PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

GO6F A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/38561

3 September 1998 (03.09.98)

(21) International Application Number:

(22) International Filing Date: 25 February 1998 (25.02.98)

(30) Priority Data:

08/807,471 27 February 1997 (27.02.97) us

(71) Applicant: TELCONTAR [US/US]; Suite 501, Two North 1st
Street, San Jose, CA 95113-1201 (US).

(72) Inventor: SMARTT, Brian, E.; 1666 Honfluer Drive, Sunny-
vale, CA 94086 (US).

(74) Agent: SIMPSON, Andrew, H.; Knobbe, Martens, Olson and
Bear, LLP, 16th floor, 620 Newport Center Drive, Newport
Beach, CA 92660 (US).

PCT/US98/03493 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DX, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished
upon receipt of that report.

(54) Title: A SYSTEM AND METHOD OF OPTIMIZING DATABASE QUERIES IN TWO OR MORE DIMENSIONS

(57) Abstract

A method and system for storing and retrieving spatial data
objects from a spatial database is discussed. The system stores
multi-dimensional objects within the database by determining their
position in a multi-tiered coordinate system. Once each object has been
assigned to a particular coordinate, the object is further assigned to one
of many overlapping sections within the coordinate system. Each object
is assigned to a particular section of the coordinate system depending
on its overall size and position.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL

|]
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Meldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
YAV

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 98/38561

A SYSTEM AND METHOD OF OPTIMIZING DATABASE
QUERIES IN TWO OR MORE DIMENSIONS

Background of the Invention
Field of the Invention
This invention relates to computer databases. Specifically, this invention
relates to methods of indexing database records which contain information
describing the position, size and shape of objects in two and three-dimensional

space.

Description of the Related Technology

The purpose of a data structure is to organize large volumes of information,
allowing the computer to selectively process the data structure’s content. The
motivation for this is simple: you always have more data than your time
requirements, processor speed, main memory and disk access time allow you to
process all at once. Depending on the nature of the data and application, data
organizing strategies may include partitioning the content intb subsets with similar
properties or sequencing the data to support indexing and hashing for fast random
access. Databases and database management systems extend these concepts to
provide persistent storage and transaction controlled editing of the structured data.

Spatial data such as that describing a two-dimensional map is no different
in its need for efficient organization. Map data is particularly demanding in this
regard. A comprehensive street map for a moderate sized community may consist
of tens to hundreds of thousands of individual street segments. Wide area maps
of LA or New York may contain millions of segments. The content of each map
data object can also be some what bulky. For example, a record for an individual
street segment may include the coordinates of its end points, a usage classification,
the street name, street address ranges, left and right side incorporated city name
and postal codes.

However, spatial data at its core poses a particularly vexing organizational
problem because it tries to organize objects within two-dimensional space. Spatial
coordinates consist of two (or more) values which are independent, but equally

important for most spatial queries. Established data structures and database

-1-

PCT/US98/03493

10

15

20

25

30

WO 98/38561 PCT/US98/03493

methods are designed to efficiently handle a single value, and not representations
of multi-dimensional space.

This difficulty can be illustrated by considering the problem of creating an
application which presents a small window of map data (for instance, the square
mile surrounding a house) from a database of a few hundred thousand spatial
objects (a map of the city surrounding the house). The motivation for doing this
is really two fold: first, the typical resolution of a computer monitor is limited,
allowing only a certain amount information to be expressed. Secondly, even if all
the data fit within the monitor, the data processing time to calculate this much
information (fetching, transforming, clipping, drawing) would be far too long for
the average personal computer.

To solve this problem, it is advantageous to find all of the street segments
which appear in the "window" that will be generated on the monitor, and avoid as
many as possible which do not. Thus, all objects which are within a particular
range of x-coordinate (or longitude) values and y-coordinate (or latitude) values
will be gathered. This problem is generally known as rectangular window
retrieval, and is one of the more fundamental types of spatial queries. This method
will be used in the following sections as a method for gauging the effectiveness
of each of the following organizational methods.

The most heavily researched and commonly used spatial data structures
(data structures used to organize geographic and geometric data) rely on the
concept of tile-based hierarchical trees. A tile in this context is a rectangular (or
other regularly or irregularly shaped) partitioning of coordinate space, wherein each
partition has a distinct line separating one tile from another so that no single point
in the coordinate system lies within more than one tile. A hierarchical tree is one
structure for dividing coordinate space by recursively decomposing the space into
smaller and smaller tiles, starting at a root that represents the entire coordinate
space. In this system, a "hard edge" between tiles means that every point in the
space resides exactly one tile at each level of the hierarchy. No point can coexist
in more than one tile.

One example of a well-known hierarchical tree is the quad-tree data
structure. In one example, the quad-tree could represent the surface of the Earth.

At the root of the quad-tree is a node representing the entire surface of the Earth.

2.

10

15

20

25

30

WO 98/38561 PCT/US98/03493

The root, in turn, will have four children representing each quadrant of Latitude
and Longitude space: east of Greenwich and north of the Equator, east of
Greenwich and south of the Equator, west of Greenwich and north of the Equator
and finally, west of Greenwich and south of the equator. Points on Greenwich and
the Equator are arbitrarily defined to be in one quadrant or the other. Each of
these children are further subdivided into more quadrants, and the children of those
children, and so on, down to the degree of partitioning which is required to support
the volume and density of data which is to be stored in the quad-tree.

The principle problem with quad-tree structures is that they are unbalanced.
Because each node in the tree has a limited data storage capacity, when that limit
is exceeded, the node must be split into four children, and the data content pushed
into lower recesses of the tree. As a result, the depth of a quad-tree is shallow
where the data density is low, and deep where the data density is high. For
example, a quad-tree used to find population centers on the surface of the Earth
will be very shallow (e.g., have few nodes) in mid-ocean and polar regions, and
very deep (e.g., have many nodes) in regions such as the east and south of the
United States.

Since quad-trees are inherently unbalanced, the rectangular window retrieval
behavior of a quad-tree is difficult to predict. It is difficult for software to predict
how many nodes deep it may have to go to find the necessary data. In a large
spatial database, each step down the quad-tree hierarchy into another node
normally requires a time-consuming disk seek. In addition, more than one branch
of the tree will likely have to be followed to find all the necessary data. Second,
when the content of the data structure is dynamic, efficient space management is
problematic since each node has both a fixed amount of space and a fixed regional
coverage. In real world data schemes, these two rarely correspond. There are
several variations on the quad-tree which attempt to minimize these problems.
However, inefficiencies still persist.

So far, data structures containing points have only been discussed where
each spatial object comprises a single set of coordinates. Lines, curves, circles,
and polygons present a further complexity because they have dimensions.
Therefore, these objects no longer fit neatly into tile based data structures, unless

the tiling scheme is extremely contrived. There will always be some fraction of

-3

10

15

20

25

30

WO 98/38561 PCT/US98/03493

the objects which cross the hard edged tile boundaries from one coordinate region
to another. Note that this fact is true regardless of the simplicity of an object’s
description. For example, a line segment described by its two end points, or a
circle described by its center point and radius.

A simple, and commonly used way around this problem is to divide objects
which cross the tile boundaries into multiple objects. Thus, a line segment which
has its end points in two adjacent tiles will be split into two line segments; a line
segment which starts in one tile, and passes through fifty tiles on its way to its
other end will be broken into fifty-two line segments: one for each tile it touches.

This approach can be an effective strategy for certain applications which are
read-only. However, it is a poor strategy for data structures with dynamic content.
Adding new data objects is relatively simple, but deleting and modifying data are
more difficult. Problems arise because the original objects are not guaranteed to
be intact. If a line segment needs to be moved or removed, it must somehow be
reconstituted so that the database behaves as expected. This requires additional
database bookkeeping, more complicated algorithms and the accompanying
degradation in design simplicity and performance.

Another general problem related to organizing multidimensional objects is
that many of these objects are difficult to mathematically describe once broken up.
For example, there are numerous ways in which a circle can overlap four adjacent
rectangular tiles. Depending on placement, the same sized circle can become two,
three or four odd shaped pieces. As with a heavily fragmented line segment, the
original "natural" character of the object is effectively lost.

An alternate strategy is to use indirection, where objects which cross tile
boundaries are multiply referenced. However, each reference requires an extra step
to recover the object, and the same object may be retrieved more than once by the
same query, requiring additional complexity to resolve. When the number of
objects in the database becomes large, this extra level of indirection becomes too
expensive to create a viable system.

Another strategy used with quad-trees is to push objects which cross tile
boundaries into higher and higher levels of the tree until they finally fit. The
difficulty with this strategy is that when the number of map objects contained in

the higher nodes increases, database operations will have to examine every object

-4-

10

15

20

WO 98/38561 PCT/US98/03493

at the higher nodes before they can direct the search to the smaller nodes which
are more likely to contain useful information. This results in a tremendous lag

time for finding data.

Query Optimization in a Conventional DBMS

As discussed above, data which describes the position, size and shape of
objects in space is generally called spatial data. A collection of spatial data is called
a Spatial Database. Examples of different types of Spatial Databases include maps
(street-maps, topographic maps, land-use maps, etc.), two-dimensional and three-
dimensional architectural drawings and integrated circuit designs.

Conventional Database Management Systems (DBMS) use indexing methods
to optimize the retrieval of records which have specific data values in a given field.
For each record in the database, the values of the field of interest are stored as keys
in a tree or similar indexing data structure along with pointers back to the records
which contain the corresponding values.

DATABASE TABLE 1 shows an example of a simple database table which
contains information about former employees of a fictional corporation. Each row
in the table corresponds to a single record. Each record contains information about
a single former employee. The columns in the table correspond to fields in each
record which store various facts about each former employee, including their name

and starting and ending dates of employment.

10

15

20

WO 98/38561 PCT/US98/03493
DATABASE TABLE 1
The FormerEmployee database table.
Name StartDate | EndDate | Other ... |
P. S. Buck 6715192 872195
Willy Cather 1/27/93 6/30/93
Em Dickinson 9/12/92 11/15/92
Bill Faukner 7/17/94 2/12/95
Ernie Hemmingway 6/30/91 5/14/93
H. James 10/16/91 12/4/92
Jim Joyce 11723/92 5/8/93
E. A. Poe 1/14/93 4/24/95

EXAMPLE QUERY 1 shows a SQL query which finds the names of all

former employees who started working during 1993. If the number of records in

the former employee database were large, and the query needs to be performed on

a regular or timely basis, then it might be useful to create an index on the StartDate

field to make this query perform more efficiently. Use of a sequential indexing data

structure such as a B-tree effectively reorders the database table by the field being

indexed, as is shown in DATABASE TABLE 2. The important property of such

sequential indexing methods is that they allow very efficient search both for records

which contain a specific value in the indexed field and for records which have a

range of values in the indexed field.

10

15

20

25

WO 98/38561

EXAMPLE QUERY 1

SQL to find all former employees hired during 1993.

PCT/US98/03493

select Name
from
FormerEmployee
where
StartDate > 1/1/93
and
StartDate < 12/31/93

DATABASE TABLE 2
The FormerEmployee table indexed by StartDate.

Name StartDate EndDate Other ...
Ernie Hemmingway 6/30/91 5/14/93

H. James 10/16/91 12/4/92

P. S. Buck 6/15/92 8/2/95

Em Dickinson 9/12/92 11/15/92

Jim Joyce 10/23/92 5/8/93

E. A. Poe 1/14/93 4/24/95

Willy Cather 1/27/93 6/30/93

Bill Faukner 7/17/94 2/12/95

For analytical purposes, the efficiencies of computer algorithms and their

supporting data structures are expressed in terms of Order functions which describe

the approximate behavior of the algorithm as a function of the total number of

objects involved. The notational short hand which is used to express Order is O().

For data processing algorithms, the Order function is based on the number of

objects being processed.

For example, the best sorting algorithms are typically performed at a O(N

x log(N)) cost, where N is the number of records being sorted. For data structures

used to manage objects (for instance, an index in a database), the Order function is

based on the number of objects being managed. For example, the best database

indexing methods typically have a O(log(N)) search cost, where N is the number

of records being stored in the database.

Certain algorithms also have distinct,

usually rare worst case costs which may be indicated by a different Order function.

7-

10

15

20

WO 98/38561 PCT/US98/03493

Constant functions which are independent of the total number of objects are
indicated by the function O(K).

B-trees and similar Indexed Sequential Access Methods (or ISAMs) generally
provide random access to any given key value in terms of a O(log(N)) cost, where
N is the number of records in the table, and provide sequential access to subsequent
records in a O(K) average cost, where K is a small constant representing the
penalty of reading records through the index, (various strategies may be employed
to minimize K, including index clustering and caching). The total cost of
performing EXAMPLE QUERY 1 is therefore O(log(N) +(M x K)), where M
1s the number of records which satisfy the query. If N is large and M is small
relative to N, then the cost of using the index to perform the query will be
substantially smaller than the O(N) cost of scanning the entire table. DATA
TABLE 1 illustrates this fact by showing the computed values of some Order
functions for various values of N and M. This example, though quite simple, is
representative of the widely used and generally accepted database management

practice of optimizing queries using indexes.

FORMULA 1

Cost of retrieving consecutive records from a database table via an index.

O(log(N) +(M X K))
where
N = number of
records in the table,
M = number of
consecutive records
which satisfy
the query,

K = constant
extra cost of reading
records

through the index.

10

15

20

25

WO 98/38561 PCT/US98/03493

EXAMPLE QUERY 2 shows a SQL query which finds the names of all
former employees who worked during 1993. Unlike EXAMPLE QUERY 1, it is
not possible to build an index using traditional methods alone which significantly
improves EXAMPLE QUERY 2 for arbitrary condition boundaries, in this case,
an arbitrary span of time. From a database theory point of view, the difficulty with
this query is due to the interaction of the following two facts: because the two
conditions are on separate field values, all records which satisfy one of the two
conditions need to be inspected to see if they also satisfy the other; because each
condition is an inequality, the set of records which must be inspected therefore
includes all records which come either before or after one of the test values

(depending on which field value is inspected first).

EXAMPLE QUERY 2
SQL to find all former employees who worked during 1993.

select Name
from FormerEmployee
where EndDate = 1/1/93

and StartDate < 12/31/93

Consider the process of satisfying EXAMPLE QUERY 2 using the index
represented by DATABASE TABLE 2. The cost of performing EXAMPLE
QUERY 2 using an index based on either of the two fields would be O(KxN/2)
average cost and O(KxN) worst-case cost. In other words, the query will have to
look at half the table on average, and may need to inspect the whole table in order
to find all of the records which satisfy the first of the two conditions. Since the cost
of scanning the entire table without the index is O(N), the value of using the index
is effectively lost (refer to TABLE 3). Indeed, when this type of circumstance is
detected, query optimizers (preprocessing functions which determine the actual
sequence of steps which will be performed to satisfy a query) typically abandon the

use of an index in favor of scanning the whole table.

