wo 2009/136361 A1 |10 A0 000 0O AR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(9) Workd ntellctual Propety Organiation /82 | IO A A O
International Bureau S,/)
Al . s
) . _ (10) International Publication Number
(43) International Publication Date \'{:/_?___/
12 November 2009 (12.11.2009) PCT WO 2009/136361 Al
(51) International Patent Classification: (72) Inventors; and
GO6F 7/72 (2006.01) (75) Inventors/Applicants (for US only): MICHIELS, Wil-
. ..) helmus, P., A., J. [NL/NL]; c¢/o High Tech Campus
(21) International Application Number: PCT/B2009/051837 Building 44, NL-5656 AE Eindhoven (NL). GORISSEN,
Paulus, M., H., M., A. [NL/NL]; ¢/o High Tech Campus
(22) International Filing Date: Building 44, NL-5656 AE Eindhoven (NL).
> May 2009 (05.05.2009) 74y Agents: KROEZE, John ct al.; Philips Intellectual Prop-
(25) Filing Language: English erty & Standards, P.O. Box 220, NL-5600 AE Eindhoven
(26) Publication Language: English (ND).
. (81) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of national protection available): AE, AG, AL, AM,
08155798.5 7 May 2008 (07.05.2008) EP AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(71) Applicant (for all designated States except US): KONIN- CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,

KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL];
Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

[Continued on next page]

(54) Title: EXPONENT OBFUSCATION

(57) Abstract: A method of obfuscating an exponentis provided. The method comprises identi-
fying (304) a value A for which it holds that 2>0 and x* = 1 for a plurality of elements x which
are to be used in a cryptographic process. The method further comprises identifying (306) an

300 obfuscated exponent ywhich is greater than A and providing (308) information indicative of the
obfuscated exponent y.The method comprises establishing a keyvalue a, wherein a < A, select-
ing a positive integer b, and computing y = a + bA.

3

302

A
304
A
306
A
308
y
310

WO 2009/136361 A1 0000 NPT 0NN OO

84)

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),

OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(i1))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

WO 2009/136361 PCT/IB2009/051837

EXPONENT OBFUSCATION

FIELD OF THE INVENTION
The invention relates to obfuscating an exponent value. The invention also
relates to performing an exponentiation operation. The invention also relates to an

exponentiation which is part of a cryptographic algorithm.

BACKGROUND OF THE INVENTION

In present days, content is increasingly made available in digital format to
users, for example by means of the Internet, a broadcast medium, or by means of a digital
data carrier such as CD or DVD. Consumer electronics (CE) products, such as televisions,
settop boxes, and audio equipment, are equipped with digital data processing capabilities to
render these digital contents.

The use of the Internet and other digital distribution media for copyrighted
content has created the challenge to secure the interests of the content provider. In particular
it is desirable to have technological means available to enforce the copyrights and business
models of the content providers. Increasingly, CE devices are operated using a processor
loaded with suitable software. Such software may include the main part of functionality for
rendering (playback) of digital content, such as audio and/or video. Control of the playback
software is one way to enforce the interests of the content owner including the terms and
conditions under which the content may be used. Where traditionally many CE platforms
(with the exception of a PC and PDA) used to be closed, nowadays more and more platforms
at least partially are open and allow computer programmers to inspect the software and to
make modifications to the software. In such open systems, including personal computers,
some users may be assumed to have complete control over the hardware and software that
provides access to the content. Also, some users may have a large amount of time and
resources to attack and bypass any content protection mechanisms. As a consequence,
content providers must deliver content to legitimate users across a hostile network to a
community where not all users or devices can be trusted.

Digital rights management systems have been introduced to control the

distribution of digital content to legitimate users. Typically, digital rights management

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
2

systems use an encryption technique which allows only legitimate users to decrypt the
content. The implementation of such encryption techniques in the consumer devices may be
obfuscated to make it more difficult for an attacker to find out the value of the key. Examples
of ciphers commonly in use for many different kinds of applications are DES, AES, RSA,
and the method disclosed in W0O9967918.

In relation to key handling, for playback a media player has to retrieve a
decryption key from a license database. It then has to store this decryption key somewhere in
memory for the decryption of the encrypted content. This gives an attacker two options for an
attack on the key. Firstly, reverse engineering of the license database access function could
allow the attacker to retrieve asset keys from all license databases. Secondly, by observation
of the accesses to memory during content decryption, it is possible to retrieve the asset key.
In both cases the key is considered to be compromised.

“White-Box Cryptography and an AES Implementation”, by Stanley Chow,
Philip Eisen, Harold Johnson, and Paul C. Van Oorschot, in Selected Areas in Cryptography:
9th Annual International Workshop, SAC 2002, St. John's, Newfoundland, Canada, August
15-16, 2002, and “A White-Box DES Implementation for DRM Applications”, by Stanley
Chow, Phil Fisen, Harold Johnson, and Paul C. van Oorschot, in Digital Rights Management:
ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, November 18, 2002
(hereinafter, these two publications will be referred to collectively as “Chow”), disclose
methods with the intend to hide the key by a combination of encoding its tables with random
bijections representing compositions rather than individual steps, and extending the
cryptographic boundary by pushing it out further into the containing application.

The techniques disclosed in Chow make it possible to perform cryptographic
operations in software without exposing the cryptographic key to a person who can fully
debug the software. In the approach of Chow, the cryptographic key is hidden by using look-
up tables rather than mathematical operations, with the result that the operands of the
mathematical operations do not have to be stored as such. These tables may be encoded using
random bijections to further obfuscate them. The encoding of one table may be undone by the
encoding of another table, or may be undone elsewhere in the program. However, not all

operations are easily represented by means of a look-up table.

SUMMARY OF THE INVENTION
It would be advantageous to have a way of obfuscating a broader range of

operations. To better address this concern, in a first aspect of the invention a method of

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
3

obfuscating an exponent is presented, comprising

identifying a value 4 for which it holds that A >0 and x* =1 for a plurality of
elements x which are to be used in a cryptographic process as base values of an
exponentiation;

identifying an obfuscated exponent y which is greater than A; and

providing information indicative of the obfuscated exponent y.

