(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

6 September 2013 (06.09.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/130212 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 11/07 (2006.01) GO6F 21/53 (2013.01)
GO6F 11/36 (2006.01)

International Application Number:
PCT/US2013/023874

International Filing Date:

30 January 2013 (30.01.2013)
Filing Language: English
Publication Language: English
Priority Data:
13/406,272 27 February 2012 (27.02.2012) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: BOURD, Alexei V.; 5775 Morehouse Drive,
San Diego, California 92121 (US). YUN, Jay Chunsup;
5775 Morehouse Drive, San Diego, California 92121 (US).

Agent: NAYATE, Ambar P.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

20137130212 AT I 00 OO0 O O 0

DEVICE
12
GPU
14

| 20 |

PROCESSOR

e

APPLICATION
SERVER DEVICE
38

DEVICE
MEMORY
18

APPLICATION

APPLICATION
20

(54) Title: VALIDATION OF APPLICATIONS FOR GRAPHICS PROCESSING UNIT

10

re

EMULATOR
UNIT
26

SERVER
MEMORY
28

VALIDATION
SERVER
DEVICE
24

GPU
MODEL(S)
30

_—————-

| COMPILER |
| 36 |
| |
| ISR |

GPU
INPUT(S)
32

DEVICE
MODEL(S)
34

FIG. 1

(57) Abstract: The techniques described in this disclosure are directed to validating an application that is to be executed on a graph -
ics processing unit (GPU). For example, a validation server device may receive code of the application. The validation server device
may provide some level of assurance that the application satisfies one or more performance criteria. In this manner, the probability of

o a problematic application executing on the device that includes the GPU may be reduced.

WO 2013/130212 PCT/US2013/023874

VALIDATION OF APPLICATIONS FOR
GRAPHICS PROCESSING UNIT

TECHNICAL FIELD
[0001] This disclosure is directed to applications that execute on a graphics processing

unit (GPU), and more particularly, to validation of such applications.

BACKGROUND

[0002] Graphics processing units (GPUs) traditionally have been limited to performing
only graphics related processing in fixed-function pipelines that provide very limited
functional flexibility. Newer GPUs include programmable cores that execute programs,
and thereby provide greater functional flexibility as compared to the traditional GPUs.
The programmable cores may execute both graphics related applications and non-

graphics related applications.

SUMMARY

[0003] In general, this disclosure is related to techniques for identifying potentially
problematic applications that are to be executed on a graphics processing unit (GPU),
prior to execution. Examples of problematic applications include, but are not limited to,
malicious applications, as well as inefficient or error-prone applications. For example, a
server device external to the device that houses the GPU may validate the application.
Validation of the application may mean that the application satisfies one or more
criteria. As one example, validation may mean determining with some level of
assurance that the application is not a malicious application, an error-prone application,
or an inefficient application. The server device may transmit an indication, to the
device, that indicates whether it is cither safe or unadvisable for the GPU to execute the
program. The device may then elect to execute the program on the GPU based on the
recetved indication.

[0004] In one example, the disclosure describes a method that includes receiving, with a
server device, an application that is to be executed by a graphics processing unit (GPU)
that resides on a device external to the server device. The method also include
performing, with the server device, at least one of an analysis of the application prior to

and during compilation of the application on the server device, and an analysis of the

WO 2013/130212 PCT/US2013/023874

application during execution of the application on the server device. The method
further includes determining whether the application satisfies one or more performance
criteria based on at least one of the analyses, and transmitting to the device a validation
of the application if the application satisfies the one or more performance criteria.
[0005] In another example, the disclosure describes an apparatus that includes an
emulator unit operable to receive an application that is to be executed by a graphics
processing unit (GPU) that resides on a device external to the apparatus. The emulator
unit is also operable to perform at least one of an analysis of the application prior to and
during compilation of the application on the apparatus, and an analysis of the
application during execution of the application on the apparatus. The emulator unit is
also operable to determine whether the application satisfies one or more performance
criteria based on at least one of the analyses, and transmit to the device a validation of
the application if the application satisfies the one or more performance criteria.

[0006] In another example, the disclosure describes a server device that includes means
for receiving an application that is to be executed by a graphics processing unit (GPU)
that resides on a device external to the server device. The server device also includes
means for performing at least one of an analysis of the application prior to and during
compilation of the application on the server device, and an analysis of the application
during execution of the application on the server device. The server device further
includes means for determining whether the application satisfies one or more
performance criteria based on at least one of the analyses, and means for transmitting to
the device a validation of the application if the application satisfies the one or more
performance criteria.

[0007] In another example, the disclosure describes a non-transitory computer-readable
storage medium comprising instructions that cause one or more processors to receive,
with a server device, an application that is to be executed by a graphics processing unit
(GPU) that resides on a device external to the server device. The instructions further
cause one or more processors to perform, with the server device, at least one of an
analysis of the application prior to and during compilation of the application on the
server device, and an analysis of the application during execution of the application on
the server device. The instructions also cause the one or more processors to determine
whether the application satisfies one or more performance criteria based on at least one
of the analyses, and transmit to the device a validation of the application if the

application satisfies the one or more performance criteria.

WO 2013/130212 PCT/US2013/023874

[0008] In another example, the disclosure describes a method that includes receiving an
application that is to be executed by a graphics processing unit (GPU) of a device, and
transmitting the application to a server device external to the device for validation of the
application. The method further includes receiving a validation from the server device
that indicates that the application satisfies one or more criteria for execution on the
GPU.

[0009] In another example, the disclosure describes an apparatus that includes a
graphics processing unit (GPU), and a device memory operable to store an application
that is to be executed by the GPU. The apparatus also includes a processor operable to
transmit the application to a server device external to the apparatus, and receive a
validation from the server device that indicates that the application satisfies one or more
criteria for execution on the GPU.

[0010] In another example, the disclosure describes a device that includes a graphics
processing unit (GPU). The device also includes means for receiving an application that
is to be executed by the GPU, and means for transmitting the application to a server
device external to the device for validation of the application. The device further
includes means for receiving a validation from the server device that indicates that the
application satisfies one or more criteria for execution on the GPU.

[0011] In another example, the disclosure describes a non-transitory computer-readable
storage medium comprising instructions that cause one or more processors to receive an
application that is to be executed by a graphics processing unit (GPU) of a device, and
transmit the application to a server device external to the device for validation of the
application. The instructions further cause the processor to receive a validation from the
server device that indicates that the application satisfies one or more criteria for
execution on the GPU.

[0012] The details of one or more aspects of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the disclosure will be apparent from the description and drawings, and

from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a block diagram illustrating an example of a system that may be

operable to implement one or more aspects of this disclosure.

WO 2013/130212 PCT/US2013/023874

[0014] FIG. 2 is a flowchart illustrating an example operation of a device that may be
operable to implement one or more aspects of this disclosure.

[0015] FIG. 3 is a flowchart illustrating an example operation of a server that may be
operable to implement one or more aspects of this disclosure.

[0016] FIG. 4. is a flowchart illustrating another example operation of a server that may
be operable to implement one or more aspects of this disclosure.

[0017] FIG. 5 is a block diagram illustrating an example device, illustrated in FIG. 1, in
further detail.

DETAILED DESCRIPTION

[0018] In general, this disclosure is related to techniques to ensure proper functionality
of applications that are to be executed on a graphics processing unit (GPU). Some
previous GPUs included only fixed-function hardware pipelines which did not provide
programming capabilitiecs. However, to increase functional flexibility, newer GPUSs
allow for programmable shader cores. For example, these GPUs execute applications
such as vertex shaders and fragment shaders that perform functions that were previously
delegated to components of the fixed-function hardware pipelines.

[0019] While programmable shader cores allow for functional flexibility, they also
invite misuse or suboptimal use of the GPU. For example, a malicious developer may
develop an application that generates a denial of service attack or a virus. In some
instances, a developer, who may not have malicious intent, may nevertheless
inadvertently develop an inefficient or error-prone application. A problematic
application (e.g., a malicious, inefficient or error-prone application) can substantially
undermine the operation of the GPU or a device in which the GPU is provided.

[0020] The techniques of this disclosure may assist in identifying possibly malicious,
inefficient and/or error-prone GPU-executed applications, prior to execution by the
GPU. For example, the techniques of this disclosure may be directed to a cloud-based
solution in which a server device, external to the device that houses the GPU, and
coupled to the device housing the GPU via one or more network connections, functions
as an emulator for execution of an application. The server may emulate the results of
the application, as if the application is executing on the GPU. Based on the results, the

server may validate the application (e.g., determine whether or not the program is

WO 2013/130212 PCT/US2013/023874

malicious, inefficient, or error-prone), and indicate as such to the device that houses the
GPU. The GPU may then execute the application based on the received indication.
[0021] There may be various ways in which the server may execute a validation process
to validate the application. The validation process may be a software process. The
software process may be executed in conjunction with general purpose processor and/or
special purpose hardware. For example, the server may execute virtual model software.
The virtual model causes the server to emulate the GPU or the actual device that
includes GPU upon which the application will execute. In alternate examples, instead
of or in addition to virtual models, the server may include a hardware emulation board
to validate the application. The server may also include an application that is
specifically designed to test security violations of the application that is be executed by
the GPU.

[0022] To validate the application that is to be executed by the GPU, the server may
perform static analysis, dynamic analysis, or a combination thereof. Static analysis
refers to analysis of the application that can be performed without execution of the
application. For instance, static analysis can be performed during compilation. During
the compilation, the server may identify errors in the application such as infinite loops
in the program or out-of-bounds access to array locations within the application as two
non-limiting examples.

