PCT

WORLD INTELLEC]"UAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/31820
GOGF 5/06 Al

(43) International Publication Date: 10 October 1996 (10.10.96)

(21) International Application Number: PCT/US96/04517 | (81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ,

(22) International Filing Date: 2 April 1996 (02.04.96)

(30) Priority Data:

08/418,797 7 April 1995 (07.04.95) Us

(71) Applicant: STRATACOM, INC. [US/US]; 1400 Parkmoor
Avenue, San Jose, CA 95126 (US).

(72) Inventor: KAO, Ruey; 18600 Starrett Court, Cupertino, CA
95014 (US). .

(74) Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff, Taylor
& Zafman, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025-1026 (US).

BB, BG, BR, BY, CA, CH, CN, CZ, CZ (Utility model),
DE, DE (Utility model), DK, DK (Utility model), EE, EE
(Utility model), ES, FI, FI (Utility model), GB, GE, HU, IS,
JP, KE, KG, KP, KR, KZ, 1K, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, 8K, SK (Utility model), TJ, TM, TR, TT, UA,
UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB,
GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ,
CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND APPARATUS FOR THE MANAGEMENT OF QUEUE POINTERS BY MULTIPLE PROCESSORS IN A

DIGITAL COMMUNICATIONS NETWORK

(57) Abstract

A method for managing a buffer queue that stores
a data queue, wherein the data queue comprises a set of
n data elements, n being at least zero. A head pointer

is stored at a first location, which may be in a cache
controlled by a first processor. The head pointer indicates

a head buffer of the buffer queue. The first processor
reads the head pointer to determine the head buffer of

the buffer queue when a data element is to be removed
from the data queue. The first processor reads a next
pointer of the head buffer to determine whether the data

queue is empty. The first processor determines that the
data queue is empty when the next pointer has a first

value, which indicates that the head buffer is a dummy
buffer.

HEAD MMY BUFFER 62
POINTER o 60 s
CACHE ¢ o
BUFFER o
85 s
TAIL
POINTER,, I
-l_ BUFFER
CACHE ,, 70
BUFFER
75
BUFFER POOL
50

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Amenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria
Benin

Central African Republic
Congo
Switzerland
Cote d'lIvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG
§1
SK
SN
SZ
TD
TG
T
T
UA
uG
us
vz
VN

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/31820 PCT/US96/04517

-1-

METHOD AND APPARATUS FOR THE MANAGEMENT OF QUEUE
POINTERS BY MULTIPLE PROCESSORS IN A DIGITAL
COMMUNICATIONS NETWORK

FIELD OF THE INVENTION

The present invention relates generally to data storage
management and more particularly to the management by multiple
processors of queue pointers that indicate the beginning and end of a
queue.

BACKGROUND OF THE INVENTION

Cell switching is a method of transmitting information
wherein a relatively large unit of information called a "frame" is
broken into smaller, equal sized units of information called "cells." A
frame is typically segmented into cells by the Segmentation And
Reassembly (SAR) unit of a source node from which the frame
originates. The source node serially transmits each cell of a frame to a
destination node through a digital communication network
constructed of communication lines, switches, and intermediate
nodes that forward the cells to the destination node. An SAR unit of
the destination node reassembles the frame using the transmitted cells
after all cells of a frame have been received.

Digital communication networks have a limited amount of
bandwidth such that only a certain amount of information can be
transmitted across the network per unit time. One consequence of
limited bandwidth is contention for network resources, and one
solution for such contention is to store cells until network resources
become free, at which time the stored cells may be transmitted to their
destinations. To ensure that frames are correctly reconstructed by the
destination node, stored cells must be queued such that they are
transmitted in the order that they were segmented (or received).

According to one mechanism for storing cells, one or more
memory devices are provided as a "buffer pool” comprising a
multiplicity of "buffers.” Each buffer is of a fixed size, and each buffer
stores a single cell. A buffer may also store associated control

WO 96/31820 PCT/US96/04517

-2-

information required for queuing and routing the stored cell.
Wherein each buffer is associated with a memory location, ordering is
not implied by the memory address of a buffer. Instead, buffers are
queued by creating and maintaining linked lists of buffers.

The control information for each buffer includes a "next
pointer" that allows the creation of a linked list of buffers as cells are
stored. For example, when a first cell is stored in a first buffer to begin
the queue, the next pointer of the first buffer is set to a null value,
indicating that the first buffer is the last buffer of the queue. When a
second, sequentially received (or segmented) cell is stored in a second
buffer, the next pointer of the first buffer is modified to indicate or
"point" to the memory location of the second buffer, and the next
pointer of the second buffer is set to a null value to indicate that the
second buffer is the end of the queue. Next pointers may be stored by
the buffers or in a separate next pointer array.

Wherein the next pointers of the buffers provide the general
order of the queue, a "head pointer" specifies the "head" or beginning
of the queue, and a "tail pointer" specifies the "tail” or the end of the
queue. When a new buffer is added to a queue, the tail pointer of the
queue is set to indicate the new buffer as the tail of the queue.
Similarly, when a buffer is removed from the queue, the head pointer
is set to the buffer pointed to by the next pointer of the removed
buffer.

Because buffers are often simultaneously added to and removed
from the queue, a first processor is typically responsible for adding
buffers to the queue, and a second processor is typically responsible for
removing buffers from the queue. The first processor may be called
the "queuing processor," and the second processor may be called the
"servicing processor.”

According to a traditional approach of the prior art, whenever a
buffer is to be removed from a queue, the servicing processor first
determines whether the queue is empty. The servicing processor may
determine that a queue is empty by checking the value of an empty
queue flag or by checking the head pointer to see if it has a zero value.

