无级变速装置

（57）摘要

提供能减少机械损耗并且充分得到燃料效率提高效果的无级变速装置。其具备行星齿轮机构（10）、无级变速机构（20）、模式A驱动轴（4A）、模式B驱动轴（4B）、中间轴（40）以及倒挡轴（60），模式1从动齿轮（41）、模式2从动齿轮（42）、输出齿轮（49）设于中间轴（40）并与中间轴（40）一体旋转，模式3从动齿轮（43）设于中间轴（40）并可自由空转，第1切换机构（S1）设于输入轴（3），第2切换机构（S2）设于中间轴（40）。
1. 一种无级变速装置，其特征在于，
 具备：
 输入轴，其从驱动源输入动力；
 行星齿轮机构，其具有：壳体，其内周面形成有内齿轮；小齿轮，其与上述内齿轮啮合；
 太阳轮，其与上述小齿轮啮合；以及行星架，其支撑上述小齿轮使上述小齿轮可自由旋转，
 与上述输入轴连结并与上述输入轴同轴且一起旋转；
 模式A驱动轴，其配置为与上述壳体同轴且一起旋转；
 模式B驱动轴，其配置为与上述太阳轮同轴且一起旋转；
 无级变速机构，其具有：第1碟片，其与上述壳体连结并与上述壳体同轴且一起旋转；第2碟片，其与上述第1碟片相对，与上述太阳轮连结并与上述太阳轮同轴且一起旋转；以及传动部件，其在上述第1碟片与上述第2碟片之间传递动力；
 至少1个模式A驱动齿轮，其配置于上述模式A驱动轴并与上述模式A驱动轴一起旋转；
 至少1个模式B驱动齿轮，其配置于上述模式B驱动轴并与上述模式B驱动轴一起旋转；
 中间轴，其配置成与上述输入轴平行；
 倒挡轴，其配置成与上述输入轴平行；
 上述模式A驱动齿轮具有模式1驱动齿轮和模式3驱动齿轮；以及
 上述模式B驱动齿轮具有模式2驱动齿轮；
 与上述模式1驱动齿轮啮合的模式1从动齿轮以及与上述模式2驱动齿轮啮合的模式2
 从动齿轮设于上述中间轴并与上述中间轴一起旋转；
 与上述模式3驱动齿轮啮合的模式3从动齿轮设于上述中间轴并可自由空转；
 与末端从动齿轮啮合的输出齿轮设于上述中间轴并以上述中间轴一起旋转，上述末端
 从动齿轮将动力传递到驱动轮，
 倒挡驱动齿轮设于上述输入轴并可自由空转，
 与上述倒挡驱动齿轮啮合的倒挡第1从动齿轮以及与上述模式1从动齿轮啮合的倒挡
 第2从动齿轮设于上述倒挡轴并与上述倒挡轴一起旋转，
 单向离合器设于上述模式1驱动齿轮与上述模式A驱动轴之间或者上述模式1从动齿轮
 与上述中间轴之间，上述单向离合器在车辆前进驱动时允许从上述模式A驱动轴向上述中间
 轴传递动力，在车辆后退驱动时不许从上述中间轴向上述模式A驱动轴传递动力，
 第1切换机构设于上述输入轴，上述第1切换机构切换使上述输入轴与上述行星架或者
 上述倒挡驱动齿轮中的一方连结的连结状态和使上述输入轴与上述行星架或者上述倒挡
 驱动齿轮均不连结的中立状态；
 第2切换机构设于上述中间轴，上述第2切换机构切换使上述中间轴与上述模式2从动
 齿轮或者上述模式3从动齿轮中的一方连结的连结状态和使上述中间轴与上述模式2从动
 齿轮或者上述模式3从动齿轮均不连结的中立状态。
2. 一种无级变速装置，其特征在于，
 具备：
 输入轴，其从驱动源输入动力；
 行星齿轮机构，其具有：壳体，其内周面形成有内齿轮；小齿轮，其与上述内齿轮啮合；
 太阳轮，其与上述小齿轮啮合；以及行星架，其支撑上述小齿轮使上述小齿轮可自由旋转，
与上述输入轴连结并与上述输入轴同轴且一起旋转；
模式A驱动轴，其配置为与上述壳体同轴且一起旋转；
模式B驱动轴，其配置为与上述太阳轮同轴且一起旋转；
无级变速机构，其具有：第1碟片，其与上述壳体连结并与上述壳体同轴且一起旋转；第2碟片，其与上述第1碟片相对，与上述太阳轮连结并与上述太阳轮同轴且一起旋转；以及传动部件，其在上述第1碟片与上述第2碟片之间传递动力；
至少1个模式A驱动齿轮，其配置于上述模式A驱动轴并与上述模式A驱动轴一起旋转；
至少1个模式B驱动齿轮，其配置于上述模式B驱动轴并与上述模式B驱动轴一起旋转；
中间轴，其配置成与上述输入轴平行；
倒挡轴，其配置成与上述输入轴平行；
上述模式A驱动齿轮具有模式1驱动齿轮和模式3驱动齿轮；以及
上述模式B驱动齿轮具有模式2驱动齿轮，
与上述模式1驱动齿轮啮合的模式1从动齿轮以及与上述模式2驱动齿轮啮合的模式2从动齿轮设于上述中间轴并与上述中间轴一起旋转，
与上述模式3驱动齿轮啮合的模式3从动齿轮设于上述中间轴并可自由空转，
与末端从动齿轮啮合的输出齿轮设于上述中间轴并与上述中间轴一起旋转，上述末端从动齿轮将动力传递到驱动轮，
倒挡驱动齿轮设于上述输入轴并与上述输入轴一起旋转。
与上述倒挡驱动齿轮啮合的倒挡第1从动齿轮设于上述倒挡轴并与上述倒挡轴一起旋转，
与上述倒挡驱动齿轮啮合的倒挡第2从动齿轮设于上述倒挡轴并可自由空转，
单向离合器设于上述模式1驱动齿轮与上述模式A驱动轴之间或者上述模式1从动齿轮与上述中间轴之间，上述单向离合器在车辆前进驱动时允许从上述模式A驱动轴向上述中间轴传递动力，在车辆后退驱动时不允许从上述中间轴向上述模式A驱动轴传递动力，
第1切换机构设于上述输入轴，上述第1切换机构切换使上述输入轴与上述行星架连结的连结状态和使上述输入轴不与上述行星架连结的分离状态，
第2切换机构设于上述中间轴，上述第2切换机构切换使上述中间轴与上述模式2从动齿轮或者上述模式3从动齿轮中的一方连结的连结状态和使上述中间轴与上述模式2从动齿轮或者上述模式3从动齿轮均不连结的中立状态，
第3切换机构设于上述倒挡轴，上述第3切换机构切换使上述倒挡轴与上述倒挡第2从动齿轮连结的连结状态和使上述倒挡轴不与上述倒挡第2从动齿轮连结的分离状态。
3. 一种无级变速装置，其特征在于，
具备：
输入轴，其从驱动源输入动力；
行星齿轮机构，其具有：壳体，其内周面形成内齿齿轮；小齿轮，其与上述内齿齿轮啮合；
太阳齿轮，其与上述小齿轮啮合，以及行星架，其支撑上述小齿轮使上述小齿轮可自由旋转，与上述输入轴连结并与上述输入轴同轴且一起旋转；
模式A驱动轴，其配置为与上述壳体同轴且一起旋转；
模式B驱动轴，其配置为与上述太阳轮同轴且一起旋转；
权利要求书

