
US 20060268742A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0268742 A1
(19) United States

Chu et al.

(54) TOPOLOGY-CENTRIC RESOURCE
MANAGEMENT FOR LARGE SCALE

(43) Pub. Date: NOV. 30, 2006

Publication Classi?cation

SERVICE CLUSTERS (51) Int- Cl
H04L 12/28 (2006.01)
H04L 12/56 (2006.01)

Inventors: Lingkun Ch“, Kendall Park’ US. Cl- Tao Yang, Santa Barbara, CA (US);

Jingyu Zhou, Goleta, GA (US) (57) ABSTRACT
Topology-centric resource management for large scale ser

Correspondence Address: vice clusters is described herein. According to certain
BLAKELY SOKOLOFF TAYLOR & ZAFMAN embodiments of the invention, techniques include 1) creat
12400 WILSHIRE BOULEVARD ing optimized topology with network switches to connect
SEVENTH FLOOR service modules based on application ?ows and bandwidth
LOS ANGELES, C A 90025-1()30 (Us) requirements, 2) providing centralized or decentralized

monitoring schemes to maintain the topology view of a
(21) Appl, No.1 11/142,694 service cluster, and 3) using the topology information for

optimizing load balancing and service information dissemi
(22) Filed: May 31, 2005 nation. Other methods and apparatuses are also described.

rw- ‘ Came Sewer 1 “"7,” 4'

v". 4 Cache Server 2 ‘A Log’

(, Tier-2 1"“?
' u 1 Index Server 1

," “ Tier-1
I Index Server

£d__1___>‘ Query 1

\ Frontend ~_ __ '‘ T. 2 |
\ —_-_-_- rer
\\ I __,’ "' ~‘~7(2o1 \ lndexServer2 I
(“m ——~—~—1 , \ \ ,/

\ \\~ ’ I
z o I DOC ‘ _--' 1

Server1 I! u 0
~ I ’ I

‘x E I Z 1:: 0K

,—_1/' \z z
1 \
‘(Doc |

2 I \\ _ Server [I T‘ e(Z
\ \ \ I d l

_ _ _ ' L03

I’

‘nev 1
7.01

Patent Application Publication Nov. 30, 2006 Sheet 1 0f 15 US 2006/0268742 A1

("PRIOR ART)

Patent Application Publication Nov. 30, 2006 Sheet 2 0f 15 US 2006/0268742 A1

2'99 CacheServer1 “*7/91?

, 4 Cache Server2 ‘nus’

7-‘ u L Tier-2 “"1 ° 7
f lndexServer1

I"_—__~~\
I’ \\ ,(Tier-1

I \iiofb' \ Index Server
0 ..__1___>| Query - Q \

\ Fronlend I \ \ ‘ I
\ I I ‘A _____a

\\ __---"r /”
‘\ \

ZOI

Tier-2
\ Index Server 2
\

\
\/

1/

\ kw
l

\ Server2 ll Tc‘! Z
\‘\ ',l
"" L03

W
Tier i

202.

Patent Application Publication Nov. 30, 2006 Sheet 4 0f 15 US 2006/0268742 A1

Query Cadwe Came Tier1 Doc Doc Tier2 Tier2
Frontend Server 1 Server 2 Index Server 1 Server 2 Index 1 Index 2

Query Cache Cache Doc Doc Tier1 Tier2 TieIQ
Frontend Server 1 Server 2 Server 1 Server 2 Index Index 1 Index 2

0.15

Query Doc Doc Tier1
Frontend Server 1 server 2 Index Index 1 Index 2

Patent Application Publication Nov. 30, 2006 Sheet 5 0f 15 US 2006/0268742 A1

01 IO (3
Create a service graph for a service cluster in a hierarchical structure

via one or more network switches with load balance capability.
501

V

In response to an extemat query received by a frontend server of the
service cluster, the frontend server contacts a cache server of the
service cluster according to the service graph to determine whether

the requested content is stored in the cache server.
502

If so, the queried content is retrieved from the cache server according
to the service graph and returned to a client of the external query.

503

If not, the frontend server contacts an index server according to the
service graph to retrieve a list of relevant links (e.g., URLs)

associated with the external query.
504

In response to the list of relevant links, the frontend server fetches
content for each of the links from a document server according to the
service graph within the cluster and returns the content to the client.

