wo 2013/106400 A 1[I I/ 0FV0 00000 0 O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/106400 A1

18 July 2013 (18.07.2013) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
HO04L 29/08 (2006.01) GO6F 17/30 (2006.01) kind of national protection available): AE, AG, AL, AM,
. L . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2013/020783 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
9 January 2013 (09.01.2013) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
13/348,243 11 January 2012 (11.01.2012) Us
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant: ALCATEL LUCENT [FR/FR]; 3, avenue kind of regional protection available). ARIPO (BW, GH,
Octave Gréard, F-75007 Paris (FR). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(72) Tnventors: PUTTASWAMY NAGA, Krishna; 160 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Durham Avenue, Apartment 202, Metuchen, NJ 08840 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
; - ohen, = . EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(US). NANDAGOPAL, Thyaga; 10 Heritage Drive, Edis-
on, NJ 08820 (US). MA, Yadi; 602 Eagle Heights, Apart- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
mént G. Madison WI 53’705 (IfS) ’ TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
’ g : ML, MR, NE, SN, TD, TG).
(74) Agent: BILICSKA, Carl; Alcatel-Lucent USA, Inc., At- Published:

tention: Docket Administrator - Room 3B-212F, 600-700
Mountain Avenue, Murray Hill, NJ 07974-0636 (US).

with international search report (Art. 21(3))

(54) Title: REDUCING LATENCY AND COST IN RESILIENT CLOUD FILE SYSTEMS

110b_[j e
=

FIG.

(57) Abstract: Various exemplary embodiments relate to a method of storing a file block in a cloud system (130) including a plural -
ity of data centers (135a-1). The method may include: receiving the file block from a client 110a-b); generating a plurality of chunks
from the file block, wherein each chunk is smaller than the file block and the file block may be reconstructed from a subset of the
chunks; distributing each chunk to one of the plurality of data centers (135a-f); and storing the file block in a cache. Various exem -
plary embodiments relate to a cloud system for storing files. The system may include a plurality of data centers including a primary
data center. The primary data center may include: a cache configured to store at least one complete file block (260); a chunk storage
configured to store a chunk for each of a plurality of file blocks (240); a file encoder (230); and a file decoder (250).

WO 2013/106400 PCT/US2013/020783

t
REDUCING LATENCY AND COST IN RESILIENT CLOUD FILE

SYSTEMS

TECHNICAL FIELD
[0001] Various exemplary embodiments disclosed herein relate generally to
computer file systems.
BACKGROUND
[0002] Cloud computing may be defined as the delivery of a computing service
over a network using shared resources. Cloud computing often requires the
storage of data files so that they are accessible to a variety of users. File storage
may be viewed as a cloud computing service. Various end users may access files
stored by a cloud service provider without knowing exactly how the files are

stored.

SUMMARY
[0003] File storage in a cloud computing environment poses a variety of
problems for cloud service providers and users. Cloud services sometimes suffer
from latency problems because a file must be located and transferred across the
network to the end user. Users may desire a cloud service that provides
requested files with low latency. Cloud services may also suffer from
unavailability if a data center or part of the network is unavailable. Users may

desire a cloud service that provides resiliency when a cloud component is

WO 2013/106400 PCT/US2013/020783

2

unavailable. Low latency and high resiliency often require additional costs to
the cloud service provider and/or user.

[0004] In view of the foregoing, it would be desirable to provide a file system
for cloud computing. In particular, it would be desirable to provide a method
and system for storing files with low latency and high resiliency at a low cost.
[0005] In light of the present need for a file system for cloud computing, a
brief summary of various exemplary embodiments is presented. Some
simplifications and omissions may be made in the following summary, which is
intended to highlight and introduce some aspects of the various exemplary
embodiments, but not to limit the scope of the invention. Detailed descriptions
of a preferred exemplary embodiment adequate to allow those of ordinary skill
in the art to make and use the inventive concepts will follow in later sections.
[0006] Various exemplary embodiments relate to a method of storing a file in
a cloud system including a plurality of data centers. The method may include:
receiving, at a first data center, a file block from a client; generating a plurality
of chunks from the file block, wherein each chunk is smaller than the file and
the file block may be reconstructed from a subset of the chunks; distributing
each chunk to a different one of the plurality of data centers; and storing the file
in a cache at the first data center.

[0007] In various alternative embodiments, the method further includes
receiving a request, from a client, to read the file block; determining whether the

file block is stored in the cache; if the file block is stored in the cache, sending

WO 2013/106400 PCT/US2013/020783

3
the file block stored in the cache to the client. The method may also include: if
the file block is not stored in the cache: requesting chunks from the plurality of
data centers; receiving at least a subset of the plurality of chunks from the
plurality of data centers; reconstructing the file block from the subset of chunks;
storing the file block in a cache at the first data center; and sending the
reconstructed file block to the client.

[0008] Invarious alternative embodiments, the step of generating a plurality
of chunks from the file block includes using an erasure code to generate the
plurality of chunks.