无级变速机构，其具有：第1碟片，其与上述壳体连接并与上述壳体同轴且一起旋转；第2碟片，其与上述第1碟片相对，与上述太阳轮连接并与上述太阳轮同轴且一起旋转；以及传动部件，其在上述第1碟片与上述第2碟片之间传递动力；

至少1个模式A驱动齿轮，其配置于上述模式A驱动轴并与上述模式A驱动轴一起旋转；
至少1个模式B驱动齿轮，其配置于上述模式B驱动轴并与上述模式B驱动轴一起旋转；
中间轴，其配置成与上述输入轴平行；
倒挡轴，其配置成与上述输入轴平行；
倒挡惰轮轴，其配置成与上述输入轴平行；
上述模式A驱动齿轮具有模式1驱动齿轮和模式2驱动齿轮；以及
上述模式B驱动齿轮具有模式2驱动齿轮，

与上述模式1驱动齿轮啮合的模式1从动齿轮以及与上述模式2驱动齿轮啮合的模式2从动齿轮设于上述中间轴并与上述中间轴一起旋转，

与上述模式3驱动齿轮啮合的模式3从动齿轮设于上述中间轴并可自由空转，

与末端从动齿轮啮合的输出齿轮设于上述中间轴并与上述中间轴一起旋转，上述末端从动齿轮将动力传递到驱动轮，

倒挡驱动齿轮设于上述输入轴并可自由空转，

与上述倒挡驱动齿轮啮合的倒挡第1从动齿轮和倒挡第2从动齿轮设于上述倒挡轴并与上述倒挡轴一起旋转，

与上述倒挡第2从动齿轮啮合的倒挡第1惰轮以及与上述末端从动齿轮啮合的倒挡第2惰轮设于上述倒挡惰轮轴并与上述倒挡惰轮轴一起旋转，

单向离合器设于上述模式1驱动齿轮与上述模式A驱动轴之间或者上述模式1从动齿轮与上述中间轴之间，上述单向离合器在车辆前进驱动时允许从上述模式A驱动轴向上述中间轴传递动力，在车辆后退驱动时不允许从上述中间轴向上述模式A驱动轴传递动力，

第1切换机构设于上述输入轴，上述第1切换机构切换使上述输入轴与上述行星架或者上述倒挡驱动齿轮中的一方连接的连结状态和使上述输入轴与上述行星架或者上述倒挡驱动齿轮均不连结的中立状态，

第2切换机构设于上述中间轴，上述第2切换机构切换使上述中间轴与上述模式2从动齿轮或者上述模式3从动齿轮中的一方连接的连结状态和使上述中间轴与上述模式2从动齿轮或者上述模式3从动齿轮均不连结的中立状态。

4. 根据权利要求1至权利要求3中的一项所述的无级变速装置，其特征在于，
上述第2切换机构包括爪式离合器。
无级变速装置

技术领域
[0001] 本发明涉及具备无级变速机构和行星齿轮机构的无级变速装置。

背景技术
[0002] 有的搭载于汽车等车辆的无级变速装置具备无级变速机构和行星齿轮机构这两者，从而增大变速比的范围，确保省燃料和起步性。
[0003] 以往，作为这种无级变速装置，已知专利文献1记载的无级变速装置。
[0004] 专利文献1记载的无级变速装置构成为将环型无级变速机构和行星齿轮机构组合而成的动力分配型的无级变速装置。该无级变速装置使用3个湿式多板式离合器来进行行驶模式的切换。
[0005] 现有技术文献
[0006] 专利文献
[0007] 专利文献1：特许4171640号公报

