61563 Al

~

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
23 August 2001 (23.08.2001) PCT WO 01/61563 Al
(51) International Patent Classification’: GO6F 17/30 (74) Agents: BURTON, Carol, W. et al.; Hogan & Hartson

LLP, Suite 1500, 1200 17th Street, Denver, CO 80202 (US).
(21) International Application Number: PCT/US01/04763
(81) Designated States (national): AE, AG, AL, AM, AT, AU,

(22) International Filing Date: 14 February 2001 (14.02.2001) AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
(25) Filing Language: English HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,

LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

26) Publication L : English

(26) Publication Language nghs TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(30) Priority Data: . .
60/183.762 18 February 2000 (18.02.2000) US (84) Designated States (regional): ARIPO patent (GH, GM,
60/245,920 6 November 2000 (06.11.2000) US KE, LS, MW, MZ, 8D, SL, SZ, TZ, UG, ZW), Burasian
09/777,150 5 February 2001 (05.02.2001) US patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

(71) Applicant (for all designated States except US): UNDOO, CG, CL CM. GA, GN, GW, ML, MR, NE, SN, TD, TG).

INC. [US/US]; 1 Technology Drive, Building A, Irvine,
CA 92618 (US).
Published:
(72) Inventors; and — with international search report

(75) Inventors/Applicants (for US only): MOULTON, Gre-
gory, Hagan [US/US]; 6 Bayberry Way, Irvine, CA 92612 For two-letter codes and other abbreviations, refer to the "Guid-
(US). WHITEHILL, Stephen, B. [US/US]; 12880 Craw- ance Notes on Codes and Abbreviations" appearing at the begin-
ford Drive, Tustin, CA 92782 (US). ning of each regular issue of the PCT Gazette.

(54) Title: HASH FILE SYSTEM AND METHOD FOR USE IN A COMMONALITY FACTORING SYSTEM

BREAKUP METHOD FOR FILE
OR DATA SEQUENCE INTO
HASHED PIECES

DIGITAL
SEQUENCE
DATA

\ DIGITAL SEQUENCE IS DMDI‘\EIE I‘NTO

302

304

PIECES BASED ON COMMONALITY
WITH OTHER PIECES IN THE SYSTEM
OR LIKELIHOOD OF PIECES BEING IN

COMMON IN FUTURE

306

/ PEcEA [/ PiEcE s /PlECE M3 [pECEM [PECERS [/
B

EACH PIECE OF DIGITAL SEQUENCE IS
PASSED THROUGH HASH FUNCTION

310 70 ASSIGN PROBABALISTICALLY

\,‘ UNIQUE NUMBER TO EACH PIECE

1
ATHASH //AZHASH,/ R3HASH / /ALHASH J/ ASHASH /]
/eecEnl //pcenof) PiEcE ns /piEcenaf) PECEAs [

—~ \
306

300

(57) Abstract: A system for a computer file system that is based and organized upon hashes and/or strings of digits of certain,
different or changing lengths (304) and which is capable of eliminating or screening redundant copies of aggregate blocks of data
(or parts of data blocks) from the system. The hash file system of the present invention utilizes hash values (310) for computer
files or file pieces (306) which may be produced by a checksum generating program, engine, or algorithm such as industry standard
MD4, MD5, SHA or SHA-1 algorithms. Alternatively, the hash values may be generated (308) by a checksum program, engine,
or algorithm or other means that produces an effectively unique hash value for a block of data of indeterminate size based upon a
mathematical algorithm.

