发明名称
加压包及定压加压包系统

摘要
一种加压包及定压加压包系统，其特征在于加压包由充气膨胀的加压室和长度可以围绕上述加压室的长方形的外层组成，上述外层的短边的一端表面和另一端的背面靠连接固定手段固定，上述加压室轴向固定在上述外层上。使用时输液袋接触上述加压室用外层围绕上述输液袋，用上述连接固定手段固定。本发明的效果是：用长方形的外层围绕加压室和输液袋制成加压包，向加压室送气使其膨胀，因被外层限制在围绕的空间内，使扩容的加压室的膨胀体积限制在施压必要的最小范围，从而成为扩容小，省瓦斯的加压包。此外，将加压瓦斯定压调节，从加压室的瓦斯供给装置向本发明的加压包供气，便构成节1省瓦斯的定压加压包系统。
1. 一种加压包，以充气膨胀的加压室及具备长方形的短边表面一端和背面的另一端固定的连接固定手段的、长度可围绕上述加压室的外层所构成，将上述加压室的固定部轴向固定在上述外层，上述外层围绕装填了液袋的上述加压室，利用上述连接固定手段固定而制成，

充气膨胀的上述加压室，有2个或3个固定部，在上述外层的轴向平行固定，在充气膨胀的加压室的横向前方中部处，轴向制成未到达周缘部的熔接的隔离部将加压室分割成连通的2个固定部，上述隔离部的固定部固定在上述外层，

其特征在于：充气膨胀的加压室下端的一部分和外层下端的一部分紧密连接制成止落部。

2. 一种加压包，以充气膨胀的加压室及具备长方形的短边表面一端和背面的另一端固定的连接固定手段的、长度可围绕上述加压室的外层所构成，将上述加压室的固定部轴向固定在上述外层，上述外层围绕装填了液袋的上述加压室，利用上述连接固定手段固定而制成，

充气膨胀的1个袋状的袋状加压室的固定部，轴向固定在上述外层。在充气膨胀的室的横向前方中部处，轴向制成未到达周缘部的熔接的隔离部将袋状加压室分割成连通的2个袋状室，上述隔离部的固定部固定在上述外层；

其特征在于：袋状加压室下端的一部分紧密连接制成止落部。

3. 根据权利要求2所述的加压包，其特征在于：在充气膨胀的袋状室，制成周缘熔接的观察窗的袋状加压室的固定部，轴向固定在上述外层。

4. 一种加压包，以充气膨胀的加压室及开孔的长方形的短边表面一端和背面的另一端固定的具备连接固定手段的外层所构成，上述加压室的固定部轴向固定在上述外层，输液袋将上述加压室包裹在内，上述输液袋的出口颈部从孔伸出到外部，用上述外层围绕、上述连接固定手段固定而制成。

其特征在于：长方形的外层的一部份轴向延长成为抑制带、可以用上述抑制带的一端和背面的另一端固定连接固定手段连接固定。

5. 一种加压包系统，其特征在于：调节将小型瓦斯钢瓶的加压瓦斯调节到目的压力的瓦斯供给装置及上述瓦斯供给装置和与申请权利要求1至4任何一项记载的加压
包连接，送气使其膨胀。
技术领域

本发明是关于压迫输液袋或输血袋等注人患者体内使用的加压包及维持一定施压的定压加压包系统。

背景技术

加压包的构造如下，将难以伸缩的树脂膜或网眼制成的外层，固定在用难以伸缩的树脂膜制成的密封加压室的两端，在加压室和外层之间构成的外套中装填输液袋，向加压室送气使其膨胀压迫输液袋，向加压室送气是利用手动式的橡胶球泵进行的。输液袋的出口连接输液管套具，靠夹子调节输液管的开闭，或利用细管等构成输液管回路的一部分形成阻力控制流量，这是一种采用的方法。

现在使用的加压包按大小分为数种，分别用于从500ml到3000ml的输液袋。用于最小的500ml的加压室的体积约为2公升，几乎是500ml输液袋体积的4倍，此即成为无用扩容的原因。如果200ml输液袋使用500ml用的加压包，这一比率约为10倍。因此，现在的加压包存在不能配合输液袋的大小调节加压室的问题。