505

Fig. 5

Patent Application Publication Nov. 30, 2006 Sheet 6 0f 15 US 2006/0268742 A1

Determine a separation factor (e.g., X), for example, that is no more —
than a maximum replication degree of most of the modules in a

service cluster.
601

Divide modules (e.g.. servers) of the sen/ice cluster into a number of
separate service graphs according to to the separation factor.

602

iteratively assign one or more switches to each node of each of the
separate service graphs.

603

Perform localized optimization within each service graph based on
the bandwidth stress of some or all of the switches

604

Couple the separate sen/ice graphs together using one or more load
balancing switches.

605

Fig. 6

Patent Application Publication Nov. 30, 2006 Sheet 7 0f 15 US 2006/0268742 A1

4 8 16 32 bits

Ver. IH L Type of service Total length
Identi?cation Flags Fragment offset

Time to live Protocol Header checksum

Source address

Destination address
Option + Padding

Data

IP header :tmmme

Fig.1?
(T’KIoR MT)

Patent Application Publication Nov. 30, 2006 Sheet 8 0f 15 US 2006/0268742 A1

Central Agent 8 a]

Topology Database Distributor

Computer Node 89 7

Topology Daemon Clustering Framework

Central : f‘ Topology Local Copy of Information __ t

Agent Cluster Topology Access Point —|/ Multkzasl

g o I Listener X’ g

57. K B

Patent Application Publication Nov. 30, 2006 Sheet 9 of 15 US 2006/0268742 A1

(0 O Centrally maintain a network topology information within a central _
agent of a service cluster, where the central agent periodically 0r
constantly queries/distributes network topology information from/to

other other members of the service cluster
901

Y

When a node is joining the service cluster, the node queries the
central agent for a copy of preexisting network topology information
regarding the service cluster and optionally stores the retrieved copy

in a local storage
902

The node periodically or constantly listens to a predetermined
channel (e.g., a predetermined multicast channel) regarding any
update of the network topology multicast from the central agent.

903

The node utilizes the updated network topology information to speed
up the internal requested processes (e.g., boot processes) of the

node, which may include internal and/or external processes.
904

Patent Application Publication Nov. 30, 2006 Sheet 11 0f 15 US 2006/0268742 A1

-

we

Level 2

Level 1

Level 0

GHI

DEF

DEF
'AB
GHI

G) DEF
ABC
GHI BEH ADG ABC

DEF
GHI

:7. /0E

Patent Application Publication Nov. 30, 2006 Sheet 12 0f 15 US 2006/0268742 A1

Divide multiple nodes of a service cluster into one or more groups
based on network topology information associated with the nodes 1 100

(e.g., a TTL value) ——
1101

Select a group leader for each of the groups according to a
predetermined category

1102

In response to messages (e.g., availability messages) received from
other groups (e.g., other group leaders), a group leader of a

respective group distributes (e.g., multicast) the messages to other
members of the respective group.

1103

In response to a message received from a member of a respective
group, the group leader distributes the message to the rest of the

member of the respective group and distributes the message to other
groups (e.g., other group leaders) as needed.

1 104

Fig. 11

Patent Application Publication Nov. 30, 2006 Sheet 13 0f 15 US 2006/0268742 A1

Patent Application Publication Nov. 30, 2006 Sheet 14 0f 15 US 2006/0268742 A1

1300

Client Computer
System -<—> Mt‘odiim 1'3:
1392

Client Computer
Modem

System <—> 130g Internet
13% L122

Web Server System
. ., e ‘0e Gateway System ISP (ec?lstzrgg)

1319 % 132g

<F LAN Bus 1_31g >

Network Network
Interface Interface

1 14 ELQ

Client Client
Computer Computer

13.1.8 13.29

Fig. 13

Patent Application Publication Nov. 30, 2006 Sheet 15 0f 15

1404 /

Cache

l / 1403 147 / 0 145 / 0

US 2006/0268742 A1

1400

140 / 6

Microprocessor ROM
Volatile
RAM

Nonvolatile
Memory

(e.g. hard drive)

I I i A

V
Bus

A

V i 1402
1409

Display Controller
& Display Device

\ 1408

I10
Controller(s)

1
V0

Device(s)
(e.g. mouse, or
keyboard, or
modem, or

network interface,
or printer)

1410 /

Fig. 14

US 2006/0268742 A1

TOPOLOGY-CENTRIC RESOURCE
MANAGEMENT FOR LARGE SCALE SERVICE

CLUSTERS

FIELD OF THE INVENTION

[0001] The present invention relates generally to service
cluster management Within a high speed network. More
particularly, this invention relates to a topology-centric
resource management for large scale service clusters.