WO 01/61563 PCT/US01/04763

10

15

20

25

30

HASH FILE SYSTEM AND METHOD FOR USE IN A COMMONALITY
FACTORING SYSTEM

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document may contain
material which is subject to copyright protection. The copyright owner
has no objection to the facsimile reproduction by anyone of the patent
document of the patent disclosure as it appears in the United States
Patent and Trademark Office patent file or records, but otherwise,
reserves all copyright rights whatsoever. The following notice applies
to the software and data and described below, inclusive of the drawing

figures where applicable: Copyright © 2000, Undoo Technologies.
BACKGROUND OF THE INVENTION

The present invention relates, in general, to the field of hash file
systems and commonality factoring systems. More particularly, the
present invention relates to a system and method for determining a
correspondence between electronic files in a distributed c‘omputer data

environment and particular applications therefor.

Economic, political, and social power are increasingly managed
by data. Transactions and wealth are represented by data. Political
power is analyzed and modified based on data. Human interactions
and relationships are defined by data exchanges. Hence, the efficient
distribution, storage, and management of data is expected to play an

increasingly vital role in human society.

The quantity of data that must be managed, in the form of
computer programs, databases, files, and the like, increases
exponentially. As computer processing power increases, operating
system and application software becomes larger. Moreover, the desire
to access larger data sets such as multimedia files and large databases
further increases the quantity of data that is managed. This

increasingly large data load must be transported between computing

WO 01/61563 PCT/US01/04763

10

15

20

25

30

devices and stored in an accessible fashion. The exponential growth
rate of data is expected to outpace the improvements in communication
bandwidth and storage capacity, making data management using

conventional methods even more urgent.

Many factors must be balanced and often compromised in
conventional data storage systems. Because the quantity of data is
extremely large, there is continuing pressure to reduce the cost per bit
of storage. Also, data management systems should be scaleable to
contemplate not only current needs, but future needs as well.
Preferably, storage systems are incrementally scaleable so that a user
can purchase only the capacity needed at any particular time. High
reliability and high availability are also considered as data users are
increasingly intolerant of lost, damaged, and unavailable data.
Unfortunately, conventional data management architectures must
compromise these factors so that no one architecture provides a cost-

effective, reliable, high availability, scaleable solution.

Conventional RAID (Redundant Array of Independent Disks)
systems are a way of storing the same data in different places (thus,
redundantly) on multiple storage devices such as hard disks. By
placing data on multiple disks, input/output ("I/O") operations can
overlap in a balanced way, improving performance. Since the use of
multiple disks increases the mean time between failure ("MTBF"),
storing data redundantly also increases fault-tolerance. A RAID system
relies on a hardware or software controller to hide the complexities of
the actual data management so that a RAID system appears to an
operating system as a single logical hard disk. However, RAID
systems are difficult to scale because of physical limitations in the
cabling and controllers. Also, the availability of RAID systems is highly
dependent on the functionality of the controllers themselves so that

when a controller fails, the data stored behind the controlier becomes

WO 01/61563 PCT/US01/04763

10

15

20

25

30

unavailable. Moreover, RAID systems require specialized, rather than

commodity hardware, and so tend to be expensive solutions.

NAS (network-attached storage) refers to hard disk storage that
is set up with its own network address rather than being attached to an
application server. File requests are mapped to the NAS file server.
NAS may provide transparent I/O operations using either hardware or
software based RAID. NAS may also automate mirroring of data to one
or more other NAS devices to further improve fault tolerance. Because
NAS devices can be added to a network, they enable scaling of the
total capacity of the storage available to a network. However, NAS
devices are constrained in RAID applications to the abilities of the
conventional RAID controllers. Also, NAS systems do not enable

mirroring and parity across nodes, and so are a limited solution.

In addition to data storage issues, data transport is rapidly
evolving with improvements in wide area network ("WAN") and
internetworking technology. The Internet, for example, has created a
globally networked environment with almost ubiquitous access.

Despite rapid network infrastructure improvements, the rate of increase
in the quantity of data that requires transport is expected to outpace

improvements in available bandwidth.