现在加压包的构造是把输液袋装填在加压室的一侧，如在两侧可以装填2个以上的加压包，不仅可以减少使用的加压包，还可以节省管理手续。

塑料制的输液瓶制成瓶状，因瓶状物及塑料均有弹性，以往的单面施压不能充分压迫，存在塑料输液瓶排出压降低的问题。故需要不降低塑料输液瓶排出压的施压输液包。

对输液袋双面施压的袋状加压室存在不易观察输液袋残量的问题。如能对输液袋内稍加确认，便可安心输液。

加压包吊挂使用时，在加压室膨胀将输液袋向向外层之前，外层和加压室之间夹持的输液袋存在滑落或产生位移的问题。

现行的输液袋容量大、种类多，使用前进行混合的输液袋尺寸也大，利用笨重的输液泵进行输液。上述输液袋如使用加压包，并将其小型化，就便于移动使用。现在使用的加压包，在输液时，加压室的压力会伴随输液袋内药量的减少而降低。
为此加压包上装设了显示加压室内压的压力表。医务人员通过压力表监视加压室的内压，内压降低时必须用手动式的橡胶球泵送气以维持加压包的压力。存在医务人员负担过大的问题。

发明内容

本发明的目的是提供一种加压包及定压加压包系统，以提供可将加压包的加压室的体积调节到必要的最小量，同时可使用复数个输液袋，塑料输液瓶也可使用的加压包，以及提供维持一定施压的定压加压包系统为目的。

加压室和输液袋整体被外层围绕限制了加压包的外径，使加压室的膨胀限制在被外层围绕的空间内。因本发明的加压包的构造将加压室的膨胀体积限制在压迫输液袋必要的最小范围，从而成为扩容小，省瓦斯的加压包。

为叙述方便，以下左右方向称横向，上下方向称轴向。

本发明的目的是这样实现的，制作具有使外层一端的表面与另一端的背面连接固定具有连接固定手段的外层，与充气膨胀的加压室，加压室一端的固定部固定在外层制成加压包。将1个输液袋和加压室一侧全面接触装入，用外层围绕整体，因外径受限，便成为将加压室的膨胀限制在压迫输液袋必要的最小范围的加压包。进而在加压室两侧各装入1个输液袋，便成为同时对2个输液袋施压的加压包。

具有使外层一端的表面与另一端的背面连接固定的连接固定手段的外层，与充气膨胀的加压室在横向中央处，纵向制成未到达周缘密封部，未到达上述周缘部的熔接部的隔壁固定部和隔壁周缘密封部。外层制成围绕上述加压室的长度。将加压室的隔壁固定部固定在外层，则成为有2个室的加压室。2个加压室的外侧各夹持1个输液袋，2加压室内侧插入1个输液袋，使其全面接触。然后用外层围绕，便成为同时可以对3个输液袋施压的外层式加压包。

具有使外层一端的表面与另一端的背面连接固定的连接固定手段的外层，与充气膨胀的加压室在横向中央处，纵向制成未到达周缘密封部，未到达上述周缘部的熔接部的隔壁固定部和隔壁周缘密封部，便将加压室左右分股2个室。将左右2室分别轴向折叠成袋状，再将袋的固定部固定在隔壁固定部便制成2个袋状的加压室。外层制成围绕上述袋状加压室的长度。将袋状加压室的隔壁固定部固定在外层便成为外层式加压包。将塑料输液瓶插入各袋状加压室，用外层围绕限制其外径，向袋状
加压室送气，则塑料输液瓶全面受压，因比单侧压迫更有效，从而缓解了塑料输液
瓶排出压低的问题。2袋状加压室内各插入1个输液管，2个袋状加压室的之间夹持1
个输液管，然后用外层围绕便成为同时可以对3个输液管施压的外层式加压包。