[0023] Dynamic analysis refers to analysis of the application during execution, which
may additionally result in identifying problematic applications (e.g., malicious,
inefficient, and error-prone applications). For example, the server may execute
compiled code, and the server may provide the executed code with hypothetical input
values. The hypothetical input values may be, for example, different input images,
input images with different sizes, and the like.

[0024] The server, executing a validation process, may monitor the results and the
functions performed by the executed code. For example, the server may monitor
memory accesses by the virtual model of the GPU, and determine whether the memory
accesses are out-of-bounds memory accesses. The server may also monitor the memory
addresses where the virtual model of the GPU is writing information. Based on the
memory accesses of the virtual model of the GPU and memory addresses where the
virtual model of the GPU is writing information, the server may be able to determine
whether the application is error-prone. Such memory tracking may be particularly

useful when the application reads or writes to variables using pointers.

WO 2013/130212 PCT/US2013/023874

[0025] The server may also detect applications that generate or enable denial of service
attacks. For example, the server may monitor the rate at which the virtual model of the
GPU is able to execute the application. If the server detects slow responsiveness,
unintended termination, or hanging, the server may determine that the application is an
application designed for a denial of service attack, or a very poorly designed
application. In either case, execution of such an application may negatively impact the
experience of a user.

[0026] In addition to validating the application, in some examples, the server may be
able to tune and optimize the application as well. For example, the server may insert or
replace the source code, or portions of the source code, or collect statistics to determine
how well the compiled code works. In some examples, the server may validate the
application and optimize or tune the application once. After such validation, the device
may execute the application as often as the user would like without requiring further
validations or optimization. Also, in some examples, after validating a certain
application, the server may store an indication that indicates that this application has
already been validated. If the server receives the same source code or pre-compiled
object code again, the server may first ensure that the code is identical, and if so,
immediately validate that application.

[0027] FIG. 1 is a block diagram illustrating an example of a system that may be
operable to implement one or more aspects of this disclosure. For example, FIG. 1
illustrates system 10 that includes device 12, network 22, validation server device 24,
and application server device 38. Although only one device 12, validation server device
24, and application server device 38 is illustrated in FIG. 1, in other examples, system
10 may include a plurality of devices 12, validation servers 24, and application servers
38. System 10 may be referred to as a cloud-based system to indicate that validation of
application 20 occurs in validation server device 24, which is external to device 12, as
described in more detail. For example, the techniques of this disclosure may be directed
to validating application 20 in the cloud (e.g., in validation server device 24, which is
external to device 12).

[0028] Examples of device 12 include, but are not limited to, video devices such as
media players, set-top boxes, wireless handsets such as mobile telephones, personal
digital assistants (PDAs), desktop computers, laptop computers, gaming consoles, video
conferencing units, tablet computing devices, and the like. Examples of validation

server device 24 and application server device 38 include, but are not limited to, laptops,

WO 2013/130212 PCT/US2013/023874

desktops, web servers, and the like. In general, validation server device 24 and
application server device 38 may be any type of device capable of performing the
functions attributed to validation server device 24 and application server device 38 in
this disclosure.

[0029] Network 22 may allow device 12 to securely communicate with validation
server device 24 and application server device 38. For security purposes, any
communication between device 12 and validation server device 24 and application
server device 38 may be encrypted or otherwise secured. Also, for further protection,
any communication between device 12 and validation server device 24 and application
server device 38 may require user authorization.

[0030] In some examples, network 22 may ensure that information transmitted by any
one of device 12, validation server device 24, and application server device 38 is
received only by the intended device or devices, and no other device. Network 22 may
be a local area network (LAN), a wide area network (WAN), the Internet, and the like.
Device 12, validation server device 24, and application server device 38 may be coupled
to network 22 wirelessly or through a wired link. In some examples, it may be possible
for device 12 to be coupled directly to validation server device 24 and/or application
server device 38. For example, device 12 may directly communicate with validation
server device 24 and/or application server device 38 through a wireless or wired
connection. In these examples, network 22 may not be needed in system 10.

[0031] As illustrated in FIG. 1, device 12 may include GPU 14, processor 16, and
device memory 18. Device 12 may include components in addition to those illustrated
in FIG. 1. For example, FIG. 5 illustrates an example of device 12 that includes more
components than those illustrated in FIG. 1.

[0032] Examples of GPU 14 and processor 16 include, but are not limited, to a digital
signal processor (DSP), a general purpose microprocessor, an application specific
integrated circuit (ASIC), a field programmable logic array (FPGA), or other equivalent
integrated or discrete logic circuitry. Furthermore, although GPU 14 and processor 16
are illustrated as separate components, aspects of this disclosure are not so limited. In
alternate examples, GPU 14 and processor 16 may be part of a common integrated
circuit. For purposes of illustration and ease of description, GPU 14 and processor 16
are illustrated as separate components.

[0033] Examples of device memory 18 include, but are not limited to, a random access

memory (RAM), a read only memory (ROM), or an electrically erasable programmable

WO 2013/130212 PCT/US2013/023874

read-only memory (EEPROM). Examples of device memory 18 may also include
storage devices such as CD-ROM or other optical disk storage, magnetic disk storage,
or other magnetic storage devices, flash memory. In general, device memory 18 may
include mediums that can be used to store desired program code in the form of
instructions or data structures and that can be accessed by GPU 14 and processor 16. In
some examples, device memory 18 may comprise one or more computer-readable
storage media, such as a computer-readable storage device. For instance, in some
example implementations, device memory 18 may include instructions that cause GPU
14 and processor 16 to perform the functions ascribed to GPU 14 and processor 16 in
this disclosure.

[0034] Device memory 18 may, in some examples, be considered as a non-transitory
storage medium. The term “non-transitory” may indicate that the storage medium is not
embodied in a carrier wave or a propagated signal. However, the term “non-transitory”
should not be interpreted to mean that device memory 18 is non-movable. As one
example, device memory 18 may be removed from device 12, and moved to another
device. As another example, a storage device, substantially similar to device memory
18, may be inserted into device 12. In certain examples, a non-transitory storage
medium may store data that can, over time, change (e.g., in RAM).

[0035] GPU 14 may be operable to execute one or more software applications. For
example, GPU 14 may include a processor core on which one or more software
applications may execute. The applications that execute on GPU 14 may be graphics
applications such as vertex shaders and fragment shaders for generating graphics data.
However, it may be possible for the applications that execute on GPU 14 to be unrelated
to graphics processing. For example, a developer may consider it beneficial to exploit
the massive parallelism of GPU 14 and develop a software application unrelated to
graphics processing that exploits the massive parallelism of GPU 14. In these cases,
GPU 14 may be referred to as a general purpose GPU (GP-GPU).

[0036] As one example, FIG. 1 illustrates GPU 14 executing application 20.
Application 20 may be a graphics application or a non-graphics application that
executes on GPU 14. Application 20 is illustrated in a dashed box within GPU 14 to
indicate that application 20 is executing on GPU 14. GPU 14 does not actually include
application 20. For instance, application 20 may be stored in device memory 18, as

illustrated in FIG. 1.

WO 2013/130212 PCT/US2013/023874

[0037] Application 20 may be developed using a wide variety of different programming
application processing interfaces (APIs). For example, a developer may have developed
application 20 using any programming API such as OpenGL, OpenCL, WebGL, and
WebCL. In general, applications that are developed using the OpenGL or WebGL APIs
are designed for graphics processing. Applications that are developed using the
OpenCL or WebCL APIs are designed for processing unrelated to graphics processing.
The OpenGL, OpenCL, WebGL, and WebCL APIs are provided for illustration
purposes and should not be considered limiting. The techniques of this disclosure may
be extendable to APIs in addition to the examples provided above. In general, the
techniques of this disclosure may be extendable to any technique utilized by a developer
to develop application 20.

[0038] As illustrated, device memory 18 may store application 20. For example, a user
of device 12 may cause device 12 to download application 20 from application server
device 38 via network 22. In turn, device 12 may store application 20 in device
memory 18. There may be other ways in which device 12 stores application 20 in
device memory 18. For instance, a user of device 12 may insert a FLASH drive into
device 12 that stores application 20, and device 12 may retrieve application 20 from the
FLASH drive and store application 20 in device memory 18. In this example,
application server device 38 may not be needed. The above examples that describe the
manner in which device 12 stores application 20 in device memory 18 are provided for
purposes of illustration and should not be considered limiting. The techniques of this
disclosure may be applicable to any technique in which application 20 is loaded into
device memory 18.

[0039] Device memory 18 may store the source code of application 20, intermediate
representation of application 20, or object code of application 20. The source code of
application 20 may be the text in the programming language in which application 20
was developed. The object code of application 20 may be the binary bits resulting from
the compilation of application 20. For example, application server device 38 may
compile the source code of application 20, and device 12 may download this pre-
compiled object code of application 20. The intermediate representation of application
20 may be intermediate to the source code and the object code. For example, in the
intermediate representation of application 20, the variables of the source code of
application 20 may be replaced with register or memory identifiers for where the

variables will be stored in device memory 18.

WO 2013/130212 PCT/US2013/023874
10

[0040] The capability of the programmable core or cores of GPU 14 to execute
applications, such as application 20, increases the functionality of GPU 14. However,
the capability of GPU 14 to execute applications may invite misuse or suboptimal use of
GPU 14 and make device 12 more susceptible to malicious applications or error-prone
applications. For example, applications that execute solely on a central processing unit
(CPU), such as processor 16, execute applications in a virtual machine setting which
allocates the amount of memory of device memory 18 and storage locations within
device memory 18 that are accessible to the applications. Because the applications are
confined to the virtual machine of processor 16, the applications are unable to access
out-of-bounds memory addresses and are limited to accessing memory addresses
specifically provided to it by the virtual machine of processor 16. In this way, it may be
difficult for applications executing on processor 16 to drastically impact processor 16,
and device 12, in turn, in a negative manner.