10

15

20

25

30

WO 98/38561

FORMULA 2

Cost of retrieving all records which overlap an interval using a conventional

database index on the start or end value.

PCT/US98/03493

O(K XN/2) average,
O(K XN) worst case.

DATA TABLE 1

Comparison of Order function results for various values

of Nand M. A K value of 1.5 is used for the purpose of this example.

N, O(N) M O(log(N)) O(log(N)+(MxK)) OK x N/ 2)

100 5 2 10 75

100 10 2 17 75

100 50 2 71 75

1000 5 3 11 750

1000 10 3 18 750

1000 50 3 78 750
10000 S 4 12 7500
10000 10 4 19 7500
10000 50 4 79 7500

From a more abstract point-of-view, the difficulty with this example is that
there is actually more information which the conventional database representation
does not take into account. StartDate and EndDate are in fact two different facets of
a single data item which is the contained span of time. Put in spatial terms, the
StartDate and EndDate fields define two positions on a Time-Line, with size defined
by the difference between those positions. For even simple one-dimensional data,
conventional database management is unable to optimize queries based on both

position and size.

Introduction to two-dimensional Spatial Data

Spatial databases have a particularly demanding need for efficient database
management due to the huge number of objects involved. A comprehensive street
map for a moderate sized community may consist of tens to hundreds of thousands

of individual street blocks; wide area maps of Los Angeles, CA or New York, NY

-10-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

may contain more than a million street blocks. Similarly, the designs for modern
integrated circuits also contain miilions of components.

FIGURE 1 illustrates a coordinate plane with X- and Y-axes. For the purpose
of the following example, the size of the plane is chosen to be 200 %200 coordinate
units, with the minimum and maximum coordinates values of -100 and 100
respectively for both X and Y. However, it should be noted that the principles
discussed for the following example can be applied to any bounded two-dimensional
coordinate system of any size, including, but not limited to planer, cylindrical surface
and spherical surface coordinate systems. The latitude/longitude coordinate system
for the earth’s surface, with minimum and maximum latitude values of -90 degrees
and +90 degrees, and minimum and maximum longitude values of -180 degrees and
+180 degrees, is an example of one such spherical coordinate system.

FIGURE 2 illustrates a distribution of points on the FIGURE 1 plane. Ad
discussed above, points are the simplest type of spatial data object. Their spatial
description consists of coordinate position information only. An example of non-
spatial description commonly associated with point objects might include the name
and type of a business at that location, e.g., "Leon’s BBQ", or "restaurant".

FIGURE 3 illustrates a distribution of linear and polygonal spatial data objects
representing a map (note that the text strings "Hwy 1" and "Hwy 2" are not
themselves spatial data objects, but rather labels placed in close proximity to their
corresponding objects). The spatial descriptions of linear and polygonal data objects
are more complex because they include size and shape information in addition to
solely their position in the coordinate system. An example of non-spatial description
commonly associated with linear map objects might include the names and address
ranges of the streets which the lines represent, e.g., "100-199 Main Street". An
example non-spatial description commonly associated with polygonal map objects are
the name and type of the polygon object, e.g., "Lake Michigan", "a great lake".

FIGURE 4 illustrates the Minimum Bounding Rectangles (MBRs) of various
of linear and polygonal spatial data objects. The Minimum Bounding Rectangle of
a spatial data object is the smallest rectangle orthogonal to the coordinate axis which
completely contains the object. Minimum Bounding Rectangles are typically very
easy to compute by simple inspection for the minimum and maximum coordinate

values appearing in the spatial description. In spatial data storage and retrieval

-11-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

methods, Minimum Bounding Rectangles are often used represent the approximate
position and size of objects because the simple content (two pairs of coordinates)

lends itself to very efficient processing.

Storing two-dimensional Spatial Data in a Conventional Database Management
System

DATABASE TABLE 3 shows how some of the points from FIGURE 2 might
be represented in a regular database table. The points in DATABASE TABLE 3
correspond to the subset of the points shown in FIGURE 2 indicated by the *
markers. EXAMPLE QUERY 3 shows a SQL query which fetches all points within
a rectangular window. A rectangular window query is among the simplest of the
commonly used geometric query types. Inspection reveals that "Emily’s Bookstore"
is the only record from DATABASE TABLE 3 which will be selected by this query.
FIGURE 5 shows the rectangular window corresponding to EXAMPLE QUERY 3
superimposed on the points shown in FIGURE 2.

DATABASE TABLE 3

A conventional database table containing some business locations.

X Y Name T‘ype

-42 25 Leon's BBQ | Restaurant

9 -34 Super Saver Grocery Store
17 21 Emily’s Books Book Store
68 -19 Super Sieeper Motel

-84 7 Bill’s Garage Gas Station

EXAMPLE QUERY 3

SQL to find all businesses in a window.

select Name, Type
from BusinessLocation

where X = 10and X < 35
andY = 15and Y < 40

The principle problem illustrated by this example is that the traditional query
optimization method of building a simple index doesn’t work well enough to be

useful. Consider building an index based on the X field value. Use of this index to

-12-

10

15

WO 98/38561 ‘ PCT/US98/03493

satisfy EXAMPLE QUERY 3 will result in an over-sampling of the database table
illustrated by the two thick vertical bars shown in FIGURE 6. When the query is
performed, the records for all point objects which are between those two bars will
need to be examined to find the much smaller subset which actually fits within the
shaded window. The "Super Saver" record of DATABASE TABLE 3 is an example
of a record which would be needlessly examined.

While the work required to start the query is logarithmic, the expected number
of point objects which are over-sampled is a linear function of the number of point
objects in the database, as is shown by FORMULA 3. ~ This means that the
performance of this query will tend to degrade linearly as the number of objects in
the database increases. When data volumes become large, this linear behavior will
becomes much worse than the preferred O(log(N)), effectively making this style of
solution ineffective. The same problem occurs with an index based on Y. The root
cause of this problem is the fact that two-dimensional spatial coordinates consist of
two values (X and Y) which are independent, but which are also equally important
for most spatial queries. Conventional database management techniques are poorly

suited to handling two-dimensional data.

-13-

10

15

WO 98/38561 PCT/US98/03493

FORMULA 3
Average cost of performing a two-dimensional rectangular window query using

conventional database indexing methods, assuming a mostly even distribution in X.

O(log(N) +(K x N x Cx/Wx))
where
N = number
of records in the
table,
K = constant
extra cost of reading
records
through the index.
Cx = width of
the coordinate

space,
Wy = width of
the rectangle.

Description of Related two-dimensional Spatial Data Structures

The problems which conventional database management methods have with
spatial data have led to the development of a variety of special purpose data storage
and retrieval methods called Spatial Data Structures. The Design and Analysis of
Spatial Data Structures by Hanan Samet includes a review of many of these methods.
Many of the commonly used spatial data structures rely on the concept of tile based
hierarchical trees.

FIGURE 7 shows a rectangular recursive decomposition of space while
FIGURE 8 shows how the tiles formed by that decomposition can be organized to
form a "tree” (a hierarchical data structure designed for searching). Data structures
of this type are called Quad-Trees. FIGURE 9 shows the points from FIGURE 2
distributed into the "leaf-nodes" of this Quad-Tree.

FIGURE 10 shows the subset of the Quad-Tree which is contacted by the
Rectangular Window Retrieval of EXAMPLE QUERY 3. Note the contrast between

the two bottom level nodes which must be inspected in the Quad-Tree, versus the

-14-

10

15

20

25

30

WO 98/38561 ' PCT/US98/03493

long stripe which must be inspected using conventional database indexing as shown
in FIGURE 6. All of the inspected points from the two nodes in FIGURE 10 are
at least in the neighborhood of the rectangle, whereas some points inside the stripe
in FIGURE 6 are literally at the far edge (bottom) of the coordinate system. While
the difference in number of inspected points is not great due to the simplicity of this
example, the performance contrast is dramatic when the number of point objects is
very large. The Quad-Tree is much better suited to storing position based data
because it simultaneously indexes along both axis of the coordinate system.

In the most basic implementation of Quad-Trees, each tile in the hierarchy
corresponds to a "record" containing information which pertains to that tile. If the
tile is at the root or at a branch level, the corresponding record will contain the
coordinates of, and pointers to, the records for each child tile. If the tile is at the leaf
level, the corresponding record contains the subset of the spatial data objects (point,
line or polygon objects and their attributes) which are geometrically contained within
the tile’s perimeter. The Quad-Tree database "records" are stored in a disk file in
breadth first or depth first order, with the root at the head of the file. There are also
variations which keep some spatial data objects at higher levels of the hierarchy, and
which don’t actually create records for leaves and branches which are either mostly
or completely empty. For instance, leaves 133 and 144 in FIGURE 9 are both
empty.

An advantage of the Quad-Tree data structure is that it exhibits O(log(N))
cost when the spatial density of data is fairly uniform, therefore resulting in a well
balanced tree. The balance is driven by the construction algorithms which control the
amount of branching. The amount of branching (and therefore the maximum depth)
in a Quad-Tree is driven by an interaction between the local density of spatial data
objects and the maximum number of such objects which can be accommodated in a
leaf level record. Specifically, when the data storage in a leaf record fills up, the leaf
is split into four children with its spatial data objects redistributed accordingly by
geometric containment. Each time this happens, the local height of the tree increases
by one. As a result of this algorithmic behavior, however, very high local data
densities can cause Quad-Tree performance to degrade toward O(N) cost due to

exaggerated tree depth.

-15-

10

15

20

25

30

35

WO 98/38561 PCT/US98/03493

There are also a wide variety of non-hierarchical uses of hard edged tiles
within a coordinate system. One such method uses space filling curves to sequence
the tiles. FIGURE 11 shows such a sequencing of a 4 x4 tiling using the Peano-
Hilbert curve. The resulting tiles are 50 units on a side. The tiles thus sequenced
can be stored in records similar to the leaves in a Quad-Tree, where the data stored
in each record corresponds to the subset contained within the tile’s perimeter. The
records can be simply indexed by a table which converts tile number to record
location.

The tiles can also be used as a simple computational framework for assigning
tile membership. DATABASE TABLE 4 shows the business location database table
enhanced with corresponding tile number field from FIGURE 11. The tile number
is determined by computing the binary representations of the X and Y column and
row numbers of the tile containing the point, and then applying the well known
Peano-Hilbert bit-interleaving algorithm to compute the tile number in the sequence.
Building an index on the tile number field allows the records to be efficiently
searched with geometric queries, even though they are stored in a conventional
database. For instance, it is possible to compute the fact that the rectangular window
SQL query shown in EXAMPLE QUERY 3 can be satisfied by inspecting only those

records which are marked with tile numbers 8 or 9.

DATABASE TABLE 4

The BusinessLocations database table enhance with a Tile field.

[Tile X Y Name Type
8 42 25 Leon's BBQ Restaurant
14 9 -34 | Super Saver Grocery Store
17 21 Emily’s Books Book Store
13 68 -19 | Super Sleeper Motel
4 -84 7 Bill’s Garage Gas Station

Analysis of the expected cost of this system shows the importance of tile
granularity which this and all similar systems share. Extrapolating from the Order
function for database queries given in FORMULA 1, the order function for this
method is given by FORMULA 4. For a fixed sized window retrieval rectangle, the
expected number of tiles is given by FORMULA 5, (the 1 is added within each

parentheses to account for the possibility of the window retrieval crossing at least one

-16-

10

WO 98/38561 PCT/US98/03493

tile boundary). For a given average size window retrieval, the value of A in
FORMULA 4 is therefore an inverse geometric function of the granularity of the
tiling which can be minimized by increasing the granularity of the tiling. The
expected number of points per tile is given by FORMULA 6. For a given average
data density, the value of B in FORMULA 4 is therefore roughly a quadratic
function of the granularity of the tiling which can be minimized by decreasing the
granularity of the tiling. For a given average retrieval window size and average data
density, the expected value of FORMULA 4 can therefore be minimized by adjusting
the granularity of the tiling to find the point where the competing trends of A and B

yield the best minimum behavior of the system.

-17-

WO 98/38561 PCT/US98/03493

FORMULA 4
Expected cost of window retrieval using tile numbers embedded in a database
table.

O(A X (log(N) + K X B))
where

A = expected

number of tiles

needed to

satisfy the query,

B = expected

number of objects

assigned to
each tile.

FORMULA 5
Expected number of tiles per retrieval.

A = round up(Wx /T x+D
X round_up(Wy /T y+D
where

Wyx = width of
the rectangle,

Tx = width of
a tile,

Wy = height of
the rectangle,

Ty = height of
a tile.

-18-

10

15

20

25

WO 98/38561 ' PCT/US98/03493

FORMULA 6

Expected number points per tile.

B=T X X TY XD
where

Ty = width of
a tile,

Ty = height of
a tile,

D = average
density of points.

While this technique still over-samples the database, the expected number of
records which will be sampled is a function of the average number of records in a tile
multiplied by the average number of tiles needed to satisfy the query. By adjusting
the tile size, it is possible to control the behavior of this method so that it retains the
O(log(N)) characteristics of the database indexing scheme, unlike a simple index
based only on X or Y coordinate. Oracle Corporation’s implementation of two-
dimensional "HHCODES" is an example of this type of scheme.

The problem which all tile based schemes suffer is that higher dimension
objects (segments, polylines, polygons) don’t fit as neatly into the scheme as do
points as FIGURES 12 and 13 illustrate. FIGURE 12 shows how the linear and
polygonal data objects from FIGURE 3 naturally fall into the various nodes of the
example Quad-Tree. Note how many objects reside at higher levels of the Quad-
Tree. Specifically, any object which crosses one of the lower level tiles boundaries
must be retained at the next higher level in the tree, because that tile is the smallest
tile which completely covers the object. This is the only way that the Quad-Tree tile
hierarchy has of accommodating the object which might cross a boundary as a single
entity.

FIGURE 13 shows the dramatic impact which the data that is moved up the
hierarchical tree has on the example rectangular window retrieval. Since linear and
polygonal data has size in addition to position, some substantial subset will always
straddle the tile boundaries. As the number of objects in the database grows, the

number of objects which reside in the upper nodes of the quad-tree will also grow,

-19-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

leading to a breakdown of the performance benefit of using the structure. This
problem is shared by all hard tile-boundaried methods (Quad-Trees, K-D Trees, Grid-
Cells and others).

There are three principle ways used to get around the problem of managing
objects that straddle tile boundaries: 1) break up any objects which cross tile
boundaries into multiple fragments, thereby forcing the data objects to fit, 2) duplicate
the objects once for each extra tile that the object touches, and 3) indirectly
referencing each object, once for each tile that it touches. Fragmentation in particular
is most often used in read-only map data applications. While each of these methods
has its respective strengths, a weakness shared by all of them is the great increase in
implementation complexity, particularly when the content of the spatial database must
be edited dynamically. Note also that these techniques need to be applied to each of
the offending objects, which, as the object population in the middle and upper level
nodes of FIGURE 13 shows, is likely to be a substantial fraction of the database.