An obfuscated exponent y is thus provided which is larger than strictly
necessary for computing the exponentiation. This aspect of the invention uses the insight that
for an exponent which is smaller than A, corresponding exponent values exist which are
larger than A and which give the same outcome when performing the exponentiation. Using
this property, the exponent value may be made as large as desired, which is advantageous
because it allows to better obfuscate the exponent value against inspection and unauthorized
copying.

The exponentiation x* =1 may be performed in a finite algebraic structure,
and may be performed, for example, modulo #, where the algebraic structure comprises
elements {0,1,...n—1}.

The information indicative of the obfuscated exponent y may be provided for
use in the cryptographic process. For example, the obfuscated exponent y may be provided to
a device which comprises a cryptographic system. By providing the obfuscated exponent y to
the device, the device may be caused to use the exponent y in subsequent exponentiation
operations. Such a cryptographic system for example implements an asymmetric cipher, such
as RSA. In an embodiment, the obfuscated exponent y depends on a private key of the
asymmetric cipher. This allows to better protect the private key.

In another aspect of the invention, a system is presented for performing an
exponentiation having an obfuscated exponent, comprising

a base identifying means for identifying a base x of the exponentiation,
wherein x is an element of a set having # elements;

an exponent identifying means for identifying data indicative of an exponent y
which is greater than a value A for which it holds that A >0 and £* =1 for all elements & of
the set; and

an exponentiator for performing at least part of a cryptographic algorithm by
computing an outcome of x to the power of y thereby obtaining an outcome of the

exponentiation.

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
4

The exponent has been obfuscated by increasing its size. This is based on the
insight that for any exponent a smaller than A, a corresponding exponent value y may be
found which is greater than A and which gives the same outcome of the exponentiation.
Consequently, this larger value y may be used instead of a, and still provide the same
outcome of the exponentiation. Consequently, the exponentiation can be performed without
providing the device performing the exponentiation with the relatively small value a. The bit
representation of y is typically larger than the bit representation of a. Moreover, such a value
y can be selected to be greater than any given size, for example by adding a sufficiently large
multiple of A to exponent a. Since the value y may be selected as large as desired, its
corresponding bit representation can also be made as large as desired, without changing the
outcome of the exponentiation. This makes it more difficult to copy the value y. It allows the
number of bits in a key to the cipher to be increased, which increases the security provided by
the cipher. Such an approach to exponentiation may be employed to create a white-box
implementation of an asymmetric cipher, for example.

In an embodiment the system comprises means for multiplying the base value
x by a value B, and multiplying the outcome of the exponentiation by 7. These two

multiplications may be used to obfuscate the values of the base x and the outcome of the

exponentiation x”. The multiplications may be performed elsewhere, in other modules of a

data processing system which uses the exponentiation operation, to prevent an attacker to

discover the true values of x and/or x” by monitoring an input and/or an output of the
exponentiator.

In an embodiment a given bit string s may be included in a bit representation
of the obfuscated exponent y, by properly selecting a multiple of A to be added to the
exponent a. This allows to incorporate information related to existing information, such as
passwords, hash values, or hardware identifiers, into the information indicative of the
exponent. The system performing the exponentiation may be programmed to retrieve the bit
string s by accessing said existing information. The remaining portion of the information
indicative of the exponent may be provided by a server, for example.

Further aspects of the invention are defined in the independent claims. The

dependent claims define advantageous embodiments.

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837

BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects of the invention will be further elucidated and
described with reference to the drawing, in which
Fig. 1 illustrates a diagram of a system for performing an exponentiation;
Fig. 2 illustrates a process of performing an exponentiation;
Fig. 3 illustrates a process of generating an exponent value;
Fig. 4 illustrates a system for generating an exponent value; and

Fig. 5 illustrates a hardware architecture.

DETAILED DESCRIPTION OF EMBODIMENTS

A white-box implementation of a cryptographic algorithm is a software
implementation in which the cryptographic key may be hidden from an attacker. The attacker
may be assumed to have full access to the implementation and full control over the execution
environment. It would be advantageous to have an approach for implementing an
exponentiation x“ mod# with x variable, such that the value «a is hidden from an attacker. As
RSA contains such an exponentiation where a is derived from the key, such an approach can
be used to derive a white-box implementation of RSA, for example.

Chow et al. present white-box implementation for the symmetric block ciphers
AES and DES. The ideas employed by Chow et al. can also be used to some extend to derive
white-box implementations of other symmetric block ciphers. However, it is difficult to use
the methods disclosed in Chow et al. to derive white-box implementations of asymmetric
ciphers such as, for instance, RSA and ElGamal. In this description an approach for deriving
a white-box implementation of an exponentiation a* is disclosed, where ¢ may be constant
and x may be variable. Such an exponentiation occurs, for instance, in the ElGamal public
key cipher. The most frequently used public key cipher RSA is also based on exponentiation.
Encryption of message m corresponds to computing ¢ = m° mod n, where the values e and »
are given by the public key. Decryption of cipher text ¢ corresponds to computing
m = ¢’ mod n, where the value d is given by the private key; the value # is given by p-¢q for
primes p and ¢ and value d can be computed from e and the factoring of #. Note that in both
exponentiations the base value is not constant, but depends on the contents of the message.
Consequently, an approach is needed for implementing an exponentiation x“ with x variable,
such that the value a is hidden from an attacker. This allows to derive a white-box

implementation of both the encryption and decryption side of RSA, for example. Also the

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
6

signature generation and signature verification routines of the RSA signature scheme can be
white-boxed based on this approach.

Fig. 1 illustrates an embodiment of a system 100 for performing an
exponentiation. The exponentiation as performed by the system 100 may have an obfuscated
exponent. Such a system may be built into a device which can process content which is
protected using digital rights management (DRM), or cryptography, for example. Example
devices are a music player, a set-top box, a digital tuner, a digital television, a DVD player.
The embodiment allows an exponent of an exponentiation to be represented by a relatively
large data representation (e.g., a large number of bits), while making it difficult for a person
who intends to compromise the system to replace the large data representation with a smaller
one. The system may also be implemented in a personal computer, for example, by means of
software.

