

PATENT SPECIFICATION

(11) 1 589 032

1 589 032

(21) Application No. 4375/78 (22) Filed 3 Feb. 1978
(31) Convention Application No.
790 503 (32) Filed 25 April 1977 in
(33) United States of America (US)
(44) Complete Specification published 7 May 1981
(51) INT. CL.³ G01N 19/00
(52) Index at acceptance

G1S 1E1 1E2B 1F 1N

(54) APPARATUS FOR TESTING FRANGIBLE CONTAINERS

(71) We, OWENS-ILLINOIS, INC., a corporation organized and existing under the laws of the State of Ohio, of Toledo, State of Ohio, United States of America.

5 (Assignees of BENJAMIN MERCER, JR., DARIUS ORLEY RIGGS and CHARLES GEORGE VOGEL), do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which 10 it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to apparatus for testing of frangible containers.

15 It has been the practice in the past to test frangible containers such as glass containers whose particular intended service is for marketing of soft drinks, and beer, where the product is under pressure, by inspecting 20 these containers optically for checks, i.e. fine cracks, both in the finish and in the heel. It has also been suggested to check the sidewall of the container for variations in the thickness of the wall circumferentially 25 about the container and at several selected vertical positions of the container. The presence of a check might result in a structural failure in the container when filled with a product under pressure. The side- 30 walls of the containers have, by and large, been inspected only by visual observation by selectors observing the containers as they move in succession past a diffuse light source. The selectors are capable of selecting 35 out those containers which have gross defects and in some instances will be able to segregate containers having other, less obvious, defects such as checks, seeds and blisters. It has also been proposed in the 40 past to check the structural strength of containers by subjecting them to an internal pressure test or, as is commonly known, a “bursting strength test”. The “bursting strength test”, however, normally is a test 45 conducted on statistical samples of containers, and the samples are stressed by internal pressure to the point of failure. As would be expected, this type of test has not lent itself to being a high-speed production-type test where every container

would be subjected to a specific internal pressure.

It has been found that by subjecting containers to a radial loading on the sidewall, that those containers which have 55 structural defects in the walls thereof or have insufficient strength to withstand a specific load, will be broken and thus effectively selected out of a line of ware being produced. The external stressing of 60 the container is found to be a fairly acceptable substitute for impact testing containers.

DESCRIPTION OF THE PRIOR ART

A number of patents have issued recently 65 which describe glass container testing apparatus and methods which involve the application of a compressive force to the containers while in an upright position, with the compressive force being applied to 70 opposite sides of the sidewalls thereof.

One such patent, U.K. Patent No. 1,292,245. In this patent, containers are moved along on the upper surface of the conveyor where they enter the space between 75 a rotating wheel and a stationary pressure plate. The gap between the wheel and the pressure plate is such that the containers will be compressed as they are precessed through the gap by the rotation of the 80 wheel. In this particular patent, the wheel is biased by a fluid motor in the direction of the pressure plate. Depending upon the force applied by the motor, the wheel will compressively load the container being 85 tested. This loading is termed a “simulated impact test”. A defective container will break.

Another patent, 3,702,563 issued November 14, 1972, to Brady et al, discloses a 90 somewhat similar apparatus to that described above with regard to U.K. Patent No. 1292245. In this particular patent, a non-shiftable, rotating wheel precesses the bottles through a compression zone in which the pressure plate or shoe has the force applied to it. This is by way of distinction 95 from the McGuire et al patent. The application of the force in Brady et al is achieved by the use of a pivoted lever system and 100

an air cushion or pneumatic pillow.

Another patent, 3,885,421 issued May 27, 1975, to Nakamura et al, discloses a testing device in which a container again is moved and rotated by contact with a rotating wheel at one side and is contacted at the opposite side by a pressure plate or "pusher shoe". The handling equipment in this particular patent provides three starwheels, the first of which functions to segregate and separate the containers from each other and remove them from a moving conveyor in order to transfer the container to the second starwheel. The second starwheel then moves the containers through the compression testing area and thence to a third starwheel which will replace the container on the moving conveyor. The compressive force is applied in this patent by a fluid motor acting on the "pusher shoe". Other features which are not of particular significance with regard to the present application are also shown and described.

These three patents all have one thing in common and that is that they are fundamentally designed to test round containers, in view of the fact that in the operation of each of them, containers are held against a rotating wheel which will roll the container over a stationary shoe or plate.