The R-Tree (or Range-Tree) is a data structure which has evolved specifically
to accommodate the complexities of linear and polygonal data. Like Quad-Trees, R-
Trees are a hierarchical search structure consisting of a root and multiple branch
levels leading to leaves which contain the actual spatial data. Unlike Quad-Trees
which are built from a top-down regular partitioning of the plane, R-Trees are built
bottom-up to fit the irregularities of the spatial data objects. Leaf-level records are
formed by collecting together data objects which have similar size and locality. For
each record, a minimum bounding rectangle is computed which defines the minimum
and maximum coordinate values for the set objects in the record. Leaf records which
have similar size and locality are in turn collected into twig-level records which
consist of a list of the minimum bounding rectangles of and pointers to each of the
child records, and an additional minimum bounding rectangle encompassing the entire
collection. These twig records are in turn collected together to form the next level
of branches, iterating until the tree converges to a single root record. Well balanced
R-Trees exhibit O(log(N)) efficiency.

The difficulty with R-Trees is that, since there definition is dependent on how
the data content "fits" together to build the tree, the algorithms for building and
maintaining R-Trees tend to be complicated and highly sensitive to that data content.

Static applications of R-Trees, where the data content does not change, are the easiest

-20-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

to implement. Dynamic applications, where the data is constantly being modified,
are much more difficult. This is in part because the edit operations which modify the
geometric descriptions of the spatial data, by implication have the potential to change
the minimum bounding rectangie of the containing record, which in turn can effect
the minimum bounding rectangle of the parent twig record, and so on up to the root.
Any operation therefore has the potential to cause significant reorganization of the
tree structure, which must be kept well balanced to maintain O(log(N)) efficiency.
In summary, a variety of special purpose data structures have evolved to meet
the particular requirements of muiti-dimensional spatial data storage. While these
techniques effectively solve some of the problems associated with two-dimensional
spatial data, they also share the same inherent weakness which one-dimensional
methods have when dealing with data which represents a continuous range of values.
In the one-dimensional case, the problem data object types are closed intervals of a
single variable, for example, intervals of time. In the two-dimensional case, the
problem data object types such as lines, circles and polygons are described by closed

intervals of two variables.

Description of three-dimensional and Higher Dimension Spatial Data Structures

Spatial data which describe a three-dimensional surface has similar
requirements for efficient organization. The added complexity is that three-
dimensional spatial data consists of 3 independent variables (X, Y and Z) which have
equal weight. three-dimensional geometric descriptions of lines, surfaces and
volumes are also more complicated than two-dimensional lines and polygons, which
make the data somewhat bulkier.

However, the basic database organizational problems in three-dimensional are
fundamentally the same as those in two-dimensional space, and are therefore
amenable to very similar solutions. There is a three-dimensional equivalent to Quad-
Tree which uses a regular cubic partitioning of three-dimensional space. Oracle
Corporation has also implemented a three-dimensional version of its "HHCODE"
technology for storing point objects. There is also a three-dimensional equivalent to
R-Trees which uses three-dimensional minimum bounding boxes to define the

coordinate extent of leaves and branches. These techniques also share the same

21-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

limitations as one-dimensional and two-dimensional techniques when handling data
representing continuous three-dimensional intervals.

The same principles also apply to organizing higher dimension data. In
particular, Oracle Corporation has extended its "HHCODE" technology to
accommodate point objects of up to 11 dimensions.

As described above, there are several problems associated with efficiently
organizing and indexing multi-dimensional spatial data within a database. For this
reason, an improved method for staring spatial data would be advantageous. This

advantage is provided by the system of the present invention.

Summary of the Invention

As discussed above, databases of information can comprise hundreds of
megabytes of data, thereby being very difficult to efficiently search. However,
multidimensional data that is stored with the method and system of the present
invention can be retrieved with far fewer processor cycles and disk seeks than in
prior systems.

In the past, one way of organizing large quantities of spatial data was to first
overlay a coordinate system onto the spatial data. Each object within the spatial
database would be assigned X and Y coordinates. Larger objects, such as lines,
polygons and other shapes would be assigned a single location point within the
coordinate system that would act like an anchor to hold the object to its position.
For example, a line might have a location point that corresponds to one of its ends,
and the rest of the object would contain information about the other ends’ X and Y
coordinates, the line’s thickness, color, or other features. In this manner, each object
within the spatial database would have a single location point, no matter how large
the object was in the database.

By separating the larger coordinate system into sub-regions, each location
point could be assigned to a particular sub-region. These sub-regions are known as
tiles because they resemble a series of tiles once superimposed over a coordinate
system that included a set of spatial data. Each tile would, therefore, hold a
particular set of spatial data. Thus, a user that knew which tiles held the desired
information only needed to search those specific tiles. Once the computer user

identified spatial data in a desired region of the spatial database, the system read

-22-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

those few tiles from memory and began the process of gathering objects from those
tiles. This method thereby prevented the system from analyzing every object in the
entire database for every computer user’s request.

While this system of assigning a title number to data objects worked well for
data comprising only points, it was very slow when larger data objects were
involved. Larger data objects could be lines, circles or polygons within the spatial
database. Many problems related to organizing spatial data objects had to do with
the difficulty of assigning these objects to only one tile, when the object traversed
across many tiles. For example, a long line that crosses over three tiles can pose
many problems. Since no particular tile is assigned to the long line, the line might
be assigned to either the wrong tile or a series of tiles. Assigning an object, such
as a line, to multiple tiles leads to a tremendous computer overhead since all of
these associations must be maintained in the computer system.

The one embodiment reduces these previous problems by providing a series
of overlaps between every tile in a spatial database. These overlapping tiles, termed
herein "shingles”, represent tiles that overlap their nearest four neighbors. The area
of overlap for any shingle can be pre-determined to provide the maximum
efficiency. For example, a spatial database holding map data might be programmed
to have a shingle size of 10 square miles with each single overlap comprising 5
square miles. Thus, every shingle would have an overlap with its nearest four
neighbors that is equal to the size of the neighboring shingles. The shingle overlap
allows more data objects in the spatial database to be assigned to only one shingle
and not split between multiple hard edged tiles. As discussed above, dividing an
object across multiple tiles is very disadvantageous because it requires the system
to track every tile that is assigned to a particular object.

Thus, the purpose of the tiered shingle structure is to provide a logical
framework for resolving Spatial Queries into the database in a timely and efficient
manner. The spatial data structure is conceptual structure that provides the
organization for indexing objects within a spatial data set. The tiered shingle
structure does not have to be embodied in a specific computer data structure to be
useful and effective. The Tiered Shingle Structure is part of a computational tool for
organizing a set of spatial data objects, such as lines, squares and polygons into

subsets based on their similar position and size in space. In addition, the tiered

-23-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

shingle structure can provide a mechanism for identifying those subsets of the
database which contain the necessary and sufficient spatial data objects required by
a specific spatial query into the database.

The system and method of the present invention alleviates the problems
found in prior systems of small objects which cross title boundaries being moved
to higher levels in the tree. In one embodiment the layers of sub-regions are
generated, the tiles are calculated to have areas which overlap. Therefore, no hard
edges exist between tiles or an object might reside in two tiles simultaneously.
These overlapping sub-regions are termed shingles. Because a shingle might overlap
with, for example, one half of its closest neighbors, objects which fit into the large
shingle region will remain at the lowest possible level. Another advantage of the
present invention is that it improves the efficiency of individual databases because
the shingle overlap size in each layer can be pre-programmed to provide the fastest
access to the spatial database.

A database with numerous small objects, such as streets, can be programmed
with a smaller shingle overlap size than databases that have numerous large objects,
such as freeways. Tailoring the size of the shingles and overlap areas to the size of
the average data object keeps more data objects at a single, lower level within the
database architecture of the present invention. However, any data object that cannot
fit within one shingle can be stored in the next higher level of shingling.

For example, the first level of shingling might have a shingle size of 5 square
miles and divide the map database into 10,000 shingles. However, the second level
of shingling might have a shingle size of 10 square miles and divide the map
database into 2500 shingles. This will be discussed more specifically below in
reference to Figure 12.

One embodiment of the invention is a method of organizing spatial data
objects in a map database, including referencing data objects as location points in
a region to a coordinate system; separating the region into multiple sub-regions and
assigning the data objects whose location point falls within a sub-region to the sub-
region so long as no part of the object extends outside the sub-region by a
predetermined amount.

Another embodiment of the present invention is a method of storing spatial

data objects to a computer memory, comprising the steps of (1) determining the size

24-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

of each data object within a coordinate system; (2) assigning each spatial data object
to a location point in the coordinate system; (3) calculating the boundaries of a first
tier of overlapping sub-regions of the coordinate system so that each point in the
coordinate system is assigned to at least one sub-region; (4) referencing each spatial
data object that is smaller than the size of said sub-regions in the first tier to a
specific sub-region of the coordinate system based on the location point of each
spatial data object; and (5) storing the spatial data objects along with its reference

to a specific sub-region to the computer memory.

Brief Description of the Drawings

FIGURE 1 is a diagram illustrating a coordinate plane in two-dimensional
space.

FIGURE 2 is a diagram of a computer database depicting a distribution of
point spatial data objects on the coordinate plane of Figure 1.

FIGURE 3 is a diagram of a computer database showing a distribution of
linear and polygonal spatial data objects representing a map on the coordinate
plane of Figure 1.

FIGURE 4 is an illustration of the minimum bounding rectangles
corresponding to a line segment, a polyline and a polygon in a computer database.

FIGURE 5 is an illustration of a rectangular window retrieval on the
coordinate plane of Figure 1.

FIGURE 6 is a depiction of the coordinate system of Figure 1, wherein a
conventional computer database indexing scheme has been applied to search for
spatially distributed data within the coordinate plane.

FIGURE 7 is an illustration of a regular quadrant-based decomposition of
the coordinate plane of Figure 1.

FIGURE 8 is a diagram of a tree that depicts how the quadrants and sub
quadrants of the coordinate plane decomposition of Figure 7 can be organized to
form a Quad Tree-type spatial data structure for a computer database.

FIGURE 9 is an illustration of a distribution of point data objects into

Quad-Tree nodes in a spatial data structure of a computer database.

.25.

10

15

20

25

30

WO 98/38561 ‘ PCT/US98/03493

FIGURE 10 is a diagram of a rectangular window retrieval applied to a
Quad-Tree-based data structure of a computer database that illustrates the
effectiveness of this data structure for managing two-dimensional point data.

FIGURE 11 is an illustration of how a computer database uses a regular,
quadrant-based tiling scheme for organizing two-dimensional data by calculating
the Peano-Hilbert space filling curve.

FIGURE 12 is a depiction of how linear and polygonal spatial data objects
fit into a two-dimensional data structure of a computer database that is organized
as a Quad-Tree.

FIGURE 13 is an illustration of a rectangular window retrieval applied to a
computer database that is organized as a Quad-Tree and contains linear and
polygonal data. This illustration demonstrates the ineffectiveness of organizing
two-dimensional data into this type of data structure and managing spatial data
which has an inherent size.

FIGURE 14 is an illustration of the organization of a computer database
having a three level tiered shingle structure applied to the coordinate plane.

FIGURE 15 is an illustration of linear and polygonal map data elements
distributed into a computer database that is organized using the Tiered Shingle
Structure of the present invention.

FIGURE 16 is an illustration of a rectangular window retrieval for a
computer database applied to the Tiered Shingle Structure of the present invention
and showing the effectiveness of this data structure for managing spatial data

which has size.

Detailed Description of the Preferred Embodiment

Reference is now made to the drawings wherein like numerals refer to like
parts throughout. For convenience, the following description will be organized into
the following principle sections: Overview, Functional Description, Example
Implementation within a Database Table, Empirical Analysis, Mathematical Analysis

and Conclusion.

26-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

1. Overview

The present invention is a method and system for organizing large quantities
of data. Although the examples used to illustrate the embodiment of this invention
are for organizing map data, the techniques can be applied to other types of data.
Other applicable data types include engineering and architectural drawings,
animation and virtual reality databases, and databases of raster bit-maps.

Additionally, although the figures describe an embodiment of the invention
that could be used to organize data representing an object of two dimensions, the
present invention is applicable to organizing data for objects of three or more
dimensions.

Thus, as discussed above, the purpose of the tiered shingle structure is to
provide a logical framework for resolving spatial queries into a computer database
in a timely and efficient manner. The tiered shingle structure does not have to be
embodied in a specific computer data structure to be useful and effective. The tiered
shingle structure is part of a computational tool for organizing a set of spatial data
objects, such as lines, squares and polygons into subsets based on their similar
position and size in space. In addition, the tiered shingle structure provides a
mechanism for identifying those subsets of the database which contain the necessary
and sufficient spatial data objects required by a specific spatial query into the
database. In addition, the tiered shingle structure can run on an Intel® processor
based computer system in one preferred embodiment. However, other computer
systems, such as those sold by Apple®, DEC® or IBM® are also anticipated to
function within the present invention.

FIGURE 14 is an illustration of a three level tiered shingle structure as it
would be applied to the example coordinate plane shown in Figure 1. This Tiered
Shingle Structure is similar to the regular quadrant-based decomposition of the
coordinate plane shown in FIGURE 7. However, rather than each level data
structure being organized with discrete, hard-edged tiles, each level consists of
overlapping shingles. The overlap between adjacent shingles will be discussed in
more detail below, but is indicated by the shaded bands 22 in FIGURE 14. Note that
shingles 1-18 formed by regular overlapping squares or rectangles which are normal
to the coordinate axis are the easiest to understand and implement, though other

configurations are possible.

-27-

10

15

20

25

30

WO 98/38561 ’ PCT/US98/03493

The finest level in a Tiered Shingle Structure (shingles 1-16 in FIGURE 14)
is designed to serve as the indexing medium for the vast majority of the spatial data.
Thus, it is desirable for the majority of data objects to be assigned to shingles in this
level of the data structure. Thus, the spatial objects which extend beyond the edge
of the central portion of the shingle by more than a predetermined amount (e.g., its
overlap will be assigned to the next higher tier in the hierarchy). The granularity
(size of shingle and amount of overlap) of that finest level can be tuned to balance
between the competing trends of maximizing the number of spatial data objects which
"fit" in that level of shingling (accomplished by increasing the size of the shingles),
versus maximizing the degree of partitioning (accomplished by decreasing the size of
the shingles). The coarser levels of shingles (a single level in FIGURE 14 consisting
of shingles 17-20) serve as an alternative indexing medium for those objects which
do not fit in the finest level (i.e., any object which is spatially too large to fit within
a particular tile), including its shingled overlap with its nearest neighbors. Note that
the absolute size of the overlap increases as the tile size increases in each successively
coarser level. Finally, there is the top-level shingle 21 (FIGURE 14) which is used
to assign those few objects which are too large to fit within other tiles of the data
structure.

