OPTOELECTRICAL CONNECTOR MODULE

The present disclosure relates to an optoelectrical connector module comprising a flexible circuit board (10) having a first region and a second region and a printed circuit board (PCB) (20) that is attached to the first region of the flexible circuit board, and an optical module (30) that is attached to the second region of the flexible circuit board. The optical module is configured to transmit and/or receive light signals. The optoelectrical connector module comprises further a rigid support structure (40) having a first and a second surface that enclose a defined angle. The first surface of the rigid support structure is thereby arranged in parallel to the PCB and the second surface of the rigid support structure is connected to the flexible circuit board opposite the second region.
OPTOELECTRICAL CONNECTOR MODULE

FIELD OF THE DISCLOSURE

[0001] The present disclosure relates to an optoelectrical connector module, allowing to connect an optical signal line to a printed circuit board (PCB) in an angle different from 0° and 90°.

BACKGROUND

[0002] In many electronic applications it is necessary to connect optical signal lines to printed circuit boards (PCB). To this end, it is necessary to provide optical modules that are arranged on the PCB. These optoelectrical modules further comprise in general suitable optoelectrical connector, respectively interface, to transfer light signals from a fiber cable to the photonic device or vice-versa. Optical modules are for example receivers, transmitters, transceivers and transponders for data- and telecommunication applications configured to send optical signals derived from electrical signals and/or receive optical signals which are transformed into electrical signals.

[0003] Optical modules known in the art, such as Finisar® BOA (Board-Mount Optical Assembly) are mounted on a PCB and receive or transmit light perpendicular to the plane of the PCB. However, a major problem in this context is high space consumption due to optical cable guiding, since the connection angle in this case (perpendicular to the plane of the PCB) is 90°. The connection angle is thereby defined as the angle enclosed by the received/transmitted light and the plane of the PCB.

[0004] A system that receives or transmits light parallel to the plane of the PCB (connection angle: 0° respectively 180°) is known from US 6,867,377 B2, wherein a flexible printed circuit board is used in connection with an optical transmitter module. The optoelectrical connector module is further extended and adapted in order to fulfill the conditions for the horizontal bond.
transmitter is attached on the flexible printed circuit board in a first region of the flexible printed circuit board. In a second region, the flexible circuit board is soldered to a PCB. For emitting light signals in a plane parallel to the PCB, an ashlar-formed element is placed on the second region of the flexible circuit board and the first region is bent upward and attached to the ashlar formed element. However, these systems are inappropriate to design optoelectrical connector arrays on a single PCB, since the first row of connectors would block the second row of connectors from being connected.

[0005] From WO 2012/097979 A1 optical modules are known that receive or transmit light under a defined angle relative to the plane of the PCB, so that multiple connectors can be arranged in an array on one PCB. To this end, an optical coupler having a first and a second light coupling port is used to bend the beam path of the emitted and/or received light signal. This optical coupler is connected to a known optical module, which is placed on a PCB. A light guiding member inside the optical coupler, which connects the first and second light coupling port, redirects the light so that it passes the optical coupler under a desired angle. However, due to said redirection of the light signal significant bending losses occur as well as coupling losses, since at least two optical connectors are necessary.

[0006] It is therefore one object to provide an optoelectrical connector module that offers an improved way of connecting a known connector (such as a MT ferrule) in a defined angle different from 0° and 90° (i.e. between 0° and 90°, like e.g. 30°) relative to the plane of a PCB to an optical module to allow a great number of optoelectrical connector systems to be used in parallel or in form of connector arrays, while keeping a compact design of low height. Preferably, the optoelectrical connector module can be manufactured simple and cost efficient and should most preferably reduce bending and coupling losses of the light signal. Still further, the optoelectrical connector module should provide an improved cooling mechanism. These and other objects which will become apparent upon reading the following description are solved by an optoelectrical connector module according to claim 1.

SUMMARY

[0007] According to one embodiment, an optoelectrical connector module is suggested, which comprises a flexible circuit board that has at least a first and a second region. The flexible circuit board can for example be made of a flexible plastic substrate, such as polyimide, PEEK, PET or a transparent conductive polyester film, allowing the board to conform to a desired shape.
The flexible circuit board can be a single or multi-layer flexible circuit board providing one or more electrically conductive layers. To provide a high flexibility and small bending radius, the flexible printed circuit board is preferably thinner than 1 mm, more preferably 0.5 mm and most preferably thinner than 0.2 mm. The bending radius of the flexible circuit board should be less than 3 mm, preferably less than 1.5 mm and most preferably less than 0.5 mm.