[0041] In some instances, it may not be practical to implement virtual machines on
GPU 14. For example, the massive parallel processing capabilities of GPU 14 may not
be well suited for executing virtual machines. For instance, if virtual machines were to
execute on GPU 14, the virtual machines would dominate the resources of GPU 14,
possibly restricting other applications from being executed on GPU 14. Accordingly, in
some instances, virtual machines may not be able to limit the negative impacts of
malicious or error-prone applications that execute on GPU 14.

[0042] Applications that execute on GPU 14, such as application 20, may be considered
as applications that execute “natively” (i.e., are not confined to a virtual machine).
Native execution of application 20 may allow for application 20 to access larger
portions of device memory 18. Such access may allow problematic application such as
malicious applications or poorly designed (e.g., error-prone) applications to negatively
impact the performance capabilities of GPU 14 and device 12.

[0043] As one example, the developer of application 20 may develop application 20
such that application 20, when executed, provokes a denial of service attack on device
12, or propagates a virus that impacts the performance of device 12. For example, when
GPU 14 executes application 20, application 20 may control GPU 14 such that GPU 14
may not be able to perform any other tasks such as rendering graphics content for a user
interface. This may cause device 12 to “hang,” which may drastically impact the
functionality of device 12. In some cases, the developer of application 20 may develop

application 20 to access portions of device memory 18 that it should be limited from

WO 2013/130212 PCT/US2013/023874
11

accessing. Application 20 may store instructions for a virus in these portions of device
memory 18. Then, when processor 16 or GPU 14 accesses these portions of device
memory 18, processor 16 or GPU 14 may accidentally execute the stored virus. There
may be additional examples of malicious applications, and aspects of this disclosure
should not be considered limited to denial of service attacks or viruses.

[0044] As another example, the developer of application 20 may inadvertently develop
application 20 such that application 20 is inefficient or error-prone. For instance, an
error-prone application may include infinite loops, out-of-bounds access to an array, or
out-of-bounds access to memory locations of device memory 18. An inefficient
application may not properly utilize the functionality of GPU 14. For example, an
inefficient application may not properly use the programmable functionality of GPU 14.
[0045] In some cases, application server device 38 may potentially provide a modicum
of protection from malicious and error-prone applications. For example, the owner of
application server device 38 may guarantee that none of the applications stored on
application server device 38 are malicious or error-prone applications. However, this
may not be the case in every instance (e.g., the owner of application server device 38
may not provide a guarantee of safe and proper operation), or the purported “guarantee”
from the owner of application server device 38 may not be trustworthy.

[0046] The techniques of this disclosure may assist in identifying whether applications
that are to be executed on GPU 14 (e.g., application 20) are problematic applications
such as malicious applications, as well as inefficient and error-prone applications, prior
to execution. For example, the techniques of this disclosure may validate application 20
prior to GPU 14 executing application 20. Validation of application 20 may mean that
the application 20 satisfies one or more performance criteria. For example, validation
may mean determining with some level of assurance that application 20 is not a
malicious application, an inefficient application, or an error-prone application. The
example techniques described in this disclosure may transmit an indication to device 12
that indicates whether it is safe or inadvisable for GPU 14 to execute application 20.
Processor 16 may then elect to instruct GPU 14 to execute application 20 based on the
recetved indication.

[0047] For example, processor 16 may instruct GPU 14 to execute application 20 if the
indication is favorable, i.c., indicates that the program is not malicious, not inefficient,
and/or not error-prone. In some examples, processor 16 may instruct GPU 14 to

execute application 20 even if the indication is unfavorable. For example, if application

WO 2013/130212 PCT/US2013/023874
12

20 is not malicious or error-prone, but inefficient, processor 16 may instruct GPU 14 to
execute application 20 as such execution may potentially not harm GPU 14 or device
12, but may not execute as efficiently as possible.

[0048] In some examples, the techniques of this disclosure may also tune, or otherwise
optimize, an inefficient application that is to be executed on GPU 14. For example, the
developer of application 20 may not have any malicious intent, and may have developed
application 20 such that application 20 is not prone to errors. Nevertheless, it may be
possible that application 20 may not efficiently utilize the resources of GPU 14.

[0049] As one example, one of the functions of application 20 may be to divide a task
into workgroups and perform parallel processing on the workgroups to exploit the
parallelism of GPU 14. For example, application 20 may divide an image into blocks
and perform parallel processing on the blocks. The size of each of blocks may be based
on the amount of local memory available on GPU 14.

[0050] Because the developer of application 20 may want to design application 20 to
execute on a variety of different GPUSs, the developer may not know ahead of time how
much local memory is available on a particular GPU, such as GPU 14, as different
GPUs may include different amounts of local memory. To address this, the developer
may develop application 20 to utilize variable sized blocks. In some instances, utilizing
variable sized blocks may be less efficient than utilizing fixed sized blocks. The
techniques of this disclosure may tune or optimize application 20 such that application
20 utilizes fixed sized blocks based on the amount of available memory in GPU 14.
[0051] As another example, application 20 may perform matrix operations. The
developer of application 20 may have developed application 20 to perform row-based
matrix operations or column-based matrix operation. In some instances, GPU 14 may
be better suited to perform row-based matrix operations, as compared to column-based
matrix operations, or vice-versa. In this example, the techniques of this disclosure may
modify application 20 to perform row-based matrix operations, if application 20 uses
column-based matrix operations, to more efficiently utilize GPU 14.

[0052] As yet another example, the developer may have developed application 20 for
older versions of GPUs, and application 20 may not be optimized for GPU 14. The
techniques of this disclosure may modify application 20 so that application 20 is more
optimized for newer GPUs, such as GPU 14. GPU 14 may then execute application 20,

which is optimized to execute on newer GPUs.

WO 2013/130212 PCT/US2013/023874
13

[0053] In accordance with techniques of this disclosure, validation server device 24
may validate application 20, and in some examples, optimize or tune application 20. To
validate application 20, validation server device 24 may implement a validation process
that determines whether application 20 satisfies one or more performance criteria. For
example, validation server device 24 may determine, with some reasonable level of
assurance, whether application 20 is a malicious application, an error-prone application,
or an inefficient application. In examples where application 20 is an error-prone
application or an inefficient application, validation server device 24 may attempt to
correct the errors in application 20, or optimize application 20 to be more efficient.
[0054] It may be generally difficult to absolutely guarantee that application 20 is not a
problematic application because it may be difficult to test all of the various ways in
which application 20 may affect GPU 14 and device 12. Although an absolute
guarantee that application 20 is not a problematic application may be difficult,
validation server device 24 may employ different types of analysis to ensure with some
reasonable amount of certainty that application 20 is not a problematic application.
[0055] As illustrated in FIG. 1, validation server device 24 is external to device 12.
Accordingly, the validation of application 20 and optimization of application 20 may be
offloaded from device 12, which may be referred to as validating application 20 in the
“cloud” because validation server device 24 is a server that is external to device 12. By
offloading the validation of application 20 to validation server device 24, the probability
of application 20 negatively impacting GPU 14 and device 12 may be reduced, in cases
where application 20 is a malicious application or an error-prone application. Also, by
offloading the optimization of application 20 to validation server device 24, power
savings and processing efficiency may be realized because processor 16 does not need
to consume power and clock cycles validating or optimizing application 20.

[0056] There may be various examples of performance criteria that application 20 may
need to satisfy for validation server device 24 to validate application 20. In general, the
performance criteria can be part of static analysis, dynamic analysis, or a combination
thereof. Static analysis refers to analysis of application 20 that can be performed
without execution of application 20 to ensure that application 20 satisfies one or more
performance criteria associated with static analysis. Dynamic analysis refers to analysis
of application 20 during execution to ensure that application 20 satisfies one or more

performance criteria associated with dynamic analysis.

WO 2013/130212 PCT/US2013/023874
14

[0057] Validation server device 24 may be operable to perform static analysis, dynamic
analysis, or both static analysis and dynamic analysis. For purposes of illustration,
validation server device 24 is described as being operable to perform both static analysis
and dynamic analysis, and therefore, operable to ensure that application 20 satisfies the
performance criteria associated with both static analysis and dynamic analysis. In
alternate examples, validation server device 24 may be operable to perform one of static
analysis or dynamic analysis, and in these alternate examples, validation server device
24 may be operable to ensure that application 20 satisfies the performance criteria
associated with the type of analysis that validation server device 24 is operable to
perform (e.g., performance criteria associated with static analysis or dynamic analysis).
[0058] As illustrated in FIG. 1, validation server device 24 includes emulator unit 26
and server memory 28. Server memory 28 may include data and/or instructions
defining one or more GPU models 30, one or more GPU inputs 32, and one or more
device models 34. Emulator unit 26 may be a processing unit that is operable to execute
one or more of GPU models 30 and device models 34. As another example, emulator
unit 26 may be a hardware emulation board, which may be a GPU. In some examples,
emulator unit 26 may include two portions, which may be part of the same circuitry or
separate, distinct circuits, where the first portion is a processing unit that is operable to
execute one or more of GPU models 30 and device models 34, and the second portion
that is the hardware emulation board (e.g., a GPU). Examples of emulator unit 26
include, but are not limited to, a DSP, a general purpose microprocessor, an ASIC, a
FPGA, or other equivalent integrated or discrete logic circuitry.