FIGURE 15 is an illustration of how each of the linear and polygonal objects
depicted in the FIGURE 3 are organized within the Tiered Shingle Structure data
structure of the present invention. As will be explained below, each shingle contains
a subset of the objects having a similar position and size. The benefit of regular
overlapping tiles provided by the data structure of the present invention can be seen
by comparing the present invention data structure organization of FIGURE 15 with
the data structure organization of FIGURE 12. This shingled overlap system allows
the small data objects which were located on the arbitrary tile boundaries of the prior
art data structures (the bulk of the population in tiles 100, 110, 120, 130 and 140 in
FIGURE 12) to remain within the lowest level in the Tiered Shingle Structure.
Specifically, any object which is smaller than the size of the overlap at any given
level is guaranteed to fit into some shingle at or below that level. In addition, many
objects which are larger than the shingle overlap may also fit within a lower level.
For example, shingles 1, 6 and 9 in FIGURE 15 are mostly populated by such
objects. Note the position of those same objects in FIGURE 12. DATA TABLE

28-

10

15

20

25

WO 98/38561 PCT/US98/03493

2 provides a numerical comparison of the data object partitioning in FIGURE 15
versus FIGURE 12.

Contrasting FIGURE 16 to FIGURE 13 shows why the improved partitioning
scheme provided by the Tiered Shingle Structure translates into improved rectangular
window query performance over an equivalent structure based on prior art. While
the number of tiles which need to be inspected during a data query has slightly
increased from five in FIGURE 13 to seven in FIGURE 16, the number of data
objects which must be inspected has dropped by nearly half (sixteen versus thirty-
one). This drop is directly due to the fact that many more objects can be fit into the
finer partition levels with only a slight increase in the size of each partition. As
discussed above, a spatial data query must inspect every object within each tile that
meets the parameters of the query. Thus, for FIGURE 13, each of the data objects
within the top-level tile 100 must be inspected to determine whether it meets the
parameters of the spatial data query. Because so many more data objects are able to
reside in the smaller tile structures when organized by the method of the present
invention, there are many fewer data objects to inspect during a spatial data query.
For this reason, computer databases that are organized by the system of the present
invention can be searched more rapidly than prior art systems.

Note that in practice, the equivalent structure based on pfior art shown in
FIGURES 12 and 13 is seldom actually implemented. This is because the number
of objects which are stuck in the upper levels is too great of a burden to allow
reasonable performance. Instead, hard boundaried methods resort to alternative
strategies, including fragmenting individual data objects at the tile boundaries,
duplicating objects once for each tile which they touch, or indirectly referencing the

objects once for each tile which they touch.

229

10

15

20

25

30

WO 98/38561

DATA TABLE 2
Numerical comparison of the distributions of map objects in the Tiered Shingle

Structure depicted FIGURE 12 the versus Quad-Tree depicted in FIGURE 10.

PCT/US98/03493

[Level | Paris of | Tiered Shgl Avg/Shingle | Quad-Tree | Avg/Node
Structure | Structure
top 1 1 1 14 14
middle 4 3 1 17 4
bottom 16 60 4 33 2

2. Functional Description

The preferred embodiment of the present invention provides two principle
classes of functions. The first class, Shingle Assignment Functions, convert the
spatial description of a spatial data object into a "Shingle-Key". A Shingle-Key is a
number which uniquely represents a specific shingle in a Tiered Shingle Structure.
The second class, Query Control Functions, convert the query specification of certain
common geometric queries into a list of the necessary and sufficient Shingle-Keys
which "contain” the data needed to satisfy the query.

Appendix A contains a preferred embodiment of the invention written in the
C programming language. There is one Shingle Assignment Function, KeyForBox
(beginning on line 0507), which computes a Shingle-Key given a predetermined
Minimum Bounding Rectangle and one Query Control Function Set, KeyRectCreate
(line 0703), KeyRectRange (line 1030) and KeyRectDestroy (line 1125), which
together compute and return of all Shingle-Keys which are needed to solve a
Rectangular Window Query. The KeyForBox and KeyRectCreate function calls both
expect their corresponding spatial description parameters to be expressed in Longitude
(X1 and X2) and Latitude (Y1 and Y2) coordinates with decimal fractions. Those
functions also both take two additional parameters: nLevelMask which controls which
levels are to be included in the Tiered Shingle Structure, and nLevelLap which
controls the amount of overlap between adjacent shingles. The in-line documentation
included within Appendix A describes the parameter usage in greater detail.

Note that in both KeyForBox and KeyRectCreate, the double precision

Longitude/Latitude coordinates are immediately translated to a fixed point integer

-30-

10

15

20

25

WO 98/38561 PCT/US98/03493

representation, where 360 degrees of Longitude are represented in 28 bits of the
integer X coordinates, and 180 degrees of Latitude are represented in 27 bits of the
integer Y coordinates. The resolution of this representation is precise to roughly the
nearest half-foot on the ground. This translation from double precision to fixed-point
allows the use of highly efficient modular binary arithmetic for computing both
shingle containment and Peano-Hilbert shingle sequencing.

For convenience, the remainder of this section is divided into the following
three sub-sections: Shingle Assignment Functions, Query Control Functions and

Implementation within a Conventional Database.

2.1 Shingle Assignment Functions

The Shingle-Keys generated by a Shingle Assignment Function are used to
partition the members of a set of spatial data into subsets where all members of a
subset have the same Shingle-Key. This means that each member of a subset can be
"fit" onto the same shingle (eg: the size of the minimum bounding box that contains
the object is not larger than the tile). This further means that all members of a subset
have a similar spatial size and position. Indexing and clustering the data in the
storage mechanism (common database management practices intended to improve
efficiency) by Shingle-Key are therefore very effective, since spatial queries usually
select objects which, as a group, have similar position and size.

PROCEDURE TABLE 1 shows a set of computational steps that will derive
the Shingle-Key corresponding to a particular spatial data object. The steps in this
table correspond to lines 0536 through 0652 of the KeyForBox function in Appendix

A. The details of some of these steps are expanded upon in subsequent paragraphs.

231-

WO 98/38561 PCT/US98/03493

PROCEDURE TABLE 1
Sequence of computational steps required to convert a Spatial Description into the
corresponding Shingle-Key within a Tiered Shingle Structure based on regular

overlapping squares or rectangles.

5 Step 1 Compute the Minimum Bounding ﬁ?ctangle (MBR) of the ||
Spatial Description.

Step 2 Repeat Steps 3-6 for each sequential level in the structure,
starting with the finest:

Step 3 At the current level, determine which Shingle’s minimum
corner is "closest-to" but also "less-then-or-equal-to" the
minimum corner of the MBR.

Step 4 Determine the maximum corner of this Shingle.

Step 5 If the maximum corner of this Shingle 1s "greater-than" the
maximum corner of the MBR, then have found the
smallest containing shingle. Goto Step 7.

10 Step 6 Couldn’t find smaller shingle, therefore assign object to
the top-level shingle.

Step 7 Determine the Shingle-Key for the current Shingle.

Step 1 given in PROCEDURE TABLE 1 is computing the Minimum

Bounding Rectangle of the Spatial Data Object. The Minimum Bounding Rectangle

15 of a spatial data object is the smallest rectangle which is normal to the coordinate
axes and completely contains the object. The typical method of representing a
Minimum Bounding Rectangle is with two points: the minimum point (lower-left

corner in conventional coordinate systems) and the maximum point (upper-right

corner). FIGURE 4 illustrates the minimum bounding rectangles of a few common

20 types of spatial objects. PROCEDURE TABLE 2 describes how minimum bounding
rectangles can be computed for a variety of common types of spatial data objects.

In some cases, a slight over-estimate of the Minimum Bounding Rectangle may be

used when the precise computation is too expensive.

-32-

10

15

20

WO 98/38561

PCT/US98/03493

PROCEDURE TABLE 2

Descriptions of how Minimum Bounding Rectangles can be derived for some

common types of Spatial Data Objects.

_—Point

The minimum and maximum points are the same as the Point
itself.

Segment

The minimum point consists of the Iesser x-coordinate and
lesser y-coordinate of the two end points; the maximum point
consists of the greater x-coordinate and greater y-coordinate of
the two end points.

Polyline

The minimum point consists of the least x-coordinate and least
y-coordinate found in the list of points for the Polyline; the
maximum point consists of the greatest x-coordinate and
greatest y-coordinate found in the list of points for the
Polyline.

Polygon

The minimum point consists of the least x-coordinate and least
y-coordinate found in the list of points for the Polygon; the
maximum point consists of the greatest x-coordinate and
greatest y-coordinate found in the list of points for the
Polygon.

Circle

The minimum point 1s found by subtracting the radius of the
Circle from each coordinate of the center of the Circle; the
maximum point is found by adding the radius of the Circle to
each coordinate of the center of the Circle

B-Spline

The mimmum point can be estimated by selecting the least x-
coordinate and least y-coordinate found in the set of four point
used to construct the B-Spline; the maximum point can be
estimated by selecting the greatest x-coordinate and greatest y-
coordinate found in the set of four point used to construct the
B-Spline. A B-spline is constructed from two end-points and
two control-points.

In Step 3 of PROCEDURE TABLE 1 a determination is made whether the

Shingle in the current level who’s minimum point (lower-right corner) is both closest-

to and less-than-or-equal-to the Minimum Bounding Rectangle of the spatial object.

If the Tiered Shingle Structure is based on a regular rectangular or square tiling of
the coordinate plane (as illustrated in FIGURE 14 and described in Appendix A) then

the candidate shingle is the one corresponding to the tile which contains the minimum

point of the Minimum Bounding Rectangle. In the KeyForBox function of Appendix

A, lines 0590 and 0591, the coordinates of the minimum point of the Shingle are

computed directly using binary modular arithmetic (the tile containment is implied).
In Step 4 of PROCEDURE TABLE 1, the maximum point (upper right

corner) of the candidate shingle is calculated. That point can be determined directly

-33-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

from the minimum point of the shingle by adding the standard shingle width for the
current level to the x-coordinate and adding the standard shingle height for the current
level to the y-coordinate. In Appendix A, this calculation is performed in lines 0598
through 0601 of the KeyForBox function. Since the Tiered Shingle Structure used
in Appendix A is based on overlapping squares, the same value is added to each
coordinate.

In Step 5 of PROCEDURE TABLE 1, the maximum corner of the shingle
is compared to the maximum corner of the Minimum Bounding Rectangle (MBR).
This is accomplished through a piece-wise comparison of the maximum x-coordinate
of the shingle to the maximum x-coordinate of the MBR and the maximum y-
coordinate of the shingle to the maximum y-coordinate of the MBR. If each
coordinate value of the shingle is greater than the corresponding value for the MBR,
then the maximum corner of the shingle is said to be greater than the maximum
corner of the MBR. In Appendix A, this calculation is performed on lines 0609 and
0610 of the KeyForBox function.

Step 6 of PROCEDURE TABLE 1 is performed if, and only if, the repeat
loop of Steps 2-5 is exhausted without finding a shingle which fits the Minimum
Bounding Rectangle. The spatial object which is represented by the Minimum
Bounding Rectangle therefore does not fit within any of the lower levels (eg: tiers)
of the shingle structure. It therefore by definition must fit within the top-level
shingle. In Appendix A, this step is performed on lines 0651 and 0652 of the
KeyForBox function.

Step 7 given in PROCEDURE TABLE 1 determines the Shingle-Key for the
shingle which was found to "best-fit" the data object. In Appendix A, the Peano-
Hilbert space filling curve is used to assign Shingle-Key numbers via the
KeyGenerator function call shown in lines 0623-0625 of the KeyForBox function.
The KeyGenerator function is implemented in lines 0043-0485 of Appendix A. The
parameters given to the KeyGenerator function include the coordinates of the
minimum point of the Shingle, and the corresponding level in the Tiered Shingle
Structure. Note that the uniqueness of Shingle-Key numbers across different levels

is guaranteed by the statement on line 0482 of Appendix A.

2.2 Query Control Functions

-34-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

The second class of functions are used for controlling spatial queries into the
computer database. Functions of this class convert the query specification for certain
common geometric queries into a list of the necessary and sufficient shingle keys
which contain the data needed to satisfy the query. The list of shingle-keys may be
expressed either as an exhaustive list of each individual key, or as a list of key ranges
(implying that all keys between and including the minimum and the maximum values
of the range are needed).

The most common types of spatial queries are those which find all objects
which overlap a region defined by a chosen perimeter. Examples include the
Rectangular Window Query and the Polygon Overlap Query. PROCEDURE
TABLE 3 shows the general usage of this type of Query Control Function.

PROCEDURE TABLE 3

Steps in the general usage of region overlap Query Control Functions.

—§tep 1 Identify the set of shingles which overlap the region being

queried
Step 2 Repeat Steps 3-5 for each identified shingle
Step 3 Retrieve from the computer database the subset of spatial

data which has been assigned the identified shingle-keys
Step 4 Repeat Step 5 for each object in the subset

Step 5 Test the object for overlap with the region being queried;
Retain each object which passes the test

For queries that overlap several regions (eg: tiles) of the database, the set of
shingles which overlap the queried region is the union of the shingles from each
hierarchical level which overlap the region. The shingles for a given level can be
found by first identifying all the shingles which touch the perimeter of the region, and
then filling in with any shingles missing from the middle section. One method of
finding all the shingles which touch the perimeter of the query is to computationally
trace the path of each component through the arrangement of shingles, taking care to
eliminate redundant occurrences. A method of filling in the shingles missing from
the middle section is to computationally scan bottom-to-top and left-to-right between
the Shingles found on the perimeter.

The software program in Appendix A implements one Query Control Function

Set in lines 0655-1135. This set of functions identifies all shingles which overlap the

-35.

10

15

20

25

30

WO 98/38561 PCT/US98/03493

given Longitude/Latitude rectangle. PROCEDURE TABLE 4 shows the algorithmic
usage of this function set.

The internal function KeyRectGenerator implemented in lines 0792-1020 of
the software code in Appendix A is used to compute the set of shingles for the
current level. Similar to the method outlined above, this function traces through the
shingles along each edge of the rectangle. However, since the Peano-Hilbert space-
filling curve is used to sequence the shingles and the Peano-Hilbert curve by its
nature is guaranteed to be continuous, it is sufficient to simply note whether the curve
is headed into or out of the rectangle at each shingle on the edge and sort the
resulting lists to find the minimum and maximum of each implied range, letting the
curve fill in the middle. FIGURE 17 illustrates how the Peano-Hilbert space-filling

curve winds its way contiguously through each tile in one level of a spatial database.

PROCEDURE TABLE 4
Algorithmic usage of the KeyRectCreate, KeyRectRange, KeyRectDestroy function

set.