也可以制成将1个袋状加压室固定在外层的加压包。袋状加压室中插入1个输液
包，袋状加压室的两外侧各放置1个输液管，然后用外层围绕便成为可以对合计3个
输液管同时施压的外层式加压包。

在袋状加压室上开设观察孔，孔周缘熔接便成为观察窗。这样可以观察袋状加
压室内的输液管，确认输液管内的残留量。

为了防止装填在加压包内的输液管滑落，可制作止落部卡住输液管出口侧的肩
部防止滑落。止落部可设在外层和加压室或袋状加压室的输液管出口侧的肩部相当
的位置，熔接、缝合均可。

对大容量输液管，可在外层设伸出孔，使输液管的出口颈部伸出到加压包外侧。
将大容量输液管折叠，中夹入加压室，成为外层围绕输液管的加压包。由于将输液
管折叠，形状结构都变得小巧紧凑。

将加压瓦斯定压调节，从加压室的瓦斯供给部向本发明的加压包供气，从而代
替手动式的橡胶球泵送气，便构成省瓦斯、省力的定压加压包系统。

本发明的效果是：用长方形的外层围绕加压室和输液管制成加压包。向加压室
送气使其膨胀，因被外层限制在围绕的空间内，使扩容的加压室的膨胀体积限制在
施压必要的最小范围，从而成为扩容小，省瓦斯的加压包。此外，将压瓦斯定压调
节，从加压室的瓦斯供给部向本发明的加压包供气，便构成节省瓦斯的定压加压包
系统。

附图说明
图1-a～图1-d是本发明加压包1例所示的概略图。
图2-a～图2-d是本发明加压包用于复数输液管例所示的概略图。
图3-a～图3-e是本发明加压包用于袋状加压室例所示的概略图。
图4-a～图4-c是本发明加压包用于设有观察窗的袋状加压室例所示的概略图。
图5-a～图5-e是本发明加压包用于准备时大容量输液管例所示的概略图。
图6是本发明加压包装设抑制带的外层例所示的概略图。
图7是本发明定压加压包系统1例所示的概略图

符号说明
1 加压包
2 加压室
3 外层
4 2室加压包
5 2室加压室
6 外层
7 加压包
8 加压室
9 外层
10 装设抑制带的外层
11 加压包
12 瓦斯供给装置
13 袋状加压室的加压包
14 袋状加压室
15 设有观察窗的袋状加压室

具体实施方式

以下就本发明实施的最佳形态，参照附图详细说明。加压室、外层如无特殊理由制作方法是统一的，各种加压包的尺寸因使用输液袋的大小而异。

图1-a～图1-d是本发明一个加压室的加压包的第一实施例，图1-a 是加压室2的正面图，图1-b 是外层3的正面图，图1-c 是从外层3的A～A’线的断面图看到的加压包1，加压室2 的固定部22被固定在外层3上。图1-d是输液袋40、41置于加压包1的加压室2的C、D两面中，被外层围绕时，从外层3的A～A’线看到的断面图。用固定在外层带31两端的面状搭链35、36连接固定，从送气管25送气使加压室2膨胀。

图中所示的加压包1，是加压室2的固定部22被轴向固定在横向伸长的外层3上而制成。
加压室2四周密封熔接，制成周缘熔接部21，其横向制成固定部22，室23设注入口及排
出加压瓦斯的注入口24，密封连接送气管25。

外层3的外层带31设吊挂加压包时使用的吊挂部33，开吊孔34。也可以用绳索状
或带状等吊带代替吊挂部33。外层带31的横向表面一端及背面的另一端设面状搭链
35，36相互连接固定。外层3比加压室2的横幅长，制成可以围绕加压室2和输液袋的
长度。

虽然加压室2只要可以密封并膨胀自如用任何材料制作均可，但因膨胀时需对输
液袋40，41施压，最好用不延伸的材料制成。加压室2使用时，一般输入300mmHg(约
40kPa)的瓦斯使其膨胀。耐压性佳可以保持密封的薄膜材料如，在尼龙织物上覆盖
氟氯酯或聚氯乙烯等的布料，或用聚氯乙烯膜夹持聚乙烯膜网制成的三明治复合膜
等。但并不限于此，耐压性佳可以保持密封的材料即可，厚度最好在0.2~0.6mm左
右。将2张薄膜重合或将一张薄膜折叠，周缘部密封熔接制成周缘熔接部21，便可将
加压室2制成袋状的室23。图1是2张薄膜重合的，因此四周全部密封。