[0059] Server memory 28 may be similar to device memory 18. For instance, server
memory 18 may be any medium that can be used to store desired program code in the
form of instructions, data, and/or data structures and that can be accessed by emulator
unit 26 and that cause emulator unit 26 to perform one or more the functions ascribed to
emulator unit 26. Similar to device memory 18, server memory 28 may, in some
examples, be considered as a non-transitory storage medium, as described above with
respect to device memory 18.

[0060] As illustrated, server memory 28 may store data and/or instructions defining one
or more GPU models 30, GPU inputs 32, and device models 34. It may not be
necessary for server memory 28 to store one or more GPU models 30, GPU inputs 32,
and device models 34 in every example. For example, server memory 28 may store

GPU models 30 and GPU inputs 32, but may not store device models 34. If validation

WO 2013/130212 PCT/US2013/023874
15

server device 24 is operable to perform only static analysis, GPU models 30, GPU
inputs 32, and device models 34 may not be needed. In some examples, it is with the
GPU models 30, GPU inputs 32, and device models 34 that emulator unit 26 performs
dynamic analysis.

[0061] Each of the one or more GPU models 30 may correspond to a particular GPU
type, and each of the one or more device models 34 may correspond to a particular
device type. For instance, each one of the GPU models 30 may model the configuration
of its corresponding GPU type in terms of parallel processing capabilities, local memory
availability, and any other pertinent characteristic that defines the functionality of GPUs
of that GPU type. Each one of the device models 34 may model the configuration of its
corresponding device type in terms of memory configuration, processor speed, system
bus speed, device memory, and any other pertinent characteristics that defines the
functionality of devices of that device type. For examples, different vendors provide
different types of devices with different functional characteristics, and device models 34
may be models for each of these different device types.

[0062] The one or more GPU models 30 and device models 34 may each be considered
as virtual model software that emulator unit 26 can execute. For example, when
emulator unit 26 executes one of the GPU models 30, emulator unit 26 emulates the
GPU to which the executed GPU model 30 corresponds. When emulator unit 26
executes one of the GPU models 30 and one of the device models 34, emulator unit 26
emulates the device to which the executed device model 34 corresponds, as if such a
device included the GPU to which the executed GPU model 30 corresponds. In some
examples, the GPU vendors and the device vendors may supply GPU models 30 and
device models 34, respectively. There may be other ways in which server memory 28
stores GPU models 30 and device models 34, and aspects of this disclosure are not
limited to the specific examples where vendors provide GPU models 30 and device
models 34.

[0063] For example, when emulator unit 26 executes one of GPU models 30, emulator
unit 26 may function as if the parallel processing capabilities and local memory
availability of emulator unit 26 (as two examples) are functionally equivalent to the
GPU type associated with executed one of GPU models 30. Similarly, when emulator
unit 26 executes one of device models 34, emulator unit 26 may function as if the
memory configuration, processor speed, system bus speed, and device memory of

emulator unit 26 (as four examples) are functionally equivalent to the device type

WO 2013/130212 PCT/US2013/023874
16

associated with executed one of device models 34. In other words, the execution of one
of GPU models 30 causes emulator unit 26 to function as the GPU associated with the
executed one of GPU models 30. The execution of one of GPU models 30 and one of
device models 34 causes emulator unit 26 to function as a device associate with the
executed one of device models 34 that includes the GPU associated with the executed
one of GPU models 30.

[0064] One of the plurality of GPU models 30 may be a generic GPU model 30, and
one of the plurality of device models 34 may be generic device model 34. In some
examples, server memory 28 may store a generic GPU model and a generic device
model instead of a plurality of GPU models and device models. The generic GPU
model and device model may not correspond to a particular GPU or device type, but
may be suitable for static and dynamic analysis. In some examples, if server memory
28 does not store a GPU model that corresponds to GPU 14, then the generic GPU
model may be suitable for validation purposes. The generic GPU model and the generic
device model may conform to a base profile of operation common to most GPUs or
devices.

[0065] There may be various types of GPUs and devices that may be modeled by the
generic GPU and generic device models. As one example, the generic GPU model may
model a GPU with average parallel processing capabilities and local memory
availability as compared to other GPUs. The generic device model may model a device
with average memory configuration, processor speed, system bus speed, and device
memory as compared to other devices.

[0066] As an illustrative example for validating and/or optimize application 20 for
execution on GPU 14, device 12 may download application 20 from application server
device 38. Application 20 may be source code, an intermediate representation, or pre-
compiled object code, as described above. Processor 16 may then install application 20
on device 12. If application 20 is in source code or in the intermediate representation,
e.g., not pre-compiled object code, part of the installation may be processor 16
executing a compiler to compile the code of application 20.

[0067] In some examples, where the downloaded code of application 20 is source code
or the intermediate representation, prior to compiling, processor 16 may cause device 12
to transmit the downloaded code of application 20 to validation server device 24 for
validation. In some examples, where the downloaded code of application 20 is pre-

compiled object code, processor 16 may cause device 12 to transmit the pre-compiled

WO 2013/130212 PCT/US2013/023874
17

object code to validation server device 24 for validation before allowing GPU 14 to
execute application 20.

[0068] For security purposes, processor 16 may encrypt or otherwise make secure the
downloaded code of application 20 that device 12 transmits to validation server device
24. In some examples, processor 16 may require authorization from a user prior to
transmitting the downloaded code of application 20 to validation server device 24.
Furthermore, in some examples of dynamic analysis, processor 16 may cause device 12
to transmit the GPU type of GPU 14 or both the GPU type of GPU 14 and the device
type of device 12 to validation server device 24. In some of these instances, processor
16 may require authorization from the user prior to transmitting the GPU type of GPU
14 or the GPU type of GPU 14 and device type of device 12 to validation server device
24.

[0069] Emulator unit 26 may be operable to perform static analysis on application 20 to
determine whether application 20 satisfies the performance criteria associated with
static analysis. For example, emulator unit 26 may analyze application 20 without
executing application 20. As one example, emulator unit 26 may parse through the
downloaded code of application 20 to identify code known to be code for a virus. For
instance, server memory 28 may store code of known viruses, and emulator unit 26 may
compare the downloaded code of application 20 to the code of the known viruses.
Determining that the downloaded code of application 20 does not include code of
known viruses may be one example of performance criteria that needs to be satisfied to
validate application 20.

[0070] As part of the static analysis, emulator unit 26 may compile the downloaded
code of application 20, in examples where the downloaded code of application 20 is the
source code or intermediate representation of application 20, to identify errors in
application 20 during compilation. For example, emulator unit 26 may execute
compiler 36, as indicated by dashed lines within emulator unit 26. The compilation of
application 20, with compiler 36, may identify any infinite loops in application 20 or
out-of-bounds access to memory array locations within application 20. In this example,
determining that there are not errors in application 20, that can be found during
compilation, may be another example of performance criteria that needs to be satisfied
to validate application 20.

[0071] Static analysis may be limited in the types of errors, inefficiencies, and

malicious code that can be found. For example, if the downloaded code of application

WO 2013/130212 PCT/US2013/023874
18

20 is pre-compiled object code, it may not be possible for emulator unit 26 to identify
errors in application 20 during compilation because the code for application 20 is
already pre-compiled object code. As another example, if application 20 relies on
pointers for storage, it may not be possible to determine if there are any out-of-bounds
memory access errors in application 20 based simply on compiling application 20.
[0072] To further determine whether application 20 is problematic (e.g., inefficient,
error-prone, or malicious), emulator unit 26 may perform dynamic analysis. As
indicated above, dynamic analysis refers to analysis of application 20 during execution.
In some examples, to perform dynamic analysis emulator unit 26 may cause itself to
appear as if it is GPU 14. For example, in some instances, in addition to transmitting
the downloaded code of application 20, processor 16 may cause device 12 to transmit
the GPU type of GPU 14 to emulator unit 26 of validation server device 24, or both the
GPU type of GPU 14 and the device type of device 12 to emulator unit 26 of validation
server device 24 via network 22. Emulator unit 26, in turn, may identify which one of
GPU models 30 corresponds to the GPU type of GPU 14, and may execute that one of
GPU models 30 to emulate GPU 14 on validation server device 24. In examples where
emulator unit 26 also receives the device type, emulator unit 26 may identify which one
of device models 34 corresponds to the device type of device 12, and may execute that
one of device models 34 to emulate device 12 on validation server device 24.

[0073] In examples where device 12 does not transmit the GPU type of GPU 14 and/or
the device type of device 12, emulator unit 26 may execute the generic GPU model
and/or the generic device model. Alternatively, if device 12 does transmit the GPU type
of GPU 14 and/or the device type of device 12, but none of GPU models 30 and device
models 34 correspond to the GPU and device type, emulator unit 26 may execute the
generic GPU model and/or generic device model. In examples where emulator unit 26
is or includes a hardware emulation board, such a hardware emulation board may be
designed to function, at least in part, as a generic GPU on a generic device.

[0074] Once emulator unit 26 emulates itself to be GPU 14, or to be GPU 14 as part of
device 12, emulator unit 26 may execute application 20. For example, if emulator unit
26 received the source code or intermediate code of application 20, emulator unit 26
may compile the source code via compiler 36, and execute the resulting object code. If
emulator unit 26 received pre-compiled object code of application 20, emulator unit 26

may execute the pre-compiled object code of application 20.

WO 2013/130212 PCT/US2013/023874
19

[0075] The techniques of this disclosure may be considered, in some examples, as being
performed at least in part by emulator unit 26 executing a virtual model based on the
type of GPU 14 (e.g., one of GPU models 30). Then, when emulator unit 26 executes
application 20, application 20 can be considered as executing in the virtual model (e.g.,
the one of GPU models 30 that is executing on emulator unit 26). For example, both the
GPU model, of GPU models 30, that corresponds to GPU 14 and application 20 are
executing on emulator unit 26. In the techniques of this disclosure, because emulator
unit 26 functions as if it is GPU 14, due to the execution of the GPU model that
corresponds to GPU 14, when emulator unit 26 executes application 20, application 20
may execute on the GPU model that corresponds to GPU 14.