The system may comprise a base input 108 for receiving data indicative of a
base of an exponentiation operation. This base input 108 may be arranged for receiving a
digital content stream of encrypted content, for example. However, this is not a limitation.
The base input 108 may alternatively be arranged for receiving cryptographic transaction data
or identification data, including digital signature data, for example. The base input 108 may
also perform pre-processing operations to the data received, for example the data is parsed
and unencrypted data portions may be handled differently than encrypted data portions. The
data may be retrieved, for example, from a removable media, an internal storage means such
as hard disk, flash memory, or RAM, or from a network connection such as cable, satellite
(for example using DVB-S), or the Internet. Unencrypted data may be forwarded to another
module (not shown). Encrypted data may be forwarded to a base identifying means 102.

The base identifying means 102 receives data indicative of a base value x from
the base input 108. This data is used to identify the base x of an exponentiation. For example,
the base identifying means 102 receives such a value x from the base input 108.
Alternatively, the base identifying means parses the data received from the base input 108 to
identify a data field containing the base value x. The base value x is typically a member from
an algebraic structure, usually a finite structure, in which a multiplication operation is
defined. This multiplication operation also applies when performing exponentiation.

The system further comprises an exponent input 110. This input 110 retrieves
data in a way similar to the base input 108. The exponent input 110 may obtain its input from
the same data source as the base input 108, or from a different data source. This depends on

the application. For example, a separate key server may be provided which sends updated

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
7

keys to the exponent input 110 from time to time. The exponent input 110 may perform
several pre-processing steps and may have more functionality than what is described in this
description. However, the exponent input 110 produces data relating to the exponent based
on its input, and forwards this data to an exponent identifying means 104.

The exponent identifying means 104 is arranged for identifying data indicative
of an exponent y. The data may be identified in the data received from the exponent input 110
and/or from one or more other sources 112 which will be discussed in more detail hereinafter.
The exponent identifying means 104 may also extract an actual value of the exponent y from
the identified data. For example, data received from the exponent identifying means 104 may
be combined with data obtained from the other source(s) 112 in a predetermined way. The
exponent identifying means 104 is arranged for identifying relatively large exponent values y.
It is assumed here, that a value A exists for which it holds that x* =1, for the base values x
that are identified by the base identifying means 102. The exponent identifying means 104 is
arranged for identifying an exponent value y which is greater than the value A. To this end, a
sufficiently large storage location may be provided to store the large exponent value y.
Moreover, the identifying means 104 may be capable of receiving such larger values, by
allowing values of exponent y which are larger than A to be received from the exponent input
110 and/or the other source 112. These values y may be more than ten times greater than A, as
it may be advantageous to enlarge the exponent value in view of cryptographic security. Even
the bit length of the identified exponent values y may be more than ten times larger than the
bit length of A.

The base x identified by the base identifying means 102 and the exponent y
identified by the exponent identifying means 104 may be provided to an exponentiator 106.
Such an exponentiator may compute the base value x to the power of y. This computation
may be performed in a way known in the art. For example, a square and multiply algorithm,
known in the art, may be employed for computing the exponentiation with a relatively large
exponent value y in an efficient way. The exponentiator 106 is also suitable for handling
exponent values y that are larger than A. To make the exponentiator 106 suitable for handling
these large exponent values, a larger memory location may be used and/or an algorithm may
be employed which is particularly suitable for computing exponentiations with large
exponents y. The result of the exponentiation, the outcome of x”, is provided to a post-
processing unit 114, which may apply additional processing of the outcome of the
exponentiation. Such a post-processing unit 114 may be application-dependent, and prepare

the data obtained from the exponentiator 106 for further processing in the system. For

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
8

example, if the outcome of the exponentiation comprises decrypted multimedia content, such
further processing may include rendering of video and/or audio content on a display and/or
audio system. The post-processing unit 114 may arrange one or more outcomes of
exponentiation operations into a format which can be handled by the remainder of the system
to perform such rendering, for example.

In an embodiment, the data identified by the exponent identifying means 104

may be indicative of one or more values y,,...,y, , wherein m >1, and wherein the

exponentiator is arranged for performing a plurality of exponentiations in dependence on the

values y,,...,», , wherein the plurality of exponentiations form intermediate steps of the

computation of x to the power of y. For example, the data may be indicative of a sequence of

one or more exponents y,,...,», , wherein m > 1, wherein a product I_mI v, of the sequence
i=1

of exponents is equal to y. In such a case, the exponentiator may compute the exponentiation

in at least two different ways: first, it may first compute the product I_mI v, toobtain y, and
i=1

then perform a single exponentiation x” to obtain the desired result. In this case, an

exponentiation with a relatively large exponent value y has to be computed. Second, it may

compute a plurality of exponentiations according to z, =x and z,,, =z . This results in

z,., =x’ without actually computing an exponentiation with a large exponent value.

In an embodiment, in the base input 108, or in a part of the system which is
responsible for providing data to the base input 108, a means is provided for computing x by
multiplying a predetermined value g by a value . The predetermined value g may be
dependent on encrypted content to be decrypted, for example. This way, an attacker who may
be monitoring the data flows of the system, in particular the units 102,104,106, does not see

the value g. Similarly, at the post-processing unit 114, or elsewhere in the system, means for

multiplying the outcome of the exponentiation by 37 may be provided. This results in the

value BV (Bg)’ =g”. Thus, g’ may be computed without exposing either the value g or g”
at the base identifying means 102, the exponent identifying means 104, and the exponentiator
106.

At least part of the data indicative of the exponent y may be derived from
information which is unique to a particular device and/or user, or unique to a group of

devices and/or users. Such information may be based on a hardware identifier, a user

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
9

identifier, or a hardware characteristic (such as a clock frequency of a processor or a disk
access time), for example. A means 112 may be provided for providing at least part of the
data indicative of the exponent y. Means 112 may be arranged to access a memory location in
which such data is stored and providing the data to the exponent identifying means 104. The
means 112 may also be arranged for computing a hash value of the relevant data and
providing the hash value to the exponent identifying means 104. The hash value may be a
hash value of some content to be decrypted, or of computer program code, for example. This
allows to make the exponent data depend on a relatively large data chunk. The means 112
may be arranged for accessing a memory location comprising a hardware ID of a hardware
device such as a hard disk or a processor, for example via a control command sent to the
device. This makes it more difficult to successfully perform the exponentiation on other
systems, since other systems have other hardware identifiers, which causes a wrong exponent
v to be used in the exponentiation.