发明内容
[0008] 发明要解决的问题
[0009] 然而，在现有的无级变速装置中，为了进行行驶模式的切换而使用湿式多板离合器，因此会存在由于用于产生油压的油压泵的负荷以及离合器释放时的摩擦面与隔板之间的拖曳阻力等而导致无级变速装置的机械损耗增大的问题。
[0010] 因此，即使通过行驶模式的多级化实现燃料效率提高，也会由于机械损耗的增加而导致动力传递效率降低，存在无法充分得到燃料效率提高效果的问题。
[0011] 本发明着眼于上述问题而完成的，其目的在于提供能减少机械损耗并且能充分得到燃料效率提高效果的无级变速装置。
[0012] 用于解决问题的方案
[0013] 本发明的特征在于，具备：输入轴，其从驱动源输入动力；行星齿轮机构，其具有：壳体，其内周面形成有内齿轮；小齿轮，其与上述内齿轮啮合；太阳轮，其与上述小齿轮啮合；以及行星架，其支撑上述小齿轮使上述小齿轮可自由旋转，与上述输入轴连接并与其输入轴同轴且一起旋转；模式A驱动轴，其配置为与上述壳体同轴且一起旋转；模式B驱动轴，其配置为与上述太阳轮同轴且一起旋转；无级变速机构，其具有：第1碟片，其与上述壳体连结并与其输入轴同轴且一起旋转；第2碟片，其与上述第1碟片相对，与上述太阳轮连结并与其太阳轮同轴且一起旋转；以及传动部件，其在上述第1碟片与上述第2碟片之间传递动力；至少1个模式A驱动齿轮，其配置于上述模式A驱动轴并与上述模式A驱动轴一起旋转；至少1个模式B驱动齿轮，其配置于上述模式B驱动轴并与上述模式B驱动轴一起旋转；中间轴，其配置成与上述输入轴平行；倒挡轴，其配置成与上述输入轴平行；上述模式A驱动齿轮具有模式1驱动齿轮和模式2驱动齿轮；以及上述模式B驱动齿轮具有模式3驱动齿轮，与上述模式1驱动齿轮啮合的模式1从动齿轮以及与上述模式2驱动齿轮啮合的模式2从动齿轮。
轮设于上述中间轴并与上述中间轴一起旋转，与上述模式3驱动齿轮啮合的模式3从动齿轮设于上述中间轴并可自由空转，与末尾从动齿轮啮合的输出齿轮设于上述中间轴并与上述中间轴一起旋转，上述末尾从动齿轮将动力传递到驱动轮，倒挡驱动齿轮设于上述输入轴并可自由空转，与上述倒挡驱动齿轮啮合的倒挡第1从动齿轮以及与上述模式1从动齿轮啮合的倒挡第2从动齿轮设于上述倒挡轴并与上述倒挡轴一起旋转，单向离合器设于上述模式1驱动齿轮与上述模式A驱动轴之间或者上述模式1从动齿轮与上述中间轴之间，上述单向离合器在车辆前进时允许从上述模式A驱动轴向上述中间轴传递动力，在车辆后退时不允许从上述中间轴向上述模式A驱动轴传递动力，第1切换机构设于上述输水轴，上述第1切换机构切换使上述输水轴与上述行星架或者上述倒挡驱动齿轮中的一方连结的连结状态和使上述输水轴与上述行星架或者上述倒挡驱动齿轮均不连结的中立状态，第2切换机构设于上述中间轴，上述第2切换机构切换使上述中间轴与上述模式2从动齿轮或者上述模式3从动齿轮中的一方连结的连结状态和使上述中间轴与上述模式2从动齿轮或者上述模式3从动齿轮均不连结的中立状态。

[0014] 发明效果

[0015] 这样，根据上述本发明，能构成内齿轮侧的模式A无级变速装置和太阳轮侧的模式B无级变速装置，并且，在模式A无级变速装置侧配置作为奇数行驶模的的模式1和模式3，在模式B无级变速装置侧配置作为偶数行驶模式的模式2，通过切换这些模式，仅用1个行星齿轮机构就能分别使用模式A和模式B的2种类型的无级变速装置，能使动力分配模式多级化。