A fourth patent, 3,831,437 issued August 27, 1974, to Sheets, discloses an apparatus for testing containers that may be of a non-circular cross-section. In this patent, containers again are moved in a generally straight line while in an upright attitude and pass between a first rotating wheel and a second rotating wheel with the second wheel being biased toward the first rotating wheel. The containers are, therefore, squeezed as they pass between the two wheels. Generally speaking, the first wheel is mounted on a fixed axis, while the second wheel is rotatable about a generally vertical axis and has its inner periphery provided with a rolling, biasing system which, in effect, biases the inner rim of the second wheel in a radial direction toward the axis of the first wheel. It should be noted that the second wheel generally is supported in part by resilient means so that it yields as the container passes through the test zone. The patent teaches that the apparatus could be used to test both round and non-round containers.

The present invention provides apparatus for testing a frangible container for structural defects, comprising a pair of substantially parallel rollers, means for rotating the rollers, means for adjusting the position of one of the rollers to vary the spacing therebetween, the adjustable roller being mounted on a hinge part for movement about the turning axis of hinge; and means for biasing the adjustable roller in the

direction of the other of the rollers with a predetermined force so that on the passage of a container between the rollers, that force is applied to the container.

The present invention is further described hereinafter, by way of example, with reference to the accompanying drawings, in which:

FIG. 1 is a perspective view of the container testing apparatus of the invention showing a container in testing position;

FIG. 2 is a top plan view of the apparatus of FIG. 1;

FIG. 3 is a front elevational view of the apparatus of FIG. 2;

FIG. 4 is a cross-sectional view taken at line 4-4 of FIG. 2;

FIG. 5 is a cross-sectional plan view taken in the plane of 5-5 of FIG. 1;

FIG. 6 is a schematic plan view, similar to FIG. 2, of modified apparatus for testing round containers; and

FIG. 7 is a schematic plan view, similar to FIG. 2, of modified apparatus for testing flasks.

DETAILED DESCRIPTION OF THE DRAWINGS

With particular reference to FIGS. 1 and 2, there is shown a generally horizontal conveyor 10 having an upper, articulated surface 11 which takes the form of an endless moving surface moving in the direction of the arrow indicated thereon in FIG. 1. A pair of stationary guide rails 12 and 13, spaced apart slightly more than the width of a container to be handled, extend over the surface 11 of the conveyor 10 at the incoming end thereof. A pair of curved guide rails 14 and 15 connect the exit end of the rails 12 and 13 and guide a container "C" to be tested to the testing zone or area which is located adjacent one side of the moving surface 11 of conveyor 10. The testing zone or area is defined by the space between a roller 16 and a roller 17. Both rollers 16 and 17 are provided with a resilient nylon or rubber-like facing 18 which can withstand glass penetration. The roller 16 is mounted on a shaft 19 which extends downwardly from an overhead supporting member 20. Supporting member 20, as best shown in FIGS. 1 and 2, is in the form of an angle bracket supported by a pair of hollow pillars 21 and 22.

The upper end of the shaft 19 passes through a support bearing housing 23 and carries a pulley 24 and a co-axially mounted pulley 25 thereon. The pulley 24 is rotationally connected to a drive pulley 26 by a belt 27. The drive pulley 26 is connected to an output shaft 28 of a gear box 29. The gear box 29 has its input drive shaft connected to an electric motor 30. Both the box 29 and the motor 30 are mounted on

the upper surface of the supporting member 20. As a matter of fact, the bearing housing 23 is carried by the upper surface of a support casting 31. The casting 31 is 5 bolted to the contoured, vertical face of the support member 20 by bolts 32.

With the above described mechanism, it can be seen that the roller 16 will be rotated by the operation of the motor 30. 10 The pulley 25 is connected to a pulley 33 by a drive belt 34. A take-up pulley 35, mounted on a plate 36, is provided to keep tension on the belt 34. Pulley 33 is mounted on a shaft 37 and is coupled to a drive 15 pulley 38 which is also mounted on the shaft 37. The shaft 37 and the plate 36 are both mounted to a support tower 39. The tower 39 is bolted to the side of the support casting 31 and extends upwardly 20 and at an angle to the left, as viewed in FIGS. 3 and 4. The lower drive pulley 38 has a belt 40 in engagement therewith. The belt 40 is in driving engagement with pulleys 41, 42 and 43.