The first and second regions of the flexible circuit board define two separate areas on the surface of the flexible circuit board. They can be either on the same side or on opposite sides of the flexible circuit board but may not be in parallel planes. The first and second regions are separated by a bending area.

The optoelectrical connector module comprises further a standard printed circuit board (PCB), i.e. that is not a flexible circuit board, but rigid in order to mechanically support and electrically connect electronic components of the optoelectrical connector module. Generally preferred, the PCB has a thickness of more than 2 mm, more preferably more than 3 mm. The PCB is attached to the first region of the flexible circuit board by a suitable electrical and/or mechanical connection technique, such as soldering, bonding and/or (conductive) gluing.

The optoelectrical connector module comprises further an optical module (30) that transmits light signals derived from electrical signals and/or receives light signals which are transformed into electrical signals.

The optical module is attached to the second region of the flexible circuit board by a suitable electrical and/or mechanical connection technique, such as soldering, bonding and/or (conductive) gluing. Said second region can either be on the same or the opposite side as the first region of the flexible circuit board, to which the PCB is attached to, but it is in any case not in a parallel plane.

The light is received and/or transmitted by the optical module in a direction perpendicular or parallel to said second region of the flexible circuit board, so that undesired bending losses are significantly reduced.

in order to conform the flexible circuit board to a desired shape, the optoelectrical connector module further comprises a rigid support structure having at least a first and a second surface. The rigid support structure is designed to withstand the connection forces
that occur during the plugging of the optoelectrical connector without any significant deformation. Therefore, the rigid support structure is preferably made of a ceramic, a suitable thermoplastic material such as PEEK, Polyamide or Polyimide or more preferably of a metallic material such as aluminum, copper or alloys or a combination thereof.

[0015] The rigid support structure has at least two plane surfaces that enclose an angle that is different from 0° and 90°. In other words, the first and second surfaces of the rigid support structure are neither in the same plane, nor parallel to each other (angle is different from 0°), nor are they perpendicular to each other (angle is different from 90°).

[0016] The first surface of the rigid support structure is arranged parallel to the plane of the printed circuit board (PCB). The first surface can be attached directly or indirectly to the PCB. Further it is also possible to arrange the first surface of the rigid support structure adjacent to the PCB on a mounting structure such as a housing of the optoelectrical connector module, or partly on the PCB.

[0017] The attachment of the first surface of the rigid support structure can be done by a purely mechanical connection technique such as gluing, screwing, snap joints or any other suitable connection technique, or an electro mechanical connection technique such as soldering. Combinations of connection techniques are also possible.

[0018] The second surface of the rigid support structure is connected to the flexible circuit board opposite the second region of the flexible circuit board. In other words, the optical module and the second surface of the rigid support structure are positioned opposite each other and are connected and attached to opposite sides of the flexible circuit board.

[0019] The connection of the second surface of the rigid support structure to the flexible circuit board can be done by a purely mechanical connection technique such as gluing, screwing, snap joints or any other suitable connection technique, or by an electro mechanical connection technique such as soldering. Combinations of connection techniques are also possible.

[0020] The attachment of the PCB and the optical module to the flexible circuit board on the one hand, and the connection of the flexible circuit board to the rigid support structure on the other hand, conform the optoelectrical connector module to the desired angle that is different from 0° and 90°.
[0021] Therefore light signals can be received and/or transmitted under an angle different from 0° and or 90° relative to the plane of the PCB, without an undesired redirection of the light signal. Advantageously additional bending and coupling losses can be avoided. Further, space consumption of the optical cables and connector arrays can be reduced on a single PCB due to variable connection angles.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] In the following, reference is made to the following figures, in which

[0023] Fig. 1 is a schematic view of an optoelectrical connector module in accordance with a first embodiment;

[0024] Fig. 2 is a schematic view of an optoelectrical connector module in accordance with a second embodiment;

[0025] Fig. 3 is a schematic view of an optoelectrical connector module in accordance with a third embodiment;

[0026] Fig. 4 is a schematic view of an optoelectrical connector module in accordance with a fourth embodiment; and

[0027] Fig. 5 is a schematic view of an optoelectrical connector module in accordance with a fifth embodiment.