[0016] 通过使模式A和模式B进一步多级化，能扩展无级变速装置的变速比范围，能在全部速度区域提高燃效率，能提高变质量。

[0017] 另外，用行星齿轮机构和无级变速机构来分担动力，因此能使行星齿轮机构和无级变速机构各自的尺寸小型化，能提高耐久性，能减少机械损耗。

[0018] 其结果是，能减少机械损耗，并且能充分得到燃料效率提高效果。

附图说明

[0019] 图1是示出本发明的无级变速装置的第1实施方式的图，是无级变速装置的概略图。

[0020] 图2是示出本发明的无级变速装置的第2实施方式的图，是无级变速装置的概略图。

[0021] 图3是示出本发明的无级变速装置的第3实施方式的图，是无级变速装置的概略图。

[0022] 图4是本发明的无级变速装置的第1至第3实施方式共用的图，是示出无级变速装置的控制系统的构成的图。

[0023] 附图标记说明：

具体实施方式
[0025] (第1实施方式)
[0026] 以下,使用附图说明本发明的无级变速装置的实施方式。图1、图4是说明本发明的第1实施方式的无级变速装置的图。在该第1实施方式中,示出了将本发明应用于搭载于FF (Front engine Front drive;前置发动机前轮驱动)车辆的无级变速装置的例子。
[0027] 首先,对构成进行说明。在图1中,在汽车等车辆100中搭载有作为驱动源的发动机105,起步设备2,无级变速装置101,差动装置70,左右驱动轴107R、107L以及左右驱动轮106R、106L。
[0028] 车辆100构成为FF (Front engine Front drive;前置发动机前轮驱动)车辆,发动机105,无级变速装置101以及左右驱动轴106R、106L配置于车辆前部。由此,车辆100由配置于车辆前部的发动机105驱动配置于车辆前部的驱动轴106R、106L而行驶。
[0029] 起步设备2设于发动机105的曲柄轴1与无级变速装置101的输入轴3之间。起步设备2包括离合器或者转矩转换器,使发动机105与无级变速装置101之间的动力传递接通和断开。发动机105的输出从曲柄轴1通过起步设备2传递到输入轴3。
[0030] 差动装置70具有收纳差动机构的差动箱2以及设于差动箱2的外周部的末端从动齿轮71。差动箱2内的差动机构连接有左右驱动轴107R、107L。
[0031] 差动装置70利用末端从动齿轮71将从无级变速装置101传递到差动箱2的动力通过左右驱动轴107R、107L传递到左右驱动轮106R、106L,使二者可差动旋转。
[0032] 无级变速装置101具备输入轴3和输出轴4。无级变速装置101的输入轴3从发动机105输入动力。
[0033] 无级变速装置101具备行星齿轮机构10,该行星齿轮机构10具有:内圈形成有内齿轮12的壳体11;与内齿轮12啮合的内齿轮13;与小齿轮13啮合的太阳轮14;以及行星架15,其支撑小齿轮13使小齿轮13可自由旋转,与输入轴3连结并与输入轴3同轴地一体旋转。
[0034] 无级变速装置101具备:模式A驱动轴4A,其配置为与壳体11同轴地一体旋转,以及模式B驱动轴4B,其配置为与太阳轮14同轴地一体旋转。
[0035] 模式A驱动轴4A形成为中空形状,内部插通有输入轴3。
[0036] 模式A驱动轴4A与输入轴3同轴地配置,连结到壳体11的发动机105侧。模式B驱动轴4B连结到太阳轮14的与发动机105相反的一侧。
[0037] 无级变速装置101具备无级变速机构20,该无级变速机构20具有:第1碟片21,其与壳体11连结并与壳体11同轴地一体旋转;第2碟片22,其与第1碟片21相对,与太阳轮14连结并为太阳轮14同轴地一体旋转;以及球状的滚子23,其在第1碟片21与第2碟片22之间传递动力。第2碟片22与模式B驱动轴4B连结,通过该模式B驱动轴4B与太阳轮14一体旋转。滚子23的旋转轴的倾斜角度由未图示的促动器变更。此外,第1碟片21和第2碟片22同方向旋转。
[0038] 在这样构成的无级变速机构20中,通过使滚子23的旋转轴的倾斜角度变化来使输出侧碟片的转速相对于输入侧碟片的转速之比即变速比变化,从第2碟片22的旋转相对于
第1碟片21的旋转减速的状态无级地变速为第2碟片22的旋转相对于第1碟片21的旋转增速的状态，即，无级变速机构20构成为环型无级变速机构。

[0039] 无级变速装置101具备作为模式A驱动齿轮的模式1驱动齿轮31和模式3驱动齿轮33，该模式1驱动齿轮31和模式3驱动齿轮33配置于模式A驱动轴4A并与模式A驱动轴4A一体旋转。

[0040] 无级变速装置101具备作为模式B驱动齿轮的模式2驱动齿轮32，该模式2驱动齿轮32配置于模式B驱动轴4B并与模式B驱动轴4B一体旋转。

[0041] 无级变速装置101具备与输入轴3平行配置的中间轴40以及与输入轴3平行配置的倒挡轴60。

[0042] 无级变速装置101具备与模式1驱动齿轮31啮合的模式1从动齿轮41以及与模式2驱动齿轮32啮合的模式2从动齿轮42。模式1从动齿轮41和模式2从动齿轮42设于中间轴40并与中间轴40一体旋转。

[0043] 无级变速装置101具备与模式3驱动齿轮33啮合的模式3从动齿轮43，该模式3从动齿轮43设于中间轴40并可自由空转。

[0044] 无级变速装置101具备输出齿轮49，该输出齿轮49与将动力传递到主驱动轴106R、106L的末端从动齿轮71啮合。输出齿轮49设于中间轴40并与中间轴40一体旋转。

[0045] 无级变速装置101具备倒挡驱动齿轮35，该倒挡驱动齿轮35设于输入轴3和倒挡轴60一体旋转。

[0046] 无级变速装置101具备倒挡驱动齿轮35啮合的倒挡第1从动齿轮61A以及与模式1从动齿轮41啮合的倒挡第2从动齿轮61B。倒挡第1从动齿轮61A和倒挡第2从动齿轮61B设于倒挡轴60并与倒挡轴60一体旋转。

[0047] 无级变速装置101具备单向离合器5，该单向离合器5在车辆前进驱动时允许从模式A驱动轴4A向中间轴40传递动力，在后退驱动时不许从中间轴40向模式A驱动轴4A传递动力。单向离合器5设于模式1驱动齿轮31与模式A驱动轴4A之间。通过设置该单向离合器5，模式1驱动齿轮31在车辆前进驱动时与模式A驱动轴4A一体旋转。此外，如图3所示，单向离合器5也可以设于模式1从动齿轮41与中间轴40之间。