25 As can best be seen when viewing FIGS. 1 and 2, the support casting 31 takes the form of a generally rectangular enclosure formed of sidewalls 44 and 45, end wall 46 and the opposite end wall is formed by 30 a plate 47. An arm 48 is bolted at its lower end at 49 to the plate 47 and, as can be best seen in FIG. 3, the arm 48 extends upwardly and to the left, and at its upper end forms a platform 50. The platform 50 35 supports a slideable block 51 within a horizontal groove formed in the upper platform surface. The block 51 supports a vertical stub shaft 52 which serves as the axle for the pulley 43. The block 51 may be adjusted 40 by turning a screw 53. This adjustment is for the purpose of taking up any slack which may be in the belt 40.

Intermediate the arm 48 and the tower 39 is a hinge forming support casting 54. 45 This hinge support casting is mounted within the rectangular casting 31 by bolts 55 extending through horizontal slots 56 formed in the wall 44 of the support casting 31. Similar slots 57 are provided in the 50 opposite wall 45. The casting 54 serves as the support for the pulley 42. A shaft 58 serves as the axle for the pulley 42, it being understood that the shaft 58 may be stationary with respect to the casting 54. The casting 54, at its upper, outwardly extending arm portion, carries the shaft 58 and on a lateral extension 59 of this upper end portion there is provided a vertical shaft 60. The shaft 60 rotatably supports both the pulley 41 55 and a pulley 61 located therebeneath. The pulley 61 is connected to rotate with the pulley 41 and is driven therewith such that when the belt 40 drives the pulley 41, the pulley 61 also will be driven which in turn 60 will drive a belt 62 which is in engage-

ment therewith. The belt 62 extends around a pulley 63. The pulley 63 is mounted on, and drives, a vertical shaft 64 that extends downward through a bearing supporting housing 65. The shaft 64 at its lower end 70 drivingly supports the roller 17. The housing 65 is supported at the ends of a pair of horizontally extending arms 66 and 67. The two arms 66 and 67 are actually formed of a single casting connected together and reinforced by a web 68 and, as best shown in FIG. 4, the arms 66 and 67 at their ends remote from the housing 65 are formed with bearings 69 and 70. The bearings 69 and 70 provide a rotatable connection with a 75 vertical hinge pin 71 carried by the hinge support casting 54.

Thus it can be seen that operation of the motor 30 will drive both the roller 16 and roller 17 in the directions indicated by the 80 arrows on the tops thereof in FIG. 1. This is through the system of pulleys and belts described above.

The lower portion of the support casting 54, which is positioned between the side-walls 44 and 45 of the casting 31, serves as the mounting member for a pneumatic pillow 72, similar to that shown in the above-referred-to Brady et al patent. The interior of the pillow is connected to a 90 fluid pressure line 73 which may be connected to a suitable source of fluid under pressure with the gauges and valves necessary to provide an indication and control of the actual internal pressure within the 95 pillow 72. One end of the pillow is seated within the casting 54 at the location of the pressure line 73 connection, while the other end of the pillow is connected to a plate 74 mounted on the side of the bearing 100 housing 65. In this manner the bearing housing 65 and the roller 17 supported thereby are biased in the direction of the 105 other, non-shiftable roller 16 by the pneumatic pillow 72.

110 As previously explained, the bearing housing 65 is hingedly mounted so that it may swivel about the hinge pin 71. To prevent over-travel of the housing 65 in the event a container is broken by the lateral 115 force exerted between the two rollers 16 and 17, the housing 65 is provided with a pair of radially extending lugs 75 and 76. These lugs will engage stop fingers 77 and 78 which are mounted to the support casting 120 54 by bolts 79. The stop fingers, as it can readily be seen, will prevent the pneumatic pillow from becoming over-extended when the bearing housing moves with the roller 17 upon breakage of a container under test. 125 It should be understood that the adjustment of the support casting 54 within the casting 31, for a particular size of bottle to be tested, will result in the bearing housing 65 being positioned so that the stop fingers 130

77 and 78 will not come into play when a container is being stressed unless breakage occurs. It is also understood that as a container passes between the rollers 16 and 17, the bearing housing 65 will move toward the pillow 72 and compress this pillow to a certain degree depending upon the pneumatic pressure within the pillow. When adjustment is made for ware of a larger size, the entire casting 54 may be moved toward the end plate 47 by loosening the bolts 55. This movement will result in the bearing housing 65, arms 62 and 67 with the casting 54 and pulleys 41, 42 and 61 moving as a unit to the dotted line position in FIG. 2. This adjustment does not disturb the tension or effective length of the belt 40 since the belt passes around one side of the pulley 41 and over the outer side of the pulley 42. The pulley 43 will remain in its fixed position as does the pulley 38.