[0076] As part of the dynamic analysis, emulator unit 26 may receive hypothetical input
values for application 20 that is executing on emulator unit 26. As illustrated, server
memory 28 may store one or more GPU inputs 32. These one or more GPU inputs 32
may be values for different graphical images or objects. In some examples, each of
these different images may be of different sizes. In examples where application 20 is
not related to graphics processing, GPU inputs 32 may be non-graphics inputs. It may
be difficult to ensure that emulator unit 26 tests every permutation and combination of
possible input values. Accordingly, server memory 28 may store a sufficient number
and/or range of GPU inputs 32, ¢.g., as samples or test inputs, to provide some
reasonable level of assurance that application 20 is not a malicious or highly error-prone
application (e.g., a problematic application). The GPU inputs 32 may include different
types of images or objects to be processed and rendered by GPU 14.

[0077] During execution of application 20, emulator unit 26 may input the values of
GPU inputs 32 and may analyze functionality of the executed GPU model of GPU
models 30. In examples, where emulator unit 26 is a hardware emulation board,
emulator unit 26 may analyze the functionality of the hardware emulation board. For
example, emulator unit 26 may monitor memory accesses by the executed GPU model
of GPU models 30. In this example, emulator unit 26 may determine whether any of the
memory accesses by the executed GPU model of GPU models 30 are out-of-bounds
memory accesses of server memory 28. As another example, emulator unit 26 may
monitor the memory addresses where the execute GPU model of GPU models 30 is
writing information in server memory 28. Based on the memory accesses of the GPU
model and the memory addresses where the GPU model is writing information,

emulator unit 26 may be able to determine whether application 20 is error-prone. Such

WO 2013/130212 PCT/US2013/023874
20

memory tracking may be particularly useful when application 20 reads or writes to
variables using pointers.

[0078] For example, if the executed GPU model writes information to or reads
information from out-of-bounds memory locations, emulator unit 26 may determine that
application 20 is error-prone, and possibly malicious. For example, if the executed
GPU model writes information to or reads information from a non-existent memory
location, emulator unit 26 may determine that application 20 is error-prone. If the
executed GPU model writes information to a memory location that is not reserved for
the GPU model, emulator unit 26 may determine that application 20 is error-prone or
possibly malicious. For example, emulator unit 26 may determine that application 20 is
attempting to load a virus into the memory locations which application 20 should not be
able to access.

[0079] The limitations of where application 20 can write information to or read
information from (e.g., access) during execution may be an example of performance
criteria associated with dynamic analysis. For example, the performance criteria may be
a limitation of the memory locations that application 20 is allowed to access. If the
GPU model of GPU models 30 accesses memory location outside of the limited
memory locations, due to the execution of application 20, application 20 may be in
violation of the performance criteria. For example, there may be threshold number of
access outside the limited memory locations that is allowable, in accordance with the
performance criteria. The threshold number may be zero to provide a highest level of
assurance that application 20 is not attempting to access memory locations outside of
the limited memory locations.

[0080] In examples where emulator unit 26 also executes one of device models 34,
emulator unit 26 may similarly analyze functionality of the executed device model of
device models 34. For example, emulator unit 26 may monitor the functions performed
by the executed one of device models 34 while emulator unit 26 executes one of GPU
models 30. For example, the execution of one of device models 34 may result in
emulator unit 26 device 12 which includes a system bus. Emulator unit 26 may
determine whether the execution of application 20 causes the system bus to overload
resulting in device 12 slowing down.

[0081] The monitoring of the system bus to determine whether the system bus is being
overloaded may be an example of performance criteria associated with dynamic

analysis. For example, if the execution of application 20 causes the system bus to

WO 2013/130212 PCT/US2013/023874
21

overload, application 20 may be in violation of the performance criteria. In this
example, the performance criteria may allow for some level of overloading the system
bus, as it may not be possible to not allow any overloading of the system bus. For
example, the perform criteria may establish a percentage amount threshold of system
bus overload. If the system bus overload is below the allowable percentage, the
performance criteria is satisfied. Otherwise, the performance criteria is not satisfied.
[0082] Emulator unit 26 may similarly detect malicious applications such as denial of
service attacks. For example, emulator unit 26 may monitor the rate at which the GPU
model of GPU models 30 is able to execute application 20. If emulator unit 26 detects
slow responsiveness, unintended termination, or hanging, emulator unit 26 may
determine application 20 is an application designed for a denial of service attack, or a
very poorly designed application. In this example, the performance criteria may be a
threshold execution time or execution rate for a particular task of application 20. If
application 20 takes longer than the threshold execution time to complete a particular
task or executes the task at a rate less than the threshold execution rate, application 20
may be in violation of the performance criteria.

[0083] As another example of emulator unit 26 detecting malicious applications or
error-prone applications, emulator unit 26 may monitor instructions issued by
application 20. For instance, in some examples, instructions issued by application 20
may be 96-bit words. However, not all combinations of 96 bits represents a valid
instruction. In some examples, GPU 14 may be designed to ignore invalid instructions;
however, this may not be case for every example of GPU 14. To avoid GPU 14 from
inadvertently executing an invalid instruction, emulator unit 26 may determine whether
the instructions issued by application 20 during execution are valid or invalid
instructions. If emulator unit 26 determines that application 20 is issuing invalid
instructions, emulator unit 26 may determine that application 20 is a malicious
application, an error-prone application, or an inefficient application.

[0084] As another example, during execution, application 20 may write data to and read
data from registers. A malicious application, error-prone application, or inefficient
application may read data from unwritten registers. If application 20 attempts to read
data from a register that was not previously written to, the data read by application 20
may be meaningless data (i.e., uninitialized data). Such reading of uninitialized data
may result in unpredictable behavior. In some examples, emulator unit 26 may monitor

which registers application 20 writes to during execution, and may determine whether

WO 2013/130212 PCT/US2013/023874
22

application 20 is reading from a register that has not previously been written to. If
emulator unit 26 determines that application 20 is reading from unwritten registers,
emulator unit 26 may determine that application 20 is a malicious application, error-
prone application, or an inefficient application.

[0085] If emulator unit 26 determines that the performance criteria associated with
static analysis and dynamic analysis are met, validation server device 24 may transmit
an indication to device 12 indicating that application 20, with some level of assurance,
satisfies one or more performance criteria associated with static analysis, dynamic
analysis, or both static and dynamic analysis (e.g., validates application 20). In this
case, validation server device 24 may provide an indication that application 20 is
validated for use by GPU 14. Otherwise, in some examples, validation server device 24
may transmit an indication to device 12 indicating that application 20 is invalidated for
use by GPU 14, such that it is inadvisable for GPU 14 to execute application 20. In
response, processor 16 may instruct GPU 14 to execute application 20 based on the
received indication.

[0086] In examples where validation server device 24 received source code or
intermediate code of application 20, emulator unit 26 may also transmit the compiled
object code of application 20, as compiled by compiler 36. In this way, the compilation
of application 20 may also be offloaded from device 12 and offloaded to an external
device, such as validation server device 24.

[0087] Validation server device 24 may also be tasked with optimizing or tuning
application 20. For example, emulator unit 26 may receive the source code or
intermediate code of application 20. As part of the static and/or dynamic analysis,
emulator unit 26 may determine that application 20 is somewhat error-prone or would
inefficiently utilize the capabilities of GPU 14. In these examples, rather than
transmitting an indication to device 12 indicating that it is inadvisable for GPU 14 to
execute application 20, emulator unit 26 may attempt to correct the errors of application
20 or attempt to tune application 20 for GPU 14 when it is determined that application
20 may execute inefficiently or with errors on GPU 14.

[0088] If emulator unit 26 is able to correct the errors or make application 20 more
efficient, emulator unit 26 may compile the modified code of application 20 to generate
object code that GPU 14 should execute. Emulator unit 26 may then transmit the
resulting object code to device 12 with an indication that GPU 14 should execute the

resulting object code. In this case, GPU 14 may execute the object code generated from

WO 2013/130212 PCT/US2013/023874
23

the modified code, rather than the object code generated from the original code of
application 20. Alternatively, emulator unit 26 may transmit the modified code of
application 20 without compilation.

[0089] In cither of these examples, the validation of application 20 may be considered
as being part of the transmission of the modified code of application 20 (e.g., the
transmission of the modified code or the resulting object code). For example, when
device 12 receives modified code of application 20 from validation server device 24,
device 12 may automatically determine that the modified code of application 20 is
suitable for execution because device 12 received the modified code of application 20
from validation server device 24. In this sense, the validation that device 12 receives
from validation server device 24 may be an explicit validation or an implicit validation.
In either case, i.e., explicit or implicit validation, emulator unit 26 may determine with
some level of assurance that application 20 or the modified version of application 20
satisfies one or more performance criteria.

[0090] If emulator unit 26 is unable to correct the errors of application 20, emulator unit
26 may transmit the indication indicating that it is inadvisable to execute application 20
on GPU 14. If emulator unit 26 is unable to make application 20 more efficient,
emulator unit 26 may still transmit an indication to device 12 indicating that it may be
suitable for GPU 14 to execute application 20 because while application 20 may not be
completely efficient, application 20 may not be error-prone or malicious.