[0048] 无级变速装置101具备第1切换机构S1，该第1切换机构S1切换使输入轴3与行星架15或者倒挡驱动齿轮35中的一方连结的连结状态和使输入轴3与行星架15或者倒挡驱动齿轮35均不连结的中立状态。第1切换机构S1设于输入轴3。

[0049] 以下，将使输入轴3与行星架15连结的连结状态称为前进连结状态。另外，以下将使输入轴3与倒挡驱动齿轮35连结的连结状态称为后退连结状态。

[0050] 无级变速装置101具备第2切换机构S2，该第2切换机构S2切换使中间轴40与模式2从动齿轮42或者模式3从动齿轮43中的一方连结的连结状态和使中间轴40与模式2从动齿轮42或者模式3从动齿轮43均不连结的中立状态。第2切换机构S2设于中间轴40。第2切换机构S2包括爪式离合器。

[0051] 以下将使中间轴40与模式2从动齿轮42连结的连结状态称为模式2连结状态。另外，以下将使中间轴40与模式3从动齿轮43连结的连结状态称为模式3连结状态。

[0052] 无级变速装置101通过使第1切换机构S1，第2切换机构S2工作，来从模式1从动齿轮41、模式2从动齿轮42、模式3从动齿轮43、倒挡驱动齿轮35中的任意一个将动力取出到末
端从动齿轮71。

[0054] 具体地说，通过使第1切换机构S1、第2切换机构S2分别为前进连结状态、中立状态，从模式1从动齿轮41通过输出齿轮49将模式1下的车辆前进方向的动力取出到末端从动齿轮71。

[0055] 另外，通过使第1切换机构S1、第2切换机构S2分别为前进连结状态、模式2连结状态，从模式2从动齿轮42通过输出齿轮49将模式2下的车辆前进方向的动力取出到末端从动齿轮71。

[0056] 另外，通过使第1切换机构S1、第2切换机构S2分别为后退连结状态、中立状态，从倒挡驱动齿轮35经过倒挡第1从动齿轮61A，倒挡第2从动齿轮61B，模式1从动齿轮41而通过输出齿轮49将车辆后退方向的动力取出到末端从动齿轮71。

[0057] 在这样构成的无级变速装置101中，从发动机105通过起步设备2传递到输入轴3的动力被传递到与输入轴3配置在同轴上的行星齿轮机构10的行星架15，使行星架15旋转。

[0058] 当行星架15旋转时，从被行星架15支撑的小齿轮13向内齿轮12和太阳轮14分割传递出动力，传递到内齿轮12的力通过壳体11传递到无级变速机构20的第1碟片21。传递到太阳轮14的动力通过模式B驱动轴4B传递到无级变速机构20的第2碟片22。即，在行星齿轮机构10中，动力分割到内齿轮12侧和太阳轮14侧(进行动力分配)。

[0059] 通过进行该动力分割(动力分配)，形成了经过与第1碟片21及壳体11一体旋转的模式A驱动轴4A传递到驱动轮106R、106L的动力传递路径(模式A动力传递路径)以及经过与第2碟片22一体旋转的模式B驱动轴4B传递到驱动轮106R、106L的动力传递路径(模式B动力传递路径)。

[0060] 在使用模式A动力传递路径进行变速的情况下，从太阳轮14传递到第2碟片22的动力通过第1碟片21和壳体11合流于模式A驱动轴4A。另外，在使用模式B动力传递路径进行变速的情况下，从内齿轮12传递到壳体11和第1碟片21的动力通过第2碟片22合流于模式B驱动轴4B。

[0061] 这样，无级变速装置101构成为具有使用模式A动力传递路径进行变速的无级变速装置(模式A无级变速装置)和使用模式B动力传递路径进行变速的无级变速装置(模式B无级变速装置)。

[0062] 在该动力分割(动力分配)型的无级变速装置101中，在输入轴3的转速固定而无级变速机构20的变速比变化的情况下，当太阳轮14的转速增加时，内齿轮12的转速减小，当太阳轮14的转速减小时，内齿轮12的转速增加。

[0063] 另外，无级变速装置101具备模式1至模式3这3个行驶模式，在模式1中，通过模式1驱动齿轮31与模式1从动齿轮41的啮合来进行变速，在模式2中，通过模式2驱动齿轮32与模式2从动齿轮42的啮合来进行变速，在模式3中，通过模式3驱动齿轮33与模式3从动齿轮43的啮合来进行变速。