[0009] In various alternative embodiments, the method further includes:
receiving a request to write to the file block: writing to the file block in the
cache; closing the file; generating a second plurality of chunks from the file
block: and distributing each chunk of the second plurality of chunks to a
different one of the plurality of data centers. The second plurality of chunks may
include only modified chunks.

[0010] In various alternative embodiments, the method further includes:
comparing an actual storage and transfer cost for a current cache size with a
hypothetical storage and transfer cost for a previous cache size: and adjusting
the cache size based on the lower storage and transfer cost:

{0011] In various alternative embodiments, the method further includes:

determining that the cache is full; and removing a file block from the cache.

WO 2013/106400 PCT/US2013/020783

4
[0012] In various alternative embodiments, the plurality of chunks are
generated according to a systematic erasure code wherein the file block is
divided into a subset of un-encoded chunks and a subset of coded chunks.
[0013] In various alternative embodiments, the number of chunks is at least
two more than the number in a subset of chunks.
[0014] Various exemplary embodiments relate to the above described method
encoded as instructions on a tangible, non-transitory, machine-readable storage
medium.
[0015] Various exemplary embodiments relate to a cloud system for storing a
file. The system may include a plurality of data centers including a primary data
center. The primary data center may include: a cache configured to store at least
one complete file block; a chunk storage configured to store a chunk for each of a
plurality of file blocks: a file encoder configured to generate a plurality of chunks
from the file, wherein each chunk is smaller than the file and the file block may
be reconstructed from a subset of the chunks; and a file decoder configured to
reconstruct a complete file block from a subset of the chunks.
[0016] In various alternative embodiments, the cache is a hard disk.
[0017] In various alternative embodiments, the primary data center further
includes a client interface configured to receive complete files from a client and
send complete files to a client.
[0018] In various alternative embodiments, the primary data center further

includes a cloud interface configured to distribute a chunk of a plurality of

WO 2013/106400 PCT/US2013/020783

5
chunks to each of a plurality of data centers and configured to receive a subset of
chunks from the plurality of data centers.
[0019] In various alternative embodiments, the file encoder is configured to
use erasure coding to generate the plurality of chunks.
[0020] In various alternative embodiments, the number of chunks in the
subset is at least two less than the number of the plurality of chunks generated
by the file encoder.
[0021] It should be apparent that, in this manner, various exemplary
embodiments enable a method and file system for cloud computing. In
particular, by distributing file chunks and providing a file cache at a data center

the goals of high resiliency and low latency can be met at low cost.

BRIEF DESCRIPTION OF THE DRAWINGS
[0022] In order to better understand various exemplary embodiments,
reference is made to the accompanying drawings, wherein:
[0023] FIG. 1 illustrates an exemplary cloud environment for storing a file as
a cloud service;
[0024] FIG. 2 illustrates an exemplary data center for providing file storage
for a cloud service;
[0025] FIG. 3illustrates an exemplary data structure for storing a file block:
[0026] FIG. 4illustrates a flowchart showing an exemplary method of storing

a file block in a cloud service;

WO 2013/106400 PCT/US2013/020783

6

{0027} FIG. 5 illustrates a flowchart showing an exemplary method for
reading a file block stored in a cloud service;
[0028] FIG. 6illustrates a flowchart showing an exemplary method for writing
to a file block stored in a cloud service; and
[0029] FIG. 7 illustrates a flowchart showing an exemplary method of
adjusting the size of a cache.

DETAILED DESCRIPTION
[0030] Referring now to the drawings, in which like numerals refer to like
components or steps, there are disclosed broad aspects of various exemplary
embodiments.
[0031] FIG. 1illustrates an exemplary cloud environment 100 for storing a file
as a cloud service. A file may be stored as one or more file blocks. Accordingly,
a file block may be a part of a file or a complete file. Exemplary cloud
environment 100 may include a user devices 110, network 120, and cloud service
130. Cloud service 130 may include a plurality of data centers 135. User device
110 may communicate with one or more data centers 135 of cloud service 130
through network 120. The cloud service 130 may provide data storage or other
cloud services to user devices 110.
[0032] User devices 110 may include any device capable of communicating
with cloud services 130 via network 120. For example, user device 110 maybe a
personal computer, laptop computer, mobile phone, smart phone, server,

personal digital assistant, or any other electronic device. Multiple user devices

WO 2013/106400 PCT/US2013/020783

110a and 110b may access cloud service 130. Although only two user devices
110 are shown, it should be apparent that any number of user devices 110 may
access cloud service 130.

[0033] Network 120 may include any communications network capable of
processing digital communications between user devices 110 and data centers
135. Network 120 may be the Internet. Network 120 may provide various
communication paths between user devices 110 and data centers 135.

[0034] Cloud service 130 may include one or more computing devices that
provide a computing service to user devices 110. In various exemplary
embodiments, the computing devices may be data centers 135 that store data
files. Data centers 135 may be geographically distributed to help ensure
resiliency. If a data center such as, for example, data center 135a, is
unavailable due to a power outage or network failure, the other data centers
135b-f may remain available. Data centers 135 may communicate with each
other. In various exemplary embodiments, data centers 135 may communicate
with each other via dedicated or leased lines. Alternatively, data centers 135
may communicate with each other via network 120.