DETAILED DESCRIPTION

[0028] Fig. 1 shows a schematic view of an optoelectrical connector module, comprising a flexible circuit board 10, a PCB 20, an optical module 30 and a rigid support structure 40. The PCB 20 is attached to a first region 11 of the flexible circuit board 10 and the optical module 30 is attached to a second region 12 of the flexible circuit board 10.

[0029] The first surface 41 of the rigid support structure 40 is parallel to the plane of the PCB 20. The second surface 42 of the rigid support structure 40 is connected to the flexible circuit board opposite the second region 12 of the flexible circuit board 10. As one can see, the first and second surfaces of the rigid support structure 40 enclose an angle a that is different from 0° and 90°, namely approximately 50°. Generally preferred, the angle a is between 5° and 85°, more preferably between 5° and 70°, still more preferably between 8° and 60° and even most
preferably between 10° and 40°. As the skilled person will understand, the choice of this angle depends on the orientation of the optical module (this will be explained in more detail below under reference to Fig. 4). The aim is that the direction of light received or transmitted by the optical module relative to the plane of the PCB is at an angle of between 5° and 85°, more preferably between 5° and 70°, still more preferably between 8° and 60° and even most preferably between 10° and 40°. Such a configuration allows a very compact design with a low height.

[0030] The optical module 30 can comprise a transmitting and/or receiving part 31 that transforms electrical signals, received from the flexible circuit board 10, to light signals 33 and vice versa. The light signals 33 are then guided by an optical port 32 and a connector 60 to the optical wave guide 61. The optical port 32 may comprise lenses for light guiding or other suitable light guide, but does preferably not bend the light beam.

[0031] In an advantageous embodiment, the PCB 20 has electrical contacts 21 that are capable of connecting the PCB 20 to an external environment. The external environment can be a further PCB, a plug in board or a control cabinet or any other electrical circuit. Via the electrical contacts 21, the PCB 20 can be electrically connected by plugging, soldering, bonding and/or conductive gluing or any other suitable technique. The electrical contacts 21 can be either orientated parallel to the plane of the PCB, or perpendicular thereto (cf. e.g. Fig. 3).

[0032] In a further embodiment, the PCB 20 can be equipped with additional electrical components such at least one microcontroller 22 and/or at least one sensor 23. Further, it is also possible to provide the flexible circuit board 10 with electrical components such at least microcontrollers and/or sensors (not shown). The sensor 23 can be a temperature sensor (e.g. NTC) or the like.

[0033] In a further embodiment, the support structure 40 is a metallic heat sink. The heat sink may be provided with cooling fins 45 to optimize the cooling performance. Heat is generated in the optical module 30 and therefore, the heat sink 40 is thermally coupled to the optical module 30. In a preferred embodiment, the flexible circuit board provides orifices in the area of the second region 12 to enable a direct contact of the heat sink 40 and the optical module 30.
In another embodiment, the thermal coupling is achieved through the flexible circuit board 10. Thermal coupling can be improved by the use of heat transfer paste, thermal conducting glue or the like.

In a preferred embodiment, the optoelectrical connector module comprises a corresponding counter connector 60 that comprises at least one optical wave guide 61. The counter connector 60 is preferably a mechanical transfer ferrule (MT ferrule).

Fig. 2 shows a schematic view of a further embodiment of an optoelectrical connector module, comprising also a flexible circuit board 10, a PCB 20, an optical module 30 and a rigid support structure 40. The embodiment of Fig. 2 (and Figs. 3, 4 and 5) employs essentially the same parts with a different geometric configuration, so that in the following the same reference numbers are used to denote similar or essentially identical elements.

The PCB 20 of Fig. 2 is attached to the first region 11 of the flexible circuit board 10 and the optica! module 30 is attached to the second region 12 of the flexible circuit board 10. The first surface 41 of the rigid support structure 40 is attached directly to the PCB 20 and is parallel to the plane of the PCB. The second surface 42 of the rigid support structure 40 is connected to the flexible circuit board opposite the second region 12 of the flexible circuit board 10 and is arranged at an angle of approximately 60° to the first surface 41 (and thus also to the plane of the PCB 20). In the embodiment of Fig. 2, the flexible circuit board has a third region 13 that is attached to a third surface 43 of the rigid support structure 40, allowing an improved thermal coupling. Further, the mechanical strength can be increased by attaching the flexible circuit board to more than one surface of the rigid support structure. To further improve the mechanical strength of the attachment of the flexible circuit board 10 to the PCB 20, the flexible circuit board 10 can be additionally attached at a region different from the first region to the PCB 20.