BACKGROUND

[0002] Busy Web sites often use hundreds or thousands of
machines to form a large-scale cluster to respond quickly to
highly concurrent user requests. Such a cluster is typically
con?gured With multiple netWork sWitches in a hierarchical
structure. FIG. 1 is a block diagram illustrating an example
of a conventional netWork topology in a service cluster. In
communications networks, a topology is usually a schematic
description of the arrangement of a netWork, including its
nodes and connecting lines, also de?ned as a physical
topology and/or a logical topology. Referring to FIG. 1, the
cluster 100 typically includes computer nodes 102-105
connected to access sWitches 106-109, Which are connected
to sWitches in the next levels. These sWitches 106-109 in
turn are connected to another sWitch.

[0003] The hierarchical topology is needed partially
because of the physical limitations of sWitches. Typically,
each sWitch includes a limited number of ports (e.g., uplink
and doWnlink ports) and can only connect a limited number
of machines With 1000 Mb or 100 Mb ports. The physical
location of sWitches also requires a hierarchical topology.
For example, a hosting center leases cages of space to a
company, similar to cage 101 of FIG. 1. Each cage (e.g.,
cage 101) can only host a limited number of machines (e.g.,
nodes 102-105) and the entire cluster (e.g., cluster 100)
needs to connect multiple non-adjacent cages. The band
Width among links in the netWork also varies. For example,
the bandWidth across sWitches is limited by the uplink of
each sWitch. The bandWidth across sWitches in different
cages may be loWer than that inside a cage.

SUMMARY OF THE DESCRIPTION

[0004] Topology-centric resource management for large
scale service clusters is described herein. According to
certain embodiments of the invention, techniques include 1)
creating optimiZed topology With netWork sWitches to con
nect service modules based on application ?oWs and band
Width requirements, 2) providing centraliZed or decentral
iZed monitoring schemes to maintain the topology vieW of a
service cluster, and 3) using the topology information for
optimiZing load balancing and service information dissemi
nation.

[0005] According to one aspect of the invention, an
example of a process includes, but is not limited to dividing
nodes of a service cluster into multiple groups each having
multiple members folloWing netWork topology, Where each
group includes a dedicated node to communicate With other
groups of the service cluster. In response to a message
received from a member of a respective group, the dedicated
node of the respective group distributes the message to other
groups of the service cluster and a remainder of the mem
bers.

Nov. 30, 2006

[0006] According to another aspect of the invention, an
example of a process includes, but is not limited to main
taining a service graph for a service cluster having a plurality
of nodes and each having one or more replicas, Where the
service graph has a hierarchical infrastructure based on a
netWork topology information associated With the plurality
of nodes of the service cluster. In response to a service
invocation from a ?rst node, a second node is selected via
the service graph Within the service cluster according to a
predetermined algorithm based on a load of the second node
and a routing distance betWeen the ?rst and the second
nodes.

[0007] According to another aspect of the invention, an
example of a process includes, but is not limited to, creating
a service graph having a hierarchical structure based on
application service logics of a service cluster having a
plurality of nodes, and deriving a sWitch layout based on the
service graph for optimiZed availability and netWorking
performance of the plurality of nodes. The sWitch layout is
created by determining a separation factor for the service
cluster, separating the nodes of the service cluster into a
plurality of sub-service graphs based on the determined
separation factor, assigning a sWitch for each node of each
sub-service graph, and coupling the plurality of sub-service
graphs to form the service graph using one or more load
balancing sWitches.

[0008] Other features of the present invention Will be
apparent from the accompanying draWings and from the
detailed description Which folloWs.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention is illustrated by Way of
example and not limitation in the ?gures of the accompa
nying draWings in Which like references indicate similar
elements.

[0010] FIG. 1 is a block diagram illustrating a conven
tional netWork topology of a service cluster.

[0011] FIG. 2 is a block diagram illustrating a netWork
topology con?guration of a service cluster according to one
embodiment of the invention.

[0012] FIGS. 3A and 3B are block diagrams illustrating a
netWork topology con?guration of a service cluster accord
ing to another embodiment of the invention.