WO 96/31820 PCT/US96/04517

-3-

If the queue is not empty, the servicing processor reads both the head
pointer and the tail pointer to determine if the head pointer and the
tail pointer both point to the same buffer, which indicates that the
buffer is the last buffer of the queue. The servicing processor
transmits the data of the last buffer and sets both the head pointer and
the tail pointer to a null or invalid value. Setting the head and tail
pointers to a null value frees the last buffer of the queue to be used by
other queues.

When the queuing processor is to add a buffer to the queue, the
queuing processor checks to see if both the head pointer and the tail
pointer have a null value, which indicates that the queuing processor
is adding a buffer to an empty queue. If the queuing processor is
adding a buffer to an empty queue, the queuing processor sets both the
head and tail pointers to indicate the buffer that has been added to the
queue. Thus, the queuing processor must read both the head and tail
pointers to determine when it is adding a data element to an empty
queue, and the servicing processor must read both the head and tail
pointers to determine when it is emptying the queue. The head and
tail pointers are therefore used to determine when a queue enters or
leaves an empty state.

Because both processors require access to the head and tail
pointers, the head and tail pointers are stored in shared memory.
When the servicing processor determines that it is removing the last
buffer of the queue, the servicing processor performs an atomic
memory access to set the head and tail pointers to a null value so that
the queuing processor can determine when the queue is empty. An
atomic memory access by one processor entails a read-modify-write
operation wherein the other processor is not allowed to access shared
memory until the read-modify-write operation has completed.
Similarly, the queuing processor performs an atomic memory access
to set the head and tail pointers of an empty queue to the value of the
memory location of the buffer being added to the empty queue.

An atomic memory access by either of the producer and
servicing processors prevents the other processor from accessing the

WO 96/31820 PCT/US96/04517

-4

head and tail pointers. Therefore, when buffers are to be rapidly added
to and removed from the queue, the use of shared memory to store
the head and tail pointers is undesirable because a processor must be
stalled to allow an atomic access of the shared memory to complete.

Although cache memories may be used to locally store data that
is also stored in shared memory, there would be problems with
storing head and tail pointers in cache memories when both
processors must read both the head and tail pointers prior to
manipulating the queue. This is because the queuing processor
independently updates the tail pointer, and the servicing processor
independently updates the head pointer. For high-speed systems, the
head and tail pointers are rapidly and independently updated, which
would result in frequent cache misses due to stale data and excessive
overhead to maintain cache coherency by flushing and refilling. If the
cache coherence operations did not result in a system failure, the use
of caches to store head and tail pointers would be inefficient compared
to merely using shared memory.

WO 96/31820 PCT/US96/04517

-5-

SUMMARY AND OBJECTS OF THE INVENTION

It is therefore an object of the present invention to decouple the
head pointer from the tail pointer such that the queuing processor is
only required to read the tail pointer and the servicing processor is
only required to read the head pointer.

It is a further object of the present invention to provide a
method for managing head and tail pointers wherein the head and
tail pointers may be efficiently stored in cache memories or internal

registers.

These and other objects of the invention are provided by a
method for managing a buffer queue that stores a data queue, wherein
the data queue comprises a set of n data elements, n being at least zero.
A head pointer is stored at a first location, which may be in a cache
controlled by a first processor. The head pointer indicates a head
buffer of the buffer queue. The first processor reads the head pointer
to determine the head buffer of the buffer queue when a data element
is to be removed from the data queue. The first processor reads a next
pointer of the head buffer to determine whether the data queue is
empty. The first processor determines that the data queue is empty
when the next pointer has a first value, which indicates that the head
buffer is a dummy buffer.

Other objects, features, and advantages of the present invention
will be apparent from the accompanying drawings and from the
detailed description which follows below.

WO 96/31820 ' PCT/US96/04517

-6-

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not
limitation in the figures of the accompanying drawings, in which like
references indicate similar elements, and in which:

FIGURE 1 shows a digital communications network.

FIGURE 2 shows a service module of the digital
communications network.

FIGURE 3 shows a buffer queue.

FIGURE 4 shows an exemplary buffer format.

FIGURE 5 shows a buffer descriptor of an exemplary buffer.

FIGURE 6 shows a general "recycle-then-read" buffer

management method.

FIGURE 7 shows a general "read-then-recycle" buffer
management method.

FIGURE 8 shows a buffer management method according to
one embodiment.

FIGURES 94, 9B, 9C, 9D, 9E, 9F, and 9G illustrate the operation
of the method shown in FIGURE 8.

FIGURE 10 shows a buffer management method according to
one embodiment.

FIGURES 11A, 11B, 11C, 11D, 11E, and 11F illustrate the
operation of the method shown in FIGURE 10.

WO 96/31820 PCT/US96/04517

DETAILED DESCRIPTION

A number of terms are used consistently herein. A "data
queue” is a queue of data elements, such as the cells of a cell switching
network, and "data queue length" refers to the length of a data queue.
An "empty data queue" is a data queue containing no data elements.
A "buffer queue” is a queue of buffers used to store a data queue.
Typically, each buffer stores at least one data element, and a buffer that
stores a data element is called a "data buffer." A "dummy buffer" is a
buffer that stores invalid data and is provided such that a buffer queue
that stores an empty data queue comprises at least one buffer. Thus, a
buffer queue cannot be empty, and the head and tail pointers of a
buffer queue are made independent of one another. The prior
method for queue management described above does not distinguish
between data queues and buffer queues because the number of buffers
is always equal to the number data elements, and an empty data queue
results in an empty buffer queue, requiring the setting of the head and
tail pointers to a null value.