It should also be pointed out that the side rails 12 and 13 at the incoming side 25 have their counterpart rails at the outgoing or exit of the testing apparatus, as shown in FIG. 5. In addition, curved guides are provided for directing the ware back to the center of the moving conveyor surface 30 face 11.

As best shown in FIGS. 3 and 4, the roller 17, at the left-hand side thereof, has a cleaning brush 80 in engagement therewith, with the brush 80 being vertically adjustable to accommodate for positioning of the rollers 16 and 17 at differing heights depending upon the height of the container being inspected. The brush 80 serves to keep the rollers clean, it being recognized that upon failure of a container, bits of glass may statically cling to the roller surface. The brush 80 has its counterpart 81, partially shown in FIG. 1, in engagement with the roller 16. The brush 80 is mounted 40 to the web 68 of the arms 66 and 67. The brush 81 is mounted to the support bracket 20 at 82. Inasmuch as the roller 16 is not adjustable relative to its support, the brush 81 also will not need to be moved when 45 adjustments are made. Both the brushes are mounted to arms which extend downwardly and their lower ends are provided with openings through which horizontal pins that actually carry the brushes may extend, with 50 springs taking up the tension and biasing the brushes in the direction of the rollers. The springs, as shown in FIGS. 3 and 4 at 83, assure that the brushes are biased against the rollers 17 and 16 and also will 55 provide a certain amount of automatic adjustment or take-up relative to the anticipated wear of the brushes themselves.

The foregoing description of the apparatus clearly sets forth the function of the apparatus as a system for handling and

testing containers for structural defects, in which the non-round containers are squeezed between two moving surfaces with a force that can be preselected. The apparatus is easily adjustable so that it may be used to 70 test containers of various sizes and capacity without a major amount of realignment time being required. The apparatus will test containers of a wide variety of shapes, such as oblong, square, rectangular, etc., in 75 cross-section.

Turning now to FIG. 6 a schematic plan view of the apparatus of FIG. 2 is shown, with a modification of the pulley and belt drive arrangement providing for the testing 80 of containers that are round. In this modification, those elements which are identical to the mechanisms of FIGS. 1-5 will be provided with the same reference numerals. Only those new elements will have a new 85 or different reference numeral.

The gear box 29 drives the pulley 26, belt 27 and roller 16. In this embodiment, the pulley 33 is driven by the belt 34. It should be noted that the pulley 33 has its 90 axis moved to the left, as viewed in FIG. 6, from the position it previously occupied in FIG. 2. Pulley 33 and pulley 38 thereunder are shifted as a unit to the position shown in FIG. 6. Pulley 38, through belt 95 40, will drive the pulley 41 in the direction shown by the arrow thereon. It should also be noted that the pulley 43 and its mounting block 51 are also shifted to the right on the platform 50 into the other mounting 100 slot provided. As can be seen, the belt 40 therefore drives the pulley 41 in the direction opposite to the direction of drive previously described with respect to the pulley 41 of FIG. 2. In this manner the roller 17 will be driven in a clockwise direction, as shown by the arrow thereon. It should also be pointed out that a pulley 63a which is carried by the shaft 64 of roller 17 is made smaller than the previously described pulley 110 63, so that this pulley 63a, being somewhat smaller, will rotate the surface of the roller 17 at a slightly different velocity than the surface of the roller 16 is being rotated. In this manner a round container "C" will 115 be rotated about its vertical axis between the rollers 16 and 17 through a portion of its circumference before the container progresses to the extent that it will move from between the two rollers. This permits the 120 use of essentially the same overall apparatus for testing round containers without the necessity of extensive refitting or adjusting the mechanical members or using a back-up plate such as that shown in the prior art 125 in place of one of the rollers.

Turning now to FIG. 7 the modification of the apparatus of FIGS. 1-5 will be described which permits the testing of flasks. As might be expected, if the apparatus of 130

FIGS. 1-5 were to be used to test flasks which have somewhat parallel but curved surfaces, as shown in FIG. 7, there would be a tendency for the flask "C" to be thrown toward the top of FIG. 7 view. Due to the fact that the two opposed sides of the container, when in the shape of a flask are of different lengths, and to correct for this so as to enable the essentially same apparatus to function to test flasks, a pulley 63b is made larger than the previously described pulley 63 in the FIG. 2 embodiment. In this manner the periphery of the roller 17 will be moving slower than the periphery of the roller 16. Thus the flasks will pass through the gap between the two rollers and be stressed thereby without creating turning moments with regard to the central, vertical axis of the flask "C".