[0035] Data centers 135 may store data files in a distributed architecture to
provide resiliency. Data files may be divided into one or more file blocks that
may be requested and accessed by user devices 110. For example, a file block
may be defined by a range of bytes within a data file. File blocks may be divided

into a plurality of chunks and stored at each of the plurality of data centers 135.

WO 2013/106400 PCT/US2013/020783

8

Only a subset of the chunks may be required to reconstruct a file block.
Therefore, cloud service 130 may be able to provide access to a file block even if
one or more of data centers 135 are unavailable.
[0036] One of the data centers 135 may be designated as a primary data
center for a data file. The primary data center may be chosen as the data center
135 that 1s geographically closest to the user device 110 that initially stores the
data file. For example, data center 135a may be the primary data center for
user device 110a, while data center 135f may be the primary data center for user
device 110b. The primary data center may include a cache that temporarily
stores file blocks. The cached file blocks may provide faster access and reduce
latency. Cached file blocks may also reduce the amount of data that must be
transmitted between data centers 135. If the primary data center for a user
device 110 or for a data file is unavailable, user device 110 may retrieve the file
blocks from any other data center 135.
[0037] FIG. 2 illustrates an exemplary data center 135 for providing file
storage for a cloud service. Exemplary data center 135 may be part of cloud
service 130. Data center 135 may act as a primary data center for some data
files and as a secondary data center for other files. Exemplary data center 135
may include client interface 210, cloud interface 220, file encoder 230, chunk
storage 240, file decoder 250, file cache 260 and cache adapter 270.
[0038] Client interface 210 may be an interface comprising hardware and/or

executable instructions encoded on a machine-readable storage medium

WO 2013/106400 PCT/US2013/020783

9
configured to communicate with user devices 110. Client interface 210 may
receive a file block from user device 110 and initiate the process of storing the
file block. Client interface 210 may receive a request for a file block from a user
device 110 and initiate the process of reading the file block. Client interface 210
may transmit a complete file block or complete data file to user device 110.

[0039] Cloud interface 220 may be an interface comprising hardware and/or
executable instructions encoded on a machine-readable storage medium
configured to communicate with other data centers 135. Cloud interface 220
may distribute encoded chunks of a file block to one or more other data centers
135. In various exemplary embodiments, cloud interface 220 distributes one
chunk to each of a plurality of data centers 135. Cloud interface 220 may
receive encoded chunks of a file block from one or more other data centers 135.
Cloud interface 220 may access chunk storage 240 to read or store chunks.

[0040] File encoder 230 may include hardware and/or executable instructions
encoded on a machine-readable storage medium configured to encode a file block
as a plurality of chunks. As will be discussed in further detail below regarding
FIGS.3-7, the plurality of chunks may provide a resilient distributed format for
storing the file block. In various exemplary embodiments, file encoder 230 may
implement an erasure code for generating the plurality of chunks. Exemplary
erasure codes suitable for generating the plurality of chunks may include Reed-
Solomon codes, maximum distance separable (MDS) codes, and low density

parity check (LDPC) codes. In various exemplary embodiments, file encoder 230

WO 2013/106400 PCT/US2013/020783

10

may use a systematic erasure code where the original file block is divided into a
plurality of un-encoded chunks along with a separate set of coded chunks that
are used for file recovery. In various alternative embodiments, other coding
schemes may be used to generate chunks.

[0041] Chunk storage 240 may include any machine-readable medium capable
of storing chunks generated by a file encoder such as file encoder 230.
Accordingly, chunk storage 240 may include a machine-readable storage
medium such as random-access memory (RAM), magnetic disk storage media,
optical storage media, flash-memory devices, and/or similar storage media. In
various exemplary embodiments, chunk storage 240 may provide persistent
storage that maintains the stored chunks in case of power or device failure.
Chunk storage 240 may use a journaling system to maintain integrity in case of
a failure during a write operation. Chunk storage 240 may store chunks
generated by file encoder 230 and/or chunks received via cloud interface 220.
[0042] File decoder 250 may include hardware and/or executable instructions
encoded on a machine-readable storage medium configured to decode a subset of
a plurality of chunks used to store the a file. File decoder 250 may receive a
subset of chunks from chunk storage 240 and/or cloud interface 220. File
decoder 250 may regenerate the file block from the subset of chunks. In various
exemplary embodiments, file decoder 250 may implement an inverse operation
of file encoder 230. File decoder 250 may use the same erasure code as file

encoder 230. As will be described in further detail below regarding FIGS. 3-7,

WO 2013/106400 PCT/US2013/020783

11

the subset of chunks required to regenerate the file block may be smaller than
the plurality of chunks generated by file encoder 230.
[0043] File cache 260 may include any machine-readable medium capable of
storing a complete file block. Accordingly, file cache 260 may include a machine-
readable storage medium such as random-access memory (RAM), magnetic disk
storage media, optical storage media, flash-memory devices, and/or similar
storage media. Invarious exemplary embodiments, file cache 260 may provide
persistent storage that maintains the file block in case of power or device failure.