One or more dummy buffers are provided for each buffer queue
such that the buffer queue cannot become empty, even when the
buffer queue currently stores no data elements. Because the head and
tail pointers always point to a buffer, there is no need to perform an
atomic memory access when a data queue becomes empty or when a
data element is added to a data queue. Therefore, neither processor is
required to read both the head and tail pointers, and the tail and head
pointers therefore need not be stored in a shared memory location.
Instead, the tail pointer may be stored in a first cache associated with
and controlled by the queuing processor, and the head pointer may be
stored in a cache associated with and controlled by the servicing
processor. Wherein the use of a dummy buffer in a buffer queue
effectively requires that at least one buffer of the buffer pool is always
in use, the ability to cache the head and tail pointers counterbalances
the inability to recycle all buffers of the buffer pool and yields a
substantial advantage over prior methods.

WO 96/31820 PCT/US96/04517

-8

Figure 1 shows a digital communications network 10. Digital
communications network 10 includes a service module 15 that acts as
a bridge or gateway between customer premise equipment (CPE) 20
and broadband network 25. CPE 20 may comprise any type of network
and associated network equipment. For example, CPE 20 may be a
frame relay system or an asynchronous transfer mode ("ATM")
network. CPE 20 equipment may therefore be connected to service
module 15 by one or more T1 or E1 communication lines. Broadband
network 25 is typically a large telecommunications network that
connects the CPE 20 to remote sites. Broadband network 25 may be
any type of broadband network, such as a network using equipment
sold by Stratacom®, Inc., of San Jose, California.

Service module 15 operates according to a servicing algorithm
for regulating traffic between CPE 20 and broadband network 25.
Typically, CPE 20 has a "service contract” that limits the amount of
bandwidth of broadband network 25 that CPE 20 may use to send data
to remote sites. Service module 15 therefore monitors the amount of
"ingress" traffic directed to broadband network 25 to better ensure that
the limits defined by the service contract are not exceeded. Service
module 15 also monitors "egress" traffic directed from broadband
network 25.

The methods described herein may find practical operation in
any setting wherein multiple processors manage a queue of buffers for
storing data elements; however, digital communications network 10
shown in Figure 1 provides an excellent example for the application of
the presently described methods. As service module 15 is responsible
for regulating traffic flow between CPE 20 and broadband network 25,
service module 15 is responsible for queuing the cells that are
transmitted between CPE 20 and broadband network 25 to better
ensure that cells are not lost. The methods described herein may also
be applied in systems wherein a single processor performs the
functions of both the servicing processor and the queuing processor
for the same queue of buffers; however, the methods provide greater
advantages and are more efficient in multiprocessor systems.

WO 96/31820 PCT/US96/04517

-9-

Figure 2 shows service module 15 in greater detail. As shown,
service module 15 includes separate ingress buffer queues 30 and
egress buffer queues 35. Due to the nature of networks, there are
typically multiple ingress buffer queues and multiple egress buffer
queues, one for each logical port or "virtual connection” of CPE 20 and
broadband network 25 that routes its traffic through service module
15. For example, a single T1 trunk provides a maximum of twenty-
four virtual connections at a transfer rate of 64 kbps each.

Service module 15 is shown as including a processor 40 having
a cache 41 and a processor 45 having a cache 46. Processor 40 is
responsible for queuing ingress data. If CPE 20 comprises a network
that does not use cell switching, such as a frame relay network,
processor 40 may perform protocol translation and segmentation to
reduce incoming frame relay packets to cells for transfer via broadband
network 25. Alternatively, processor 40 may simply queue the
incoming frames wherein processor 45 transmits the data of a queued
frame on a cell-by-cell basis. If CPE 20 comprises a cell-switching
network such as an ATM network, processor 40 need merely add the
cells to the ingress buffer queues. Processor 40 is also responsible for
removing incoming cells from the egress buffer queues . Thus,
processor 40 acts as the queuing processor for ingress buffer queue 30
and the servicing processor for egress buffer queue 35.

Processor 45 is responsible for implementing the servicing
algorithm of service module 15, for removing outgoing cells from the
ingress buffer queues, and for queuing incoming cells in the egress
buffer queues. Processor 45 is therefore the servicing processor for
ingress buffer queue 30 and the queuing processor for egress buffer
queue 35.

Both processor 40 and processor 45 are shown as being coupled
to ingress buffer queue 30 and egress buffer queue 35, and the manner
of the connection shown in Figure 2 implies the roles of processor 40
and processor 45 in the queue management of the ingress and egress
buffer queues. For example, processor 40 maintains tail pointers for
ingress buffer queues 30 and head pointers for egress buffer queues 35,

WO 96/31820 PCT/US96/04517

-10-

and processor 45 maintains head pointers for ingress buffer queues 30
and tail pointers for egress buffer queues 35. The tail pointers for
ingress buffer queues 30 and the head pointers for egress buffer queues
35 are stored in cache 41 of processor 40. Similarly, the head pointers
of ingress buffer queues 30 and the tail pointers of egress buffer queues
35 are stored in cache 46 of processor 45.

Wherein caches 41 and 46 are shown as being internal to the
respective processors, caches 41 and 46 may be external to the
processors. Furthermore, the head and tail pointers may alternatively
be stored by internal registers of the queuing and servicing processors,
or by external registers. Because the head and tail pointers are
independent from one another, many of the advantages of the
presently described methods may be achieved by storing the head and
tail pointers in non-shared memory locations such that atomic
memory accesses are not required.

Figure 3 shows an ingress buffer queue 30 in more detail.
Ingress buffer queue 30 is shown as being stored by a buffer pool 50.
Buffer pool 50 comprises a plurality of memory locations or " buffers"
of fixed size, each for storing a data element such as a cell. Buffer pool
50 may be implemented as one or more memory devices such as
DRAMs.