[0013] FIGS. 4A-4C are block diagrams illustrating a
netWork topology con?guration of a service cluster accord
ing to another embodiment of the invention.

[0014] FIGS. 5 and 6 are How diagram illustrating
examples of processes performed by a service cluster
according to one embodiment of the invention.

[0015] FIG. 7 is a block diagram illustrating an IP header
of an IP packet.

[0016] FIGS. 8A and 8B are block diagrams illustrating a
netWork topology con?guration of a service cluster accord
ing to another embodiment of the invention.

[0017] FIG. 9 is a How diagram illustrating an example of
a process performed by a service cluster according to one
embodiment of the invention.

US 2006/0268742 A1

[0018] FIGS. 10A and 110B are block diagrams illustrat
ing a network topology con?guration of a service cluster
according to certain embodiments of the invention.

[0019] FIG. 11 is a ?ow diagram illustrating an example
of a process performed by a service cluster according to
another embodiment of the invention.

[0020] FIGS. 12A and 12B are block diagrams illustrat
ing a network topology con?guration using service clusters
according to certain embodiments of the invention.

[0021] FIG. 13 is a block diagram of a network con?gu
ration which may be used with an embodiment of the
invention of the invention.

[0022] FIG. 14 is a block diagram of a data processing
system which may be used with an embodiment of the
invention of the invention.

DETAILED DESCRIPTION

[0023] Topology-centric resource management for large
scale service clusters is described herein. In the following
description, numerous details are set forth to provide a more
thorough explanation of the present invention. It will be
apparent, however, to one skilled in the art, that the present
invention may be practiced without these speci?c details. In
other instances, well-known structures and devices are
shown in block diagram form, rather than in detail, in order
to avoid obscuring the present invention.

[0024] Reference in the speci?cation to “one embodi
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
invention. The appearances of the phrase “in one embodi
ment” in various places in the speci?cation do not neces
sarily all refer to the same embodiment.

[0025] According to certain embodiments of the inven
tion, new techniques for topology-centric management in
optimiZing the use of computer and network resources are
provided to improve the availability and performance of
cluster-based services. According to one embodiment, rela
tively high performance is achieved, where traf?c within a
switch is localiZed and accessing time from one machine to
another is usually faster within a switch compared to a
cross-switch transaction. According to another embodiment,
fault tolerance is improved, where switches can fail occa
sionally or need to stop their services for maintenance.
Network services hosted in such a cluster need to consider
service replication across different switches so that unavail
ability of a switch does not stop machines connected by
other switches in providing services to external users.

[0026] According to certain aspects of topology-centric
resource management, an optimiZed network topology is
generated based on application service computations.
According to one embodiment, certain processes are per
formed to monitor the creation and change of network
topology in providing a dynamic abstract graph for the
software system on the ?y. The topology information may be
utiliZed in: 1) dynamic service invocation; 2) maintaining a
global and local yellow page for individual service avail
ability and attributes of individual services within a large
cluster.

Nov. 30, 2006

Topology-Based Generation for Service Clusters

[0027] Given an application with hundreds or thousands of
service modules, according to one embodiment, these mod
ules are assigned to computers and a network topology is
derived such that system availability and performance are
optimiZed. In a particular embodiment, a service graph G (V,
E) (also referred to as a service super graph) is utiliZed to
model interaction among application modules within a clus
ter in providing a response to an external request. In one
embodiment, in a service module graph each node in V
represents a service module. There is one entrance module
which receives an incoming request (e.g., an external
request) and activates a processing procedure. This proce
dure may invoke other service modules in the system for
further processing.
[0028] Each module may have one or more replicated
units. Any replica of a module can receive an external
request (e.g., in the case of entrance module), or an internal
request from another module. Typically, according to one
embodiment, interior modules have replications while some
of leaf modules may or may not have replications. A directed
edge in E between two modules represents a service invo
cation relationship. A->B means that module A calls module
B to perform a function. An edge between two modules can
be annotated with a communication weight representing an
approximated or estimated bandwidth requirement per sec
ond.