Fig. 3 shows a schematic view of a further embodiment of an optoelectrical connector module, comprising a flexible circuit board 10, a PCB 20, an optical module 30 and a rigid support structure 40. To improve the heat transfer capabilities of the rigid support structure 40, the rigid support structure 40 can be thermally coupled to a housing 50 of the optoelectrical connector module. A thermal coupling is achieved by mechanically attaching the rigid support structure 40 to the housing 50 by gluing, soldering, screwing, snap joints or any other suitable
technique. Thermal coupling can be improved by the use of heat transfer paste, thermal conducting glue or the like.

f0039 Fig. 4 shows a schematic view of a further embodiment an optoelectrical connector module, comprising, a flexible circuit board 10, a PCB 20, an optical module 30' and a rigid support structure 40. The difference between the module 30' and the modules 30 is in particular the orientation in which the counter connector 60 is coupled to the module and thus the direction of light emitted or received by the module relative to the plane of the PCB. The construction of Fig. 4 has a relatively small angle a of approximately 25° and the angle of the direction of light relative to the plane of the PCB is identical. Generally preferred, irrespective whether the optical module receives and/or transmits light in a direction perpendicular (like in Fig. 1) or parallel to (like in Fig. 4) the second surface of the support structure, the first and second surfaces of the support structure should enclose an angle a such that the direction of light transmitted and/or received by the optical module relative to the plane of the PCB is between 5° and 85°, more preferably between 5° and 70°, still more preferably between 8° and 60° and even most preferably between 10° and 40°. To improve the heat transfer capabilities of the rigid support structure 40, the rigid support structure 40 is part of the housing 50. Therefore, the heat conducted in the rigid support structure can be directly dissipated to the environment.

f0040 Fig. 5 shows a schematic view of a further embodiment an optoelectrical connector module, comprising, a flexible circuit board 10, a PCB 20, an optical module 30 and a rigid support structure 40. The flexible circuit board 10 and the rigid support structure 40 are covered entirely by a housing 50. The housing further has an orifice 51 that enables the light signals from/to the optical module 30 to exit/enter the optoelectrical connector module. The orifice 51 receives the connector 60 of the connector system at least partly. The PCB 20 is at least partly covered by the housing, in the shown embodiment, a lower wall of the housing is formed by the PCB 20.

f0041 In a preferred embodiment, the optoelectrical connector module further comprises an additional heat sink 70. The heat sink 70 can have surface structures, such as cooling fins 71 to improve the cooling performance. The heat sink 70 is attached to an outer surface of the housing 50 by glue, solder, screw, snap joints or any other suitable attachment mechanism. Thermal coupling can be improved by the use of heat transfer paste, thermal conducting glue or the like.
In a still further embodiment, the heat sink 70 can be integrally formed with the housing 50 or be at least one part of the housing 50.

The embodiments described herein have been presented by way of illustration, and the present invention is therefore not intended to be limited to the disclosed embodiments. Furthermore, the structure and features of each the embodiments described above can be applied to the other embodiments described herein, unless otherwise indicated. Accordingly, those skilled in the art will realize that the invention is intended to encompass all modifications and alternative arrangements included within the spirit and scope of the invention, for instance as set forth by the appended claims.
What is Claimed:

1. An optoelectrical connector module, comprising:
 a flexible circuit board (10) having a first region (11) and a second region (12),
 a printed circuit board (PCB) (20) that is attached to the first region of the flexible circuit board, and
 an optical module (30, 30') that is attached to the second region of the flexible circuit board, characterized in that the optoelectrical connector module further comprises:
 a rigid support structure (40) having a first (41) and a second (42) surface, wherein the first surface (41) is arranged parallel to the plane of the printed circuit board (PCB) (20) and the second surface (42) is connected to the flexible circuit board opposite the second region (12) of the flexible circuit board, and
 the first and second surfaces of the rigid support structure enclose an angle (a) that is different from 0° and 90°.

2. The optoelectrical connector module of claim 1, wherein the first (41) and second (42) surfaces of the support structure (40) enclose an angle (a) that is preferably between 5° and 85°, more preferably between 5° and 70°, still more preferably between 8° and 60° and even most preferably between 10° and 40°.