No ordering is required or implied by the memory addresses of
the buffers. Instead, the buffers in a queue are linked to one another
as a linked list using next pointers such as next pointers 62 and 67. For
the example shown in Figure 3, a queue of three buffers is shown.
Buffer 60 is indicated as the head buffer of the queue by the head
pointer 48 stored in cache 46. Buffer 70 is shown as the tail buffer as
indicated by the tail pointer 43 stored in cache 41.

The next pointer 62 of buffer 60 indicates that buffer 65 is the
next buffer in the queue, and next pointer 67 indicates that buffer 70 is
the next buffer after buffer 65. Wherein the next pointers are shown
graphically as arrows linking one buffer to the next buffer, according to
one embodiment, each next pointer comprises the address of the next
buffer in the buffer queue. The information of the next pointers may

WO 96/31820 PCT/US96/04517

-11-

be stored by the buffers or by a separate array of memory locations.
According to the present embodiments, each next pointer is stored as a
part of a buffer. Figure 4 shows an exemplary buffer format. Buffer 60
is shown as storing a cell 90 and a buffer descriptor 95. Figure 5 shows
that the buffer descriptor includes the next pointer 62 that points to
buffer 65 and routing information 100.

Each of the ingress and egress buffer queues includes one or
more "dummy" buffers such that each buffer queue always includes at
least one buffer, even when the data queue stored by the buffer queue
is empty. A dummy buffer is an "empty" buffer that stores invalid
data. A dummy buffer may be provided in one of at least two ways: 1)
a buffer that has transmitted its contents is not recycled and remains as
the head buffer; and 2) a designated dummy buffer is provided
wherein the dummy buffer is always the last buffer of the buffer
queue.

Figure 6 is a flow chart of a general method for managing a
buffer queue when removing a data element from the stored data
queue. The method of Figure 6 is a "recycle-then-read" process that
presumes that the head buffer is "empty" (a dummy buffer) when the
servicing processor is enabled to transmit a data element of the data
queue. The process begins at block 605 when the servicing processor is
enabled to transmit the next data element of the data queue. At
process block 610, the current head buffer pointed to by the head
pointer is recycled by setting the head pointer to point to the buffer
indicated by the next pointer associated with the current head buffer.
Thus, a new head buffer is indicated by the head pointer. At process
block 615, the contents of the new head buffer are read, and the process
ends at process block 620. The new head buffer is "empty," and the
head pointer continues to point to the new head buffer until the next
data element is to be removed from the buffer queue. Therefore, the
head pointer always points to a dummy buffer when the buffer read
transaction is initiated, and a buffer queue that is managed according
to the method shown by Figure 6 includes n+1 buffers for storing data

WO 96/31820 PCT/US96/04517

-12-

queue comprising a set of n data elements, wherein n is equal to zero
or more.

Figure 7 is a flow chart showing an alternative method for
managing a buffer queue when removing a data element from the
stored data queue. The difference between the methods shown in
Figure 6 and Figure 7 is the state of the buffer queue when a data
element is to be removed from the data queue. The method of Figure
7 is a "read-then-recycle" process results in the buffer queue storing a
dummy buffer when the data queue becomes empty. The process
begins at process block 705 when the servicing processor is enablea to
transmit a data element stored by a buffer of the buffer queue. At
process block 705, the data element stored by the current head buffer is
read, and the current head buffer is recycled at process block 715. The
process ends at process block 720.

According to the method shown in Figure 7, the head pointer
points to a dummy buffer when the data queue stored by the buffer
queue is empty. The head pointer continues to point to a dummy
buffer as data elements are added to the data queue (and buffers are
added to the buffer queue) until the servicing processor is enabled to
read data elements from the stored data queue. Thus, a buffer queue
that is managed according to the method of Figure 7 may use either n
buffers or n+1 buffers, depending on whether the buffer queue was
recently emptied of data elements.

One mechanism for detecting that the head buffer is a dummy
buffer is to maintain a count of the number of data elements in the
data queue such that the servicing processor is not allowed to read a
dummy buffer queue. This helps to prevent the contents of the
dummy buffer from being inadvertently transmitted as valid data by
the servicing processor. For example, the servicing processor may
maintain a value representative of the data queue length. If the data
queue length is zero, the servicing processor will not allow the buffer
queue that stores the empty data queue to be read.

An alternative mechanism for detecting that the head buffer is
a dummy buffer requires that the servicing processor sets an empty

WO 96/31820 . PCT/US96/04517

-13-

flag upon detecting that the next pointer of the buffer to be recycled
has an invalid or null value, which indicates that the current head
buffer is the last buffer of the queue. While the empty flag is set, the
head buffer is a dummy buffer, and the servicing processor skips
process block 710 and immediately reads the next pointer of the
dummy buffer at process block 715. When the queuing processor adds
a data element to an empty data queue, the queuing processor writes
the address of the new buffer to the next pointer of the dummy buffer.
If the servicing processor detects that the next pointer of the dummy
buffer points to another buffer, the servicing processor clears the
empty flag, resets the head pointer to point to the new buffer, and
performs the steps of process blocks 710 and 715.

Thus far, the described mechanisms for detecting an empty data
queue assume that dummy buffers are merely empty head buffers that
have not been recycled. Another alternative is to specify a buffer as a
dummy buffer such that the servicing processor may detect that the
head buffer is the dummy buffer by merely comparing the value of the
head pointer to the addresses of known dummy buffers. Upon
determining that the head buffer is a dummy buffer, the servicing
processor monitors the next pointer of the dummy buffer as described
above. Thus, the head pointer itself acts as a form of empty flag.