[0029] FIG. 2 is a block diagram illustrating an example
of a service graph for a tiered data search service, according
to one embodiment. Units inside a dotted eclipse represent
replicas. An external query ?rst reaches one of the query
front-ends. The query front-end then contacts two parti
tioned cache servers to check if the query has been processed
before. If so, the result is retrieved from the cache servers
and is immediately returned to the user. Otherwise, one of
the tier-l index servers is contacted, which then contacts two
tier-2 index partitions. The second partition is replicated on
two nodes. After the index server returns a list of relevant
URLs, the query front-end fetches a short description for
each URL from two partitioned document servers. The label
on the directed edge between two modules presents the
tra?ic volume between these two modules.

[0030] Given a service graph G (V, E) and assuming each
node (e.g., modules or units of modules) is assigned to one
computer, according to one embodiment, a method is pro
vided to assign switches to link these computers. The
optimiZation improves the availability and access perfor
mance, as well as to minimiZe the number of switches used.

[0031] In one embodiment, a separation factor X that is no
more than a maximum replication degree of all the modules
is utiliZed. The separation factor may be used to decide a
fault resilience factor in terms of switch failures. In general,
a bigger separation factor leads to better availability. Rep
lication degree represents a number of replicas for one
module. Fault resilience factor represents how much a
system can tolerate faults without interruption of the service.

[0032] According to one embodiment, a separation factor
X Q(>=l) is selected and a service graph is derived into X
separated graphs. Each replica of a module may be circularly
assigned to X separated graph groups, {G1, G2, . . . , Gx}.
Note that after the assignment, according to certain embodi
ments, G1 may have all the modules, while other graphs may
only have portion of the modules. The communication
weight may also be updated in the separated graphs.

US 2006/0268742 A1

[0033] According to one embodiment, each separate graph
is assigned to one or more sWitches. Initially, an entrance
node (e. g., a node Which has an external link) is selected and
the replicas of this node are assigned to one sWitch (e.g., the
same sWitch). For edge X->Y, the replicas of Y are assigned
to the same sWitch as X. If there are not enough ports (e.g.,
doWnlink ports) in the sWitch, another sWitch is allocated for
Y. In addition, the bandWidth demand from one sWitch to
another is monitored based on a Weight given in the sepa
rated graph. The bandWidth stress of a link is de?ned as a
ratio of a required bandWidth over a link bandWidth (e.g.,
required_bandWidth/link_bandWidth). A required bandWidth
is the communication bandWidth required betWeen modules.
A link bandWidth is the maximum communication band
Width can be provided by the uplink or doWnlink. Further,
the bandWidth stress inside one sWitch may also be moni
tored if needed. The bandWidth stress of a sWitch is de?ned
as a ratio of a required bandWidth over an aggregated sWitch
bandWidth (e.g., required_bandWidth/sWitch_aggregated
_bandWidth). The bandWidth information may be maintain
by an administrator or a netWork designer. The above
processes may be repeated until all modules are assigned for
one or more sWitches.

[0034] In one embodiment, a local optimiZation is per
formed to remove a node from one sWitch and assign the
removed node to another sWitch, if such a local adjustment
localiZes and improves communication performance. In a
particular embodiment, the local adjustment is performed if
(1) any bandwidth stress<l; and (2) total bandwidth stress
and the stress deviation is minimiZed.

[0035] In a further embodiment, the sWitch communica
tion volume based on the assigned service modules may be
derived to guide the selection of sWitches and port require
ments. After all separated graphs have been assigned
sWitches, the sWitch layouts are connected together using
additional load balancing sWitches or existent sWitches in
the G1’s layout according to a service logic. After the above
operations a connected sWitch hierarchy is created Which
improves the availability and the performance of the service
cluster(s).
[0036] We use the service graph in FIG. 2 as an example.
We assume the separation factor to be 2 and the folloWing
shoWs the tWo separation graphs as shoWn as service graphs
300 and 350 respectively shoWn in FIGS. 3A and 3B. We
have also updated the labels in these graphs. Finally,
sWitches are assigned for each graph in a breadth ?rst style.