Step 1 Create a Key_Rect structure for the rectangle using
KeyRectCreate
Step 2 For each Shingle-Key range (MinKey, MaxKey) returned
by KeyRectRange, repeat steps 3-5
Step 3 Select all Objects where ObjectKey = MinKey and
ObjectKey < MaxKey
Step 4 For each selected Object, repeat step 5
Step 5 If ObjectSpatialData is overlaps the rectangie, process the
Object
Step 6 Destroy the KeyRect structure using KeyRectDestroy

It is possible to extend the same method to perform a general polygonal
retrieval instead of a rectangular retrieval. A general polygonal retrieval is similar to
a rectangular window retrieval in that the purpose of the query is to fetch all database
objects which are inside or which touch the boundary of an arbitrary polygon.
However, do to the limitations of the System Query Language (SQL), it is not
possible to express a general polygonal query in a form equivalent to EXAMPLE
QUERY 3.

To extend the algorithm of PROCEDURE TABLE 4 to perform a general
polygonal query, care must be used to trace the path of the polygon though the

-36-

10

15

20

WO 98/38561 PCT/US98/03493

perimeter shingles while simultaneously keeping track of which shingles correspond
to entry and exit points, and which, if any are redundant. Note, however, that once
the boundary shingles are identified, the same minimum and maximum range
organization will work. In general, this method will work for finding all the shingles

which overlap any closed region.

2.3 Implementation within a Conventional Database

DATABASE TABLE 5 illustrates a sample database table containing data
objects representing a portion of the street segments from FIGURE 3. The Shingle
column contains the assigned Shingle-Keys from FIGURE 15. The X1/Y1 and
X2/Y2 columns contain the coordinates of the minimum bounding rectangle for each
object within the chosen shingle.

EXAMPLE QUERY 4 shows how DATABASE TABLE 5 can be queried
to find a portion of each data object with a minimum bounding rectangle that overlaps
a the rectangular query window, assuming a functional interface similar to Appendix
A existed for this tiered shingle structure. This query corresponds to Steps 3-5 in
PROCEDURE TABLE 4. As such, this query would have to be repeated once for
each key range in order to find all segments which overlap the rectangle.

As shown in FIGURE 16, the key ranges which correspond to EXAMPLE
QUERY 4 window are 8-9, 17-20 and 21-21. Note how running this query using
these key ranges on DATABASE TABLE 5 will result in selecting the single
overlapping segment assigned to Shingle 9. Other objects from FIGURE 3 not listed
in DATABASE TABLE 5 also overlap the window.

37-

10

15

20

WO 98/38561

DATABASE TABLE 5

A conventional database table containing Street Segments. These objects

PCT/US98/03493

correspond to the individual segments the highlighted highways HWY1 and HWY

2 in FIGURE 3 as distributed into the Tiered Shingle Structure represented in

FIGURE 15.
Shingle | X1 | Y1 X2 Y2 StreetName
1 53 65 Y %5 Twy 1
2 -45 -65 -25 -65 Hwy 1
2 -25 -65 -5 -65 Hwy 1
2 -5 -65 10 -65 Hwy 1
2 -25 -90 =25 -65 Hwy 2
3 3 55 73 0 Hwy 2
3 -25 -40 -25 -15 Hwy 2
3 75 15 5 10 Hwy 2
8 -25 10 -5 10 Hwy 2
8 -5 10 10 10 Hwy 2
9 10 10 35 30 Ty 2
11 55 75 95 75 Hwy 2
12 55 30 55 45 Hwy 2
15 10 -65 25 -65 Hwy 1
16 7 %5 05 % Hwy 1
19 55 45 55 75 Hwy 2
20 25 -65 75 -65 Hwy 1

-38-

10

15

20

WO 98/38561

Recommended Procedures for building and maintain and conventional database

PCT/US98/03493

PROCEDURE TABLE 5

implementation, using functions similar to those in Appendix A.

[Database | Step I | Prior to load: Pre-assign Shingle-Keys (o
Load records using KeyForBox function.

Step 2 Prior to load: Sort records by Shingle-Key.

Step 3 Prior to load: Include Shingie field in database
table schema design.

Step 4 Bulk load records into database table.

Step 5 Create index on Shingle Field. Implement
clustering, if possible

Record[Step1 [Prior to Insert: Compute Shingle-Key using
Insert KeyForBox on the Minimum Bounding
Rectangle of the Spatial Data.

Step 2 Insert record into database, including Shingle-
Key.

Record | Step 1 Prior to Update: Compute Shingle-Key using
Update KeyForBox on the Minimum Bounding
Rectangle of the new Spatial Data.

Step 2 If new Shingle-Key is different then old
Shingle-Key, include the new Shingle-Key in
the update.

Record For each selected Object, repeat step 5.

Delete

Database Destroy the KeyRect structure using
Unload KeyRectDestroy.

SQL to find all segments in a window, given a key range MinKey to MaxKey.

EXAMPLE QUERY 4

select StreetName, X1, Y1, X2, Y2

from StreetSegments

where Shingle = MinKey
and Shingle < MaxKey

and X1 = -10 and X1 < 35
and X2 = -10 and X2 < 35

\%

=
and Y1 = 15and Y1 < 40
= 15and Y2 < 40

and Y2

-39-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

3. Empirical Analysis

The improved partitioning identified in the earlier comparison of FIGURES
12 and 15 can be validated by measuring how the present invention behaves when
given a large quantity of real map data. DATA TABLE 3 shows the results of one
such measurement. The data used to perform these measurements is an extract of
street segments from a U.S. Census Bureau Topographically Integrated Geographic
Encoding and Referencing (TIGER) database file of Los Angeles County, CA.
Census TIGER files comprise the defacto industry standard street map data source.
Los Angeles County is a good representative choice because of its large size (426367
segments in this extract) and diverse coverage (dense urbanized core, sprawling
suburbia and sparsely populated mountain and desert regions).

DATA TABLE 3 compares the natural distribution of the TIGER street
segments into both a Tiered Shingle Structure having a 25% overlap and an
equivalent hard boundaried tiling such as that found in the prior art. These statistics
were generated by feeding each segment to the KeyForBox function from the software
program given in Appendix A. To generate the Shingles with 25% Overlap
statistics, a value of 2 was used for the nLevelLap parameter (shingle overlap =
tile size * 1 / 2nLevelLap). To generate the Hard Boundaried Tiles statistics, a
value of 32 was used for the nLevelLap parameter in order to force the overlap
amount to zero.

In DATA TABLE 3, the Lev column indicates the level of the tile/shingle
structure, 0 being the finest partitioning, 14 being the most coarse, 15 being the top-
level compartment. The Size column indicates the size (both width and height) of the

(15-Lev))

The size of the Shingles is in fact 25% larger than the value given in the Size

resulting quadrant partitioning in Latitude/Longitude degrees (= 180 / 2

column. Note that the software program in Appendix A implements shingles as
squares in Latitudinal/Longitudinal space. The Segs column accumulates the total
number of TIGER street segments which naturally fit at this level (i.e., do not cross
tile/shingle boundaries - returned through the pnlevel parameter of the KeyForBox
function). The Shing and Tiles columns accumulate the total number of unique Key
values returned by the KeyForBox function. The Av column computes the average
number of segments per unique tile/shingle. The Mx column shows the maximum

number of segments which were associated with any one tile/shingle.

-40-

10

15

20

25

30

WO 98/38561 PCT/US98/03493

DATA TABLE 3
A comparison of the distribution of 428367 TIGER street segments for Los
Angeles County, CA. into a Hard Tile decomposition of the entire Earth’s
Surface, vs. the equivalent Shingle structure having 25% overlap at each level.
The finest level of tiling (level 0) is 180 degrees / 215 in each direction, or a little

less than 0.4 miles North/South.

Le | Size Shingles with 25% Overlap Hard Boundaried Tiles

v

(deg.) || Segs. Shing | Av | Mx | Segs. Tiles Av | Mx

15 - 0 0

14 [90.0° 0 0

13 | 45.0° 0 0

12 | 22.5° 0 89 1 81 89
11 | 11.3° 0 440 2] 220 439
10 | 5.63° 0 0

9 | 2.82° 0 0

8 | 1.41° 0 131 2 651 98
7 | 0.704 0 1038 81 120] 549
6 | 0.352 0 1366 16 85| 460
5 | 0.176 2 2 1 1 2919 49 60 | 281
4 1 0.088 33 21 2 5 5866 157 371 175
3 1 0.044 380 160 2 15 11642 557 211 98
2 1 0.022 2507 888 3 12 22415 1885 121 57
1 [0.011 14859 3833 4 26 41848 5781 71 41
0 | .0055 || 410586 19792 21 2557 340613 18875 18| 245

The Shingles-with-25%-Overlap columns in DATA TABLE 3 shows how
efficiently the tiered shingle structure organizes this set of data. Note the shallow
distribution of segments into the lower levels of the structure: over 95% of the
segments have settled into the lowest level of the data structure. Note how few
additional levels are needed, and also the low average and maximum number of

segments per shingle in those levels.

41-

10

15

20

25

WO 98/38561 PCT/US98/03493

Now contrast the Shingles-with-25%-Overlap statistics with the corresponding
Hard-Tile-Boundaries statistics in DATA TABLE 3. This serves as a rough model
for how a Quad-Tree data structure would behave under this load of street segment
data (the correspondence is not precise, however, do to the structural dependency on
storage space per Quad-Tree node). Observe the overall trend which increases the
fraction of segments cut by the new boundaries introduced at each finer level.
Specifically, for levels 6 down through 1, Segs doubles with each step down in level.
This doubling occurs because each finer level doubles the total length of the hard tile
boundaries, therefore doubling the likelihood that a given segment will cross one
(note that the trend fades above level 6 because the granularity of the partitioning
begins to exceed the spatial extent of LA County.) Furthermore, note how there are
over 10,000 segments located at level 4 and above. If these segments were stored in
a quad-Tree in this state, they would substantially clutter up the main branches of the
quad-tree, substantially impeding performance. For instance, if there was a one
hundred fold increase in the amount of data being stored, there would be a
corresponding one hundred fold increase in the number of tile boundary crossing
segments (500K at level 4, 250K at level 5, 125K at level 6, etc.) completely
overloading the upper level branches.

The poor statistics of Hard-Tile-Boundaries columns show why Quad-Trees
cannot be used to store this type of map data in this form. Instead, strategies such
as data fragmentation, duplication or multiple indirect referencing have been used in
the past to get around this type of problem. DATA TABLE 4 summarizes the
number of objects which must be handled in one of these special case ways for the
various tile sizes. The statistics in that table clearly show the trade-off between
minimizing the number of segments per tile, versus limiting the number of segments

which must be managed though a special case.

-42-

10

15

20

25

30

WO 98/38561

For the same set of 428367 TIGER street segments, the accumulated number of

DATA TABLE 4

segments which cross boundaries between tiles.

PCT/US98/03493

Tile Size Est. Segs/Tile | Crossing Segs. | % of Total
(degrees)

0.0035° 25 87754 20.5
0.011° 95 45906 10.7
0.022° 180 23491 5.5
0.044° 350 11849 2.8
0.088° 640 5983 1.4
0.176° 1250 3064 0.7

4. Mathematical Analysis
The statistical trends identified in the Empirical Analysis result in very

predictable logarithmic cost for spatial retrieval which can be seen through
FORMULAS 7 and 8. These formulas are based on the assumption that a regular
database table/index is used as the storage/retrieval mechanism for the spatial data,
FORMULA 7 is derived from
FORMULA 4 which established the behavior of a tile-based method for storing

where the index is based on Shingle-Keys.

points in a database table. The primary refinement in FORMULA 7 is that a sum
must be accumulated to account for the spread of objects across multiple levels.
FORMULA 11 is derived from FORMULA 5, primarily by changing the offset
factor from 1 to 2 to account for the fact that the overlap will tend to increase the
number of tiles touched by the query window. TABLE 13 shows the plug-in values
for A, and By for a 0.016° Longitude x 0.0145° Latitude rectangular window (a
roughly 1 mile square at Los Angeles, CA’s Latitude).

The modest size of the values which appear in TABLE 13 compared to the
huge population size is the factor which allows the O(log(N)) performance behavior.
For instance, if the entire set of TIGER files for all US Counties were to be used
instead of only LA County, the roughly hundred fold increase in population size
should only increase by two the logarithmic component of FORMULA 7
(log1((400,000) = 6.6; log ((40,000,000) = 8.6). All other components of the
formula would stay roughly the same. Furthermore, if the rectangular window

retrieval size should dramatically change, causing the behavior to become unbalanced,

-43-

10

15

WO 98/38561 PCT/US98/03493

the shingle size can be adjusted up or down to compensate. The software program
given in Appendix A was tuned for handling highly detailed street map data.

Note that FORMULA 7 represents a worst case which can be greatly
improved in practice. Specifically, the value of A in the portion of the formula A,
X log(N) can substantially be reduced by using the Peano-Hilbert space filling curve
to sequence the shingles as they are stored in the computer database, as is done in the
software implementation given in Appendix A. Use of that curve guarantees that
many adjacent shingles will be numbered consecutively. For instance, in any
arbitrary 3x3 grouping of adjacent shingles in a field sequenced with the Peano-
Hilbert curve, there can be at most 4 consecutive sequences (refer to FIGURES 8
and 17).

FORMULA 7
Expected cost of window retrieval using the shingle numbers of the invention in a

database table.

O(Z(Ap x (log(N) + K X By)))
where
A; = expected
number of tiles
needed to
satisfy the query
at each level,
B, = expected
number of objects
assigned to
each tile at each
level.

-44-

10

15

20

WO 98/38561 PCT/US98/03493

FORMULA 8

Expected number of shingles per retrieval by level.

Ay, = round_up(Wx/Tx, +2)
X round_up(Wy /T v+ 2

where
WX = width of
the rectangle,
TXL = width of

shingle for level,
Wy = height of
the rectangle,
Ty, = height of
shingle for level.

TABLE 13
Computed values for A; for an arbitrary 1 square mile rectangular window around

Los Angeles County, CA. Measure values for B; mile from TABLE 7.

Level AL B, - Avg B, - Max
0 5X5=125 21 255
1 4xX4=16 4 26
2 3X3=9 3 12
3 3 X3=9 2 15
4 3xXx3=9 2 5
5 3X3=9 1 1

5. Conclusion

The present invention provides an efficient method and system for organizing
large quantities of data. As discussed above, databases of information can comprise
hundreds of megabytes of data, thereby being very difficult to efficiently search.
However, multidimensional data that is stored with the method and system of the
present invention can be retrieved with far fewer processor cycles and disk seeks
than in prior systems.