[0064] 在这些行驶模式中，设定各驱动齿轮与各从动齿轮的齿轮比使得模式1的变速比最大，并按模式2、模式3的顺序使变速比变小。换言之，模式1至模式3的行驶模式类似于切
换齿轮对来逐步变更变速比的自动变速装置(步进式AT)的变速级。
[0065] 另外，在该无级变速装置101中，在车辆前进时，将行驶模式在模式1至模式3之间切换，并且在各行驶模式下变更无级变速机构20的变速比，由此变更无级变速装置101整体上的变速比。
[0066] 在本实施方式中，奇数行驶模式即模式1和模式3是使用从模式A驱动轴4A向驱动轴106R、106L传递动力的模式A动力传递路径而形成的。另外，偶数行驶模式即模式2是使用从模式B驱动轴4B向驱动轴106R、106L传递动力的模式B动力传递路径而形成的。
[0067] 在此，说明模式1至模式3的各驱动齿轮与从动齿轮的齿轮比。如上所述，在无级变速装置101中，在输入轴3的转速固定而无级变速机构20的变速比变化的情况下，当太阳轮14的转速增加时，内齿轮12的转速减小，当太阳轮14的转速减少时，内齿轮12的转速增加。在以下的说明中，设内齿轮12与太阳轮14的速度比在r2与r1之间变化。
[0068] 在本实施方式中，设定模式2的齿轮比（模式2驱动齿轮32与模式2从动齿轮42的齿轮比）使得在速度比为r2时模式1从动齿轮41与模式2从动齿轮42的转速一致（同步）。另外，设定模式3的齿轮比（模式3驱动齿轮33与模式3从动齿轮43的齿轮比）使得在速度比为r1时模式2从动齿轮42与模式3从动齿轮43的转速一致（同步）。
[0069] 另外，在本实施方式中，行星齿轮机构10为单小齿轮型的行星齿轮机构，因此，通过使用模式A动力传递路径（模式A动力传递装置）形成作为奇数行驶模式的模式1，在需要大的动力传递的车辆起步时，能使无级变速机构20的动力传递效率最大，并且能使对无级变速装置101的输入负荷最小。
[0070] 如上述那样构成的无级变速装置101与控制单元120电连接，由此该控制单元120控制。
[0071] 在图4中，控制单元120构成为包括具CPU、RAM、ROM、输入输出接口等的未图示的微型计算机。
[0072] 在控制单元120中，CPU利用RAM的临时存储功能并且根据预先存储于ROM的程序来进行信号处理。ROM中预先存储有各种控制常数，各种映射等。
[0073] 控制单元120的输入侧连接着车辆100中设置的发动机转速传感器121、车速传感器122、模式A驱动轴转速传感器123A、模式B驱动轴转速传感器123B、输出变速传感器124、节流阀开度传感器125、无级变速位置传感器126以及油温传感器127。
[0074] 发动机转速传感器121检测发动机105的发动机转速即曲柄轴1的转速，将检测信号输出到控制单元120。
[0075] 车速传感器122检测车辆100的车速，将检测信号输出到控制单元120。车速传感器122例如检测驱动轴106R、106L的转速，基于该转速来检测车速。
[0076] 模式A驱动轴转速传感器123A检测模式A驱动轴的转速，将检测信号输出到控制单元。另外，模式B驱动轴转速传感器123B检测模式B驱动轴的转速，将检测信号输出到控制单元120。输出转速传感器124检测输出齿轮49的转速作为输出转速，将检测信号输出到控制单元120。
[0077] 节流阀开度传感器125检测未图示的节流阀的节流阀开度，将检测信号输出到控制单元120。
[0078] 无级变速位置传感器126检测无级变速机构20的滚子23的倾斜角度作为无级变速
位置，将检测信号输出到控制单元120。
[0079] 油温传感器127检测无级变速机构20的润滑油的油温，将检测信号输出到控制单元120。
[0080] 选择设备位置传感器128用传感器检测驾驶员所选择的驱动模式，并将其输出到控制单元120。另一方面，控制单元120的输出侧与控制单元120中设置的无级变速控制装置129、第1切换机构S1、第2切换机构S2电连接。
[0081] 无级变速控制装置129包括有油压控制无级变速机构20的阀体。无级变速控制装置129具备由控制单元120用电控制的未图示的电磁阀和油压路径，利用电磁阀切换水压路径从而变更无级变速机构20的变速比等。
[0082] 控制单元120基于发动机转速、车速、模式A驾驶轴转速传感器123A、模式B驾驶轴转速传感器123B、选择设备位置、输出转速、节流阀开度、无级变速位置、油温来控制无级变速控制装置129，第1切换机构S1，第2切换机构S2，由此，将行驶模式在模式1至模式3和后退模式之间进行切换，并且在各行驶模式下变更无级变速机构20的变速比，变更无级变速装置101整体上的变速比。
[0083] 接下来，分为车辆前进行驶时和后退行驶时对无级变速装置101的动作进行说明。
[0084] （前进行驶时的动作）
[0085] 在车辆前进的前进行驶时，当车辆从停止状态起步时，无级变速装置101选择模式1，无级变速机构20为最大减速状态。
[0086] 在车辆起步后，在模式1中无级变速机构20从最大减速状态变化到最大增速状态，从而车速增加。
[0087] 无级变速机构20变化到最大增速状态后，切换为模式2。然后，在模式2中无级变速机构20从最大增速状态变化到最大减速状态，从而车速进一步增加。以后，在模式3中也同样地动作。
[0088] 在此，以从模式1向模式2进行切换的情况为例对切换行驶模式时的具体动作进行说明。
[0089] 在将行驶模式从模式1切换为模式2时，在行星齿轮机构10的速度比变为r2，模式1从动齿轮41与模式2从动齿轮42的转速即将同步之前的状态下，控制单元120使第1切换机构S1维持前进连结状态并使第2切换机构S2从中立状态成为模式2连结状态。
[0090] 由此，在模式2从动齿轮42的转速比模式1从动齿轮41的转速稍快的状态下，第2切换机构S2被切换为模式2连结状态，因此单向离合器5被释放，动力传递路径从模式1从动齿轮41切换为模式2从动齿轮42。此时，模式2从动齿轮42与模式1从动齿轮41的转速差小，因此能防止变速冲击变小，并且能防止驱动装置中断。
[0091] 在将行驶模式从模式2切换为模式3时，在行星齿轮机构10的速度比变为r1，模式2从动齿轮42与模式3从动齿轮43的转速即将同步之前或者刚刚同步之后的状态下，控制单元120使第1切换机构S1维持前进连结状态并且使第2切换机构S2从模式2连结状态经过中立状态成为模式3连结状态。
[0092] 由此，在模式2从动齿轮42与模式2从动齿轮43的转速差小的状态下进行切换，因此能防止变速冲击变小，并且能使变速时间变短。
[0093] 另外，从模式2向模式3切换时，第2切换机构S2经过中立状态，因此能防止第2切换
机构S2的双重卡合，因此，能防止向模式2从动齿轮42传递动力的模式B驱动轴4B（模式B动力传递装置）与向模式3从动齿轮43传递动力的模式A驱动轴4A（模式A动力传递装置）在第2切换机构S2的切换时锁死。