Philosophically, the way data is conventionally managed is

- inconsistent with the hardware devices and infrastructures that have

been developed to manipulate and transport data. For example,
computers are characteristically general-purpose machines that are
readily programmed to perform a virtually unlimited variety of functions.
In large part, however, computers are loaded with a fixed, slowly
changing set of data that limit their general-purpose nature to make the
machines special-purpose. Advances in processing speed, peripheral
performance and data storage capacity are most dramatic in
commodity computers. Yet many data storage solutions cannot take

advantage of these advances because they are constrained rather than

WO 01/61563 PCT/US01/04763

10

15

20

25

30

extended by the storage controllers upon which they are based.
Similarly, the Internet was developed as a fault tolerant, multi-path
interconnected network. However, network resources are
conventionally implemented in specific network nodes such that failure
of the node makes the resource unavailable despite the fault-tolerance
6f the network to which the node is connected. Continuing needs exist
for high availability, high reliability, highly scaleable data storage

solutions.

SUMMARY OF THE INVENTION

Disclosed herein is a system and method for a computer file
system that is based and organized upon hashes and/or strings of
digits of certain, different, or changing lengths and which is capable of
eliminating or screening redundant copies of the blocks of data (or
parts of data blocks) from the system. Also disclosed herein is a
system and method for a computer file system wherein hashes may be
produced by a checksum generating program, engine or algorithm such
as industry standard Message Digest 4 ("MD4"), MD5, Secure Hash
Algorithm ("SHA") or SHA-1 algorithms. Further disclosed herein is a
system and method for a computer file system wherein hashes may be
generated by a checksum program, engine, algorithm or other means
that generates a probabilistically unique hash value for a block of data
of indeterminate size based upon a non-linear probablistic
mathematical algorithm or any industry standard technique for -
generating pseudo-random values from an input text of other

data/numeric sequence.

The system and method of the present invention may be utilized,
in a particular application disclosed herein, to automatically factor out
redundancies in data allowing potentially very large quantities of
unfactored storage to be often reduced in size by several orders of
maghnitude. In this regard, the system and method of the present

invention would allow all computers, regardless of their particular

WO 01/61563 PCT/US01/04763

10

15

20

25

30

hardware or software characteristics, to share data simply, efficiently
and securely and to provide a uniquely advantageous means for
effectuating the reading, writing or referencing of data. The system
and method of the present invention is especially efficacious with
respect to networked computers or computer systems but may also be

applied to isolated data storage with comparable results.

The hash file system of the present invention advantageously
solves a number of problems that plague conventional storage
architectures. For example, the system and method of the present
invention eliminates the need for managing a huge collection of
directories and files, together with all the wasted system resources that
inevitably occur with duplicates, and slightly different copies. The
maintenance and storage of duplicate files plagues traditional
corporate and private computer systems and generally requires
painstaking human involvement to "clean up disk space”. The hash file
system of the present invention effectively eliminates this problem by
eliminating the disk space used for copies and nearly entirely
eliminating the disk space used in partial copies. For example, in a
traditional computer system copying a gigabyte directory structure to a
new location would require another gigabyte of storage. In particular
applications, the hash file system of the present invention reduces the
disk space used in this operation by up to a hundred thousand times or

more.

Currently, some file systems have mechanisms to eliminate
copies, but none can accomplish this operation in a short amount of
time which, in technical terms, means the system factors copies in O(l)
("on the order of constant time") time, even as the system scales. This
means a unit of time that is constant as opposed to other systems that
would require O(N**2), O(N) or O(log(N)) time, meaning time is related
to the amount of storage being factored. Factoring storage in

non-constant time may be marginally satisfactory for systems where

WO 01/61563 PCT/US01/04763

10

15

20

25

30

the amount of storage is small, but as a system grows to large sizes,
even the most efficient non-constant factoring systems become
untenable. The hash file system of the present invention is designed to
factor storage on a scale never previously attempted and in a first
implementation, is capable of factoring 2 million petabytes of storage,
with the ability to expand to much larger sizes. Existing file systems

are incapable of managing data on such scales.