By separating the larger coordinate system into sub-regions, each spatial

object is assigned to a particular sub-region. These sub-regions are known as tiles

-45-

10

15

20

25

WO 98/38561 PCT/US98/03493

because they resemble a series of tiles once superimposed over a set of spatial data.
Each tile would, therefore, hold a particular set of spatial data. Thus, a user that
knew which tiles held the desired information only needed to search those specific
tiles. Once the computer user identifies spatial data located in a desired region of
the spatial database, the system can read those few tiles from memory and begin the
process of gathering objects from those tiles. This method thereby prevents the
system from analyzing every object in the entire database for every computer user’s
request.

The present invention provides a series of overlaps between every tile in a
spatial database. These overlapping tiles, termed herein "shingles", represent tiles
that overlap their nearest neighbors. The area of overlap for any shingle is pre-
determined to provide the maximum efficiency. The shingle overlap allows more
data objects in the spatial database to be assigned to only one shingle and not split
between multiple hard edged tiles, as was done in prior systems. As discussed
above, dividing an object across multiple tiles is very disadvantageous because it
requires the system to track every tile that is assigned to a particular object.

The system and method of the present invention alleviates the problem of
small objects which cross title boundaries being moved to higher levels. In the
present invention, as the layers of sub-regions are generated, they are calculated to
have areas of overlap. The present invention improves the efficiency of individual
databases because the shingle overlap size in each layer can be programmed to
provide the fastest access to the spatial database.

A database with numerous small objects, such as streets, can be programmed
with a smaller shingle size than databases that have numerous large objects, such as
freeways. Tailoring the size of the tiles and shingles to the size of the average data
object keeps more data objects at a single, lower level within the database
architecture of the present invention. Thus, any data object that cannot fit within a

single shingle can be stored in the next higher level of shingling.

-46-

10

15

20

25

30

35

WO 98/38561

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037

/*

PCT/US98/03493

APPENDIX A
I*LITILLTTIT00 7707700707 7707077101071777711777117%/

// Start of keygen.c

/!

// Copyright (c) 1995 Brian Smartt

// Copyright (c)

1996 Telcontar

// Telcontar Proprietary

// All Rights Reserved

/!
*/

1170000700070 77 77 777777777717777777777717777%7

/*

// Typedef defining spatial key storage class

/!
*/

typedef unsigned long KEY;

I¥ILIIITTTTTTTITIT PP 770777707 0777 777777177717171777+7

/*

// Symbols defining conversion from Latitude/

// Longitude coordinates to Spatial Key Space.

// The granularity of the Spatial Key space

// is 360.0 degrees /(2 * 28), or approximately
// 1/2 foot.
*/
#define X CIRCLE (0x10000000L)
#define X_MIN_ COORD (0XF8000000L)
##define X MAX COORD (OX07FFFFFFL)
#define X LONGITUDE {360.0)
(

#define

#define
#define

LON_TO X (lon)

Y _HALF_CIRCLE

Y_MIN COORD

-47-

(long) ({(double) (lon) \
*X_CIRCLE/X_LONGITUDE))

(0x08000000L)
(0xXFC000000L)

10

15

20

25

30

35

WO 98/38561

0038
0039
0040
0041

PCT/US98/03493
#define Y MAX COORD (0X03FFFFFFL)
#define Y LATITUDE (180.0)
#define LAT TO Y(lat) ((long) ((double) (lat) \

*Y HALF CIRCLE/Y LATITUDE))

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075

[*1111077700777777077777777777777777777777777777%/
/*
// Seed values of Peano-Hilbert Space Filling

// Curve Function.

*/
#define X DIVIDE 0x00000000L
#define X_MIDDLE

()

{0x04000000L)
#define Y MIDDLE (0x00000000L)
#define Z EXTENT (0x02000000L)
#define Z_ITERATE (15)

#define Z_PRIMARY BITS (OXFFFFFOOOL)
#define Z BOTTOM BIT (0x00001000L)

I*I1T1007 7700777707 7770777107177771717711777177177%/
/*

// Special key value for the oversize "catch-

// all" shingle.

//

*/

#define K OVERSIZE (OXFFFFFFFCL)
#define K MIN EXCEPTION (OxXFFFFFFFCL)
#define K MAX EXCEPTION (OxXFFFFFFFCL)

[*101077077077777770777770007717177777777777177%/
/*

// Symbols for nLevelMask parameter to KeyForBox
// and KeyRectCreate functions. The parameter
// is used to control which levels appear in

// the structure.

//

-48-

10

15

20

25

30

35

WO 98/38561

0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0085
0096
0097
for

0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
01095
0110
0111
0112
0113

PCT/US98/03493
// The _ALL symbol shows bits turned on for all
// levels in the structure, from the _FINEST
// to the _MOST_COARSE, including the EXCEPTION
// (ovesized "catch-all") level. The
// _MOST_COARSE level has a base granularity
// of latitude/longitude "square" tiles which
// are 90.0 degrees high and wide. The FINEST
// level has a base granularity of 90.0/2°14
// degrees, which is roughly 0.0055 degrees, or
// a little less than 0.4 mile in the latitude
// direction. The corresponding distance in the
// longitude direction depends on distance from
// the equator (multiply by cos(latitude)).
//
// The ONLY symbols show how to specify
// shingle structures which include énly
// a specific set of base granularities. Masks
// of these types may be useful when all or
// nearly all of the data has a predictable
// range of sizes. Each of these masks specifies
// five continuous levels, in addition to the
// _EXCEPTION level. Objects which are too big
// the most coarse level of the five are assigned
// to K OVERSIZE. Object which are smaller than
// the finest of the five are assigned to the
// appropriate shingle in the finest level.
//
// The _STEP symbol shows how to specify a
// shingle structure which skips every other
// level. Thus, the fan out between levels is
// sixteen rather than four.
*/
#define LEVEL MASK(level) (Oxl<<(level))
#define LEVEL_MASK ALL (OXFFFF)
#define LEVEL_MASK FINEST (0x0001)

-49.

10

15

20

25

30

35

WO 98/38561

0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152

PCT/US98/03493

#define LEVEL_MASK MOST COARSE (0x4000)
#define LEVEL MASK EXCEPTION (0x8000)

#define LEVEL MASK ONLY FINE (OX80L1F)
#define LEVEL_MASK ONLY MEDIUM (0x83EO0)
#define LEVEL_MASK ONLY COARSE (0xFC00)

#define LEVEL MASK STEP {0xD555)

I*IITTITTTTEL P07 77700 0777777777777717777%7

/*

// Symbols for nLevellLap parameter to KeyForBox
// and KeyRectCreate functions. The parameter
// 1is used to control the amount of overlap

// between adjacent shingles in the structure.
// The amount of overlap is as a fraction of
// the base granularity specified by:

//

// 1/ (2*nLevelLap)

*/

#define LEVEL_LAP WHOLE (0)

#define LEVEL LAP_HALF (1)

#define LEVEL LAP QUARTER (2)

#define LEVEL_LAP_EIGHTH (3)

#define LEVEL LAP_SIXTEENTH (4)

#define LEVEL _LAP_NONE (32)

IXILLIITILTT T T 70777 00770177171771777771717%7

/*
//
//
//
//
//
/7
//
//
!/

The following tables are used to generate a
Peano-Hilbert sequence number for a point
along the curve. Each level in the structure
has its own curve, though each finer curve is

derived from the previous coarser curve.
The values in the tables are based on the
curve building conventions illustrated by

the following crude pictographs. Other

-50-

10

15

20

25

30

35

WO 98/38561

0153
0154
0155
0156
0157
0158
01598
0160
016l
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191

/!
/!
//
/!
/!
/!
/!
/!
/!
//
/7
/!
//
/!
/!
/!
/!
/!
/!
/!
/!
/!
/!
/!
/!
/!
//
//
/!
/!
/!
/!
/!
/!
/!
//
//
/!
//

curve configurations (rotated,

also possible.

Quadrant Numbering Convention:

Peano-Hilbert Curve Evolution Steps:

DOWN : 1--2 1--2
1-->--2 I N
l | 0 3--0 3
* v : |
! | 3--2 1--0

0 3 P
0--1 2--3
LEFT: 3 0--3--2
3--<--2 | } |
| 2--1 0--1

) I
| 1--2 3--2
0-->--1 | |
0 3--0--1
RIGHT: 1--0--3 0
1--<--0 | |
| 2--3 2--1

v |

l 1--0 1--2
2-->--3 | o
2--3--0 3
UP: 3--2 1--0

-51-

flipped)

PCT/US98/03493

are

10

15

20

25

30

35

WO 98/38561

0192
0193
01954
0195
0196
01387
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230

//
/7
//
//
//
//
//
/7
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
!/
//
//
//
//
/7
//
//
//
//
//
//

0--3

| !

I i
-1 2--

PCT/US98/03493

Peano-Hilbert Curve Evolution Sequence:

14.:

13:

12:

-->--2
3
v
i
3-->
-—-<~--2
|
|
i
-->--1
--2 1--2
I
3--0 3
|
0

--2
|
[
|
|
I
v
|
[
|
|
I
3
1-->--
|
i
%

--0
1--<--
|
v
{
3-->--
1--2
[
Lo
0 3--
|
3--2

-52.

10

15

20

25

30

35

WO 98/38561

0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269

PCT/US98/03493

// 0

// % I
// 3 0--3--2 1--0--3 0
// I |
// 2 1
// { |

// 1--2 3--2 1--0 1--2
// Lo L I

// 0 3--0--1 2--3--0 3
//

// 11:

*/

I*111177717707777777710707777777777777771777777777+%/
/*

// Symbols defining which way the curve faces

*/

#define DOWN (0)

#define LEFT (1)

#define RIGHT (2)

#define UP (3)

I*ITTLTT1T 0770007007007 7770707707777777777771777+%/
/*

// Given which quadrant and the current curve

// facing, what is the peano-hilbert partial

// ordering:

*/

static const int iKeys([4] [4]=
{
/* QUAD
/* DOWN */
/* LEFT */
/* RIGHT */
/* UP */

P */

-
~

-
-

OOI\)MO
w}—xf»r—lr—-
HMIAWN
MNE)OW

-53-

10

15

20

25

30

35

WO 98/38561

0270
0271
0272
0273
0274
0275
0276
0277
0278
02798
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308

PCT/US98/03493

(%1177 77 007107 10777777777777777777777171777777%/
/*
// Given which quadrant and the current curve

// facing, which is the next curve facing:

*/

static const int iCurves (4] [4]=

{
// QUAD 0, 1, 2, 3, */
/* DOWN */ DOWN, DOWN, RIGHT, LEFT,
/* LEFT */ LEFT, UP, LEFT, DOWN,
/* RIGHT */ up, RIGHT, DOWN, RIGHT,
/* UP * / RIGHT, LEFT, UP, up

}i

[*11T1T7 7010770707 777177777777777707777177777177%/
/*
// Symbols defining the local shape of the curve:
*/

#define CSAME

#define CDOWN

#define CLEFT

#define CRIGHT
#define CUP

~ e~~~ —~
W NN P O

[117177777077 71017777777777771777777777771777777%7
/*

// Given which quadrant and the current curve

// facing, in which direction is the previous

// point on the curve:

*/

static const int iPrevi{4] [4]=

{

// QUAD o, 1, 2, 3, */
/* DOWN */ CLEFT, CDOWN, CUP, CSAME,
/* LEFT */ CDOWN, CRIGHT, CLEFT, CSAME,
/* RIGHT */ CSAME, CRIGHT, CLEFT, CUP,

-54.-

10

15

20

25

30

35

WO 98/38561

0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347

/*
}i

up

*/

CSAME,

CDOWN,

CUP,

PCT/US98/03493

CRIGHT

111117711770 07777777700777777177771077717107777%]/

/*

// Given which gquadrant and the current curve

// facing,

in which direction is the next

// point on the curve:

*/

static const int iNext (4] [4]=

{
/7
/*
/*
/*
/*
bi

DOWN
LEFT
RIGHT
up

QUAD
*/
*/
*/
*/

0,
CDOWN,
CLEFT,
CLEFT,
CDOWN,

1,
CRIGHT,
CSAME,
CDOWN,
CSAME,

CSAME,
Cup,

CSAME,
CLEFT,

3, */
CUP,
CRIGHT,
CRIGHT,
CUP

I*ITTTLTTTT0 7777777777707 70077777717777177717%]

/*

// Markers used to differentiate keys from

// different levels of the structure:

*/

static const KEY lMarks[Z ITERATE]=

{

0,

0x80000000,
0xC0000000,
0xE0000000,
0xF0000000,
0xXF8000000,
O0xFC000000,
OxFE000000,
OxFF000000,
OxFF800000,
OxFFCO00000,
OxFFE00000,

-55-

10

15

20

25

30

35

WO 98/38561

0348
0349
0350
0351
0352
0353

}i

PCT/US98/03493

OxXFFF00000,
0XFFF80000,
OxXFFFCO0000

I¥ITTTTI00001T1707777077777771011777707077717177111777%/

0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0365
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385

/*
//
/7
//
//
/7
/7
//
/7
//
/7
//
/7
//
!/
//
//
//
/7
/7
*/

This function generates the sequence number
(key) for the given point along the Peano-
Hilbert curve. The nLevel argument is used to
control the coarseness of the partitioning,

0 == finest, 4 == most coarse.

Note that as implemented, the curve fills
twice as much space along the X axis as along
the Y axis to mirror the equivalent imbalance
in the latitude/longitude coordinate system.
This is done by stringing together two
curves: one filling all the space where

X < 0, the other filling all space where

X >= 0. This behavior is controlled by the
X_DIVIDE symbol.