[0037] Referring to FIG. 2, according to one embodiment
as an example for the purposes of illustration, it is assumed
that each sWitch has four ports and the link capacities across
all the sWitches are l (e.g., 100 percents of the link band
Width, such as 100 Mb or 1 Gb). Take G1 as an example
shoWn in FIG. 3A. After the ?rst iteration, the folloWing
layout is formed as shoWn in FIG. 4A:

[0038] SW1: Frontend 201, Cache1204, Cache2205,
SW2

[0039] SW2: Tier1 Index 206, Doc1207, Doc2208,
SW3

[0040] SW3: Tier2 Index1209, Tier2 Index2210

[0041] Stress (SW1->SW2)=0.65

[0042] Stress (SW2->SW3)=0.30

Nov. 30, 2006

[0043] In the adjustment operation, if Tier1 Index 206 is
moved to SW3 as shoWn in FIG. 4B, the stress may be
reduced as folloWs:

[0044] Stress (SW1->SW2)=0.65

[0045] Stress (sw2->sw3)=0.15

[0046] Similarly, the layout for G2 as shoWn in FIG. 3B
may also be performed using the techniques similar to the
one set forth above as shoWn in FIG. 4C. Finally, tWo
layouts may be coupled together. Here, SW1 (G1) and SW1
(G2) are coupled to a load-balancing sWitch. Note that the
sWitch stress in FIG. 2 and other ?gures throughout this
application is shoWn for illustration purposes only. Different
sWitch stress may be formed dependent upon a speci?c
con?guration.
[0047] FIG. 5 is a How diagram illustrating an example of
a process for processing an external query according to one
embodiment. The process 500 may be performed by pro
cessing logic that may comprise hardWare (e.g., circuitry,
dedicated logic, etc.), softWare (such as is run on a general
purpose computer system, a server, a router, or a dedicated
machine), or a combination of both.

[0048] Referring to FIG. 5, at block 501, a service graph
(e.g., a super graph) is created for a service cluster in a
hierarchical structure via one or more netWork sWitches With

load balancing capability. In one embodiment, the service
graph is created using some or all of the techniques set forth
above. At block 502, in response to an external query
received by a frontend server of the service cluster, the
frontend server contacts a cache server of the service cluster
according to the service graph to determine Whether a
queried content is stored in the cache server. If so, at block
503, the queried content is retrieved from the cache server
according to the service graph and returned to a client of the
external query.

[0049] OtherWise, at block 504, the frontend server of the
service cluster contacts an index server according to the
service graph to retrieve a list of relevant links (e.g., URLs)
associated With the external query. At block 505, in response
to the list of relevant links, the frontend server fetches
content for each of the links from a document server
according to the service graph and return the fetched content
to the client. In one embodiment, the content includes a brief
description for each of the links. Other operations may also
be performed.

[0050] FIG. 6 is a How diagram illustrating an example of
a process for creating a service graph according to one
embodiment. The process 600 may be performed by pro
cessing logic that may comprise hardWare (e.g., circuitry,
dedicated logic, etc.), softWare (such as is run on a general
purpose computer system, a server, a router, or a dedicated
machine), or a combination of both. For example, process
600 may be performed as a part of operations involved in
block 501 of FIG. 5.

[0051] Referring to FIG. 6, at block 601, a separation
factor (e.g., X) is determined for a service graph. In one
embodiment, the separation factor is less than a maximum
replication degree of some or all of the modules of a service
cluster. At block 602, the modules of the service cluster are
divided into multiple separate service graph based on the
separation factor. At block 603, one or more sWitches are

US 2006/0268742 A1

iteratively assigned to each node of each of the separate
service graphs. In one embodiment, replicas of a node may
be assigned to the same sWitch. At block 604, a localized
optimiZation is performed Within each of the separate ser
vice graphs based on the bandWidth stress of some or all of
the sWitches involved. At block 605, the separate service
graphs are coupled to each other to form a ?nal service graph
(e.g., a super service graph) using one or more additional
load balancing sWitches. Other operations may also be
performed.
Monitoring of Network Topology

[0052] According to certain embodiments, the above
operations provide a guiding procedure in deriving a net
Work topology for an application service cluster. The spe
ci?c topology may be adjusted based on the application
needs and operational needs. In one embodiment, the cre
ation and change of such a topology may be monitored so
that a topology graph can be extracted for the use of resource
management described in details further beloW.

[0053] TWo approaches are described herein. The ?rst one
is a centraliZed approach Where the topology information is
dedicatedly collected and distributed to the interested parties
as shoWn in FIGS. 8A and 8B. The second one is a
distributed approach Where the topology discovery capabil
ity is integrated into the application protocols as shoWn in
FIGS. 10A-10B.