【0094】（后退行驶时的动作）
【0095】在车辆后退的后退行驶时，利用第1切换机构S1将倒挡驱动齿轮35紧固于输入轴3。另外，第2切换机构S2为中立状态。
【0096】在该状态下，输入轴3的动力经过倒挡第1从动齿轮61A、倒挡第2从动齿轮61B、模式1从动齿轮41、输出齿轮49传递到末端从动齿轮71。
【0097】此时，单向离合器5是连接的，从而模式1驱动齿轮31和模式3驱动齿轮33被带动旋转，但是由于第1切换机构S1为倒挡状态，第2切换机构S2为中立状态，因此不会造成妨碍。
【0098】此外，在动力分割（动力分配型）的无级变速装置101中，在前进的全部行驶模式中，动力被分割到太阳轮14侧和内齿轮12侧，因此通过行星齿轮机构10的动力或者通过无级变速机构20的动力比从发动机105输入到输入轴3的动力小。因此，在全部的行驶模式中，无级变速装置101的整体的动力传递效率为行星齿轮机构10的动力传递效率与无级变速机构20的动力传递效率的中间，能成为高的动力传递效率。
【0099】这样，根据本实施方式的无级变速装置101，第1效果是能构成内齿轮12侧的模式A无级变速装置和太阳轮14侧的模式B无级变速装置。并且，在模式A无级变速装置侧配置作为奇数行驶模式的模式1和模式3，在模式B无级变速装置侧配置作为偶数行驶模式的模式2，通过切换这些模式，仅用1个行星齿轮机构10就能分别使用模式A和模式B这2种类型的无级变速装置，能使动力分配模式多级化。
【0100】另外，第2效果是通过使模式A和模式B进一步多级化，能扩展无级变速装置101的变速比范围，能在全部速度区域提高燃烧效率，能提高变速质量。
【0101】另外，第3效果是用行星齿轮机构10和无级变速机构20分担动力，因此能使行星齿轮机构10和无级变速机构20各自的尺寸小型化，能提高耐久性，能减少机械损耗。
【0102】其效果是，能减少机械损耗，并且能充分得到燃烧效率提高效果。
【0103】另外，除了第1至第3效果以外，由于仅具备1个中间轴40，因此与具备2个中间轴的情况相比，能使无级变速装置101在径向上小型化。
【0104】另外，通过将倒挡第1从动齿轮61A和倒挡第2从动齿轮61B独立于倒挡轴60配置，与将这些齿轮配置于中间轴40的情况相比，能使中间轴40在轴向上缩短，因此能使无级变速装置101小型化。
【0105】另外，通过将倒挡第1从动齿轮61A和倒挡第2从动齿轮61B独立于倒挡轴60配置，与将这些齿轮配置于中间轴40的情况相比，能减少中间轴40的惯性重量，因此能使模式的切换速度即变速速度加快。
【0106】另外，根据本实施方式的无级变速装置101，第2切换机构S2包括爪式离合器，因此能进一步减少机械损耗。
【0107】（第2实施方式）
【0108】对第2实施方式的无级变速装置进行说明。此外，对与第1实施方式的无级变速装置101同样的构成部件标注与第1实施方式相同的附图标记，省略说明。
【0109】在图2中，车辆100具备无级变速装置102来代替第1实施方式的无级变速装置101。
在无级变速装置102中，倒挡驱动齿轮35设于输入轴3并与输入轴3一体旋转。
另外，与倒挡驱动齿轮35啮合的倒挡第1从动齿轮61A设于倒挡轴60并与倒挡轴60一体旋转。
另外，与模式1从动齿轮41啮合的倒挡第2从动齿轮61B设于倒挡轴60并可自由空转。
无级变速装置102具备第1切換机构S1，该第1切換机构S1切換使输入轴3与行星架15连结的连结状态和使输入轴3与行星架15连结的分离状态。第1切換机构S1设于输入轴3。
无级变速装置102具备第2切換机构S2，该第2切換机构S2切換使中间轴40与模式2从动齿轮42或者模式3从动齿轮43中的一方连结的连结状态和使中间轴40与模式2从动齿轮42或者模式3从动齿轮43均不连结的中立状态。第2切換机构S2设于中间轴40。第2切換机构S2包括爪式离合器。
无级变速装置102具备第3切換机构S3，该第3切換机构S3切換使倒挡轴60与倒挡第2从动齿轮61B连结的连结状态和使倒挡轴60与倒挡第2从动齿轮61B连结的分离状态。第3切換机构S3设于倒挡轴60。
在本实施方式中，无级变速装置102通过使第1切換机构S1、第2切換机构S2、第3切換机构S3分别为连结状态、中立状态、分离状态，来从模式1从动齿轮41通过输出齿轮49将模式1下的车辆前进方向的动力取出到末端从动齿轮71。
另外，通过使第1切換机构S1、第2切換机构S2、第3切換机构S3分别为连结状态、模式2连结状态、分离状态，来从模式2从动齿轮42通过输出齿轮49将模式2下的车辆前进方向的动力取出到末端从动齿轮71。
另外，通过使第1切換机构S1、第2切換机构S2、第3切換机构S3分别为连结状态、模式3连结状态、分离状态，来从模式3从动齿轮43通过输出齿轮49将模式3下的车辆前进方向的动力取出到末端从动齿轮71。