For example, file cache 260 may be a hard disk. Using a hard disk for file cache
260 may minimize costs while providing acceptable latency. File cache 260 may
use a journaling system to maintain integrity in case of a failure during a write
operation. File cache 260 may store file blocks received via client interface 210
and/or file blocks regenerated by file decoder 250.
[0044] File cache 260 may have a limited size determined by physical capacity
and/or cache adapter 270. File cache 260 may include a cache manager that
determines which file blocks to store in file cache 260. The cache manager may
use a least recently used (LRU) cache replacement scheme. Accordingly, file
cache 260 may include those file blocks that have recently been accessed by a
client device.
[0045] Cache adapter 270 may include hardware and/or executable
instructions encoded on a machine-readable storage medium configured to

adjust the size of file cache 260. Cache adapter 270 may measure the usage of

WO 2013/106400 PCT/US2013/020783

12

the cloud service 130 including the number and frequency of file access requests.
Cache adapter 270 may attempt to minimize the cost of cloud service 130 by
adjusting the size of file cache 260. Cache adapter 270 may consider the storage
costs, processing costs, and transmission costs of cloud service 130. A larger
cache may increase storage costs while reducing transmission and processing
costs. A smaller cache may increase transmission and processing costs while
reducing storage costs. An exemplary method of adjusting the size of file cache
260 will be described below regarding FIG. 7.
[0046] FIG. 3 illustrates an exemplary data structure 300 for storing a file
block. Data structure 300 may include a file block 310 that may be stored in a
cache such as file cache 260 and chunks 320a-f that may be stored in chunk
storage 240 of data centers 135a-f. Data structure 300 may illustrate how an
erasure code may be used to provide resilient distributed storage of a file block
in a cloud environment. The exemplary data structure 300 shown may be used
to store and recover a file block even if two or more of the data centers are
unavailable. It should be recognized that data structure 300 may be a
simplification of an erasure code. Known erasure codes may be used to provide
more efficient storage, more resiliency, and/or less latency.
[0047] File block 310 may be divided into a plurality of segments: A, B, C, D,
and E. Chunks 320a-f may each include two of the segments. For example,
chunks 320a-f may include the segment combinations {A,B}, {C,D}, {E,A}, iB,C},

{D,E}, and {B,D), respectively. Each of the chunks 320a-f may be stored at a

WO 2013/106400 PCT/US2013/020783

13

separate data center 135a-f. File block 310 may be regenerated from any four of
the chunks 320a-f. Accordingly, file block 310 may be regenerated even if two of
the chunks are unavailable. In some cases, file block 310 may be regenerated
from only three chunks. Chunks 320a-f may require a total of twelve segments
to store. In comparison, file block 310 could be stored on three data centers 135
providing resiliency against failure at two data centers, but three copies of file
block 310 would require fifteen segments to store.

[0048] FIG. 4 illustrates a flowchart showing an exemplary method 400 of
storing a file block. Method 400 may be performed by the various components of
a data center 135. Method 400 may begin at step 410 and proceed to step 420.
{0049} In step 420, data center 135 may receive a request to store a file block
from a client device 110. Data center 135 may determine whether it is the
primary data center for the client device. If data center 135 is not the primary
data center, data center 135 may forward the request to the primary data
center. Alternatively, data center 135 may process the request as a secondary
data center. Data center 135 may also process the request if the primary data
center 18 unavailable. The method may then proceed to step 430.

[0050] In step 430, data center 135 may store the received file block in file
cache 260. If the file cache 260 is full, data center 135 may replace a file block
that is stored in the cache with the received file block. Step 430 may be
optional. In various alternative embodiments, data center 135 may not

immediately store a received file block in the file cache 260. If data center 135

WO 2013/106400 PCT/US2013/020783

14

is a secondary data center, data center 135 may skip step 430. The method may
then proceed to step 440.

[0051] Instep 440, data center 135 may generate chunks from the received file
block. Data center 135 may use an erasure code to generate the chunks. In
various exemplary embodiments, data center 135 may generate one chunk for
each available data center including data center 135. In various alternative
embodiments, any number of chunks may be generated. In step 450, data center
135 may distribute the chunks to other data centers for storage. In various
exemplary embodiments, one chunk may be distributed to each data center
including the primary data center 135. In various alternative embodiments, a
plurality of chunks may be distributed to a data center and duplicate chunks
may be distributed to multiple data centers. At least a first chunk and a second
chunk of the plurality of chunks may be distributed a different one of the
plurality of data centers. Once the chunks have been distributed, the file block
may be resiliently stored in cloud service 130 and the method may proceed to
step 460. In step 460, method 400 may end.

[0052] FIG. 5 illustrates a flowchart showing an exemplary method 500 for
reading a file block stored in a cloud service. Method 500 may be performed by
the various components of a data center 135. Method 500 may begin at step 510
and proceed to step 520.

[0053] In step 520, data center 135 may receive a request to read a file block.

Data center 135 may determine whether it is the primary data center for the

WO 2013/106400 PCT/US2013/020783

15

client device. If data center 135 is not the primary data center, data center 135
may forward the request to the primary data center. Alternatively, data center
135 may process the request as a secondary data center. Data center 135 may
also process the request if the primary data center is unavailable. The method
may then proceed to step 530.