Figure 8 is a flow chart showing a more detailed "recycle-then-
read" queue management process such as that described with respect
to Figure 6. The process begins at process block 805 when the servicing
processor is enabled to remove a data element from the data queue.
At process block 810, the servicing processor reads the head pointer,
which may be stored in a cache associated with the servicing processor.
At process block 815, the servicing processor reads the next pointer of
the head buffer indicated by the head pointer. At process block 820, it
is determined whether the value of the next pointer is invalid or null,
indicating that no data elements remain in the data queue and that
the head buffer is a dummy buffer. If the next pointer has a null
value, the process ends at process block 825 because the data queue is
empty. The queuing processor updates the next pointer of the dummy

WO 96/31820 PCT/US96/04517

-14-

buffer to point to the buffer that stores the new data element because
the dummy buffer is the tail buffer of the buffer queue. Thus, the
servicing processor detects that a previously empty data queue is no
longer empty when the next pointer of the dummy buffer points to
another buffer, and the dummy buffer can be recycled. Process blocks
820 and 825 may be omitted if a separate mechanism is provided that
prevents the enabling of the servicing processor when the data queue
is empty. For example, the service module may maintain a value
indicative of the data queue length. If the value of the data queue
length is zero, the data queue is empty, and the queue will not be
serviced.

If the next pointer of the head buffer points to another buffer,
the servicing processor sets the head pointer to point to that buffer at
process block 830. Thus, there is a new head buffer. The "old" head
buffer is recycled, and the servicing processor reads the data element
contained in the new head buffer at process block 835. The process
ends at process block 840. The steps of process blocks 805-840 are
repeated for each data element to be removed from the data queue.

Figures 9A-9G illustrate the process shown in Figure 8. Figure
9A shows an empty data queue wherein both the head pointer and the
tail pointer point to a dummy buffer, which is shown as being buffer
60. Figure 9B shows a first buffer being added to the buffer queue,
indicating that the data queue now contains one data element. As
shown, the queuing processor updates the next pointer 62 of dummy
buffer 60 to point to buffer 65. The queuing processor also updates the
tail pointer to indicate buffer 65 as the tail buffer. The tail pointer may
be stored in a cache associated with the queuing processor. The next
pointer of the tail buffer by default contains a null or invalid value
that indicates that no further buffers remain in the buffer queue. The
head pointer continues to point to the head buffer, indicating that the
servicing processor has not yet been enabled to remove a data element
from the data queue. Figure 9C shows buffer 70 as being added to the
buffer queue. The next pointer 67 of buffer 65 is updated to indicate

WO 96/31820 PCT/US96/04517

-15-

buffer 70 as the next buffer in the buffer queue, and the tail pointer
indicates buffer 70 as the tail buffer.

Figure 9D shows the head pointer as pointing to buffer 65,
indicating that the servicing processor was enabled to remove a data
element from the data queue, determined that the next pointer 62
pointed to a buffer, and reset the head pointer to indicate buffer 65 and
to recycle buffer 60. The servicing processor reads the data element
stored by buffer 65 and maintains the head pointer as pointing at
buffer 65 such that buffer 65 becomes a dummy buffer as shown in
Figure 9E. In Figure 9F, buffer 65 is recycled, and the head and tail
pointers both indicate buffer 70. After the data element is read from
buffer 70, buffer 70 becomes a dummy buffer as shown in Figure 9G.
Thus, the data queue is empty. Should the servicing processor be
enabled to remove another data element from the data queue, the
servicing processor detects an empty queue by reading the next pointer
of dummy buffer 70.

Figure 10 shows a more detailed "read-then-recycle" queue
management method such as that shown in Figure 7. The process
begins at process block 1005 when the servicing processor is enabled to
remove a data element from the data queue stored by the buffer
queue. At process block 1010, the servicing processor checks an empty
flag to determine if the stored data queue is empty. If the servicing
processor determines at process block 1015 that the data queue is
empty, servicing processor performs the steps shown in process blocks
1050-1075, as described below.

Assuming that the data queue is not empty, the servicing
processor reads the head pointer at process block 1020. At process
block 1025, the servicing processor transmits the data element stored
by the head buffer. At process block 1030, the servicing processor reads
the next pointer of the head buffer. If the servicing processor
determines at process block 1035 that the next pointer does not point
to another buffer, the data queue is empty, and the servicing processor
sets the empty flag at process block 1080, and the process ends at
process block 1085. At process block 1040, if the data queue is not

WO 96/31820 PCT/US96/04517

-16-

empty, the servicing processor sets the head pointer to point to the
buffer indicated by the next pointer of the head buffer. There is
therefore a new head buffer, and the old head buffer is recycled. The
process ends at process block 1045.

If the empty flag was set at process block 1015, the servicing
processor reads the head pointer at process block 1050 and the next
pointer of the head buffer (which is a dummy buffer) indicated by the
head pointer at process block 1055. If the servicing processor
determines at process block 1060 that the next pointer of the dummy
buffer is null, the data queue is empty, and the process ends at process
block 1070. The next pointer of the dummy buffer is updated by tne
queuing processor when a data element is added to an empty data
queue because the dummy buffer is also the tail buffer of the buffer
queue. At process block 1075, if the queuing processor has added a data
element to the previously empty data queue, the servicing processor
sets the head pointer to point to the buffer indicated by the next
pointer of the dummy buffer, and the dummy buffer is recycled. The
process continues at process block 1020. The process steps shown by
process blocks 1005-1010 and 1050-1075 are not required if a separate
mechanism is provided to ensure that the servicing processor is not
allowed to read from an empty data queue. For example, the service
module may maintain a value indicative of the data queue length that
is checked to detect an empty data queue, wherein servicing of the data
queue is prevented if the data queue is empty.