注入口24最好像救生圈的空气注入口那样，注气管的一端制成圆盘状，但也不限
于此。注入口24密封连接送气管25，送气管25本身只要具有可弯曲性、密封性、耐
压性，采用橡胶管或塑料管均可。

外层带31只要柔软、抗拉强度大，材质虽然无特殊限制、但最好采用可以确认输
液袋40，41的内容量等的透明、不延伸材料。外层带31的材质，以聚氯乙烯薄膜或
氟氯酯薄膜夹持尼龙、聚酯，聚丙烯网或聚乙烯线网制成的三明治式的复合膜等为
佳。外层带31的厚度最好在0.2~0.6mm左右。外层带31表面的一端及背面的另一端
固定着面状搭链35，36，外层3制成围绕置于加压室2的C，D两面的输液袋40，41时，
面状搭链35，36可以相互连接固定的长度。只要可以相互连接固定即可，不限于面
状搭链。

图1-a～图1-d所示的外层3固定着加压室2的固定部22，固定部22固定在外层3
的位置因输液袋的形状尺寸而异。固定方法，为熔接、缝接、粘结均可。

如图1-d所示，输液袋40，41置于加压室2C，D两面，外层3围绕全体，用两端部
的面状搭链35和36连接固定。因被外层3围绕，加压包1的外径被限制，加压室2的
膨胀被限制在外层3围绕的空间内。因本发明的加压包1既保持了压迫输液袋40，41
这一加压包的固有机能，又将加压室2制成体积膨胀限制在施压必要的最小范围。从
而成为扩容小，省加压瓦斯的加压包1。

图2-a～图2-d是有2个加压室的加压包的第二实施例。图2-a是加压室5的正面图。将一张薄膜轴向折合，周缘熔接密封制成周缘熔接部43，再横向2等分处，被未到达上述周缘熔接部43的隔壁周缘密封部44和隔壁固定部45构成的隔壁部，分隔成连接的室48、49。图2-b是外层6的正面图，图2-c是外层6的A-A’方向的加压包4的断面图，加压室5被隔壁固定部45固定在外层6，图2-d是输液袋67、68、69置于加压室5的B、C、D中，然后用外层6绕起，再用面状搭链65、66连接固定，向加压室5送气使其处于膨胀状态的加压包4的断面图。

加压室5是将一张可以熔接的薄膜轴向折合，左右及上部周缘熔接密封，制成周缘熔接部43的，所述中央部分未到达上述周缘熔接部的隔壁周缘密封部44和隔壁固定部45，将加压室分割成连通的室48、49。在室49设密封的注入口46，连接送气管47。

图3-a～图3-e是本发明加压包的第3实施例，由2个袋状室构成加压室14。图3-a周缘熔接密封制成周缘熔接部132，在横向2等分处，未到达上述周缘熔接部132的，熔接的隔壁周缘部133和隔壁固定部135将加压室分割成连通的室130、131。室130、131的一端连袋固定部136、137、室131设注入口138，连接送气管139。室下端设防止输液袋滑落的止落带141、142、143、144、145、146。

图3-b是沿图3-a的A-A’、B-B’向内侧折叠制成的袋状加压室14的正面图，袋固定部136、137固定在固定部133，形成袋状室130、131的正面图，止落带141、142、143、144、145、146被固定，形成止落部147、148、149、150。(c)是(b)的C-C’方向的袋状加压室14的横断面图。

图3-d是袋状加压室14固定在外层带155的加压包13。图3-e是袋状加压室14的A、B中装入输液袋157、158，输液袋159夹持在C，用外层带155整体包裹，用两端的面状搭链152、153连接固定的断面图。