An exponentiation operation is an important step in RSA decryption and
encryption. These steps may be obfuscated using the techniques set forth. Moreover, the key
in RSA is closely related to the exponent value y. The techniques set forth allow to express
the exponent using a larger value and/or using a plurality of values, which makes the total
number of bits needed to store the exponent larger. Moreover, it is difficult for an attacker
who does not know the key to find a corresponding exponent value which is smaller and
which provides the same exponentiation results. Consequently, larger keys comprising more
data bits may be used in conjunction with RSA and other cryptographic algorithms. As in
RSA, the decryption key is often the key which is most secret, and for which a large size is
an advantage, the exponentiation operation as set forth may be performed advantageously in
an RSA decryption system.

The techniques set forth may be included in a consumer electronics device,
such as a PDA, music player, digital tuner etc. They provide digital rights management
techniques which are difficult to reverse engineer and which may prevent unauthorized
copying and/or distributing. The techniques set forth may also be used in transaction
processing, digital signatures, and other cryptographic processes and systems.

Fig. 2 illustrates a method of performing an exponentiation having an
obfuscated exponent. The method is initiated in step 200, for example in response to
receiving of an encrypted data packet or in response to a user command. In step 202, a base x

of the exponentiation is identified. In step 204, data indicative of an exponent y is identified.

The exponent y is greater than a value A for which it holds that A >0 and x* =1. In step 206,

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
10

at least part of a cryptographic algorithm is performed by computing x to the power of y
thereby obtaining an outcome of the exponentiation. The process ends in step 208 and may be
repeated, starting at step 200, for processing a new base value x.

Fig. 3 illustrates a method of obfuscating an exponent for use in a
cryptographic process. In step 302, an exponent value a of an exponentiation operation of the
cryptographic process may be identified. For example, a key generator, as known in the art,
may be used to choose a cryptographic key. The exponent value a may be dependent on the
key. For example, the exponent value @ may be equal to the key.

In step 304, a value / is established for which it holds that A >0 and x* =1
for a plurality of elements x of an algebraic structure. The plurality of elements x for which
x* =1 includes the potential values that may be used in encrypted messages. To allow a great

flexibility in the messages that can be supported, a value A may be established for which

x* =1 is true for all x of an algebraic structure, wherein the algebraic structure may be the set

{0,1,2,3,..., N —1} with multiplication modulo N. Such a value A may be computed in a way

known 1n the art.

In step 306, an obfuscated exponent y is identified, wherein y =a+5bh ,

wherein b is a positive integer. For example, a and A may be established by steps 302 and
304, and b may be a positive integer selected randomly from a range of values which
corresponds to a desired approximate bit length of the obfuscated exponent y.

In step 308, information indicative of the obfuscated exponent y is provided.
For example, it is stored on a removable media together with encrypted content, or it is
transmitted to a client device via a digital network. Also, information indicative of the base
value (for example encrypted content) may be provided to the client device.

In step 310, the process terminates. It may be re-initiated at step 300, for
example when a new key is being generated.

It is possible to establish one or more values y,,...,», , wherein m >1, and

wherein the values y,,...,», enable to compute an exponentiation to the power of y by

m

performing a plurality of exponentiations in dependence on the values y,,...,y, , wherein the

plurality of exponentiations form intermediate steps of the computation of x to the power of
y. This way, the obfuscation can be performed using relatively small exponent values

Vi».-.» ¥, . For example, a plurality of values y,,...,», is selected, wherein m >1, wherein a

m

product H v, ofthe sequence of exponents is equal to y. The information indicative of the

i=1

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
11

obfuscated exponent y may be indicative of at least part of the plurality of values y,,...,»

In another example, values y,,...,y, and z,...,z, are provided, where I_mI vy, + I_mI zZ =Y.
i=1 i=1

It is possible to identify a bit string s; and to select b such that a bit
representation of the obfuscated exponent y contains the bit string s. This will be explained in
more detail hereinafter. It can be used, for example, to force the incorporation of a hardware
identifier of a client device, or a user name or password, into an exponent value prepared
especially for this client or user.

Since the hardware identifier of the client is already known at the client
device, and a user name or password may be provided by a user, it is not necessary to
transmit the portion of the data corresponding thereto to the client device. Consequently, the
bit string s may be omitted when transmitting the information indicative of the exponent
value.

In an embodiment, the step 306 of identifying an obfuscated exponent y
comprises establishing a multiple £ of A, say kA, and y is determined based on kA rather
than A. For example, a value of y is selected randomly, within the constraints imposed by a
cryptographic cipher used, in a range up to kA . In the case of RSA, given an encryption key
e, the decryption key d may normally be found by solving e-d =1mod A . However, in this
embodiment, A is replaced by kA, so the decryption key d is found by solving
e-d =1mod kA . This results in a larger value d, which may be used as an exponent y in RSA.

Fig. 4 illustrates a system for obfuscating an exponent y for use in a
cryptographic process. Such a system may comprise an exponent value identifying means
402 for identifying an exponent value a of an exponentiation operation of the cryptographic
process. The system may comprise an exponent lower bound identifying means (not shown)
for identifying a value A for which it holds that A >0 and x* =1 for a plurality of elements x
which are to be used in a cryptographic process. The system may comprise an obfuscator 404

for establishing an obfuscated exponent y, wherein y = a+bA , wherein b is a positive

integer. The system may further comprise an exponent provider 406 for providing a device
with information indicative of the obfuscated exponent y. Such exponent provider 406 may,
for example, include the exponent value y into a data stream which is transmitted to a device.
The obfuscator 404 may be arranged for receiving the exponent value a and/or the value A

from a key provider 408. Such a key provider 408 may comprise a database holding a key for

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
12

each user or client device, for example. The obfuscator may be arranged for receiving the
value b from a random generator 410, for example.

Alternatively, it is also possible to directly generate a large exponent and
compute a from this large exponent and A.

Fig. 5 illustrates an example hardware architecture suitable for implementing
one or more of the methods and systems as a software program. The program comprises a
plurality of machine readable instructions which may be stored in a memory 506. During
execution, these instructions are loaded into processor 502 and executed. A communications
port 508 is provided for communication with a server to exchange for example data
indicative of an exponent and/or a base. Alternatively, the data may be read from or written
to a removable media 510, for example a flash memory or a DVD disc. An input 504 is
arranged for receiving commands from a user, for example to start and stop playback of a
piece of encrypted content. Such commands may trigger initiation of one or more of the
methods set forth herein. A display 512 and/or amplifier (not shown) may be provided for
providing feedback to the user regarding the state of the program, and/or for rendering
decrypted content to a user, for example.