It should be noted that in FIG. 7, the drive belt and pulley arrangement of FIG. 2 remains intact and is not changed as was the case with respect to the embodiment of FIG. 6. This is because a reversal of drive direction of the roller 17 is not needed.

In view of the foregoing, it can be seen that the disclosed apparatus, while particularly suited for the testing of containers of the general shape shown in FIG. 1, the apparatus also, with slight modifications, is adapted to be used for the testing of round containers and flasks. Thus a universal container stressing test apparatus is provided by the disclosed invention.

35

WHAT WE CLAIM IS:—

1. Apparatus for testing a frangible container for structural defects, comprising a pair of substantially parallel rollers, means for rotating the rollers, means for adjusting the position of one of the rollers to vary the spacing therebetween, the adjustable roller being mounted on a hinge part for movement about the turning axis of hinge; and means for biassing the adjustable roller in the direction of the other of the rollers with a predetermined force so that on the passage of a container between the rollers, that force is applied to the container.
2. Apparatus as claimed in claim 1 wherein biassing of said one roller is effected by a pneumatic pillow.
3. Apparatus as claimed in claim 1 or 2 further comprising means connected to a mounting for said one roller for limiting the movement thereof toward the other roller upon breakage of a container under test.
4. Apparatus as claimed in claim 1, 2 or 3 wherein the hinge part and the adjust-

able roller are adjustable as a unit relative to the other of the rollers.

5. Apparatus as claimed in any of claims 1 to 4, wherein the rollers are rotatably drivable by way of pulley means on each roller and an interconnected belt drive system for said pulley.

6. Apparatus as claimed in claim 5, wherein each roller has a respective shaft extending upward therefrom from each roller and the pulley means comprises a respective pulley on each shaft.

7. Apparatus as claimed in claim 5 or 6 wherein said pulley means are of substantially the same diameter whereby said rollers engage opposite sides of a non-circular, symmetrical container and stress the container without rotating the container about its vertical axis.

8. Apparatus as claimed in claim 5 or 6 wherein said pulley means are of different diameters so as to enable said rollers to engage opposite sides of a flask-style container having opposing convex-concave sides and stress the flasks without rotating the flask about its vertical centerline.

9. Apparatus as claimed in any of claims 1 to 8, wherein said rollers are interconnected for rotating in opposite directions.

10. Apparatus as claimed in claim 9 when appendant to claim 5 or 6 wherein said pulley means are of different diameters whereby one roller is driven at a slightly higher angular velocity than the other to thereby provide rotation of a substantially circular container while being stressed.

11. Apparatus as claimed in any of claims 1 to 8 wherein said rollers are interconnected for rotating in the same direction.

12. Apparatus as claimed in any of claims 1 to 11 further comprising a moving conveyor for transporting the container with its axis generally vertical and guided along a predetermined path that diverges from the centerline of the conveyor to adjacent an edge thereof, and the apparatus is stationed to receive the containers between the pair of rollers thereat.

13. Apparatus as claimed in any of claims 1 to 12 for testing glass containers.

14. Apparatus for testing frangible containers substantially as hereinbefore described with reference to Figs. 1 to 5, 6 or 7 of the accompanying drawings.

W. P. THOMPSON & CO.

Coopers Building,

Church Street,

Liverpool L1 3AB.

Chartered Patent Agents.