另外，通过使第1切換机构S1、第2切換机构S2、第3切換机构S3分别为状态、中立状态、连结状态，来从倒挡驱动齿轮35经过倒挡第1从动齿轮61A、倒挡第2从动齿轮61B，模式1从动齿轮41而通过输出齿轮49将车辆后退方向的动力取出到末端从动齿轮71。
在此，本实施方式中，图2的控制单元120除了控制第1切換机构S1和第2切換机构S2以外，还控制第3切換机构S3。
这样，根据本实施方式的无级变速装置102，与第1实施方式同样能实现第1至第3效果。其结果是，能减少机械损耗，并且能充分得到燃料效率提高效果。
另外，仅具备1个中间轴40，因此与具备2个中间轴40的情况相比，能使无级变速装置102在径向上小型化。
另外，根据本实施方式的无级变速装置102，第2切換机构S2包括爪式离合器，因此能进一步减少机械损耗。
（第3实施方式）
对第3实施方式的无级变速装置进行说明。此外，对与第1实施方式的无级变速装置101同样的构成构件标注与第1实施方式相同的附图标记，省略说明。
在图3中，车辆100具备无级变速装置103来代替第1实施方式的无级变速装置101。
无级变速装置103具备与输入轴3平行配置的倒挡轴60以及与输入轴3平行配置的倒挡齿轮轴90。
无级变速装置103具备倒挡驱动齿轮35，该倒挡驱动齿轮35设于输入轴3并可自由空转。
无级变速装置103具备：与倒挡驱动齿轮35啮合的倒挡第1从动齿轮61A；以及倒挡第2从动齿轮61B。倒挡第1从动齿轮61A和倒挡第2从动齿轮61B设于倒挡轴60并与倒挡轴60一体旋转。
无级变速装置103具备与倒挡第2从动齿轮61B啮合的倒挡第1惰轮92A以及与末端从动齿轮71啮合的倒挡第2惰轮92B。倒挡第1惰轮92A和倒挡第2惰轮92B设于倒挡轴90并与倒挡轴90一体旋转。
倒挡第1从动齿轮61A、倒挡第2从动齿轮61B、倒挡第1惰轮92A和倒挡第2惰轮92B配置在中间轴40的上方。另外，在中间轴40的下方存有油。因此，倒挡第1从动齿轮61A、倒挡第2从动齿轮61B、倒挡第1惰轮92A和倒挡第2惰轮92B不会把油撩起来。因此，能减小油的搅动阻力，提高燃料效率。
无级变速装置103具备第1切换机构S1，该第1切换机构S1切换使输入轴3与行星架15或者倒挡驱动齿轮35中的一方结连的连结状态和使输入轴3与行星架15或者倒挡驱动齿轮35均不结连的中立状态。第1切换机构S1设于输入轴3。
以下将使输入轴3与行星架15连结的结连状态称为前进结连状态。另外，以下将使输入轴3与倒挡驱动齿轮35连结的结连状态称为后退结连状态。
无级变速装置103具备第2切换机构S2，该第2切换机构S2切换使中间轴40与模式2从动齿轮42或者模式3从动齿轮43中的一方结连的连结状态和使中间轴40与模式2从动齿轮42或者模式3从动齿轮43均不结连的中立状态。第2切换机构S2设于中间轴40。第2切换机构S2包括爪式离合器。
以下将使中间轴40与模式2从动齿轮42连结的连结状态称为模式2连结状态。另外，以下将使中间轴40与模式3从动齿轮43连结的连结状态称为模式3连结状态。
在本实施方式中，无级变速装置103通过使第1切换机构S1、第2切换机构S2分别为前进结连状态、中立状态，来从模式1从动齿轮41通过输出齿轮49将模式1下的车辆前进方向的动力取出到末端从动齿轮71。
另外，通过使第1切换机构S1、第2切换机构S2分别为前进结连状态、模式2连结状态，来从模式2从动齿轮42通过输出齿轮49将模式2下的车辆前进方向的动力取出到末端从动齿轮71。
另外，通过使第1切换机构S1、第2切换机构S2分别为前进结连状态、模式3连结状态，来从模式3从动齿轮43通过输出齿轮49将模式3下的车辆前进方向的动力取出到末端从动齿轮71。
另外，在第1切换机构S1、第2切换机构S2分别为后退结连状态、中立状态时，倒挡驱动齿轮35经过倒挡第1从动齿轮61A、倒挡第2从动齿轮61B、倒挡第2惰轮92A、倒挡第1惰轮92B时车辆后退方向的动力传送到末端从动齿轮71。
这样，根据本实施方式的无级变速装置103，与第1实施方式同样能实现第1至第3效果。其结果是，能减少机械损耗，并且能充分得到燃料效率提高效果。
另外，仅具备1个中间轴40，因此与具备2个中间轴40的情况相比，能使无级变速装置102在径向上小型化。

另外，将倒挡第1从动齿轮61A和倒挡第2从动齿轮61B独立于倒挡轴60配置，将倒挡第1惰轮92A和倒挡第2惰轮92B独立于倒挡惰轮轴90配置，而且使这4个齿轮不会被中间轴40带动旋转，由此能减少中间轴40的惯性重量，因此能使模式的切换速度即变速速度加快。

另外，根据本实施方式的无级变速装置103，第2切换机构S2包括爪式离合器，因此能进一步减少机械损耗。