[0054] Instep 530, data center 135 may determine whether the requested file
block is stored in the file cache 260. Data center 135 may determine whether a
requested range of bytes corresponding to a file block is stored in the file cache
260. If data center 135 is not the primary data center, the requested file block
may not be stored in the file cache 260. Even if data center 135 is the primary
data center, the requested file block may not be stored in the file cache 260
because it has not been accessed recently and has been replaced. If the
requested file block is stored in the file cache 260, the method may proceed
directly to step 580. If the requested file block is not stored in the file cache 260,
the method may proceed to step 540.

[0055] In step 540, data center 135 may request chunks from the other data
centers. In step 550, data center 135 may receive the requested chunks from one
or more of the other data centers. Data center 135 may not receive a requested
chunk from one or more of the other data centers. For example, the other data
center may be unavailable or may have failed to retrieve the requested chunk.
In any case, method 500 may proceed to step 560 when data center 135 receives

a subset of the chunks.

WO 2013/106400 PCT/US2013/020783

16

[0056] In step 560, data center 135 may regenerate the requested file block
from the received subset of chunks. Data center 135 may regenerate the file
block according to the erasure code used to generate the chunks. In various
exemplary embodiments using a systematic erasure code, the file block may be
regenerated from the unencoded chunks without decoding the coded chunks.
Receiving chunks and regenerating the file block based on the chunks may
consume processing power of data center 135. The time spent regenerating the
requested file block may also add latency to fulfilling the request of client device
110. Once the complete file block has been reconstructed, the method 500 may
proceed to step 570.

[0057] Instep 570, data center 135 may store the complete file block in the file
cache 260. If the file cache 260 is full, data center 135 may replace one or more
existing file blocks in the file cache 260 with the regenerated file. Having the
file block stored in file cache 260 may allow data center 135 to more quickly
fulfill a subsequent request involving the file block. If data center 135 is a
secondary data center for the data file, data center 135 may forward the
complete file block to the primary data center for storage in the file cache at the
primary data center. The method 500 may then proceed to step 580.

[0058] In step 580, data center 135 may send the file block to the requesting
client device 110. The client device 110 may receive the requested file block.

The file block may remain resiliently stored in cloud service 130 with a cached

WO 2013/106400 PCT/US2013/020783

17
copy stored in the file cache at the primary data center. The method 500 may
then proceed to step 590, where the method 500 ends.
[0059] FIG. 6 illustrates a flowchart showing an exemplary method 600 for
writing to a file block stored in a cloud service 130. Method 600 may be
performed by the various components of a data center 135. Method 600 may
begin at step 605 and proceed to step 610.
[0060] Instep 610, data center 135 may receive a request from a client device
110 to write to a file block stored in cloud service 130. The write request may
include a modification of part of the file block while leaving other parts of the
file unchanged. Data center 135 may determine whether it is the primary data
center for the client device 110 or the file. If data center 135 is not the primary
data center, data center 135 may forward the request to the primary data
center. Alternatively, data center 135 may process the request as a secondary
data center. Data center 135 may also process the request if the primary data
center is unavailable. Data center 135 may use journaling to prevent corruption
of files during writing. The write request may be journaled to recover from
potential write errors. The method 600 may then proceed to step 615.
[0061] In step 615, data center 135 may determine whether the file block is
stored in file cache 260. The file block may be stored in the file cache 260 if it
was recently accessed to read. It may be likely that the file block for a write
request will be stored in the file cache 260 because a client device 110 usually

reads the file block before modifying it and then sending a write request. If,

WO 2013/106400 PCT/US2013/020783

18

however, many files are being accessed, a file block may be removed from the file
cache 260 before a write request arrives. If the file block is currently stored in
file cache 260, the method 600 may proceed to step 640. If the file block is not
currently stored in the file cache 260, the method 600 may proceed to step 620.
[0062] In step 620, the data center 135 may request chunks from the other
data centers. If the write request only affects a subset of the chunks, data
center 135 may request only the affected chunks. The method 600 may then
proceed to step 625, where data center 135 may receive the requested chunks.
Data center 135 may not receive a chunk from another data center if, for
example, the other data center is unavailable due to a power outage. Once a
subset of chunks has been received, the method 600 may proceed to step 630.
[0063] Instep 630, data center 135 may regenerate the requested file from the
received subset of chunks. Data center 135 may regenerate the file block
according to the erasure code used to generate the chunks. Receiving chunks
and regenerating the file block based on the chunks may consume processing
power of data center 135. The time spent regenerating the requested file block
may also add latency to fulfilling the request of client device 110. Once the
complete file block has been reconstructed, the method 600 may proceed to step
635.

[0064] Instep 635, data center 135 may store the complete file block in the file
cache 260. If the file cache is full, data center 135 may replace one or more

existing file blocks in the file cache 260 with the regenerated file block. Having

WO 2013/106400 PCT/US2013/020783

19

the file block stored in file cache 260 may allow data center 135 to more quickly
fulfill a subsequent request involving the file. If data center 135 is a secondary
data center for the data file, data center 135 may forward the complete file block
to the primary data center for storage in the file cache at the primary data
center. The method 600 may then proceed to step 640.