1589032

COMPLETE SPECIFICATION

6 SHEETS

*This drawing is a reproduction of
the Original on a reduced scale*

Sheet 1

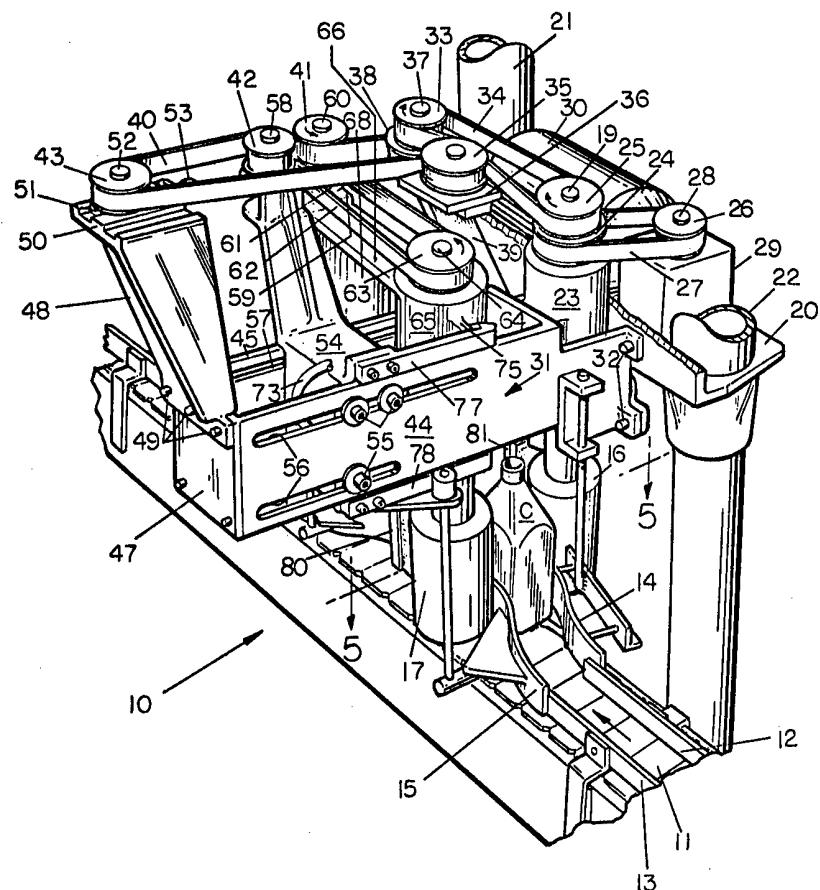


FIG. 1

1589032 COMPLETE SPECIFICATION

6 SHEETS *This drawing is a reproduction of the Original on a reduced scale*

Sheet 2

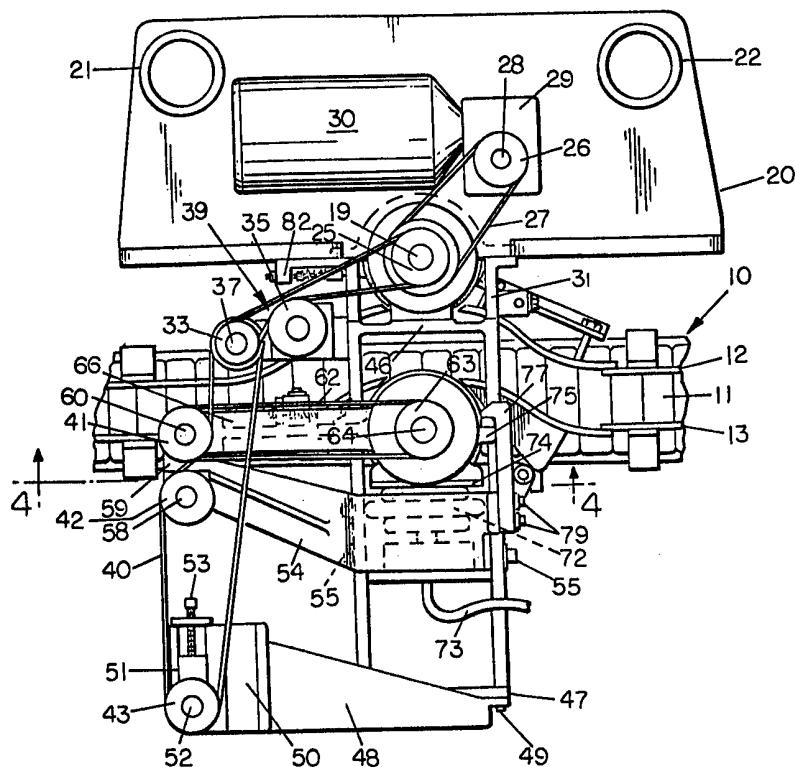


FIG. 2