The diagrams in the figures only represent sketches of possible designs of the
systems and methods set forth herein. These are not limiting. For example, processing steps
may be distributed differently over a plurality of modules and/or units, while still providing

the same functionality.

Consider an exponentiation x“ in some algebraic structure G with a
multiplicative operation (e.g. a ring for RSA). In this exponentiation, x may be variable. For
simplicity, assume that x can be any element of G. The invention easily extends to the case
that x is taken from a subset of G. Furthermore, let Q be such that x® =1 forall xe G . For
instance, if G is a group (which is not the case for RSA), then Q can be defined as the order
of group G. Then the exponentiation x“ is equivalent to the exponentiation x“*** for any

integer b.

Also, let for any m =1 the values aj,a,...,a, satisfy Hai =qa+ b for some
=l

integer b. It is possible to compute x* via
e —Cy=y

Note that aj,a,...,a, is not necessarily of the same bit-length as a.

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
13

It is possible to choose ai,az,...,a, in such a way that the bit length required to
store the exponent a is increased from & = |_log2 a—| to any length K = Z’rlog2 a; —| Herein,
i=1
Kz2r= |_log2 Q—|. If a is derived from the key, then this means that the key may be enlarged

to any size. However, this is not the only way to increase the size of the exponent and/or the
key.

Let a(a,,a,,...,a,) be a bit string specifying the values ai,az,...,an. It is
possible to choose the values ay,a,,...,a, properly, such that any pre-specified string (e.g.

hardware or user identifier) is included in o (a,,a,,...,a,).

In order to prevent an attacker from extracting knowledge about the
computation of x* from a software program, it may be desirable to bind the computation to
the remainder of the program instead of having the computation as an isolated program. This
binding preferably involves encoding an input and/or an output of the exponentiation
operation. This way, it is more difficult to apply the exponentiation operation successfully
outside the context of the application in which it is embedded. Also, it is more difficult to
derive useful information by monitoring the input and/or output values of the exponentiation
with a debugger, for example. An exponentiation routine for computing z=x“ (or, similarly,
z= fom:lai) may be bound in this sense to the surrounding program in, for instance, the

following way. In the surrounding program - x is computed for some arbitrary value 3 .
The exponentiation routine then computes “ - z instead of z. To compensate for this, the

surrounding program multiplies the outcome of the exponentiation routine by a constant 3 ™.

These multiplications may be performed in an obfuscated way, for example using look-up
tables which combine the multiplication with another processing step, similar to the input and
output encodings of Chow et al.

The properties mentioned above apply regardless of the value of m, i.e., they
apply for any m>1.

In the following, a white box implementation of the decryption algorithm of
RSA is described. Although in this description the example of RSA decryption is explained
in most detail, this is not a limitation. The techniques disclosed may also be applied to
perform RSA encryption, for example, in a similar way. Also, the techniques may be applied
to other cryptographic algorithms, including different kinds of encryption, decryption, and

digital signature applications.

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
14

The RSA public key cipher defines several processes for key generation,
encryption, and decryption. These processes are summarized in the following.

Key generation may comprise the steps of:

1. Generate 2 large random (and distinct) primes p and ¢, each roughly the same
size.

2. Compute n=p-q.

3. Compute ® =(p-1)(¢g-1).

4. Select a random integer e, 1< e < @, such that gcd(e,P) =1. In this

description, ged means greatest common divisor.

5. Compute a unique integer d, 1 <d <P, such that ¢-d =1mod P .
6. Public key is given by: (n,e).
7. Private key is given by: d.
Encryption may comprise the steps of:
8. Identify a plaintext message m.
9. Represent message m as an integerx, 0< x<n.
10. Cipher text is given by ¢ = x°* modn.

Decryption may comprise the steps of

11. Identify a ciphertext message c.
12. Integer x is given by x =c? modn .
13. Plaintext message m is a message represented by x.

Given the definition of @ in step 3 above, x* =1mod# forany 0< x<n. As
an example, suppose that & =(p—1)(¢ —1) is a 1024 bit value. Then the exponent 4 has at
most 1024 bits. Using Q = P, the exponent d may be hidden in a string of arbitrary size
K>1024. First, this is described for the case where m=1. Next, the case of m=2 is described. It
will be clear for the skilled person how to implement the case m>2 in view of the description

of cases m=1 and m=2.

In the case of m=1, the conditionHal. =d + b can be written as
i=1

a, =d +bQ . For simplicity, define y = q,. This means that x’ mod» may be implemented

via x” modn . It is possible to find an y having a representation with a given bit length K,
(wherein the representation does not include leading zeros in the most significant part and K

18 greater than a bit length of d). Value y is a K-bit value if b satisfies

10

15

20

25

WO 2009/136361 PCT/IB2009/051837
15

K- K
257 —d <h< 2% —1-d ‘
Q Q

To see this, observe that by this choice of b the exponent d + bhQ satisfies

26 <d+bQ <2 1.

Hence, the binary string associated with the value y =d +b5Q consists of K
bits. Consequently, the exponent d has been hidden in the larger, K-bit string y.

It is possible to include an arbitrary bit string in y. Consider a pre-specified
string of / bits with / < K —r. Such a string / may be included in the bit string specifying the
exponent y. Let s be the number associated with the bit string of / bits that we want to
include. Assume that / = K —r . If | < K —r, some arbitrary bits may be added in front of
and/or after the string, for example.

A value S may be obtained from s by extending it to a K-bit value by adding r
zero bits to the least significant side of's, i.¢., these r zero bits become the least significant
bits of S. Note that a binary representation of any value S+x with x < Q may start with the

binary string for s, i.c., the binary string that we want to include.

Define b = {%J . Consequently, d +bQ < S <d +(b+1)Q and thus

d+bQ =S+ x foran x < Q. Hence, the binary representation of the exponent y = d +bHQ

starts with the binary string s.

