIING] DNIOMTILINI M_S_zm_y_

////

cN_ m_uzm_w_._._m:z_

II

NOILY)OT AYYWINd

IIIIIIIIIIIIIIIIIIIIIIII

001 AYYWI¥d

PCT/US2014/041486

WO 2014/200888

10/25

6 I
INIWAOT430 INJONIAIONT FOVHOLS ANVWIY
m) Y 4 _. ~ m
D X W) —— (% w) |
1 shings DI SDIAYS OIS | | |
1 3901 197401 vl 39701 19v401S | | |
U A IOIHNT /| <—— /02 DR9ITaN] 00L VWM) |

WO 2014/200888 PCT/US2014/041486

11/25
0 PRIMARY 100 INTELIGENCE I\
STORAGE m STORAGE
SERVICES SERVICES
LOCAL DISKS
< ADAPTIVE B
" INTELLIGENCE POOL

PRIMARY STORAGE SHARED DEPLOYMENT
FiG. 10

PCT/US2014/041486

WO 2014/200888

12/25

[l 9

MO 40153 YIva

c; NOLLVINILINGD A¥IA0IIY ¥3LSVSIA

II

>
AIYWINd

OLLL 3AIT 12014

0011 3AI1.D3rd0

\Z=

0011 JATTDIrG0

008 NOLLYANILNOGD
DNIIITHINT ILOWTY

NOLLYIOT AYVWINd

PCT/US2014/041486

WO 2014/200888

13/25

71 9H
MO THOLSTY IAT]
J0VHOLS RIVWIN LS
| (3.0W38/M01) PRl |
' SINIOd M3A0SIO () @ — |
@ \ a_;% S0zl
~ TH0lsny .ﬁ ol LT | | Kw3no |
| ok NOLLYWHOANI 1401534
1¥vd wo 1ONIOTTIILNI JHOLSTY
i TOLS3Y IAIT
134 i | | isinom o
ns| | Huvas
0/1435N 90153 | | FWOIST SIS | e

PCT/US2014/041486

WO 2014/200888

14/25

£l

)

Y015y

J

v

)

X111

III

X1 11d

0

|

(100d ANVWISd) X

dVWLIE 34015y
_c___o_____of
0z€l
i

’

WO 2014/200888 PCT/US2014/041486

15/25

ALGORITHM FileRestore (IN S_Path, IN S_DP, IN D_Path)

1. PREPARE FILE FOR RESTORE.
a. CALL PrepareFileForRestore
b. (SEE FIG. 15 FOR MORE DETAIL - CREATE AN EMPTY DESTINATION FILE D_Path AND
MARK APPROPRIATE METADATA ALLOWING FOR THE LIVE RESTORE TO BE EXECUTED)
2. (ALL IoToFileBeingRestored FOR USER I/0 REQUESTS
a. (SEE FIG. 17 FOR MORE DETAIL - ALLOW I/0 ACCESS TO THE FILE PRIOR TO
RESTORE COMPLETE)
3. START BACKGROUND RESTORE OF DATA
a. FILE DATA IS RESTORED AS BACKGROUND PROCESS
b. RESTORE I/0 IS PERFORMED AT A BLOCK BY BLOCK LEVEL WITHIN THE FILE
¢. FOR EACH BLOCK RESTORE, THE RESTORED MAP RECORDS RESTORED BLOCKS
d. BACKGROUND DATA RESTORE USING TWO PRINCIPLES TO PRIORITIZE
i. BLOCKS BEING ACTIVELY RESTORED IN REAL-TIME
i II;f(E)\gl?ll_llis\;-IEYLGATHERED ANALYTICS FROM S_DP AT THE SUB-OBJECT AND
4. AS NEW DATA IS BEING WRITTEN TO THE FILE ACTIVELY BEING RESTORED, MIRROR THE NEW
AND RESTORED DATA PROVING HA