Moreover, the hash file system of the present invention may be
utilized to provide inexpensive, global computer system data protection
and backup. lts factoring function operates very efficiently on typical
backup data sets because computer file systems rarely change more
than a few percent of their overall storage between each backup
operation. Further, the hash file system of the present invention can
serve as the basis for an efficient messaging (e-mail) system. E-mail
systems are fundamentally data copying mechanisms wherein an
author writes a message and sends it to a list of recipients. An e-mail
system implements this "sending" operation effectively by copying the
data from one blace to another. The author generally keeps copies of
the messages he sends and the recipients each keep their own copies.
These copies are often, in turn, attached in replies that are also kept
(i.e. copies of copies). The commonality factoring feature of the
present invention can eliminate this gross inefficiency while
transparently allowing e-mail users to retain this familiar copy-oriented

paradigm.

Because, as previously noted, most data in computer systems
rarely change, the hash file system of the present invention allows for
the reconstruction of complete snapshots of entire systems which can
be kept, for example, for every hour of every day they exist or even
continuously, with snapshots taken at even minute (or less) intervals
depending on the system needs. Further, since conventional computer

systems often provide limited versioning of files (i.e'. Digital Equipment

WO 01/61563 PCT/US01/04763

10

15

20

25

30

Corporation's VAX® VMS® file system), the hash file system of the
present invention also provides significant advantages in this regard.
Versioning in conventional systems presents both good and bad
aspects. In the former instance, it helps prevent accidents, but, in the
latter, it requires regular purging to reduce the disk space it consumes.
The hash file system of the present invention provides versioning of
files with little overhead through the factoring of identical copies or
edited copies with little extra space. For example, saving one hundred
revisions of a typical document typically requires about one hundred
times the space of the original file. Using the hash file system
disclosed herein, those revisions might require only three times the
space of the original (depending on the document's size, the degree

and type of editing, and external factors).

Still other potential applications of the hash file system of the
present invention include web-serving. In this regard, the hash file
system can be used to efficiently distribute web content because the
method of factoring commonality (hashing) also produces uniform
distribution over all hash file system servers. This even distribution
permits a large array of servers to function as a gigantic web server
farm with an evenly distributed load. In other applications, the hash file
system of the present invention can be used as a network accelerator
inasmuch as it can be used to reduce network traffic by sending
proxies (hashes) for data instead of the data itself. A large percentage
of current network traffic is redundant data moving between locations.
Sending proxies for the data would allow effective local caching
mechanisms to operate, possibly reducing the traffic on the Internet by

several orders of magnitude.

As particularly disclosed herein, the hash file system and method
of the present invention may be implemented using 160 bit hashsums
as universal pointers. This differs from conventional file systems which

use pointers assigned from a central authority (i.e. in Unix a 32 bit

WO 01/61563 PCT/US01/04763

10

15

20

25

30

"inode" is assigned by the kernel's file systems in a lock-step operation
to assure uniqueness). In the hash file system of the present
invention, these 160 bit hashsums are assigned without a central
authority (i.e. without locking, without synchronization) by a hashing

algorithm.

Known hashing algorithms produce probabilistically unique
numbers that uniformly span a range of values. In the case of the hash
function SHA-1, that range is between 0 and 10e*®. This hashing
operation is done by examining only the contents of the data being
stored and, therefore, can be done in complete isolation,
asynchronously, and without interlocking.

Hashing is an operation that can be verified by any component of
the system, eliminating the need for trusted operations across those
components. The hash file system and method of the present
invention disclosed herein is, therefore, functional to eliminate the
critical bottleneck of conventional large scale distributed file systems,
that is, a trusted encompassing central authority. It permits the
construction of a large scale distributed file system with no limits on
simultaneous read/write operations, that can operate without risk of
incoherence and without the limitation of certain conventional

bottlenecks.