If m=2, then the condition Hal. =d + b2 can be written as a, -a, =d +DbQ..
i=1

This means that x* mod# may be computed as follows.
First, compute z=x“ modn;
next, compute z> mod# . The result is x* mod# .
Suppose that it is desired to increase the total bit length of a@; and a, to any K
with K >r = |_log2 Q—|. This may be realized by choosing values a; and a, satisfying
K = Z|_log2 a; —| This can be done using the following steps, for example.
i=1
Choose a; as an arbitrary K-r bit value that satisfies ged(a,,Q)=1. Finding
such a value a; is within the reach of the skilled person, in view of this description.
Compute a value a; that satisfies a, -a, =d mod Q. The value a;, can be

computed as follows. Using Euclid’s algorithm, compute a value c that satisfies

10

15

20

25

WO 2009/136361 PCT/IB2009/051837
16

a, ¢ =1mod Q. Value a, may be computed as a, = c-d mod 2, since the values a; and a,
thus obtained satisfy g, -a, =d mod Q.

Value a; is a K-r-bit value and a; may be an r-bit value. Hence, the storage
requirement for storing the exponents used for the computation of x“ mod » has increased to
K.

The above steps describe, for the case of m=2, a way to hide the exponent d in
a larger string.

In an embodiment, a pre-specified bit string is included in an exponent of a

white-box implementation. Define o(a,,a,) as a function converting a; and a; into a bit
string specifying a; and a,. An obvious choice of a.(a,,a,) is a function which simply
concatenates the bit strings associated with a; and a;. In a.(a,,a,), a bit string s of length K-r

bits with gcd(s,€Q) =1 may be included by choosing a; to be equal to s.
It is possible to hide an exponent a in values a1,as,...,a, with Hai =a+bQ,
i=1

where Q satisfies x® =1mod# . In this way, it is possible to increase the storage space
needed to store the exponent from k =[log, a | bits to K = Z|_log2 al.—| bits. In some

i=1
applications, it may be preferable that, once having the K-bit vector (ai1,az,...,an), it is
difficult for an attacker to decrease the storage size of this K-bit vector (for instance, we may
not want the attacker to extract the underlying £-bit exponent a) . This property may be
referred to by saying that the white-box implementation is “resistant to compaction”. It is
noted that in order to decrease the storage space needed for storing the K-bit vector

(ai,az,...,am), it suffices to find a value ¢- Q with ¢ < b, because (a+bhQ)mod(c- Q) is

smaller than a + b€, but functionally equivalent.

An attacker who intends to find a representation of the exponent which has
fewer bits, may, besides the K-bit vector (ai,az,...,an), also have additional information to his
disposal. Consider, for instance, the case that (a1,az,...,ax) 1s used to hide the secret
(decryption) exponent d of RSA. Then an attacker typically also has access to the public
(encryption) exponent e. These values satisfy e- Hai =I1modQ.

i=1
Hence, from the above it follows that in order to be resistant to compaction, a

desired property of the RSA white-box implementation is the following: Having the public

10

15

20

25

WO 2009/136361 PCT/IB2009/051837
17

value e and the private values a,ay,...,a, with e- Hal. =1mod Q, then it is still difficult for
i=1

an attacker to find a value ¢-Q with ¢ <b.
In a more general setting, outside the context of RSA, the following may be
observed.

Suppose that an exponent a is hidden in the values ai,as,...,a, (hence

H a;, = a+bQ). Furthermore, suppose that an attacker can compute some function f with
i=1

f(a,,a,,...,a,)=0-€Q. Then, in order to be resistant to compaction, it is a desired property
that it is difficult for an attacker to derive from o - Q a value ¢-Q with ¢<b.

Note that in the above mentioned example of RSA, the function f may be
given by f(a,,a,,...,a,) = (e : Hai J—l .
i=l

Returning to the general setting, two approaches may be identified that might
allow an attacker to derive such a value ¢- Q with ¢ <b.
A first approach for finding ¢- Q is the following. By assumption, an attacker

can derive some value f(a,,a,,...,a,) =0 - Q. Now, suppose that the attacker is able to

derive values f3,,B, such that

OC'Q:BMBz (D
and
B, la. (2)

This would give rise to B, =c-Q for some value c. If values B,,[3, are now
such that ¢ < b, then B, is a value ¢-Q with ¢ < b . Thatis, B, can be used to find an
exponent

d=(a+bQ)mod(c-Q)=a+hQ

where b <b .

A second approach for finding a ¢- Q with ¢ < b is the following. In the
second approach, two different, but functionally equivalent white-box implementations

(a,,4,,...,a,)and (a,,a,,...,a,) may be used to find a value ¢-Q with ¢ <b . These

10

15

20

25

WO 2009/136361 PCT/IB2009/051837
18

functionally equivalent white-box implementations give rise to H a,=d=a+b<Q and
i=1

[[é=i=a+b0.

=1
Applying function f'to (a,,d,,...,a,) and (a,,a,,...,a,) may result in values
o, - and a, - Q for some o, and «,, respectively. For these two values it holds that
ged(a, - Q, o, - Q) = ged(a,,00,) QL =c-Q,
for some value c. If ¢ <min(b,,b,), then we a further reduction of the white-
box implementation is obtained. It is noted that for the attack to be effective for the RSA
example, there should not exist a & satisfying b, = b, + ko. . Hence, a should not be obtained
by adding the value o - Q multiple times to a .
The two attack approaches described above may be counteracted as follows.

Prevent an attacker from being able to derive values B, 3, that satisfy (1) and (2), as having
these values is the basis of an attack. An approach for making it hard to find such B,,p, isto

take care that the factorization of o into prime numbers contains only large prime numbers
(preferably the value o is a prime number). Moreover, it is advantageous if the factorization
of Q contains at least one large prime number. In this respect, a prime number may be
regarded to be sufficiently large if it is cryptographically secure, i.e., the constraints to be
imposed on the size of said large prime numbers are similar to the constraints commonly
imposed on the cryptographically secure prime numbers used in cryptographic algorithms
such as RSA.

In more general terms, the elements x which are to be used in the
cryptographic process may be elements of an algebraic structure having » elements. In for

example RSA, the exponent y, when used as decrypter exponent, may satisfy ey =1modn
for a value e. In this case, e- y—1=a -A for some value a. Such a value oA may be found by

an attacker. The step of identifying (306) an obfuscated exponent y may comprise selecting y
satisfying that a factorization of A into prime numbers comprises at least one large prime
number and a factorization of o into prime numbers comprises only large prime numbers.
Such large prime numbers are for example prime numbers large enough to prevent
exhaustive search on common computer systems, for example the prime numbers comprise at

least 64 bits.