[0065] Instep 640, data center 135 may update the stored file block by writing
to the file block as required by the write request. Data center 135 may open the
file when writing to the file block. The write request may modify or replace any
part of the file block or the entire file. Data center 135 may modify the copy of
the file block stored in the file cache 260. Once data center 135 has processed
the write request and updated the file block, the method 600 may proceed to
step 645, where data center 135 may close the file. Closing the file may prevent
further modification of the file. Data center 135 may also determine properties
such as file size, modification date, authors, etc. when closing the file. The
method 600 may then proceed to step 650.

[0066] In step 650, data center 135 may generate chunks from the updated file
block according to the erasure code. In various exemplary embodiments, chunks
may be generated based on only the modified portions of the file block. Some
chunks may be unchanged by the modification. In various alternative
embodiments, step 650 may be delayed until the file block is about to be

replaced in the file cache 260. The method 600 may then proceed to step 655.

WO 2013/106400 PCT/US2013/020783

20

[0067] In step 655, data center 135 may distribute modified chunks to the
other data centers. Data center 135 may distribute only the chunks that have
been modified. Data center 135 may save time and communication costs if the
chunk stored at another data center has not been modified. Once the modified
chunks have been distributed, the modified file block may be resiliently stored in
the cloud service 130, and the method 600 may proceed to step 660, where the
method 600 ends.

[0068] FIG. 7 illustrates a flowchart showing an exemplary method 700 of
adjusting the size of a cache. The method 700 may be used by a data center 135
or other computer such as a client device 110 to minimize the cost of storing
multiple files in cloud service 130. The method 700 may attempt to minimize
the cost of cloud service 130 by adjusting the cache size to efficiently store files
and process requests. The method 700 may measure an actual cost and a
hypothetical cost then adjust the cache size toward the less expensive direction.
The method 700 may be performed repeatedly to continually adjust the cache
size. The method 700 may begin at step 705 and proceed to step 710.

[0069] Instep 710, the data center 135 or client device 110 may measure the
actual cost of cloud service 130 during a time interval. The cost of the cloud
service 130 may be measured by various functions. The cost function may
depend on various parameters such as, for example, data storage amount, cache
size, number of requests, inter data center transfer amount, and data center

processing amount. For example, if method 700 is performed by a cloud service

WO 2013/106400 PCT/US2013/020783

21
customer, the cost may be measured by an amount charged by the cloud service
provider. As another example, if method 700 is performed by a cloud service
provider, the provider may assess a value for each system resource used by cloud
service 130. In various exemplary embodiments, the cache size may be weighted
equally with the data storage amount. The cost may be determined on a per
customer, per data center, and/or service wide basis. Any time interval may be
used. A time interval equal to a measured billing period may be suitable. For
example, a time interval of one day may be appropriate if a customer is charged
for its daily data storage amount. The method 700 may then proceed to step
715.

[0070] In step 715, the data center 135 or client device 110 may determine a
hypothetical cost of cloud service 130. The hypothetical cost may be based on a
different cache size. In various exemplary embodiments, the hypothetical cost
may be based on the previous cache size. The function used to measure the
hypothetical cost may be identical to the function used to measure the actual
cost. Accordingly, step 715 may be similar to step 710. Steps 710 and 715 may
occur 1n any order. The method may then proceed to step 720.

[0071] In step 720, the data center 135 or client device 110 may determine
whether the actual cost measured in step 710 i1s greater than the hypothetical
cost determined in step 715. If the actual cost is greater than the hypothetical
cost, the method may proceed to step 730. If the hypothetical cost is greater

than the actual cost, the method may proceed to step 725.

WO 2013/106400 PCT/US2013/020783

22
[0072] In step 725, the data center 135 or client device 110 may determine
whether the current cache size is greater than the old cache size used to
determine the hypothetical cost. If the current cache size is greater, the method
700 may proceed to step 735. If the old cache size is greater, the method may
proceed to step 740.
[0073] In step 730, the data center 135 or client device 110 may determine
whether the current cache size is greater than the old cache size used to
determine the hypothetical cost. If the current cache size is greater, the method
700 may proceed to step 745. If the old cache size is greater, the method 700
may proceed to step 735. In other words, step 730 may be similar to step 725,
but with opposite results.
[0074] In step 735, data center 135 may increase the cache size. Data center
135 may increase the cache size for a particular customer or the cache size for
all customers. Data center 135 may also indicate that other data centers should
increase the cache size. The size of the increase may vary. In various
exemplary embodiments, the cache size may increase by one gigabyte. The
method 700 may then proceed to step 750, where the method 700 ends.
[0075] Steps 740 and 745 may be identical. In steps 740 and/or 745, data
center 135 may decrease the cache size. Data center 135 may decrease the cache
size for a particular customer or the cache size for all customers. Data center
135 may also indicate that other data centers should decrease the cache size.