[0054] According to one embodiment, one or more stan
dard ?elds of a packet may be used to indicate a netWork
topology associated With the packet. Speci?cally, a TTL
(time to live) value in an IP packet as shoWn in FIG. 7 is
utiliZed. HoWever, other ?eld or ?elds of the IP packet or
other types of packets may also be utiliZed. An advantage of
the centraliZed approach is that a more thorough vieW of
netWork topology may be provided because the centraliZed
node can have a relative more complicated logic and tolerate
more the overhead. HoWever, this approach can be compli
cated and may not detect and propagate a change quickly.
On the other hand, the distributed approach is built Within
the application protocol. Thus it is lighter Weighted and there
is less need to propagate a change because most of the nodes
maintain their oWn netWork topology information indepen
dently.

Centralized Approach Examples

[0055] The information of netWork topologies is generally
available from netWork administrators. Additionally, it can
be automatically discovered With the help of l) routing path;
2) SNMP (simple netWork management protocol); and 3)
other netWork sWitch interfaces.

[0056] FIG. 8A is a block diagram illustrating an example
of a centraliZed approach according to one embodiment.
Referring to FIG. 8A, a central agent 801 is deployed to
maintain the topology information from the administrator(s)
804 via interface 805. The topology information may be
stored in a database 803 locally or remotely. The central
agent 801 also periodically queries netWork sWitches
through the SNMP protocol or other sWitch interface 806.
The topology information may be distributed to other enti
ties via interface 807.

[0057] According to one embodiment, a push mechanism,
a poll mechanism, or a combination of both may be used to

Nov. 30, 2006

disseminate the topology information. FIG. 8B is block
diagram illustrating an example of a process of the topology
information on a computer node, according to one embodi
ment. Referring to FIG. 8B, When a neW node 802 is joining
the cluster, according to one embodiment, the node 802 may
poll a central topology server (e.g., central topology agent
801) over a netWork (e. g., SAN or storage area netWork 813)
to receive a copy of the cluster topology, Which may be
stored in a local storage 808.

[0058] After that, the node 802 may listen to a predeter
mined channel (e.g., a multicast channel) to receive any
update from the server via interface. Since the topology
changes do not happen frequently, bandWidth requirement
for this multicast channel can be relatively small. Addition
ally, according to a further embodiment, each node stores a
copy of the topology information on its local storage 808
accessible by other modules 811 via interface 812 and uses
this local copy to speed up a boot process 810. In a particular
embodiment, the node 802 may compare the version of its
local copy With the current version obtained from the
multicast channel and poll the delta changes (e.g., the
differences) from central server if necessary. Other con?gu
rations may exist.

[0059] FIG. 9 is a How diagram illustrating an example of
a process for a centraliZed approach according to one
embodiment. The process 900 may be performed by pro
cessing logic that may comprise hardWare (e.g., circuitry,
dedicated logic, etc.), softWare (such as is run on a general
purpose computer system, a server, a router, or a dedicated
machine), or a combination of both. For example, process
900 may be performed by central agent 801, node 802, or a
combination of both of FIGS. 8A and 8B.

[0060] Referring to FIG. 9, at block 901, centraliZed
netWork topology information is maintained Within a node
of a service cluster, such as, for example, a central agent. In
one embodiment, the central agent periodically or constantly
queries and/ or distributes the netWork topology information
from and/or to other members of the service cluster. At block
902, When a node is joining as a member of the service
cluster, the node queries the central agent Who maintains the
centraliZed netWork topology information for a copy of the
centraliZed netWork topology information. In one embodi
ment, the node may store the copy of the netWork topology
information in its local storage. At block 903, the node that
has joined or is joining the service cluster may periodically
or constantly listen to a predetermined communications
channel, such as a predetermined multicast channel for any
updates regarding the netWork topology information, Which
may be updated by any members of the service cluster and
distributed by the central agent. Thereafter, at block 904, the
node may utiliZe the doWnloaded netWork topology infor
mation to speed up the requested processes of the respective
node. The requested processes may include internal pro
cesses and/or external processes (e.g., external service invo
cation), according to certain embodiments of the invention.
Other operations may also be performed.

Distributed Approach Examples

[0061] According to another embodiment, the topology
discovery capability is incorporated into a distributed algo
rithm such as the failure detection and membership protocol.
According to one embodiment, a predetermined ?eld of a
netWork packet may be used to limit the outreach of a

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Drawings
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description/Claims
	Page 27 - Claims
	Page 28 - Claims