FIG. 14

WO 2014/200888 PCT/US2014/041486

16/25

ALGORITHM PrepareFileForRestore {IN RestorePath, IN RestoreSource=<DPsource,
0IDSource>, OUT FileQID)

1. OBTAIN SIZE TO BE RESTORED FROM RestoreSource

2. CREATE A NEW FILE RestorePath THAT WILL BE THE DESTINATION FOR THE RESTORE, AND
OBTAIN ITS OBJECT ID, RETURNED IN FileOID

3. RESTORE METADATA ON THE FILE BEING RESTORED (PERMISSIONS, OWNERSHIP, ATTRIBUTES,
ETC) FROM THE SOURCE

4. CREAT A RestoreLink FILE WITH ITS OBJECT ID RestoreLinkOID AND NAME

“RL_<FileOID>"
5. SAVE RestoreSource, RESTORE SIZE, FileOID AND A ZERO-VALUE RESTORE BITMAP IN

THE NEWLY CREATED RestoreLink FILE
6. SAVE RestoreLink FILE OID IN THE RestoreLinkQid ATTRIBUTE ON THE FILE TO BE RESTORED

FIG. 15

WO 2014/200888 PCT/US2014/041486

17/25
/ 1610
o MRestoreliok L
“RL_400"
0ID = 200 !
RestoreSource = . .
RestoreSize FileOID RESTORE BITMAP | :
<DPsgupce OIDSOURCPI I I J i

200
<DPy:25> N
DPy
“restored.xx”
01D = 400
RestoreLink0ID=200

’(’)fIiI;el))39;”
\ ey |00 T
/ FIG. 16

WO 2014/200888 PCT/US2014/041486

18/25

ALGORITHM IoToFileBeingRestored (IN FileOID, IN I0_Region, IN R_State, IN I0_Type:
Read/Write)

1. DETERMINE THE RESTORE STATE OF THE BLOCK FROM R_State
2. {lFSEEEI}(I)EGmN HAS NOT BEEN RESTORED, RESTORE THE BLOCK THAT OVERLAPS WITH THE
a. READ DATA OUT OF THE SOURCE FILE AND WRITE IT TO THE DESTINATION - THE
PRIMARY AND HA MIRRORED COPY
b. UPDATE THE RESTORE BITMAP IN CORRESPONDING RestoreLink FILE MARKING
A REGION RESTORE COMPLETION
¢. IF ALL BLOCKS ARE RESTORED COMPLETE THE RESTORATION PROCESS
i. DELETE RestoreLink FILE
ii. MARK FILE RESTORATION BEING DONE BY DELATING OR INVALIDATING
RestoreLinkQID
3. PROCESSED AS A NORMAL USER I/0
a. IN CASE IF READ M OBTAIN THE DATA AND RETURN TO THE USER
b. IN CASE OF A WRITE UPDATE PRIMARY AND HA MIRROR COPY OF THE DATA

Fi6. 17

WO 2014/200888 PCT/US2014/041486

19/25

ALGORITHM DirectoryLiveRestore (IN RestoreSourceDp, IN RestoreSourceDir, IN
RestorePathDir)

1. FOR EACH SUB-DIRECTORY S IN RestoreSourceDir
a. ATOMK@II{JEXT%REAT SUB-DIRECTORY S IN THE RestorePathDir:
.
ii. RESTORE METADATA OF S FROM THE SOURCE <RestoreSourceDp,
RestoreSourceDir>
iii. RECORD AN ATTRIBUTE RestoreInProgress ON S
b. CALL DirectoryLiveRestore(RestoreSourceDp, COMPLETE PATH FOR S IN
RestoreSourceDir, COMPLETE PATH FOR S IN RestorePathDir)
2. (ALL DirectoryContentLiveRestore(RestoreSourceDp, RestoreSourceDir,
RestorePathDir)

FIG. 18

WO 2014/200888 PCT/US2014/041486

20/25

FSL 1920

VDL 1930

PDL 1910

WO 2014/200888 PCT/US2014/041486

21/25

ALGORITHM BlockLiveRestore (IN RestoreExtentMap, IN Site_P, IN Site_R)