Figures 11A-11F illustrate the method described with respect to
Figure 10, Figure 11A shows an empty data queue such as that shown
in Figure 9A wherein an empty flag 80 is set. As shown in Figure 11B,
the queuing processor has added three data elements to the data
queue. Next pointer 62 of dummy buffer 60 points to buffer 65; next
pointer 67 of buffer 65 points to buffer 70; and next pointer 72 of buffer
70 points to buffer 75, which is the last buffer of the buffer queue. The
head pointer currently points to dummy buffer 60, and the tail pointer
points to buffer 75.

WO 96/31820 PCT/US96/04517

-17-

As shown in Figure 11C, the servicing processor has been
enabled to removed data elements from the data queue. Buffer 60 has
been recycled, and the head pointer points to buffer 65. The empty flag
has been reset. The servicing processor reads the data element of
buffer 65 and then reads the next pointer of buffer 65, allowing buffer
65 to be recycled. Thus, Figure 11D shows the head pointer as pointing
to buffer 70. The servicing processor reads the data element of buffer
70 and then reads the next pointer of buffer 70, allowing buffer 70 to be
recycled.

Figure 11E shows the head pointer as pointing to buffer 75. The
tail pointer also points to buffer 75, which still stores a valid data
element such that the data queue is not empty. The servicing
processor reads the data element of buffer 75 and then reads the next
pointer of buffer 75. Upon determining that buffer 75 is the last buffer
in the buffer queue, the servicing processor sets the empty flag 80 to
indicate an empty data queue, as shown in Figure 11F.

In the foregoing specification the invention has been described
with reference to specific exemplary embodiments thereof. It will,
however, be evident that various modifications and changes may be
made thereto without departing from the broader spirit and scope of
the invention. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than restrictive sense.

WO 96/31820 PCT/US96/04517

-18-
CLAIMS
What is claimed is:
1. A circuit comprising a buffer queue that stores a data queue, a

first processor including a first cache coupled to the buffer queue, and
a second processor including a second cache coupled to the buffer
queue, the first processor storing a head pointer of the buffer queue in
the first cache and the second processor storing a tail pointer of the
buffer queue in the second cache.

2. The circuit of claim 1, wherein the head pointer and the tail
pointer point to a dummy buffer when the data queue is empty.

3. A circuit comprising a buffer queue that stores a data queue, a
first processor coupled to the buffer pool, and a second processor
coupled to the buffer pool, the first processor including a first memory
location that stores a head pointer of the buffer queue and the second
processor includes a second memory location that stores a tail pointer
of the buffer queue, the head pointer and the tail pointer always
pointing to a buffer.

4. The circuit of claim 3, wherein the first memory location is a
first cache controlled by the first processor, and the second memory
location is a second cache controlled by the second processor.

5. The circuit of claim 3, wherein the first memory location is a
first internal register controlled by the first processor, and the second
memory location is a second internal register controlled by the second
processor.

6. A method for managing a buffer queue that stores a data queue,
wherein the data queue comprises a set of n data elements, n being at
least zero, the method comprising the steps of:
storing a head pointer at a first location, the head pointer
indicating a head buffer of the buffer queue;

WO 96/31820 PCT/US96/04517

-19-

a first processor reading the head pointer to determine the head
buffer of the buffer queue when a data element is to be
removed from the data queue;

the first processor reading a next pointer of the head buffer; and

the first processor determining that the data queue is empty
when the next pointer has a first value, which indicates that
the head buffer is a dummy bulffer.

7. The method of claim 6, further comprising the steps of:

the first processor setting the head pointer to point to a new
head buffer when the next pointer has a second value
indicative of the new head buffer;

the first processor reading a first data element of the data queue
stored by the new head buffer; and

the first processor maintaining the head pointer to indicate the
new head buffer.

8. The method of claim 6, further comprising the steps of:
storing a tail pointer in a second location, the tail pointer
indicating the head buffer as being a tail buffer of the buffer
queue;

a second processor adding a new data element to the data queue
wherein the second processor adds a new tail buffer to the
buffer queue, the new tail buffer storing the new data
element;

the second processor updating the tail pointer to indicate the
new tail buffer as being the tail buffer; and

the second processor updating the next pointer of the head
buffer to have a second value indicating the new tail buffer.

9. The method of claim 6, further comprising the steps of:
initially determining whether the data queue is empty; and
the first processor reading a first data element stored by the head
buffer prior to the step of the first processor reading the next
pointer of the head buffer.

WO 96/31820 PCT/US96/04517

-20-

10. The method of claim 6, wherein the next pointer is stored as
part of the head buffer, the step of reading the next pointer comprising
the step of reading the head buffer.

11. The method of claim 6, wherein the step of storing the head
pointer in a first location comprises the step of the first processor
storing the head pointer in a first cache memory controlled by the first
processor.

12. The method of claim 6, wherein the first processor sets an
empty flag to indicate that the data queue is empty upon determining
that no buffers other than the head buffer remain in the buffer queue.

13. The method of claim 8, wherein the step of storing the tail
pointer in a second location comprises the step of the second processor
storing the tail pointer in a second cache memory controlled by the
second processor.

14. A circuit for managing a buffer queue that stores a data queue
comprising a set of n data elements, the circuit comprising:

a first memory storing a head pointer indicating a head data
element of the queue;

a first processor coupled to the first memory for removing data
elements from the data queue, for reading the head pointer
to determine a head buffer of the buffer queue when a data
element is to be removed from the data queue, for reading a
next pointer of the head buffer, and for determining that the
data queue is empty when the next pointer has a first value,
which indicates that the head buffer is a dummy buffer.

15. The circuit of claim 14, the first processor for setting the head
pointer to point to a new head buffer when the next pointer has a
second value indicative of the new head buffer, for reading a first data
element of the data queue stored by the new head buffer, and for
maintaining the head pointer to indicate the new head buffer.