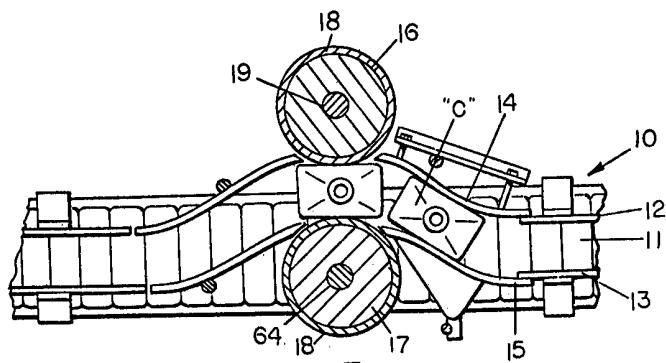


FIG. 5

1589032 COMPLETE SPECIFICATION

6 SHEETS *This drawing is a reproduction of
the Original on a reduced scale
Sheet 3*

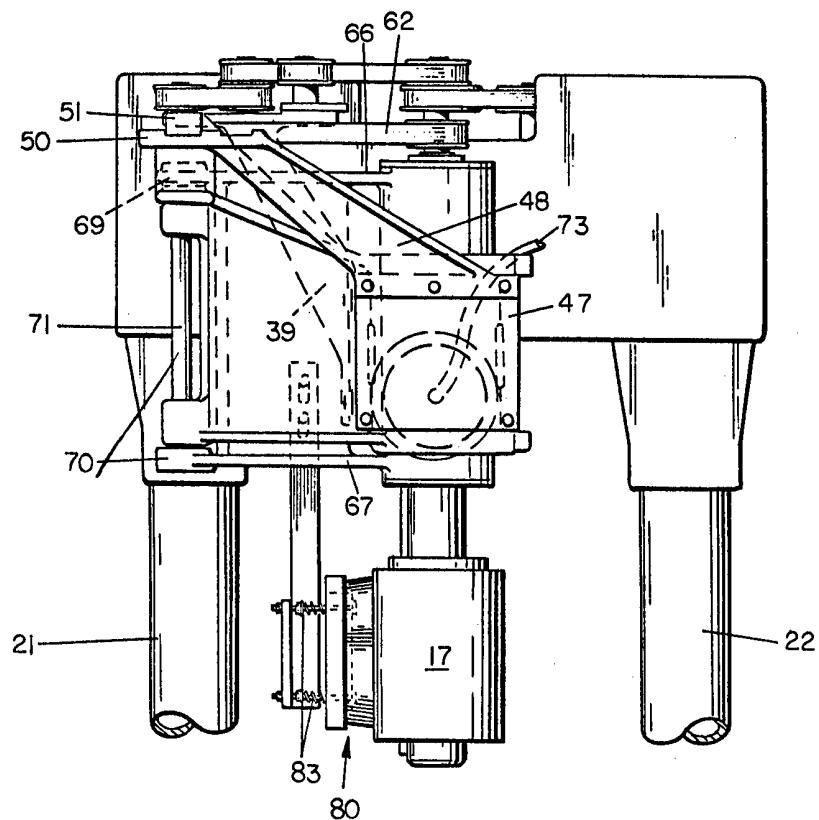


FIG. 3

1589032 COMPLETE SPECIFICATION

6 SHEETS *This drawing is a reproduction of
the Original on a reduced scale
Sheet 4*

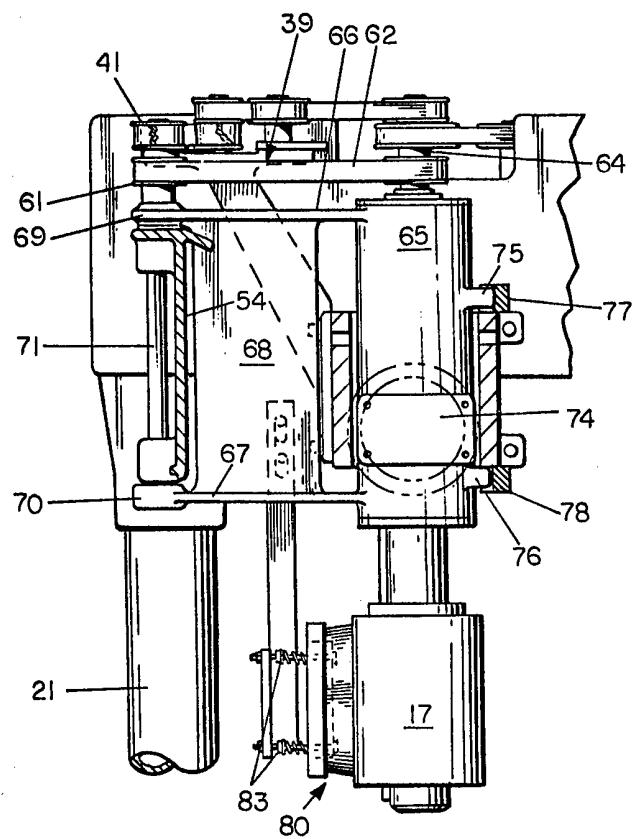