图4-a～图4-c是设有观察窗178的袋状加压室15，图4-a将室170的周缘密封熔接制成周缘熔接部172，将观察窗178的周缘密封熔接制成周缘熔接部179。图4-b是图4-a沿A-A’向后折叠制成的袋状加压室15。图4-c是B-B’的横断面图。

室170设注入口175，连接送气管176。室170左右设固定部171和袋固定部173、下端有止落带181、182、183。室170沿A-A’向后折叠，袋固定部173被固定在固定
部171，止落带181、182、183相向重合固定，制成止落部185、186。

从图4-7所示的袋状加压室15的横断面图中的观察窗178可以看到输液袋（图中未示明），即使是袋状加压室，也可以确认输液袋内的残留量。

图5-a～图5-e是本发明加压包的第4实施例，是以大容量输液袋为对象设计的加压包7。图5-a是外层9设置的大型输液袋88出口颈部89通过孔95的正面图。图5-b是加压室8的正面图。图5-c是外层9 A-A’方向的加压包7的断面图，图中加压室8的固定部82固定在外层9上。图5-d是输液袋88的出口颈部89穿过加压包7的通过孔95，输液袋88折叠包裹加压室8，用外层9围绕，再用面状搭链93、94连接固定，使加压室8充气膨胀时，外层9 A-A’方向加压包7使用例的断面图。

图5-a在所示外层9的横长的外层带的一端及另一端的反面固定着面状搭链93、94，并设有输液袋88出口颈部89的通过孔95。该孔的位置及数量可根据输液袋而定。

图5-b所示加压室8的构造和图1-a所示加压室2相同，大小尺寸根据装入的输液袋88的大小而定。如图5-d所示，因输液袋88折叠包裹加压室8，使结构紧凑小型化。图5-e是输液袋88的横断面图及正面图。

图6是外层10的正面图。外层带101横方向长，两端固定着面状搭链102、103，围绕时可相互连接固定。抑制带105沿外层带101的轴向被固定部108、109固定。图示的通过孔104配合使用的输液袋制作。

抑制带105两端，固定着围绕加压室（未图示）和输液袋时（未图示），用于固定用的面状搭链102、103。抑制带105固定在外层带101上即可，也可以将外层带101的一部分在图的轴向延长，其两端设置搭链106、107。

以下就第2个发明，即定压加压包系统加以说明。图7所示的例与本发明的第一实施例的加压包1构成相同，外层带111的两端固定着面状搭链113、114，围绕时可相互连接固定，加压室112周缘部密封焊接，室112设注气口与送气管117密封连接，再接瓦斯供给装置12的模式图。

瓦斯供给装置12由小型瓦斯钢瓶123、压力表121结合的减压阀122构成。一边注视压力表121，一边调节减压阀122，将瓦斯钢瓶123供给的加压瓦斯调节到目的压力，通过连接的送气管117供给加压包11的加压室112。减压阀如能将气压固定在一定压力，就不需要压力表。

也可以用医院内部管道供应的加压瓦斯代替瓦斯钢瓶123，通过连接管(未图示)
送到减压阀，调节到所需压力，供给加压包11的加压室112。

如此，利用瓦斯供给装置12，将一定压力的加压瓦斯持续供给加压包11，就成为可以对输液袋长时间施加一定压力的定压加压包系统。

以往的加压包，因随着液体从输液袋流出，加压室内的压力会下降，必须定期检查加压室的压力，压力不足时必须用手动橡皮球泵送气，尤其在流量大时，频繁地观察及手动橡皮球泵送气，提高了管理作业的频度，增加了医护人员的负担。此外，往的加压包加压室容量大，高价瓦斯的消费量大，不适合使用小型瓦斯钢瓶。

以省瓦斯、扩容小的小型加压包11为代表的外层式加压包和瓦斯供给装置12组合成定压加压包系统，不需要上述加压包那样繁琐的管理作业。

产业上利用的可能性

在医疗现场，加压包是输液、输血等必须使用的不可缺少的器械。
图 1-a

图 1-b
图 3-a

图 3-b