WO 96/31820

16.

17.

PCT/US96/04517

21-

The circuit of claim 14 further comprising:

a second memory for storing a tail pointer, the tail pointer
indicating the head data element as being a tail data element
of the queue;

a second processor for adding a new data element to the queue,
for updating the tail pointer to indicate a new tail buffer that
stores the new data element as being the tail buffer, and for
updating the next pointer of the head buffer to have a
second value indicating the new tail buffer, wherein the first
processor updates the head pointer to indicate the new data
element as being the head data element in response to
detecting that the next pointer has the second value.

The circuit of claim 14, wherein the first memory is a first cache

controlled by the first processor.

18.

The circuit of claim 16, wherein the second memory is a second

cache controlled by the second processor.

19.

A circuit for managing a buffer queue for storing a data queue

comprising a set of n data elements, wherein n is at least zero, the

circuit comprising:

a buffer pool including a plurality of buffers;

a first processor coupled to the buffer pool;

a first memory location coupled to and accessed by the first
processor, the first memory location storing a head pointer
indicative of a head buffer of the buffer queue, wherein the
head pointer always points to a buffer;

a second processor coupled to the buffer pool;

a second memory location coupled to and accessed by the
second processor, the second memory location storing a tail
pointer indicative of a tail buffer of the buffer queue,
wherein the second processor adds buffers of the buffer pool
to the buffer queue and the first processor removes buffers
from the buffer queue and returns them to the buffer pool.

WO 96/31820 PCT/US96/04517

222

20. The circuit of claim 19 wherein the tail pointer always points to
a buffer.

21. The circuit of claim 19, wherein the first memory location is a
first cache memory internal to the first processor and the second
memory location is a second cache memory internal to the second

processor.

22. The circuit of claim 19, wherein the first memory location is a
first register internal to the first processor and the second memory
location is a second register internal to the second processor.

PCT/US96/04517

WO 96/31820

1/14

ST
AHOMIAN)
ONVBavOug J1NAOW
3OIAH3S
or \
AHOMLIN
SNOILYJINNWINOD
v1iI9ia

0c

INJNdIND3

3SIN3IHd
H3IWOLSND

I

DI

PCT/US96/04517

WO 96/31820

2/14

“DIA

- 37 3INAOW 30IAH3S
HHOMLIN =
ONVEQYOHE
WOY (T1T1T1] -
SIB0 " e
"] ssauos
%2
xmoz:wzm =
(ONVBAVYOHE g—
oL L1111
-—
S3N3N0
SS3HONI
9 kg v ov
IHOVD 3HOVD
HOSS3O0Hd HOSS300Hd

0¢
3d0
(0]

0¢
3d0
WOH4

PCT/US96/04517

WO 96/31820

3/14

05 100d H344ng

08
H334n8

i
H344n4

v 3HOVO
v

H3INIOd WL

o H344N8 -+
L]
- o]
19— H344n8
09
29— H343Nn9 ~—
an
N3ano
SS3IHONI

8p

H31NIOd QV3IH

& O1Aa

PCT/US96/04517

WO 96/31820

4/14

L ‘DI

0oF

NOILYWHOSNI ONILNOY

Y31NIOd 1X3N

5

HO1di¥3S3q
H344ng

o

H344ng

L) I |

1130

%6 "O1dIH0S30
H344ng

WO 96/31820 PCT/US96/04517

5/14

605
BEGIN
610
RECYCLE ﬂ//

Y 615
READ |5

FIG. 6

705
G

710
READ s

715
RECYCLE |5~

FIG. 7

WO 96/31820

6/14

805

CONSUMER PROCESSOR
READS HEAD POINTER

v

/(810

CONSUMER PROCESSOR READS
NEXT POINTER OF HEAD BUFFER

|

)/815

820

NEXT
POINTER
=NULL

YES

<0

RECYCLE OLD HEAD BUFFER BY
SETTING HEAD POINTER
TO INDICATE BUFFER POINTED TO BY
NEXT POINTER OF OLD HEAD BUFFER

830
5

v

TRANSMIT DATA ELEMENT
CONTAINED IN NEW HEAD BUFFER

840
CHd

FiG. 3

)/ 835

PCT/US96/04517

WO 96/31820

PCT/US96/04517

FIG.

7/14
HEAD R
POINTER * DUMMY BUFFER
48 > 0
T o0
CACHE 46
BUFFER
TAL || £
POINTER
43
BUFFER
CACHE . 70
BUFFER
75

BUFFER POOL

50

A

HEAD
POINTER
48

CACHE

46

TAIL
POINTER I
43

CACHE

\

DUMMY BUFFER e

FIG.

60
BUFFER

65
BUFFER

70
BUFFER

75

BUFFER POOL

50

5] §-

— 62

WO 96/31820

PCT/US96/04517

8/14
HEAD o) DUMMY BUFFER 62
POINTER 80 f
48
CACHE ¢
BUFFER - ’;—-67
85
TAL |
POINTER43 ‘]
- BUFFER
CACHE | 70
BUFFER
. 75
BUFFER POOL
| 50
Fi1G. 9C
BUFFER
60
HEAD - BUFFER 67
POINTER s i
48 2
CACHE .
— BUFFER
70
TAIL
POINTER““
BUFFER
CACHE 41 75
BUFFER POOL
50

FIG. 9D

WO 96/31820 PCT/US96/04517

9/14
BUFFER
60
HEAD DUMMY BUFFER 67
POINTER s
48
DO s BUFFER
> 70
TAIL
POINTER, |-
BUFFER
CACHE 75
BUFFER POOL
50
FIG. 9K
BUFFER
60
BUFFER
65
HEAD
POINTER BUFFER
48 70
CACHE
BUFFER
TAIL 75
POINTER |-
A3 BUFFER POOL
CACHE . 50

FilG. 9F

WO 96/31820

PCT/US96/04517
10/14
BUFFER
60
BUFFER
65
HEAD
POINTER DUMMY BUFFER
48 2
CACHE
BUFFER
TAIL 75
POINTER |
a3 BUFFER POOL
CACHE . 50

FI1G.