1. FOR EACH EXTENT IN RestoreExtentMap, READ DATA FROM THE REMOTE LOCATION
Site_R AND COPY IT LOCALLY TO Site _P

2. UPDATE RestoreExtentMap WITH THE INFORMATION ABOUT EXTENTS THAT HAVE
BEEN RESTORED

FI6. 20

WO 2014/200888 PCT/US2014/041486

22/25

2100

2130

1. USER WRITE
110
SYSTEM P (PRIMARY) SYSTEM R (INTELLIGENCE/HA MIRROR) 130
' / 3. PROTECT ION{\\ |

(WD | (SN ED

_________ n v PR

C L— 2. RESTORE DATA

[0TTT1JO0TT1T0]
RESTORE EXTENT BITMAP

2135

Fi6. 21

PCT/US2014/041486

WO 2014/200888

23/25

AA L

0Zze viva 012¢ VivavLIw

/\ /\
r N M

oeld (Sa) W

‘ fo)% J(
/ N,

1 [e eeoees oesee oo |J[eere o)

/A N A

0z61 154 ﬁ —(]—e (o o(-o uﬁ o—(W—o QA_EIL

WO 2014/200888 PCT/US2014/041486

24/25

ALGORITHM SiteRestore (IN Site_P, IN Site_R)

1. CONFIGURE VIRTUAL DISK LAYER AT SITE P MATCHING CONFIGURATION OF WHAT IS BEING
PRESENTED BY VDL AT SITE R.
2. IDENTIFY ALLOCATED/USED METADATA EXTENTS AT SITE R
a. COPY THEM TO THE CORRESPONDING VIRTUAL DEVICE (S) TO SITE P.
b. Il:JSSLEI?'Iq)ASﬂE P IS READY TO PERFORM ITS OPERATIONS THAT DO NOT INVOLVE
3. OBTAIN INFORMATION ABOUT ALLOCATED/USED DATA EXTENTS FROM THE VDL AT SITE R.
a. TRANSFER THIS TO THE VDL AT SITE P TO FORM RESTORE EXTENT MAP
4. PERFORM FILE SYSTEM PRUNING.
a. USER IDENTIFIES FILE SYSTEMS THAT DO NOT NEED TO BE RESTORED.
b. DESTROY NOT NEEDED DISCOVERY POINTS
i. IF SITE P IS A PRIMARY CONTROLLER/SYSTEM, THEN ALL DISCOVERY
POINTS ARE DESTROYED.
ii. IF SITE P IS AN INTELLIGENCE CONTROLLER/SYSTEM, THEN USER CHOSEN
DISCOVERY POINTS ATE RETAINED, WHILE THE REST ARE DESTROYED.
¢. DELETION OF FILES, SYSTEMS, AND DISCOVERY POINTS ARE FSL-LEVEL
MANAGEMENT OPERATIONS THAT RESULT IN FSL METADATA AT SITE P BEING MODIFIED
AN EFFECT OF DELETION IS THAT FSL MIGHT DECLARE SOME OF THE DATA BLOCKS AS
BEING NO LONGER IN USE RESULTING IN TRIM OPERATIONS.
AS FSL ISSUES TRIM OPERATIONS, VDL UPDATES ITS RESTORE EXTENT MAP,
MARKING EXTENTS NOT NEEDED FOR THE RESTORE.
SCHEDULE BACKGROUND BlockLiveRestore BASED ON THE INFORMATION IN THE RESTORE
EXTENT BITMAP.
ALLOW ACCESS TO FILE SYSTEMS BY USERS.

FI6. 23

WO 2014/200888 PCT/US2014/041486

25/25

Il cece |([oeoe || | [cooe) [cooos | VL
: CR\ DATA | i i | METADATA DATA =

:"“ == 5885 :[j[j[j [j[j[jﬁj[j""“é

ME[ADATA DATA
METADATA DATA

__

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings