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
19

It will be appreciated that the invention also extends to computer programs,
particularly computer programs on or in a carrier, adapted for putting the invention into
practice. The program may be in the form of source code, object code, a code intermediate
source and object code such as partially compiled form, or in any other form suitable for use
in the implementation of the method according to the invention. It will also be appreciated
that such a program may have many different architectural designs. For example, a program
code implementing the functionality of the method or system according to the invention may
be subdivided into one or more subroutines. Many different ways to distribute the
functionality among these subroutines will be apparent to the skilled person. The subroutines
may be stored together in one executable file to form a self-contained program. Such an
executable file may comprise computer executable instructions, for example processor
instructions and/or interpreter instructions (e.g. Java interpreter instructions). Alternatively,
one or more or all of the subroutines may be stored in at least one external library file and
linked with a main program either statically or dynamically, e.g. at run-time. The main
program contains at least one call to at least one of the subroutines. Also, the subroutines may
comprise function calls to each other. An embodiment relating to a computer program
product comprises computer executable instructions corresponding to each of the processing
steps of at least one of the methods set forth. These instructions may be subdivided into
subroutines and/or be stored in one or more files that may be linked statically or dynamically.
Another embodiment relating to a computer program product comprises computer executable
instructions corresponding to each of the means of at least one of the systems and/or products
set forth. These instructions may be subdivided into subroutines and/or be stored in one or
more files that may be linked statically or dynamically.

The carrier of a computer program may be any entity or device capable of
carrying the program. For example, the carrier may include a storage medium, such as a
ROM, for example a CD ROM or a semiconductor ROM, or a magnetic recording medium,
for example a floppy disc or hard disk. Further the carrier may be a transmissible carrier such
as an electrical or optical signal, which may be conveyed via electrical or optical cable or by
radio or other means. When the program is embodied in such a signal, the carrier may be
constituted by such cable or other device or means. Alternatively, the carrier may be an
integrated circuit in which the program is embedded, the integrated circuit being adapted for
performing, or for use in the performance of, the relevant method.

It should be noted that the above-mentioned embodiments illustrate rather than

limit the invention, and that those skilled in the art will be able to design many alternative

10

WO 2009/136361 PCT/1IB2009/051837
20

embodiments without departing from the scope of the appended claims. In the claims, any
reference signs placed between parentheses shall not be construed as limiting the claim. Use
of the verb "comprise" and its conjugations does not exclude the presence of elements or
steps other than those stated in a claim. The article "a" or "an" preceding an element does not
exclude the presence of a plurality of such elements. The invention may be implemented by
means of hardware comprising several distinct elements, and by means of a suitably
programmed computer. In the device claim enumerating several means, several of these
means may be embodied by one and the same item of hardware. The mere fact that certain
measures are recited in mutually different dependent claims does not indicate that a

combination of these measures cannot be used to advantage.

10

15

20

25

WO 2009/136361 PCT/IB2009/051837
21

CLAIMS:

1. A method of obfuscating an exponent, comprising

identifying (304) a value A for which it holds that A >0 and x* =1 fora
plurality of elements x which are to be used as base values of an exponentiation in a
cryptographic process;

identifying (306) an obfuscated exponent y which is greater than A; and

providing (308) information indicative of the obfuscated exponent y for use in

the cryptographic process.

2. The method according to claim 1, wherein the step of identifying (306) an
obfuscated exponent comprises the steps of

establishing a key value a, wherein a< A ;

selecting a positive integer b; and

computing y =a+bh .

3. The method according to claim 1, further comprising establishing one or more

values y,,...,», , wherein m >1, and wherein the values y,,...,», are indicative of at least a

m

plurality of exponentiations forming intermediate steps of a computation of x to the power of

Y.

4. The method according to claim 2, wherein the plurality of elements x which
are to be used in the cryptographic process are elements of an algebraic structure having »

clements, and wherein the obfuscated exponent y is greater than n.

5. The method according to claim 2 or 1, further comprising
identifying a bit string s; and

selecting the obfuscated exponent y or the values y,,...,», such that a bit

m

representation of the obfuscated exponent y or of the values y,,...,y, comprises the bit string

m

S.

10

15

20

25

30

WO 2009/136361 PCT/IB2009/051837
22

6. The method according to claim 2, wherein the step of identifying (304) a value
/ comprises selecting the value 4 such that a factorization of A into prime numbers comprises
at least one prime number of at least 64 bits; and wherein the step of identifying (306) an
obfuscated exponent y comprises selecting the obfuscated exponent y satisfying that, for a

value e defined by e- y =1modA and a value o defined by e- y—1=a - A, a factorization of o

into prime numbers comprises only prime numbers of at least 64 bits.

7. A system for performing an exponentiation having an obfuscated exponent,
comprising

a base identifying means (102) for identifying a base x of the exponentiation,
wherein x is an element of a set having » elements;

an exponent identifying means (104) for identifying data indicative of an
exponent y which is greater than a value A for which it holds that A >0 and £* =1 for all

clements & of the set; and
an exponentiator (106) for performing at least part of a cryptographic
algorithm by computing an outcome of x to the power of y thereby obtaining an outcome of

the exponentiation.

8. The system according to claim 7, further comprising

means for computing x by multiplying a predetermined value by a value f; and

means for multiplying the outcome of the exponentiation by 7.

9. The system according to claim 7, further comprising means (112) for deriving

at least part of the data indicative of the exponent y from data identifying a device or a user.

10. The system according to claim 7, wherein the cryptographic algorithm is based
at least in part on RSA.

11. A consumer electronics device comprising the system according to claim 7.

12. A method of performing an exponentiation having an obfuscated exponent,
comprising

identifying (202) a base x of the exponentiation wherein x is an element of a

10

15

20

WO 2009/136361 PCT/IB2009/051837
23

set having » elements;

identifying (204) data indicative of an exponent y, wherein the exponent y is
greater than a value A for which it holds that A >0 and &” =1 for all clements & of the set;
and

performing (206) at least part of a cryptographic algorithm by computing an

outcome of x to the power of y thereby obtaining an outcome of the exponentiation.

13. A system for obfuscating an exponent, comprising

an exponent lower bound identifying means for identifying a value 4 for which
it holds that A >0 and x* =1 for a plurality of elements x which are to be processed as base
values of an exponentiation by a cryptographic system;

an obfuscator (404) for identifying an obfuscated exponent y which is greater
than A; and

an exponent provider (406) for providing information indicative of the

obfuscated exponent y to the cryptographic system.

14. A signal comprising a cryptographic key, the cryptographic key comprising
data indicative of an exponent y which is greater than a value A for which it holds that A >0

and x* =1 for a plurality of elements x which are to be used in a cryptographic process.

15. A computer program product comprising instructions for causing a processor

to perform the method according to claim 2 or 1.

WO 2009/136361 PCT/IB2009/051837

1/4

108 110
102 104 je——— 112
106
y
114
100
\J

FIG. 1

WO 2009/136361 PCT/IB2009/051837

2/4

202 304
204 306

206 308

FIG. 2 FIG. 3

WO 2009/136361 PCT/IB2009/051837

3/4

408 |— | 404 |le—1 410

400

WO 2009/136361 PCT/IB2009/051837

4/4
510
512—~1 DpISsP
506
502~
PROC
COM
504~ INP (
508

FIG. 5

INTERNATIONAL SEARCH

REPORT

International application No

PCT/1B2009/051837

CLASSIFICATION OF SUBJECT MATTER
06F7/72 -

A
INV.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that

such documents are included in the fields searched

EPO~Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X DE 100 42 234 Al (INFINEON TECHNOLOGIES AG 1,2,4,7,
[DE]) 14 March 2002 (2002-03-14) 10-13,15
figures 1,4 :
Y 3
Y FR 2 818 846 Al (GEMPLUS CARD INT [FRI]) 3
28 June 2002 (2002-06-28)
A claims 2,11,16,17 1-2,7,
10,
12-13,15
Y WO 99/35782 Al (CRYPTOGRAPHY RESEARCH INC 3
[US]) 15 July 1999 (1999-07-15) :
A page 17, 1ine 27 - line 28; figure 2 1-2,7,
. 10,
12-13,15
- / —

' Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :
*A" document defining the general state of the art which is not
considered to be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or ’
which is cited to establish the publication date of another .
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

document published prior to the international filing date but
later than the priority date claimed

gt

e

e}

pr

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undetlying the

invention

document of par@icular relevance; the claimed i_nvention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of pasticular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
megts, such combination being obvious to a person skilled
in the art.

document member of the same patent family

e

oy

ge

Date of the actual completion of the international search

19 June 2009

Date of mailing of the intemational search report

08/09/2009

Name and mailing address of the 1SA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Verhoof, Paul

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

| International application No

PCT/1B2009/051837

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y BRICKELL E F ET AL: "FAST EXPONENTIATION
WITH PRECOMPUTATION (EXTENDED ABSTRACT)"
EUROCRYPT 1992, 1992, pages 200-207,
XP000577415
SPRINGER VERLAG, Bertin,GERMANY

- section 2 .

A US 5 479 511 A (NACCACHE DAVID [FR])

26 December 1995 (1995-12-26)

column 3, 1ine 6 — Tine 35; figure 1

A WO 01/31436 Al (BULL CP8 [FR]; GOUBIN

. LOUIS [FR]) 3 May 2001 (2001-05-03)
claims

3

1,7,
11-13,15

Form PCT/ISA/210 {continuation of second shest) (April 2005)

International Application No. PCT/IB2009 /051837

FURTHER INFORMATION CONTINUED FROM PCTASA/ 210

Continuation of Box II.1

Claims Nos.: 14

Claim 14 is directed to a signal containing data, these data being
defined with reference to values not present in that data. In the
absence of any technical means used or possible technical effect created
by the signal, the subject-matter of the claim is considered entirely
abstract, contrary to Rule 39.1 (v). No meaningful search was possible
for this claim.

The methods of claims 1-4, 12 do not necessar11y involve technical
means. Hence, they do not exclude the possibility of being performed
entirely by the human brain, contrary to Rule 39.1 (iii) PCT.
Nevertheless, a meaningful search could be performed for these claims by
restricting their scope to the technical context of the description.

) International application No.
INTERNATIONAL SEARCH REPORT PCT/182009/051837
BoxNo.ll Observations where certain claims were found unsearchable (Continua.tion of ftem 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:

14 .
because they relate to subject matter not required to be searched by this Authority, namely:

see FURTHER INFORMATION sheet PCT/ISA/210

2. D Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos.:
because they are dependent claims and are not drafied in accordance with the second and third sentences of Rule 6.4(a).

BoxNo.lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers alisearchable
claims. :

2. l:l As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search reportcovers
only those claims for which fees were paid, specifically claims Nos.:

4, No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

please see additional sheet(s)

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/IB2009 /051837

FURTHER INFORMATION CONTINUED FROM PCTASA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-4, 7, 10-15

obfuscated exponent indicative of a plurality of
exponentiations

2. claims: 5, 9

obfuscated exponent comprising a bit string

3. claim: 6

obfuscated exponent having only large prime numbers in the
factorisation of ey-1

4. claim: 8

masked exponentiation to an obfuscated exponent

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2009/051837
patent document Publication Patent family Publication

cited in search report date member(s) date

DE 10042234 Al 14-03-2002 AU 8767501 A 13-03-2002
WO 0219065 A2 07-03-2002

FR 2818846 Al 28-06-2002 NONE

WO 9935782 Al 15-07-1999 AT 429748 T 15-05-2009
AT 325478 T 15-06-2006
AU 2557399 A 26-07-1999
CA 2316227 Al 15-07-1999
DE 69834431 T2 19-04-2007
EP 1050133 Al 08-11-2000

US k479511 A 26-12-1995 AU 2883692 A 07-06-1993
DE 69218961 D1 15-05-1997
DE 69218961 T2 24-07-1997
WO 9309620 Al 13-05-1993
ES 2101124 T3 01-07-1997
HK 1000987 Al 15-05-1998
SG 44714 Al 19-12-1997

WO 0131436 Al 03-05-2001 EP 1639447 Al 29-03-2006
FR 2800478 Al 04-05-2001
JP 2003513491 T 08-04-2003
’ 6973190 Bl 06-12-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report
	Page 34 - wo-search-report
	Page 35 - wo-search-report