[0091] To tune or optimize application 20, emulator unit 26 may insert code (e.g.,
source code or intermediate code), replace code, or modify code of application 20 in
some other manner. In some examples, emulator unit 26 may collect statistics to
determine how well the compiled code of application 20 works. For example,
application 20 may utilize array indices for storing variable values in an array.
Emulator unit 26 may add code into the source code of application 20 that checks that
array indices, utilized by application 20, are within the range. Emulator unit 26 may
add code into the source code of application 20 that causes application 20 to abort when
an array index is not within range. Emulator unit 26 then may compile the modified
source code to produce object code for execution of application 20 by GPU 14.

[0092] Optimization or tuning may be based on the assumption that applications, such
as application 20, are generally developed to exploit the high level of parallelism of

GPU 14. If the developer did not intend to exploit the parallelism of GPU 14, the

WO 2013/130212 PCT/US2013/023874
24

developer would have developed application 20 to not execute on GPU 14, and rather
execute on processor 16.

[0093] For example, the developer of application 20 may have developed application 20
to perform image processing on blocks of images in parallel. As described above, the
size of the blocks of the images may be based on the amount of available local memory
on GPU 14. Because the developer may not know how much memory is available on
GPU 14, the developer may develop application 20 to use variable-sized blocks, instead
of the more efficient fixed sized blocks. For example, fixed-size blocks may be more
efficient because the size of the blocks does not change during execution.

[0094] In some examples, emulator unit 26 may determine the optimal size for the
blocks because the GPU model of GPU models 30 that corresponds to GPU 14 may
include information that indicates the size of the local memory of GPU 14. In this
example, emulator unit 26 may select the optimal size for the blocks based on the
amount of available local memory on GPU 14, the amount of data that will be needed to
write to or read from the local memory of GPU 14, and other such information which
may not be available to developer of application 20. In aspects of this disclosure,
emulator unit 26 would know how much local memory is available and how much data
needs to be written or read from local memory because emulator unit 26 may execute
application 20 on the GPU model of GPU models 30 that correspond to GPU 14.

[0095] In these examples, emulator unit 26 may update or otherwise modify the source
code or intermediate code of application 20 to fix block size to the optimally determined
size. In other words, emulator unit 26 may determine the optimal size of the blocks to
best utilize the parallelism of GPU 14. Emulator unit 26 may then compile this
modified code of application 20, and transmit the resulting object code to device 12 for
execution on GPU 14. In this way, when GPU 14 executes the modified application 20,
the modified application 20 may execute more efficiently on GPU 14, as compared to
the original application 20.

[0096] In another example for optimization, as described above, application 20 may
perform matrix operations. In this example, emulator unit 26 may determine whether
column-based matrix operations or row-based matrix operations are handled easier by
GPU 14. For instance, emulator unit 26 may cause the GPU model of GPU models 30
that corresponds to GPU 14 to execute application 20 using row-based matrix
operations and using column-based matrix operations. Emulator unit 26 may compare

the efficiency of the column-based and row-based matrix operations (e.g., number of

WO 2013/130212 PCT/US2013/023874
25

accesses to memory, amount of processing time, and other such efficiency measures).
Based on the measured efficiency, emulator unit 26 may modify the code of application
20. For example, if column-based operations are more efficiently executed than row-
based operations, emulator unit 26 may modify the code of application 20 so that the
matrix operations are performed as column-based operations. Similarly, if row-based
operations are more efficiently executed than column-based operations, emulator unit 26
may modify the code of application 20 so that the matrix operations are performed as
row-based operations.

[0097] In another example for optimization, as described above, the developer of
application 20 may have developed application 20 to be executed on older versions of
GPU. In this case, application 20 may properly execute on a GPU such as GPU 14;
however, application 20 may not fully exploit the functionality of GPU 14. For
example, application 20 may unnecessarily limit the amount of graphics or non-graphics
data that GPU 14 should process in parallel because older versions of GPUs may be
limited in processing capabilities. In this example, emulator unit 26 may modify the
code of application 20 such that, when application 20 is executed, application 20 causes
GPU 14 to process more data in parallel. There may be other examples of ways in
which emulator unit 26 may modify application 20 such that application 20 is better
suited for execution on newer GPUs, and aspects of this disclosure should not be
considered limited to the above examples.

[0098] After optimizing application 20, emulator unit 26 may transmit the modified or
updated code of application 20 to device 12. In this example, processor 16 may compile
the code of application 20, as received from emulator unit 26, and instruct GPU 14 to
execute the resulting object code. In some other examples, emulator unit 26 may
compile the modified application 20, via compiler 36, and transmit the resulting object
code to device 12. In this example, processor 16 may instruct GPU 14 to execute the
received object code for application 20.

[0099] In some examples, emulator unit 26 may validate application 20 and optimize or
tune application 20 once. After such validation, GPU 14 may execute application 20 as
needed without requiring further validation or optimization. Also, in some examples,
after emulator unit 26 validates application 20, emulator unit 26 may store an indication
in server memory 28 that indicates that this application 20 has already been validated.
In these examples, when emulator unit 26 receives code for validation, emulator unit 26

may first determine whether emulator unit 26 previously validated the code based on the

WO 2013/130212 PCT/US2013/023874
26

indication stored in server memory 28. If emulator unit 26 previously validated the
code, emulator unit 26 may immediately valid that received code. For example,
emulator unit 26 may validate application 20, as received from device 12.

Subsequently, emulator unit 26 may receive code for application 20 from a device other
than device 12. In this case, emulator unit 26 may first determine that the received code
is same as the code that emulator unit 26 previously validated, and if so, may
immediately validate the received code. In this manner, emulator unit 26 may not need
to perform the static and/or dynamic analysis again for previously validated code.
[0100] FIG. 2 is a flowchart illustrating an example operation of device 12. For
purposes of illustration only, reference is made to FIG. 1. Device 12 may receive
application 20 that is to be executed by GPU 14 (40). For example, device 12 may
download application 20 from application server device 38. As another example,
application 20 may be preloaded on device memory 18. As described above, device 12
may receive the source code, intermediate code (e.g., intermediate representation of
application 20), or object code of application 20.

[0101] Device 12 may transmit the code of application 20 to validation server device 24
(42). For example, device 12 may transmit the source code, intermediate code, or object
code of application 20 to validation server device 24 for validation of application 20. In
some examples, device 12 may transmit the code of application 20 to validation server
device 24 once for validation. GPU 14, of device 12, may then execute application 20
as needed without requiring subsequent validation.

[0102] In response to transmitting the code of application 20 to validation server device
24 for validation, device 12 may receive the validation from validation server device 24
(44). Alternatively, device 12 may receive an invalidation or either a validation or an
invalidation. The validation from server device 24 may indicate that application 20
satisfies one or more performance criteria. If application 20 does not satisfy the one or
more performance criteria, validation server device 24 may indicate that application 20
did not satisfy the performance criteria. For example, the validation may indicate that
application 20 satisfies performance criteria associated with static analysis, dynamic
analysis, or both static and dynamic analysis. In some examples, validation server
device 24 may optimize or tune application 20 to make application 20 more efficient or
less error-prone. In this case, the validation may indicate that the modified version of

application 20 satisfies one or more performance criteria.

WO 2013/130212 PCT/US2013/023874
27

[0103] In some examples, processor 16 of device 12 may instruct GPU 14 of device 12
to execute application 20 based on the validation (48). For example, if validation server
device 24 indicates that application 20 satisfies the performance criteria, processor 16
may instruct GPU 14 to execute application 20. Otherwise, processor 16 may not allow
GPU 14 to execute application 20.

[0104] In some alternate examples, prior to execution, device 12 may receive a
modified version of application 20 (46). In FIG. 2, the dashed line from block 44 to
block 46, and from block 46 to block 48 is used to indicate that the functions of block
46 may not be necessary in every example. For instance, validation server device 24
may be able to optimize or tune application 20, and may transmit the modified version
of application 20. As another example, device 12 may transmit the source code or
intermediate code of application 20, and receive a compiled version of application 20
from validation server device 24. As yet another example, device 12 may receive a
compiled version of the code as modified by validation server device 24 (e.g., modified
for optimization or tuning). In these examples, processor 16 may instruct GPU 14 to
execute the modified version of application 20 (48).

[0105] FIG. 3 is a flowchart illustrating an example operation of validation server
device 24. For purposes of illustration only, reference is made to FIG. 1. Validation
server device 24 may receive application 20, which is to be executed by GPU 14, from
device 12 (50). For example, validation server device 24 may receive source code,
intermediate code, or object code of application 20 from device 12 via network 22.
[0106] Validation server device 24 may perform at least one of static analysis and
dynamic analysis on application 20 (52). For example, as part of static analysis,
emulator unit 26 of validation server device 24 may compile the code of application 20,
and monitor for any errors during the compilation of application 20. As part of the
dynamic analysis, emulator unit 26 of validation server device 24 may execute a virtual
model of GPU 14 or the virtual model of GPU 14 and a virtual model of device 12. As
described above, GPU models 30 and device models 34 may include a virtual model of
GPU 14 and device 12, respectively. In some examples, GPU models 30 and device
models 34 may include a generic GPU model and a generic device model.

[0107] For example, emulator unit 26 may receive an identification of GPU 14 and/or
device 12 from device 12. Emulator unit 26 may identify which one of GPU models 30
corresponds to GPU 14 and which one of device models 34 corresponds to device 12,

and execute the corresponding GPU and device models. If there is no corresponding

WO 2013/130212 PCT/US2013/023874
28

GPU and/or device models for GPU 14 and device 12, or if emulator unit 26 did not
receive an identification of GPU 14 and/or device 12, emulator unit 26 may execute the
generic GPU and device models.