The size of the decrease may vary. In various exemplary embodiments, the

WO 2013/106400 PCT/US2013/020783

23
cache size may decrease by one gigabyte. The method 700 may then proceed to
step 750, where the method 700 ends.
[0076] According to the foregoing, various exemplary embodiments provide
for a method and file system for cloud computing. In particular, by
distributing file chunks and providing a file cache at a data center the goals
of high resiliency and low latency can be met at low cost.
[0077] It should be apparent from the foregoing description that various
exemplary embodiments of the invention may be implemented in hardware
and/or firmware. Furthermore, various exemplary embodiments may be
implemented as instructions stored on a machine-readable storage medium,
which may be read and executed by at least one processor to perform the
operations described in detail herein. A machine-readable storage medium may
include any mechanism for storing information in a form readable by a machine,
such as a personal or laptop computer, a server, or other computing device.
Thus, a machine-readable storage medium may include read-only memory
(ROM), random-access memory (RAM), magnetic disk storage media, optical
storage media, flash-memory devices, and similar storage media.
[0078] It should be appreciated by those skilled in the art that any block
diagrams herein represent conceptual views of illustrative circuitry embodying
the principals of the invention. Similarly, it will be appreciated that any flow
charts, flow diagrams, state transition diagrams, pseudo code, and the like

represent various processes which may be substantially represented in machine

WO 2013/106400 PCT/US2013/020783

24
readable media and so executed by a computer or processor, whether or not such
computer or processor 1s explicitly shown.

[0079] Although the various exemplary embodiments have been described in
detail with particular reference to certain exemplary aspects thereof, it should
be understood that the invention is capable of other embodiments and its details
are capable of modifications in various obvious respects. Asis readily apparent
to those skilled in the art, variations and modifications can be affected while
remaining within the spirit and scope of the invention. Accordingly, the
foregoing disclosure, description, and figures are for illustrative purposes only

and do not in any way limit the invention, which is defined only by the claims.

WO 2013/106400 PCT/US2013/020783

25
Cramms
What is claimed is:
1. A method of storing a file in a cloud system (130) including a plurality of

data centers (135a-e), the method comprising:

receiving, at a first data center, a file block from a client (420);

generating a plurality of chunks from the file block, wherein each chunk
is smaller than the file and the file block may be reconstructed from a subset
of the chunks (440);

distributing the plurality of chunks to at least two of the plurality of data
centers; wherein at least a first chunk and a second chunk of the plurality of
chunks are distributed to different ones of the plurality of data centers (450);
and

storing the file block in a cache at the first data center (430).

2. The method of claim 1, further comprising:
receiving a request, from a client, to read the file block (520);
determining whether the file block is stored in the cache (530);
if the file block is stored in the cache, sending the file block stored in the

cache to the client (580).

3. The method of claim 2, further comprising:

if the file block is not stored in the cache:

WO 2013/106400 PCT/US2013/020783

26
requesting chunks from the plurality of data centers (540);
receiving at least a subset of the plurality of chunks from the plurality of
data centers (550);
reconstructing the file block from the subset of chunks (560);
storing the file block in a cache at the first data center (570); and

sending the reconstructed file block to the client (580).

4. The method of any of claims 1-3, wherein the step of generating a
plurality of chunks from the file comprises using an erasure code to generate

the plurality of chunks.

5. The method of claim 4, wherein the erasure code is at least one of Reed-

Solomon codes, MDS codes, and LDPC codes.

6. The method of any of claims 1-5, further comprising:
receiving a request to write to the file block (610);
writing to the file block in the cache (640);
closing the file (645);
generating a second plurality of chunks from the file block (650); and
distributing each chunk of the second plurality of chunks to a different

one of the plurality of data centers (655).

WO 2013/106400 PCT/US2013/020783

27
The method of claim 6, wherein the second plurality of chunks includes

only modified chunks.

8. The method of any of claims 1-7, further comprising:
comparing an actual storage and transfer cost for a current cache size with a
a hypothetical storage and transfer cost for a previous cache size (720); and
adjusting the cache size based on the lower storage and transfer cost (735,

740, 745).

9. The method of any of claims 1-8, wherein the plurality of chunks are
generated according to a systematic erasure code wherein the file block is

divided into a subset of un-encoded chunks and a subset of coded chunks.

10. A cloud system for storing a file, the system comprising:

a plurality of data centers (135a-e) including a primary data center, the
primary data center comprising:

a cache configured to store at least one complete file block (260);

a chunk storage configured to store a chunk for each of a plurality of file
blocks (240);

a file encoder configured to generate a plurality of chunks from the file
block (230), wherein each chunk is smaller than the file and the file block may

be reconstructed from a subset of the chunks; and

WO 2013/106400 PCT/US2013/020783

28
a file decoder configured to reconstruct a complete file block from a subset

of the chunks (250).

11. The cloud system of claim 10, wherein the cache (260) is a hard disk.

12, The cloud system of claim 10 or 11, wherein the primary data center
further comprises a client interface (210) configured to receive complete file

blocks from a client and send complete file blocks to a client.

13. The cloud system of any of claims 10-12, wherein the primary data center
further comprises a cloud interface (220) configured to distribute a chunk of a
plurality of chunks to each of the plurality of data centers and configured to

receive a subset of chunks from the plurality of data centers.