FIG. 4

1589032 COMPLETE SPECIFICATION

6 SHEETS *This drawing is a reproduction of the Original on a reduced scale*

Sheet 5

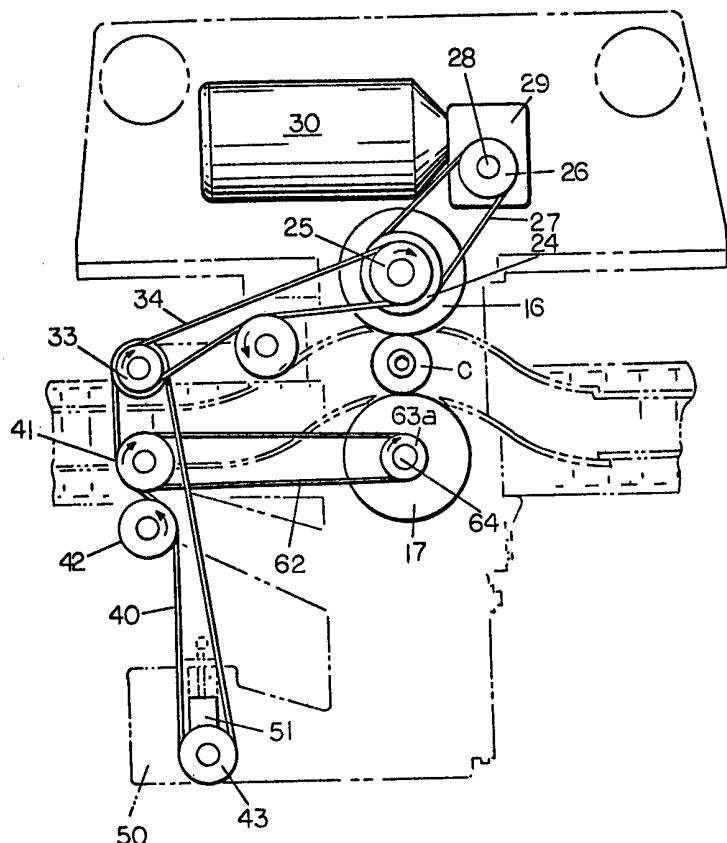


FIG. 6

1589032

COMPLETE SPECIFICATION

6 SHEETS

*This drawing is a reproduction of
the Original on a reduced scale*

Sheet 6

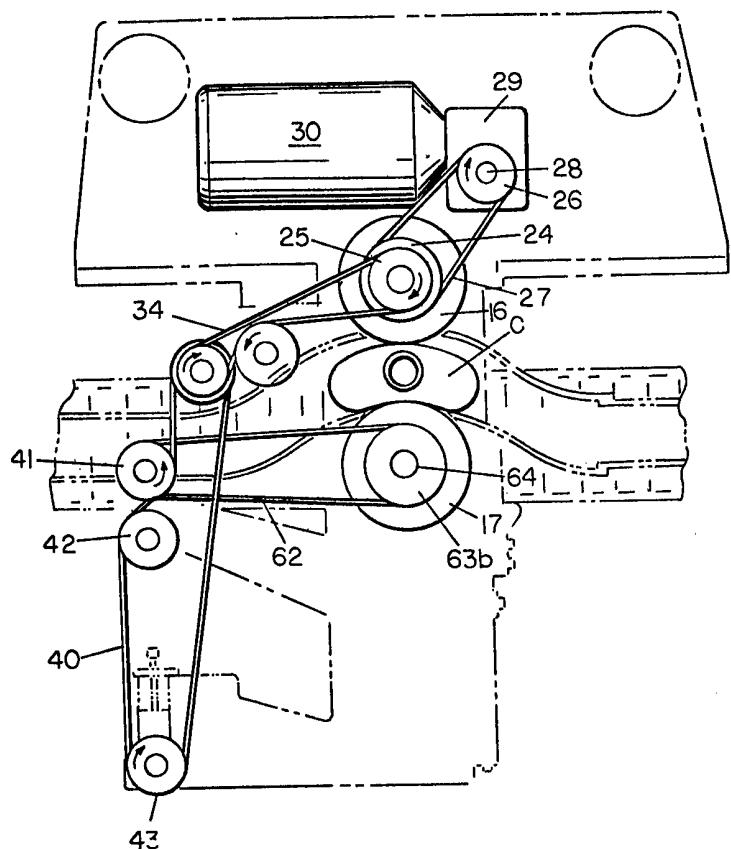


FIG. 7