[0108] As part of the dynamic analysis, emulator unit 26 may execute application 20
and input application 20 with GPU inputs 32 for analyzing application 20. In these
examples, application 20 may be considered as executing on the corresponding virtual
model of GPU 14, which is executing on emulator unit 26. In this way, emulator unit
26 may execute application 20, as if application 20 is executing on GPU 14. Emulator
unit 26 may monitor the functions performed by the corresponding virtual model of
GPU 14 such as memory accesses, rate of execution, termination instance, and other
functions pertinent to the functionality of GPU 14.

[0109] Emulator unit 26 may determine whether application 20 satisfies one or more
performance criteria (54). The one or more performance criteria may be performance
criteria associated with static analysis and performance criteria associated with dynamic
analysis. For example, the one or more performance criteria may be criteria that there
are no errors in the compilation of application 20, as evaluated by compiling application
20 during the static analysis. As another example, the one or more performance criteria
may be criteria that application 20 not access out-of-bounds memory locations and not
use up resources of GPU 14 such that GPU 14 is not able to perform other tasks in
parallel, as evaluated by executing application 20 and providing application 20 with
GPU inputs 32 during the dynamic analysis. There may be other examples of
performance criteria that emulator unit 26 may determine that application 20 satisfies.
[0110] Validation server device 24 may transmit a validation of application 20 to device
12 based on the determination (56). For example, validation server device 24 may
transmit a validation of application 20 to device 12 if application 20 satisfies the one or
more performance criteria. Otherwise, validation server device 24 may transmit an
invalidation if application 20 does not satisfy the one or more performance criteria. For
example, if emulator unit 26 determines that application 20 satisfies the one or more
performance criteria, validation server device 24 may transmit an indication to device
12 indicating as such. Alternatively, if emulator unit 26 determines that application 20
does not satisfy the one or more performance criteria, validation server device 24 may
transmit an indication to device 12 indicating as such.

[0111] FIG. 4 is a flowchart illustrating another example operation of validation server

device 24. For purposes of illustration only, reference is made to FIGS. 1 and 3.

WO 2013/130212 PCT/US2013/023874
29

Similar to FIG. 3, validation server device 24 may receive application 20, which is to be
executed by GPU 14, from device 12 (58). In this example, emulator unit 26 may
modify application 20 (e.g., the source code or intermediate code of application 20) to
optimize or tune application 20. For example, emulator unit 26 may modify the code of
application 20 so that application 20 executes more efficiently on GPU 14. Validation
server device 24 may then transmit modified application 20 to device 12 (62). In some
examples, validation server device 24 may transmit the source code or intermediate
code of the modified application 20. As another example, validation server device 24
may compile the modified code of application, and transmit the resulting object code to
device 12.

[0112] FIG. 5 is a block diagram illustrating the example device of FIG. 1 in further
detail. For instance, FIG. 5 illustrates device 12 of FIG. 1 in further detail. For
example, as indicated above, examples of device 12 include, but are not limited to,
mobile wireless telephones, PDAs, video gaming consoles that include video displays,
mobile video conferencing units, laptop computers, desktop computers, television set-
top boxes, and the like.

[0113] As illustrated in FIG. 5, device 12 may include GPU 14, processor 16, device
memory 18, transceiver module 64, user interface 66, display 68, and display processor
70. GPU 14, processor 16, and device memory 18 may be substantially similar or
identical to those illustrated in FIG. 1. For purposes of brevity, only the components
that are shown in FIG. 5, but not shown in FIG. 1 are described in detail.

[0114] Device 12 may include additional modules or units not shown in FIG. 5 for
purposes of clarity. For example, device 12 may include a speaker and a microphone,
neither of which are shown in FIG. 5, to effectuate telephonic communications in
examples where device 12 is a mobile wireless telephone, or a speaker where device 12
is a media player. Furthermore, the various modules and units shown in device 12 may
not be necessary in every example of device 12. For example, user interface 66 and
display 68 may be external to device 12 in examples where device 12 is a desktop
computer or other device that is equipped to interface with an external user interface or
display.

[0115] Examples of user interface 66 include, but are not limited to, a trackball, a
mouse, a keyboard, and other types of input devices. User interface 66 may also be a
touch screen and may be incorporated as a part of display 68. Transceiver module 64

may include circuitry to allow wireless or wired communication between device 12 and

WO 2013/130212 PCT/US2013/023874
30

another device or a network. Transceiver module 64 may include one or more
modulators, demodulators, amplifiers, antennas and other such circuitry for wired or
wireless communication. Display 68 may comprise a liquid crystal display (LCD), an
organic light emitting diode display (OLED), a cathode ray tube (CRT) display, a
plasma display, a polarized display, or another type of display device.

[0116] In some examples, after GPU 14 generates the graphics data for display on
display 68, GPU 14 may output the resulting graphics data to device memory 18 for
temporary storage. Display processor 70 may retrieve the graphics data from device
memory 18, perform any post-processing on the graphics data, and output the resulting
the graphics data to display 68. For example, display processor 70 may perform any
further enhancements or scale the graphics data generated by GPU 14.

[0117] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored as one or more instructions or code on a computer-readable
medium. Computer-readable media may include computer data storage media. Data
storage media may be any available media that can be accessed by one or more
computers or one or more processors to retrieve instructions, code and/or data structures
for implementation of the techniques described in this disclosure. By way of example,
and not limitation, such computer-readable media can comprise random access memory
(RAM), read-only memory (ROM), EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium that can
be used to store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Disk and disc, as used herein, includes compact
disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray
disc where disks usually reproduce data magnetically, while discs reproduce data
optically with lasers. Combinations of the above should also be included within the
scope of computer-readable media.

[0118] The code may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. Also, the techniques could be fully

implemented in one or more circuits or logic elements.

WO 2013/130212 PCT/US2013/023874
31

[0119] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (i.c., a chip set). Various components, modules or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a hardware unit or
provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0120] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2013/130212 PCT/US2013/023874
32

CLAIMS:

1. A method comprising:
receiving, with a server device, an application that is to be executed by a
graphics processing unit (GPU) that resides on a device external to the server device;
performing, with the server device, at least one of:
an analysis of the application prior to and during compilation of the
application on the server device; and
an analysis of the application during execution of the application on the
server device;
determining whether the application satisfies one or more performance criteria
based on at least one of the analyses; and
transmitting to the device a validation of the application if the application

satisfies the one or more performance criteria.

2. The method of claim 1, wherein the performance criteria comprises at least one
of a determination that the application is absent of malicious code and a determination

that the application is not error-prone.

3. The method of claim 1, wherein the performance criteria includes one or more of
a determination that a code of the application does not include a code of known viruses,
a determination that no errors are found as determined during compilation of the code of
the application, a determination that there are no out-of-bounds memory accesses as
determined during execution of the application, a determination that a system bus of the
device is not overloaded as determined during execution of the application, a
determination that a task of the application completes execution within a threshold
execution time, and a determination that the task of the application executes at least at a

threshold execution rate.

4. The method of claim 1, wherein performing the analysis of the application prior
to and during compilation comprises comparing a code of the application with a code of
known viruses, and determining whether any errors are found during compilation of the

code of the application.

WO 2013/130212 PCT/US2013/023874
33

5. The method of claim 1, wherein performing the analysis of the application
during execution of the application comprises:

executing a virtual GPU model;

executing the application on the virtual GPU model; and

analyzing functionality of the virtual GPU model during the execution of the

application on the GPU model.

6. The method of claim 5, further comprising:
executing a virtual device model; and
analyzing functionality of the virtual device model during the execution of the

application on the GPU model.

7. The method of claim 5, wherein executing the application on the virtual GPU

model comprises inputting GPU inputs to the application executing on the virtual GPU

model.
8. The method of 5, further comprising:
monitoring functions performed by the executed application.
9. The method of claim 8, wherein monitoring functions comprises one or more of

monitoring memory accesses by the executed application, monitoring rate of execution,

and monitoring execution time.

10. The method of claim 1, further comprising:
modifying code of the application; and

transmitting the modified code of the application to the device.

11. The method of claim 10, further comprising:
determining that the application would execute inefficiently on the GPU,
wherein modifying the code of the application comprises modifying the code of

the application based on the determination.

WO 2013/130212 PCT/US2013/023874
34

12. The method of claim 1, wherein performing the analysis of the application
during execution of the application comprises:
executing the application on a hardware emulation board; and

analyzing functionality of the hardware emulation board during the execution.

13. The method of claim 1, wherein receiving the application comprises receiving at
least one of source code and intermediate code of the application, the method further
comprising:

compiling at least one of the source code and the intermediate code of the
application to generate object code of the application; and

transmitting the object code of the application to the device.

14. An apparatus comprising:
an emulator unit operable to:
receive an application that is to be executed by a graphics processing unit
(GPU) that resides on a device external to the apparatus;
perform at least one of:
an analysis of the application prior to and during compilation of
the application on the apparatus; and
an analysis of the application during execution of the application
on the apparatus;
determine whether the application satisfies one or more performance
criteria based on at least one of the analyses; and
transmit to the device a validation of the application if the application

satisfies the one or more performance criteria.

15. The apparatus of claim 14, wherein the performance criteria comprises at least
one a determination that the application is absent of malicious code and a determination

that the application is not error-prone.

WO 2013/130212 PCT/US2013/023874
35

16. The apparatus of claim 14, wherein the performance criteria includes one or
more of a determination that a code of the application does not include a code of known
viruses, a determination that no errors are found as determined during compilation of
the code of the application, a determination that there are no out-of-bounds memory
accesses as determined during execution of the application, a determination that a
system bus of the device is not overloaded as determined during execution of the
application, a determination that a task of the application completes execution within a
threshold execution time, and a determination that the task of the application executes at

least at a threshold execution rate.