This function uses coordinates already

converted into Spatial Key Space.

static KEY KeyGenerator

(

long 1X,

long 1y,

int nlLevel,
int *pnPrev,
int *pnNext
long 1Key = 0;

-56-

10

15

20

25

30

35

WO 98/38561

0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424

long
long
long
int

int

1MiddleX = X_MIDDLE;
1Middley = Y MIDDLE;
lExtentz = Z _EXTENT;
nCurve = DOWN, nQuad;

PCT/US98/03493

nIiter, nTotallter=Z ITERATE-nLevel;

*pnPrev = CLEFT;
*pnNext = CRIGHT;

#ifdef X DIVIDE
if(1X < X _DIVIDE)

{

1MiddleX = -X_MIDDLE;

}

else

{

1Key = 1;
}
#endif
for(nIter = 0; nIter < nTotallter;

{

I*IITT100770117777717717777717%/7

/*
//
//
*/

determine quadrant relative
to (1MiddleX, 1MiddleY)

if(1X < 1MiddleX)

nQuad = 1;

IMiddleX -= lExtentZ;
}
else
{

nQuad = 0;

1MiddleX += l1ExtentZ;

-57-

++nlter

)

10

15

20

25

30

35

WO 98/38561

0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0438
0440
0441
0442
0443
0444
0445
0446
0447
0448
04453
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463

PCT/US98/03493

if(1Y < 1Middley)

{

nQuad += 2;
IMiddleY -= lExtentZ;

}

else

{
// nouad += 0;
1MiddleY += l1ExtentZ;

1171170777070 0077077717771777%/7

/*

// Fold in the next partial key

*/

1Key = (lKey << 2) | iKeys [nCurve] [nQuadl];

[*¥1010717777777777777777777777%/
/*

// Maintain prev/next point

// positions

*/
if(iPrev[nCurve][nQuad])
{
*pnPrev = iPrev| nCurve]{ nQuad];

1f(iNext[nCurve][nQuad])

*pnNext = iNext{ nCurve][nQuad];

}
I*10777717170717777777777777777+%/
/*

// Evolve to next

*/

-58-

10

15

20

25

30

35

WO 98/38561

0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487

PCT/US98/03493

nCurve = iCurves{ nCurve]{ nQuad];

(1111110700077 77777777777777717%/
/*

// Divide by two to get next

// get next quadrant size

*/

l1ExtentZ >>= 1;

I*¥11771177177777777777777777777%/
/*

// Fold in marker to

// differentiate keys from

// different levels:

*/

lKey |= 1Marks[nLevel];

return lKey;

[¥107177 0770000707007 7777770077007 71777177%7

0488
0489
0490
0491
0492
the
0493
in
0494
0495
0496
04397
0498
180.0,

/*
//
/7
//
//

//

//
//
//
//
/7

Generate the key for the smallest shingle
containing the given box (dX1,dyl)-(dX2,dY2)
in the shingle structure defined by nLevellap

and nLevelMask. Returns the shingle key as
function return value, and returns the level
the structure through the pointer pnLevel.
The box is given in the latitude (Y) and

longitude (X) coordinate system. dX1 and dX2

are expected to be in the range -180.0 to

-50-

10

15

20

25

30

35

WO 98/38561

0499
range
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519

//

/7
//
//
/7
//
*/

KEY

1MaxMBRY;

0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535

PCT/US98/03493

and dY1l and dY2 are expected to be in the

-90.0 to 90.0.

The shingle structure is defined by nLevelMask
and nLevellLap parameters. See discussions of
LEVEL_MASK_ ??? and LEVEL LAP ??? symbols.

KeyForBox

double dX1,
double dy1l,
double dX2,
double dYy2,

int nLevelMask,
int nLevelLap,

int *pnLevel

long 1X1, 1lyi, 1xX2, 1y2;
long 1MinMBRX, 1MinMBRY, 1MaxMBRX,

long 1MinShingleX, 1lMinShingleY;

long IMaxShingleX, 1lMaxShingleY;
long l1Primary, lBottom, lLap;
int nLevelBit;

int nLevel;

int nPrev, nNext;

I*IITITPTEI0 700 771771771771777

// Convert box to key space

*/

1X1 = LON_TO_ X(dX1);
1Yl = LAT_TO_Y(dv1l);
1X2 = LON_TO X (dX2);
1Y2 = LAT_TO_Y(dY2);

-60-

10

15

20

25

30

35

WO 98/38561

0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574

PCT/US98/03493

[*I0IPTHTTTETT 7707 10707717777

// Find min and max of box

*/

if(1X1 < 1X2)

{

IMinMBRX = 1X1;
1MaxMBRX = 1X2;
}
else
{
1MinMBRX = 1X2;
1MaxMBRX = 1X1;
}
if(1Yl < 1yY2)
{
1MinMBRY = 1Y1;
1MaxMBRY = 1Y2;
}
else
{
IMinMBRY =°1Y2;
1MaxMBRY = 1Y1;

[*1111117777707107777711777777777
// Starting at the finest

// partitioning, iterate up until
// we find a shingle which

// contains the box

*/

lPrimary = Z_PRIMARY BITS;
lBottom = Z_BOTTOM BIT;

lLap = 1lBottom >> nLevellap;
nLevelBit = 1;

for(nLevel=0; nLevel < Z ITERATE; ++nLevel)

61-

10

15

20

25

30

35

WO 98/38561

0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0697
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613

PCT/US98/03493

[*1171T0017770777777777177777177
// Check the level mask to see

// if this level is included in

// the structure.

*/

if(nLevelBit & nLevelMask)

{
[*10017100007 7077 777017771771777777
// Compute the shingle base of

// the lower right corner of the

// box

*/

1MinShingleX = 1MinMBRX & lPrimary;
1MinShingleY = 1MinMBRY & lPrimary;

[*IT1007TEI777777707777777177777
// Compute the upper right
// corner of the shingle

*/

1MaxsShingleX = 1MinShingleX + lBottom
+ lLap;

lMaxShingleY = 1MinShingleY + 1Bottom

+ 1llLap;

I*IILT70000770071077777711717177
// Check if the upper left

// corner of the box fits on
// the shingle
*/

if ((1MaxMBRX < 1lMaxShingleX)
&&(1IMaxMBRY < 1MaxShingley))

{

(1111777 71771777177717177717177
// Found a shingle that

-62-

10

15

20

25

30

35

WO 98/38561

0614
0615
06le
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652

PCT/US98/03493

// contains the box!

//

// Compute and return the
// shingle number in the
// Peano-Hilbert sequence
// for this level

*/

*pnLevel = nLevel;

return KeyGenerator (1MinShingleX,
1IMinShingleY, nLevel,
&nPrev, &nNext) ;

[*1111707077777777107777117777777
// Containing shingle does not
// exist at this level!

//

// Advance shingle constructors
// to next higher level.

*/

1Primary <<= 1;
1Bottom <<= 1;
lLap <<= 1;

nLevelBit <<= 1;

I*I117T7770077770177777771111717

//
/7
//
/7
/7
*/

Containing shingle does not

exist within any level!

Return oversize "catch-all"
key value.

*pnLevel = Z ITERATE;
return K _OVERSIZE;

-63-

10

15

20

25

30

35

WO 98/38561

PCT/US98/03493

0653 }
0654
0655

[¥I01717 7777707707077 71777717707777177777%/
0656 /*

0657 // Rectangular retrieval key generator structure.
0658 */

0658

0660 #define N_RANGES (100)

0661

0662 typedef struct

0663 {

0664 /* retrieval rectangle */

0665 long 1MinRectX, 1MinRectY;

0666 long 1MaxRectX, lMaxRectY;

0667

0668 /* shingle structure description */
0669 int nLevelMask;

0670 int nLevelLap;

0671

0672 /* progress through structure */
0673 int nLevel;

0674 int nLevelBit;

0675

0676 /* list of key ranges for current level */
0677 int nRangeCount ;

0678 int nRangelIndex;

0679

068¢C KEY MinKey [N _RANGES] ;

0681 KEY MaxKey [N_RANGES] ;

0682 }

0683 KeyRect;

0684

0685

[¥0PTT7 00707 T i 7 r777777700707171717777%/7
0686 /*

0687 // Create a KeyRect generator structure for the
0688 // specified rectangle (dx1,dY1)-(dx2,dY2), using

-64-

10

15

20

25

30

35

WO 98/38561

0689
and
0690
0691
0692
0693
0694
180.0,
0695
range
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722

/7

/7
//
//
//
/7

//

//
//
//
/7
/7
*/

PCT/US98/03493
the shingle structure defined by nLevelMask
nLevellap.

The rectangle is given in the latitude (Y) and
longitude (X) coordinate system. dX1 and dX2
are expected to be in the range -180.0 to

and dY1 and d4dY2 are expected to be in the

-90.0 to 90.0.

The shingle structure is defined by nLevelMask
and nLevellLap parameters. See discussions of
LEVEL_MASK_??? and LEVEL LAP_??? symbols.

KeyRect *KeyRectCreate

(

double dX1,
double dvi1,
double dX2,

double dy2,

int nLevelMask,
int nLevelLap
KeyRect *kr;

extern void *AllocateMemory(int gize);
long 1X1, 1vyi, 1X2, 1Y2;

[*1111777007007077771770777771777
// allocate memory to maintain
// retrieval state

*/

if (kr=(KeyRect*)AllocateMemory (sizeof (KeyRect)))

0723

{

-65-

10

15

20

25

30

35

WO 98/38561

0724
0725
0726
0727
0728
0729
0730
0731
0732
0733 .
0734
0735
0736
0737
0738
0738
0740
0741
0742
0743
0744
0745
0746
0747
0748
07459
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762

IYIITILI7 00070070000 7771777

// Convert search rectangle to

// key space
*/

1X1 = LON_TO X (dX1
1Yl = LAT TO_Y(dvl
1X2 = LON_TO X (dX2
1Y2 = LAT TO Y(dY2

IX1LT1177707007771777777177711777

// Find min and max of rectangle

*/
if(1X1 < 1X2)

kr->1MinRectX
kr->1MaxRectX

}

else

{

kr->1MinRectX
kr->1MaxRectX

if(1Yl < 1v2)

kr->1MinRectY
kr->1MaxRectY

}

else

{

kr->1MinRectY
kr-s>1MaxRectY

I%/111771177777777707777777777177
// Initialize retrieval state,

// bottom level, no more keys

-66-

)
)
)
)

I

’

’

!

1X1;
1X2;

1X2;
1X1;

1vY1;
1Y2;

1Y2;

1Y1;

PCT/US98/03493

10

15

20

25

30

35

WO 98/38561

0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778

PCT/US98/03493

*/

kr->nLevelMask = nLevelMask;
kr->nLevelLap = nLevellap;

kr->nLevel = 0;
kr->nLevelBit = 1;

kr-s>nRangeCount = 0;
kr->nRangelIndex = 0;

return kr;

I*ILTLTT77 77070700770 777077777077777777777777777717+/

0779
0780
0781
the

0782

fallback

0783
0784
0785
0786
0787
by

0788
0789

/*
//
//

//

//
//
/!
//
//

//
//

Function which generates all keys for current

level in the structure. Because the size of
rangelist has a hard limit (N_RANGES), a

strategy may needed to reduce the number of
ranges. This strategy is implemented by the
"goto TRY AGAIN" and "nTries" mechanism, which
doubles the sampling granularity with each

extra try, forcing down (on average, dividing

two for each new try) the number of ranges

required to search, at the cost of

oversampling.

0790
0791
0792
0793
0794
0795
0796

*/

static int KeyRectGenerator

(

KeyRect *kr

-67-

10

15

20

25

30

35

WO 98/38561

0797
0798
0798
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821

PCT/US98/03493
long lPrimaryBits, 1lBottomBit, lLap;
long IMinX, 1MinY, 1MaxX, 1Maxy;
long 1SideX, 1sidey;
int nTries, nCount, 1i;
int nRangeMin, nRangeMax;
int nPrev, nNext;
KEY Key;

X117 1777070707771777110177171177
// initialize level granularity

// and tries counter

*/

lPrimaryBits = Z_PRIMARY BITS << kr->nLevel;
lBottomBit = Z_BOTTOM BIT << kr-s>nLevel;
lLap = lBottomBit »>> kr-s>nLevellap;

nTries = 0;

I*11177077777777171017717171177177

// Granularize the rectangle,
// guarding against coordinate
// over/under flow.

1PrimaryBits;

0822
0823
0824
0825
0826
0827

l1PrimaryBits;

0828
0829
0830
0831
0832
0833

*/
IMinX = (kr->1MinRectX - lLap) &
if(1MinX < X _MIN COORD)
{
1MinX = X MIN_COORD & lPrimaryBits;
}
IMinY = (kr->1MinRectY - 1llap) &
if(1MinY < Y _MIN COORD)
{
1MinY = Y _MIN COORD & lPrimaryBits;

IMaxX = kr->1MaxRectX & lPrimaryBits;

-68-

10

15

20

25

30

35

WO 98/38561

0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872

1f(

1MaxX > X MAX COORD)

PCT/US98/03493

1MaxX = X MAX COORD & lPrimaryBits;

1IMaxY = kr->1MaxRectY & lPrimaryBits;

if(1MaxY > Y MAX COORD)
{
lMaxY¥ = Y MAX COORD & lPrimaryBits;
)
TRY AGAIN:

[¥1717177777077170177171717771777
// Compute all keys along left

// and right sides of rectangle

*/

nRangeMin 0;

nRangeMax 0;

if(

{

++nTries > 1)

IRILLTTT770777777717777771771717

// If ran out of space in the

// min/max list, increase sample

// granularity to reduce the

// number of transitions.

*/

IMinX <<= 1;
1MinY <<= 1;
1MaxX = (1lMaxX << 1) |
IMaxy = (1lMaxY << 1) |

l1BottomBit;
1BottomBit;

[*11117771777777170777710777717777
// Compute all keys along left

// and right sides of rectangle.

/!

-69-

WO 98/38561 PCT/US98/03493

0873 // Find the keys where the curve

0874 // moves in(nPrev) or out (nNext)

0875 // of the rectangle.

0876 */

0877

0878 for(1SideY = 1MinY;

0879 1SideY <= 1Maxy;

0880 1sideY += 1lBottomBit)

0881 {

0882 [*[1II1TTIITT7 7771777717777
0883 // Each key along the left

0884 */

0885

0886 Key = KeyGenerator(1MinX, 1SideY,
0887 kr-s>nLevel, &nPrev, &nNext);
0888

0889 if(nPrev == CLEFT)

0890 {

0891 if (nRangeMin >= N_RANGES)goto
TRY AGAIN;

08892

0893 kr->MinKey [nRangeMin++] = Key;
0894 }

0895

0896 if (nNext == CLEFT)

0897

0898 if (nRangeMax >= N_RANGES)goto
TRY AGAIN;

0899

0900 kr->MaxKey [nRangeMax++] = Key;
0901 }

0802

0903 [1177777110707 07700717 777770777777
0904 // Each key along the right

0905 */

0906

0907 Key = KeyGenerator(lMaxX, 1lSideY,
0908 kr->nlLevel, &nPrev, &nNext);
0909%

-70-

10

15

20

25

30

35

WO 98/38561

0910
0911
0912
TRY AGAIN;
0913
0914
0915
0916
0917
0918
0919

TRY_ AGAIN;

0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946

[T ITTTTT0 077 707777777777177

nbPrev == CRIGHT

)

PCT/US98/03493

if (nRangeMin >= N_RANGES)goto

kr->MinKey [nRangeMin++]

nNext == CRIGHT

)

= Key;

if (nRangeMax >= N_RANGES)goto

kr->MaxKey [nRangeMax++]

// Compute all keys along top

// and bottom sides of rectangle

/7

// Find the keys where the curve
// moves in(nPrev) or out (nNext)

// of the rectangle.