G

WO 96/31820

PCT/US96/04517

11/14
CONSUMER PROCESSOR | ¢~ 1903
CHECKS EMPTY FLAG
Y 1010
1050
EMPTY < YES CONSUMER PROCESSOR | s~
FLA% SET, READS HEAD POINTER
NO Y _
“ CONSUMER PROCESSOR | <05
4 1020 READS NEXT POINTER OF
CONSUMER PROCESSOR HEAD BUFFER
READS HEAD POINTER
1035
Y 1025 NEXT S
CONSUMER PROCESSOR /(POINTER
TRANSMITS DATA ELEMENT = NULL
STORED BY HEAD BUFFER 2
v 1030
CONSUMER PROCESSOR | §~
READS NEXT POINTER OF 1070
HEAD BUFFER 5
o~ 1035
NEXT y
YES " pOINTER {
| = NULL CONSUMER PROCESSOR
? SETS HEAD POINTER TO
CONSUMER 1080 POINT TO BUFFER
PROCESSOR | s~ NO INDICATED BY NEXT
SETS EMPTY POINTER OF OLD HEAD
FLAG 1040 | BUFFER; RECYCLE OLD
5 1075 HEAD BUFFER
- CONSUMER PROCESSOR
@ SETS HEAD POINTER TO POINT
I TO BUFFER INDICATED BY
NEXT POINTER OF OLD HEAD
1085 BUFFER; RECYCLE OLD HEAD
BUFFER
1045

FIG.

CH Y

10

WO 96/31820 PCT/US96/04517

12/14
HEAD
POINTER DUMMY BUFFER
48 50
CACHE g
BUFFER
TAIL 85
POINTER H
OINT. R43
BUFFER
CACHE | 70
BUFFER
EMPTY 75
FLAG BQ
BUFFER POOL
50
FiIG. 11 A
HEAD 62
POINIER »| DUMMY BUFFER e [~
48 50
CACHE
BUFFER :;-67
65
TAIL
POINTER43"
BUFFER ,Y"72
CACHE 70 :y
N BUFFER
75
BUFFER POOL
50

FiG. 11B

WO 96/31820

PCT/US96/04517

FIG. 11D

13/14
BUFFER
60
HEAD BUFFER - 67
POINTEH48 65)/_
CACHE ¢
BUFFER 72
70)r
TAIL BUFFER
POINTER 75
CACHE 4, BUFFER POOL
50
FIG. 11C
BUFFER
60
BUFFER
65
HEAD BUFFER - 72
[N
PomnER48 70 .
CACHE .
. BUFFER
75
TAIL _[
POINTER .17 BUFFER POOL
50
CACHE

PCT/US96/04517

WO 96/31820
14/14
BUFFER
80
BUFFER
85
HEAD L
POINTER
48 BUFFER
CACHE 4 20
TAL] BUFFER
POINTE 75
R43
CACHE BUFFER POOL
41 50
Fi1G. 11 E
EMPTY
FLAG BUFFER
60
BUFFER
65
HEAD
POINTER |H
: 48 BUFFER
CACHE ¢ 70
TAL > DUMMY BUFFER
POINTER 75
43
CACHE BUFFER POOL
50

FiIG. 11F

Inter nal Application No

INTERNATIONAL SEARCH REPORT PCT/US 96/04517

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F5/06

According to International Patent Qlassification (IPC) or to both natonal classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by clasaificaton symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

see abstract

25; figures 11,12

AND SWAP"

figure 3

|

see colum 9, line 3 - line 22; figure 1
see column 11, line 14 - line 19
see column 11, line 36 - column 12, line

“MULTI-ACCESS

see page 329, line 16 - page 330, line 4;

Category ° | Citation of document, with indication, where appropnate, of the relevant passages Relevant to claim No.
X US,A,5 214 642 (KUNIMOTO ET AL) 25 May 1-22
1993

A IBM TECHNICAL DISCLOSURE BULLETIN, 1
vol. 36, no. 2, 1 February 1993,
pages 327-330, XP000354355
FIRST-IN-FIRST-OUT QUEUE USING 370 COMPARE

-/--

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

® Speaal categories of cited documents :

A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on pniority claim(s) or
which is ated to establish the publication date of another
atation or other special reason (as specified)

“0" document referring to an oral disclosure, use, exhibition or
other means

“P* document published prior to the international filing date but
later than the pnority date claimed

“T" later document published after the international filing date
or prionty date and not in conflict with the application but
cited to understand the pnnciple or theory underiying the
invention

“X° document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventve step when the document 1s taken alone

“Y® document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

“&° document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
26.07.96
11 July 1996
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016 Cohen, B

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inter onal Application No

PCT/US 96/04517

C(Contunuaton) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropnate, of the relevant passages

Relevant to claim No.

A

LECTURE NOTES IN COMPUTER SCIENCE, EDBT
'94,

March 1994, CAMBRIDGE, UK,

pages 323-336, XP000576237

CHEN ET AL: "The Implementation and
Performance etc."

Form PCT/ISA/210 (continuation of second sheet} (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT Inter >nal Applicaton No
PCT/US 96/04517

Patent document Publication Patent family Publication
cited in search report date member(s) date
US-A-5214642 25-05-93 JP-A- 3249842 07-11-91

US-A- 5303236 12-04-94

Form PCT/ISA/210 (pateat family snnex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