14. The cloud system of any of claims 10-13, wherein the file encoder is

configured to use erasure coding to generate the plurality of chunks.

15. The method of claim 1 or the cloud system of claim 10, wherein the
number of chunks in the subset (320) is at least two less than the number of

the plurality of chunks (310) generated by the file encoder.

WO 2013/106400 PCT/US2013/020783

1/6

7

FIG.

PCT/US2013/020783

WO 2013/106400

2/6

¢ A
aneueu| PnojD
y
0ZZ
191depy ayoe
DY ayoed N /7
mmegm@ ﬂ‘%mo 3l
Japoous a4 18p029p 814
052 092
$
obZ 0s¢
0Lz
§

80BelU] WBHD

N\gol

WO 2013/106400

300

PCT/US2013/020783

310~

320a~

320b~

320¢ -~

m

320d~ ¢
320e -~ E
320f D

FIG. 8

WO 2013/106400

400

410~ START)

4

RECIEVE FILE

4207 a0k

STORE FILE

430~ 5LOCK IN GACHE

|

GENERATE

4401 ohNKs

¥

DISTRIBUTE

4301 ouNKs

A 4

460~ STOP)

FIG. 4

4/6

o
e
[a]

|

510~ START)

)
RECEIVE READ
REQUEST

520~

PCT/US2013/020783

540
530)
FILE BLOCK REQUEST
IN CACHE? CHUNKS
VES |
RECEIVE
330 CHUNKS
Y
RECONSTRUCT
960 e EBLOCK
l
STORE FILE
5707 Bl OCK IN CACHE
2
SENDFILE |
580 - BLOCK -

Y

590~ STOP)

FIG. 5

WO 2013/106400

(2]
o

605~ START)

Y

610

RECEIVE WRITE
REQUEST

615

FILE BLOCK
IN CACHE?

5/6

REQUEST

PCT/US2013/020783

cHunks | 620
'
o o
|
e i
|
STOREFLE | o

BLOCK IN CACHE

YES
¥
UPDATE FILE
640 7 slock
4
645- CLOSE FILE
v
GENERATE
630~ chHUNKsS
L]
DISTRIBUTE
655~ MODIFIED
CHUNKS
¥
660 STOP

&

FIG.

WO 2013/106400

6/6

709

¥

705~ START)

3

MEASURE
ACTUAL COST

710~

k4
MEASURE
HYPOTHETICAL
STORAGE AND
TRANSFER COSY

715~

720~

ACTUAL COST »
HYPOTHETICAL
COST?

CURRENT
CACHE SIZE »

v

¥

DECREASE INCREASE
cacHE size [740 7357 cacke siE
750
¥
» sToP)«

CURRENT

CACHE SIZE >

OLD CACHE
SIZE?

745~

PCT/US2013/020783

\d

DECREASE
CACHE SIZE

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/020783

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L29/08 GO6F17/30
ADD.

According to International Patent Classification (IPC) or to bath national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HOAL GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (hame of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 2011/078277 Al (BAPTIST ANDREW [US])
31 March 2011 (2011-03-31)

paragraphs [0033] - [0034]

paragraphs [0044] - [0116]

figures 1,3,4,8A

1-15

X XIAOSONG MA ET AL: "Improving Data
Availability for Better Access
Performance: A Study on Caching Scientific
Data on Distributed Desktop Workstations",
JOURNAL OF GRID COMPUTING, KLUWER ACADEMIC
PUBLISHERS, DO,

vol. 7, no. 4, 16 July 2009 (2009-07-16),

1-15

pages 419-438, XP019748682,
ISSN: 1572-9184, DOI:
10.1007/510723-009-9122-7
Sections 1-4

figure 1

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the intemational filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 April 2013

Date of mailing of the intemational search report

25/04/2013

Name and mailing address of the ISA/

European Patent Cffice, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Veloso Gonzalez, J

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/020783

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 7 472 334 B1 (SCOTT THOMAS P [US] ET 1-15

AL) 30 December 2008 (2008-12-30)

column 1, Tline 21 - column 4, Tine 31

column 5, line 24 - column 9, line 26
X EP 1 633 112 A1 (MICROSOFT CORP [US]) 1-15

8 March 2006 (2006-03-08)
paragraphs [0012] - [0018]
paragraphs [0042] - [0101]

Form PCT/ISA/210 (continuation of second sheet) (April 2008)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/020783
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011078277 Al 31-03-2011 US 2011078277 Al 31-03-2011
US 2011078343 Al 31-03-2011
US 2011078371 Al 31-03-2011
US 2011078372 Al 31-03-2011
US 2012265937 Al 18-10-2012
US 7472334 Bl 30-12-2008 NONE
EP 1633112 Al 08-03-2006 AT 408953 T 15-10-2008
EP 1633112 Al 08-03-2006
JP 5058468 B2 24-10-2012
JP 2006074781 A 16-03-2006
KR 20060050266 A 19-05-2006
US 2006069800 Al 30-03-2006

Form PCT/ISA/210 {patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report
	Page 37 - wo-search-report
	Page 38 - wo-search-report