*/

for (

18ideX = 1MinX;
1SideX <= 1MaxX;
1SideX += 1lBottomBit)

= Key;

[*111177777777777777771777777777
// Each key along the bottom

*/

Key

1f(

{

= KeyGenerator (

kr->nLevel,

nPrev == CDOWN)

-71-

1sideX,

&nPrev,

1MinY,
&nNext

10

15

20

25

30

35

WO 98/38561

0947
TRY_ AGAIN;
0948
0949
0950
0951
0952
0953
0954
TRY AGAIN;
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
TRY_ AGAIN;
0969
0970
0971
0972
0973
0974
0975
TRY AGAIN;
0976
0977
0978
0979
0980
0981

PCT/US98/03493

if (nRangeMin >= N RANGES)goto

kr->MinKey [nRangeMin++] = Key;

if (nNext == CDOWN)

if (nRangeMax >= N_RANGES)goto

kr->MaxKey [nRangeMax++] = Key;

[*111077T177770077777717717777177
// Each key along the top
*/

Key = KeyGenerator(1SideX, 1Maxy,

kr->nLevel, &nPrev, &nNext
if(nPrev == CUP)

if (nRangeMin >= N RANGES)goto

kr->MinKey [nRangeMin++] = Key;

if (nNext == CUP)

if (nRangeMax >= N RANGES)goto

kr->MaxKey [nRangeMax++] = Key;

[*117170770007777107771717717177

-72-

10

15

20

25

30

35

WO 98/38561

0982
0983
0984
0985
0986
0987
09588
0989
0990
09s1
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

PCT/US98/03493

// Sort Min and Max Keys. Note

// that nRangeMin == nRangeMax

// by implication (since curve

// is continuous) .

*/

do

nCount = 0;

for(i=1; i<nRangeMin; ++1i)

{

if(kr->MinKey[i-1] > kr->MinKey[i]

Key = kr->MinKey[i-1];

kr->MinKey [i-1] = kr->MinKey([i];

kr->MinKey [i]

++nCount;

= Key;

if (kr->MaxKey[i-1] > kr->MaxKey[i]

Key = kr->MaxKey([i-1];

kr->MaxKey[i-1] = kr->MaxKey[i];

kr->MaxKey [i]

++nCount;

}

while (nCount };

= Key;

1101110 1777777107077717171771117

// Initialize list traversal.

// return true if list not empty.

*/

kr->nRangelndex = 0;

return(kr->nRangeCount

-73-

nRangeMin) ;

)

10

15

20

25

30

35

WO 98/38561

1021
1022

PCT/US98/03493

I*I0ITT0TTT TP 7 77 rir70777717107717717777%/

1023
1024
1025
range
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

/*
//
//

/7
//
*/

int

Function to fetch the next key range for the

search rectangle. Returns TRUE if the key

was returned. Returns FALSE if all keys are

exhausted.

KeyRectRange

KeyRect *kr,

KEY
KEY

*pMinKey,
*pMaxKey

I¥ITILTTTTI0IT777007777777717777

// if out of keys for previous

// level
*/

(or this is the first)

if{ kr->nRangeIndex >= kr-s>nRangeCount)

[*II1TLITT 77777007 7077177717717
// ratchet up through each level,

// skipping any which are not
// marked in the mask.

//

// note that ratchet always stops

// with nLevel pointing to the

// next level.

*/

int ratchet;

for(

ratchet=1;
ratchet;

-74-

10

15

20

25

30

35

WO 98/38561

1058
1059
1060
1061
1062
)

1063
1064

PCT/US98/03493
++ (kr->nLevel), kr->nLevelBit <<= 1)
if(kr->nLevel < Z ITERATE)

{

if(kr-s>nlLevelBit & kr-s>nLevelMask

[*1117710707 7777777 777071717717177

1065
level
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
)
1078
1079

// generate keys for this
*/

if (KeyRectGenerator{ kr))

{

ratchet = 0;

else if(kr->nLevel == Z ITERATE)

{

1f ¢ kr—>ﬁLevelBit & kr->nlLevelMask

I*I11T777777700777707777717771777

1080
1081
1082
1083
1084
K_MIN EXCEPTION;
1085
K_MAX EXCEPTION;
1086
1087
1088
1089

// All done? set up return of
// oversize "catch-all" key.

*/

kr->MinKey [0]

kr->MaxKey [0]
kr->nRangeIndex = 0;

kr->nRangeCount = 1;
ratchet = 0;

-75-

10

15

20

25

30

35

WO 98/38561

1080
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

PCT/US98/03493

else

[*111771117
// Copy nex
*/

*pMinKey =

*pMaxKey

[*11710T777777777777777777177777
// Return FALSE to indicate all
// keys are exhausted.

*/

return 0;

[1IT17177777777001171777

t range from list.

kr->MinKey [kr->nRangeIndex] ;
kr->MaxKey [kr->nRangeIndex] ;

++ (kr->nRangeIndex) ;

[*1111117177
// Return T

// continue

*/

return 1;

[1777710717777177477777
RUE to indicate

searching.

I¥1T1707777777077771777777777777777777771777771777+%/

1121
1122
1123
1124
1125
1126
1127

/*
//
*/

Destroy KeyRect generator structure.

void KeyRectDestroy(KeyRect *kr)

{

extern void

FreeMemory (void *mem) ;

-76-

WO 98/38561 PCT/US98/03493

1128

1129 FreeMemory((void*)kr);
1130 }

1131

1132 /*

1133 // End of keygen.c

1134 */

1135

I*ITI0TTT7700717770777777777771177717777177771177177%/

-77-

10

15

20

25

30

WO 98/38561

WHAT IS CLAIMED IS:
1. A method of organizing spatial data objects in a map database,
comprising:
referencing data objects as location points in a region to a coordinate
system;
separating said region into multiple sub-regions; and
assigning said data objects whose location point falls within a sub-
region to said sub-region so long as no part of said object extends outside said
sub-region by a predetermined amount.
2. The method of Claim 1 wherein said data objects are spatial data
objects.
3. The method of Claim 1 wherein said location point of said data object
is calculated by determining the minimum bounding rectangle for said data object.
4. The method of Claim 1 wherein multiple sub-regions further comprise
multiple tiers of sub-regions.
5. The method of Claim 1 wherein each of said sub-regions is assigned
a unique code.
6. The method of Claim 1 wherein said predetermined amount is equal
to one-half the size of said quadrant.
7. The method of Claim 1 wherein said predetermined amount is equal
to one-fourth the size of said quadrant.
8. The method of Claim 1 wherein said predetermined amount is equal
to the size of said quadrant.
9. The method of Claim 1 wherein said data objects are selected from the
group comprising: lines, circles, squares and polygons.
10. The method of Claim 1 wherein said region is separated into multiple
square sub-regions.
11. The method of Claim 1 wherein said region is separated into multiple
rectangular sub-regions.
12. The method of Claim 1 wherein said region is separated into multiple
round sub-regions.
13, The method of Claim 1 wherein said region is separated into multiple

hexagonal sub-regions.

-78-

PCT/US98/03493

10

15

20

25

30

WO 98/38561

PCT/US98/03493

14, A method of storing spatial data objects to a computer memory,
comprising the steps of:
determining the size of each data object within a coordinate system;
assigning each spatial data object to a location point in said coordinate
system;
calculating the boundaries of a first tier of overlapping sub-regions of
said coordinate system so that each point in said coordinate system is
assigned to at least one sub-region;
referencing each spatial data object that is smaller than the size of
said sub-regions in said first tier to a specific sub-region of said coordinate
system based on the location point of each spatial data object; and
storing said spatial data objects along with its reference to a specific
sub-region to said computer memory.
15. The method of Claim 14 wherein said spatial data objects are part of
a map database.
16. The method of Claim 14 wherein said spatial data objects are selected
from the group comprising: lines, circles, squares and polygons.
17. The method of Claim 14 wherein said computer memory is a
computer hard disk.
18. The method of Claim 14 wherein said referencing step comprises the
Peano-Hilbert method of ordering spatial data quadrants.
19. The method of Claim 14 wherein said sub-regions are shingles and
said reference is a shingle code.
20. The method of Claim 14 wherein the size of said overlap between
sub-regions is equal to the size of said sub-region.
21. The method of Claim 14 wherein the size of said overlap between
sub-regions is equal to one-half the size of said sub-region.
22. The method of Claim 14 wherein the size of said overlap between
sub-regions is equal to one-fourth the size of said sub-region.
23. The method of Claim 14 wherein said determining step further
comprises calculating a minimum bounding rectangle for said spatial data object;

and

79

10

15

20

25

30

WO 98/38561 PCT/US98/03493

24. The method of Claim 23, wherein said assigning step comprises
determining the coordinate position of the lower left corner of the minimum
bounding rectangle of said spatial data object and storing said location point to said
position..

25. The method of Claim 14 wherein said spatial data objects are selected
from the group comprising: engineering and architectural drawings, animation and
virtual reality databases and raster bit maps.

26. The method of Claim 14 further comprising the steps of:

calculating the boundaries of a second tier of overlapping sub-regions
of said coordinate system so that each point in said coordinate system is
assigned to at least one sub-region; and

referencing each spatial data object that is larger than the size of said
sub-regions in said first tier to a specific sub-region in said second tier based
on the location point of each spatial data object.

27. The method of Claim 14 wherein said data objects are selected from
the group comprising: lines, circles, squares and polygons.

28. The method of Claim 14 wherein said region is separated into multiple
square sub-regions.

29. The method of Claim 14 wherein said region is separated into multiple
rectangular sub-regions. '

30. The method of Claim 14 wherein said region is separated into multiple
round sub-regions.

31. The method of Claim 14 wherein said region is separated into multiple
hexagonal sub-regions.

32. A database of multi-dimensional objects, comprising a set of multi-
dimensional objects, wherein each object includes a location point within a
coordinate system:

a code referencing each multi-dimensional object to a subregion of
said coordinate system, wherein said multi-dimensional object does not
extend outside said subregion by more than a predetermined amount.

33. The database of Claim 32 wherein said multi-dimensional objects are

selected from the group comprising: lines, polygons, circles and squares.

-80-

WO 98/38561 PCT/US98/03493

34. The database of Claim 32 wherein said location point is calculated by
determining the minimum bounding rectangle of said multi-dimensional object.
35. The database of Claim 32 wherein subregions comprise multiple tiers

of subregions.

-81-

WO 98/38561 PCT/US98/03493

1/12

AR AR RXT KR RR KRR
RRSIRRRRAKRARRRELKS

0:0.0:9.0:0.9:0°0-0:0-0:9.9:0-0-0.0.9:0:0.0-0 60
Y000 000 %0 %6002 % %% 2 %%

SRERRRRRRERRELKRS 0050 %%

O

SUBSTITUTE SHEET (rule 26)

PCT/US98/03493

WO 98/38561

2/12

FIG.4

T
28
LRXP

0,

9T, .38
TR
SRS

9

%

XS

2005

&
oot
0%0%.« vl

%5

’:

%
‘0%

e

S

e

%!

FIG.5

FIG.6

SUBSTITUTE SHEET (rule 26)

WO 98/38561 PCT/US98/03493

3/12

1001 THE ROOT

EK BRANCHES
[120] [140]
AN 21013014 31 1321[133] 1 34 LEAVES
[121] 0221 1231124 111 42] [T4 iz

FIG.8

SUBSTITUTE SHEET (rule 26)

WO 98/38561 PCT/US98/03493

4/12

RS SS RS R ITIIR
LSRR RIERIRTTRL LTINS

o000 0. 0.0.9.0:9%%

SUBSTITUTE SHEET (rule 26)

PCT/US98/03493

5/12

WO 98/38561

S90S

¢
RN
degesedelete!
Rodedotede!
GRS

SUBSTITUTE SHEET (rule 26)

WO 98/38561 PCT/US98/03493

6/12

xxn
pe%se’ o

%% *
000,09, Q
CRRRKL
oaniedatolelsle sy
BRHHLKRKKE

STSTTSTSTRLL
CRRLIRTIXZLS

a% Y o%%
rNeos? S
OO L% > LXTEXET
X 4R

< LXRRIRS
STIRRS

SUBSTITUTE SHEET (ruie 26)

PCT/US98/03493

WO 98/38561

7/12

*,

betelete!

%%

KA
2e20%

XX

RRXRS
SREEL

®,

SRIKKELS,

%%
tedotedelotels!

5

%
35

e

¥
AR

SUBSTITUTE SHEET (rule 26)

PCT/US98/03493

WO 98/38561

8/12

SUBSTITUTE SHEET (rule 26)

PCT/US98/03493

9/12

WO 98/38561

%7
'’ ot
o

)

CXX%
ol
2>

e
>
2

=
>
X

03,
2

XX
20502020

%
X
0%

e
%S
5

&
et

%
10

y
o
e

e
o
b0
%

%
2

XK
XRHRR
%

R
2020202020

>

e

o
%

ot

S
2
Ve
K5
&

X

Ve

S,
X

=
2o

%
0.

e

<

s
T
X8

9.4

S

3

e
e

058
X

02020,
TES
RS

O
X

&9,
e
%

%
ha

2

o
X5

TR
Ve
2

b9,

&
X2

X2
KD

Q
bt

X

%
20020
9%

ot

e
AR

2etele

X X2
2ol

23
0%
9,

%5

S
0T,
%

K

9
9.
%
X

x
XX
X

RS
®,
X
a4

o
2
o
SR
X
%
%
X

S
o202
54
&
XS

G
o
XX

¢
X2

XS
X

b0

5
o2

QX
o,

(X
2ol

%
2

29
%
X

T3S
Detede

X2
X2
o

2

X
KRR

x5
RRRKS

K2 :’0

ote!

RRRS
o

o,
4

XKL
g

o

Ze2ed
R
XK

&
XX

e

%

T
22
al
e
&

X
%

XL
2

Q

X
2
X

)

(X2
X

a¥a

(>
bal

9
LXK
A

o,

X
XXX,
0.:.0

X

020
Do

p20%e
o

..
i

X0
XXX

o

<>

5
XKD

telotelels

2

TS
pe
R
ot

Deteds

TR
Yoo
0..
X
1%

0
X
o

b4

e
2

X2
ok

K
R

Ve
bl

e
hal

o

=
X5

X
9585

%3
hat

ARG
TTOTOs,
58RRKS

e
AKX
bt

T
0%

%
ool

FIG. 14

WO 98/38561 PCT/US98/03493

10/12

XXX R IR XX R XX XK
209070 %694%0%0%6 %0 % 74%a%0% %% %% %%

L
o
SRS RREL
SRR

240.0.9.9.9.0.9.9.9°0,
Potatetelotetete%e% 0% 4

SRIIRTAIHIAL X
X 0reTeTerele
LR

XTI
LRSS

C
ST e AT Ove e % %" 4
LB

FIG.15

SUBSTITUTE SHEET (rule 26)

PCT/US98/03493
11/12

WO 98/38561

v o,
XX

o
2

e
XX

x>
XXX

e
Zate%e%e%

o

05,
beVe%%

(R
X

o
a%e!

5

s
KD
%

ELTXIS
QLR

JEXXS
GLEIL

AR
Pete%%!

%%
X

Vavav
o%%%

SUBSTITUTE SHEET (rule 26)

12/12

:|

;ELES% o

=

E%wﬁﬁﬁﬁg

FIG.17

. M
[[[:_',:I [

SUBSTITUTE SHEET (rule 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