3. The optoelectrical connector module of claim 1 or 2, wherein the optical module (30, 30') receives and/or transmits light (33) in a direction perpendicular or parallel to the second surface (42) of the support structure (40) and the first (41) and second (42) surfaces of the support structure (40) enclose an angle (a) such that the direction of light transmitted and/or received by the optical module relative to the plane of the PCB is between 5° and 85°, more preferably between 5° and 70°, still more preferably between 8° and 60° and even most preferably between 10° and 40°.

4. The optoelectrical connector module of any of the preceding claims, wherein the optical module (30, 30') comprises:
 at least an optical transmitting and/or receiving part (31), wherein each of the transmitting and/or receiving part contains electrical and/or optical parts, and
 an optical port (32), wherein the optical port comprises optical lenses.

5. The optoelectrical connector module of claim 1, wherein the support structure (40) is a metallic heat sink, providing a thermal coupling to the optical module.
6. The optoelectrical connector module of any one of the preceding claims, wherein the optoelectrical connector module further comprises a housing (50) and wherein the support structure (40) is thermally coupled to the housing (50).

7. The optoelectrical connector module of any one of the preceding claims, wherein the PCB (20) comprises further electrical contacts (21) that are capable of connecting the PCB (20) to an external environment.

8. The optoelectrical connector module of any one of the preceding claims, wherein the PCB (20) further comprises at least one micro controller (22) or at least one sensor (23).

9. The optoelectrical connector module of any one of the preceding claims, wherein the optoelectrical connector module is adapted to receive an optical counter connector (60), in particular a mechanical transfer ferrule (MT-ferrule) connector.

10. The optoelectrical connector module of any one of the preceding claims, wherein the optoelectrical connector module further comprises an additional heat sink (70) besides the rigid support structure (40).

11. The optoelectrical connector module according to claim 10, wherein the optoelectrical connector module further comprises a housing (50) and the additional heat sink (70) has cooling fins (71) and is attached to the housing (50) of the optoelectrical connector module or is integrally formed with at least one part of the housing (50) of the optoelectrical connector module.

12. The optoelectrical connector module of any one of the preceding claims, wherein the support structure (40) has cooling fins (45) on at least one surface thereof that is not connected to the flexible circuit board (10).

13. The optoelectrical connector module of any one of the preceding claims, wherein the optoelectrical connector module further comprises a housing (50), which housing completely covers the flexible circuit board (10) and the rigid support structure (40) and comprises an orifice (51) for receiving a corresponding counter connector (60), and wherein the PCB (20) forms a wall (52) of the housing (50).

14. The optoelectrical connector module of any one of the preceding claims, wherein the flexible circuit board (10) has at least a third region (13), and

the rigid support structure (40) has at least a third surface (43), and
wherein the third surface (43) is connected to the flexible circuit board (10) opposite to the third region (13) of the flexible circuit board.

15. The optoelectrical connector module of any one of the preceding claims, wherein the flexible circuit board (10) has thickness less than 1 mm, preferably less than 0.5 mm and more preferably less than 0.2 mm.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G02B6/42 H05K3/00 H05K1/02

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. MINIMUM DOCUMENTATION SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G02B H05K

B. ADDITIONAL DOCUMENTATION SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

paragraph [0054] - paragraph [0059]
paragraph [0069] - paragraph [0073]
paragraph [0080] - paragraph [0081]
paragraph [0093]
paragraph [0103] - paragraph [0104]
paragraph [0111] - paragraph [0112]; figures 1A, IB, IF, 3A, 3C, 6A, 6B, 9

Relevant to claim No. 1-15

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document(s) which may throw doubts on priority claim(s) or on the correctness of the filing date
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "A" document member of the same patent family

Date of the actual completion of the international search 14 October 2015

Date of mailing of the international search report 23/10/2015

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Mouget, Mathilde

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document</td>
<td>Publication date</td>
<td>Patent family</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>US 2006008214</td>
<td>12-01-2006</td>
<td>DE 69937627 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1028341 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4634562 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000249883 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6318909 Bl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002021874 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006008214 AI</td>
</tr>
<tr>
<td>US 2005276547</td>
<td>15-12-2005</td>
<td>CN 1715979 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006004921 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 118369 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1329753 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005276547 AI</td>
</tr>
<tr>
<td>US 2012207427</td>
<td>16-08-2012</td>
<td>JP 2012168253 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012207427 AI</td>
</tr>
<tr>
<td>US 2013315528</td>
<td>28-11-2013</td>
<td>CN 203385897 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013315528 AI</td>
</tr>
</tbody>
</table>