17. The apparatus of claim 14, wherein the emulator unit compares a code of the
application with a code of known viruses, and determines whether any errors are found
during compilation of the code of the application to perform the analysis of the

application prior to and during compilation.

18. The apparatus of claim 14, further comprising a memory, wherein to perform the
analysis of the application during execution of the application, the emulator unit is
operable to:

execute a virtual GPU model stored in the memory;

execute the application on the virtual GPU model; and

analyze functionality of the virtual GPU model during the execution of the
application on the GPU model.

19. The apparatus of claim 18, wherein the emulator unit is further operable to:
execute a virtual device model stored in the memory; and
analyze functionality of the virtual device model during the execution of the

application on the GPU model.

20. The apparatus of claim 18, further comprising a memory, wherein the emulator
unit inputs GPU inputs stored in the memory to the application executing on the virtual

GPU model during the execution of the application on the virtual GPU model.

21. The apparatus of 18, wherein the emulator unit is further operable to monitor

functions performed by the executed application.

WO 2013/130212 PCT/US2013/023874
36

22. The apparatus of claim 21, wherein the emulator unit is operable to monitor one
or more of memory accesses by the executed application, rate of execution, and

execution time.

23. The apparatus of claim 14, wherein the emulator unit is further operable to:
modify code of the application; and

transmit the modified code of the application to the device.

24. The apparatus of claim 23, wherein the emulator unit is further operable to
determine that the application would execute inefficiently on the GPU, and modify the

code of the application based on the determination.

25. The apparatus of claim 14, wherein the emulator unit comprises a hardware
emulation board, and wherein the hardware emulation board executes the application to

perform the analysis of the application during execution of the application.

26. The apparatus of claim 14, wherein the emulator unit receives at least one of
source code and intermediate code of the application, and wherein the emulator unit is
further operable to:

compile at least one of the source code and the intermediate code of the
application to generate object code of the application; and

transmit the object code of the application to the device.

WO 2013/130212 PCT/US2013/023874
37

27. A server device comprising:
means for receiving an application that is to be executed by a graphics
processing unit (GPU) that resides on a device external to the server device;
means for performing at least one of:
an analysis of the application prior to and during compilation of the
application on the server device; and
an analysis of the application during execution of the application on the
server device;
means for determining whether the application satisfies one or more
performance criteria based on at least one of the analyses; and
means for transmitting to the device a validation of the application if the

application satisfies the one or more performance criteria.

28. A non-transitory computer-readable storage medium comprising instructions
that cause one or more processors to:
receive, with a server device, an application that is to be executed by a graphics
processing unit (GPU) that resides on a device external to the server device;
perform, with the server device, at least one of:
an analysis of the application prior to and during compilation of the
application on the server device; and
an analysis of the application during execution of the application on the
server device;
determine whether the application satisfies one or more performance criteria
based on at least one of the analyses; and
transmit to the device a validation of the application if the application satisfies

the one or more performance criteria.

29. A method comprising:

receiving an application that is to be executed by a graphics processing unit
(GPU) of a device;

transmitting the application to a server device external to the device for
validation of the application; and

receiving a validation from the server device that indicates that the application

satisfies one or more criteria for execution on the GPU.

WO 2013/130212 PCT/US2013/023874
38

30. The method of claim 29, further comprising:

executing the application on the GPU based on the received validation.

31. The method of claim 29, wherein receiving the application comprises receiving
at least one of source code for the application, intermediate code of the application, and
complied code for the application, and wherein transmitting the application comprises

transmitting at least one of the source code for the application, intermediate code of the

application, and the compiled code of the application.

32. The method of claim 29, further comprising:
receiving a modified version of the application from the server device; and

executing the modified version of the application on the GPU.

33. The method of claim 29, wherein transmitting the application comprises
transmitting at least one of a source code of the application and an intermediate code of
the application, the method further comprising:

receiving compiled object code of the application from the server device; and

executing the compiled object code of the application on the GPU.

34. The method of claim 29, wherein transmitting the application to the server
device comprises transmitting the application only once to the server device, and
wherein receiving the validation from the server device comprises receiving, only once,

the validation from the server device.

35. An apparatus comprising:
a graphics processing unit (GPU);
a device memory operable to store an application that is to be executed by the
GPU; and
a processor operable to:
transmit the application to a server device external to the apparatus; and
receive a validation from the server device that indicates that the

application satisfies one or more criteria for execution on the GPU.

WO 2013/130212 PCT/US2013/023874
39

36. The apparatus of claim 35, wherein the processor is further operable to instruct
the GPU to execute the application based on the received validation, and wherein the
GPU is operable to execute the application in response to the instruction from the

Proccessor.

37. The apparatus of claim 35, wherein the processor receives at least one of source
code for the application, intermediate code of the application, and complied code for the
application, and wherein the processor transmits at least one of the source code for the
application, intermediate code of the application, and the compiled code of the

application.

38. The apparatus of claim 35, wherein the processor is further operable to receive a
modified version of the application from the server device, and wherein the GPU is

further operable to execute the modified version of the application.

39. The apparatus of claim 35, wherein the processor transmits at least one of a
source code of the application and an intermediate code of the application, wherein the
processor is further operable to receive compiled object code of the application, and
wherein the GPU is further operable to execute the compiled object code of the

application.

40. The apparatus of claim 35, wherein the processor transmits the application only
once to the server device, and wherein the processor receives the validation from the

server device only once.

41. A device comprising:

a graphics processing unit (GPU);

means for receiving an application that is to be executed by the GPU;

means for transmitting the application to a server device external to the device
for validation of the application; and

means for receiving a validation from the server device that indicates that the

application satisfies one or more criteria for execution on the GPU.

WO 2013/130212 PCT/US2013/023874
40

42. A non-transitory computer-readable storage medium comprising instructions
that cause one or more processors to:

receive an application that is to be executed by a graphics processing unit (GPU)
of a device;

transmit the application to a server device external to the device for validation of
the application; and

receive a validation from the server device that indicates that the application

satisfies one or more criteria for execution on the GPU.

PCT/US2013/023874

WO 2013/130212

Page1/4

E

¥<
(s)1aaow
392IA3A

Z¢
(S)LNdNI
Nndo

0%
(s)1aaow
Nndo

[:14
AYON3IN
AIAY3S

¥e
301A3A
AIAYTS
NOILVAITVA

r———-—1
I |
_ o¢ _
| ¥37IdNOD |
I |

N ppu——

9¢
1INN
JOLVINING

0c
NOILVOI1ddV

8¢
JO0IA3A J3INN3FS
NOILVOI1ddV

0l

v

0¢
NOILVOI1ddV

sl
AYOW3N
30IA3A

91
J0SS300¥d

145
Ndo

43
30I1A3A

WO 2013/130212

PCT/US2013/023874

Page 2/4

RECEIVE APPLICATION THAT IS TO BE EXECUTED BY GPU

'

TRANSMIT APPLICATION TO SERVER

'

RECEIVE VALIDATION FROM SERVER

I
Y

RECEIVE MODIFIED VERSION OF APPLICATION

(-46

I
Y

EXECUTE APPLICATION

(-48

FIG. 2

WO 2013/130212 PCT/US2013/023874

Page 3/4

RECEIVE APPLICATION THAT IS TO BE EXECUTED BY GPU

(-50

'

PERFORM AT LEAST ONE OF STATIC AND DYNAMIC ANALYSIS

(-52

'

DETERMINE WHETHER APPLICATION SATISFIES ONE OR MORE
PERFORMANCE CRITERIA

'

TRANSMIT VALIDATION BASED ON DETERMINATION

FIG. 3

RECEIVE APPLICATION THAT IS TO BE EXECUTED BY GPU

'

MODIFY APPLICATION

'

TRANSMIT MODIFIED APPLICATION

FIG. 4

WO 2013/130212 PCT/US2013/023874

Page 4/4
12
TRANSCEIVER USER

MODULE INTERFACE D'SGP;' AY

64 €6 B
DISPLAY

PROC1I56880R - > G&” <«—>| PROCESSOR
16 — 70

DEVICE MEMORY
18

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/023874

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/07 GO6F11/36
ADD.

GO6F21/53

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20117173693 Al (WYSOPAL CHRISTOPHER J 1-42
[US] ET AL) 14 July 2011 (2011-07-14)
the whole document
X US 20117145920 Al (MAHAFFEY KEVIN PATRICK 1-42
[US] ET AL) 16 June 2011 (2011-06-16)
abstract
paragraphs [0002] - [0108], [0136] -
[0145], [0168] - [0172], [0198] -
[0204]; figures 1-3,9,11
A US 2010/100963 Al (MAHAFFEY KEVIN [US]) 1-42
22 April 2010 (2010-04-22)
abstract
paragraph [0003]
_/ -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

6 May 2013

Date of mailing of the international search report

14/05/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Tousek, Ivo

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/023874
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2011/145926 Al (DALCHER GREGORY WILLIAM 1-42

[US] ET AL) 16 June 2011 (2011-06-16)
abstract; figures 1,2
paragraphs [0017] - [0038]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/023874
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011173693 Al 14-07-2011 NONE
US 2011145920 Al 16-06-2011 NONE
US 2010100963 Al 22-04-2010 US 2010100963 Al 22-04-2010
US 2012096555 Al 19-04-2012
WO 2010048220 Al 29-04-2010
US 2011145926 Al 16-06-2011 CN 102741824 A 17-10-2012
EP 2513805 A2 24-10-2012
KR 20120114304 A 16-10-2012
US 2011145926 Al 16-06-2011
WO 2011084431 A2 14-07-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report
	Page 48 - wo-search-report