BRIEF DESCRIPTION OF THE DRAWINGS

The aforementioned and other features and objects of the
present invention and the manner of attaining them will become more
apparent, and the invention itself will be best understood by reference
to the following description of a preferred embodiment taken in

conjunction with the accompanying drawings, wherein:

Fig. 1 is a high level illustration of a representative networked
computer environment in which the system and method of the present

invention may be implemented;

WO 01/61563 PCT/US01/04763

10

15

20

25

30

Fig. 2 is a more detailed conceptual representation of a possible
operating environment for utilization of the system and method of the
present invention wherein files maintained on any number of computers
or data centers may be stored in a decentralized computer system
through an Internet connection to a number of Redundant Arrays of
Independent Nodes ("RAIN") racks located, for example, at
geographically diverse locations;

Fig. 3 is a logic flow chart depicting the steps in the entry of a
computer file into the hash file system of the present invention wherein
the hash value for the file is checked against hash values for files

previously maintained in a set, or database;

Fig. 4 is a further logic flow chart depicting the steps in the
breakup of a file or other data sequence into hashed pieces resulting in
the production of a number of data pieces as well as corresponding

probabilistically unique hash values for each piece;

Fig. 5 is another logic flow chart depicting the comparison of the
hash values for each piece of a file to existing hash values in the set
(or database), the production of records showing the equivalence of a
single hash value for all file pieces with the hash values of the various
pieces and whereupon new data pieces and corresponding new hash

values are added to the set;

Fig. 6 is yet another logic flow chart illustrating the steps in the
comparison of file hash or directory list hash values to existing
directory list hash values and the addition of new file or directory list

hash values to the set directory list;

Fig. 7 is a comparison of the pieces of a representative computer
file with their corresponding hash values both before and after editing

of a particular piece of the exemplary file;

Fig. 8 is a conceptual representation of the fact that composite
data which may be derived by means of the system and method of the

WO 01/61563 PCT/US01/04763

10

15

20

25

30

present invention is effectively the same as the data represented
explicitly but may instead be created by a "recipe" such as the
concatenation of data represented by its corresponding hashes or the

result of a function using the data represented by the hashes;

Fig. 9 is another conceptual representation of how the hash file
system and method of the present invention my be utilized to organize
data to optimize the reutilization of redundant sequences through the
use of hash values as pointers to the data they represent and wherein
data may be represented either as explicit byte sequences (atomic
data) or as groups of sequences (composites);

Fig. 10 is a simplified diagram illustrative of a hash file system

address translation function for an exemplary 160 bit hash value;

Fig. 11 is a simplified exemplary illustration of an index stripe
splitting function for use with the system and method of the present

invention;

Fig. 12 is a simplified illustration of the overall functionality of the
system and method of the present invention for use in the backup of
data for a representative home computer having a number of program
and document files on Day 1 and wherein one of the document files is
edited on Day 2 together with the addition of a third document file; and

Fig. 13 illustrates the comparison of various pieces of a particular
document file marked by a number of "sticky bytes" both before and
following editing wherein one of the pieces is thereby changed while

other pieces remain the same.

DESCRIPTION OF A REPRESENTATIVE EMBODIMENT

In a particular implementation of the hash file system and
method of the present invention as disclosed herein, its application is
directed toward a high availability, high reliability data storage system
that leverages rapid advances in commodity computing devices and the

robust nature of internetwork technology such as the Internet.

10

WO 01/61563 PCT/US01/04763

10

15

20

25

30

Particularly disclosed herein is a hash file system that manages the
correspondence of one or more block(s) of data (including but not
limited to files, directories, drive images, software applications,
digitized voice, and rich media content) together with one or more
symbol(s) for that block of data, wherein the symbol may be a number,
hash, checksum, binary sequence, or other identifier that is derived
from the block of data itself and is statistically, probabilistically, or
otherwise effectively unique to that block of data. The system itself
works on any computer system including, without limitation: personal
computers; supercomputers; distributed or non-distributed networks;
storage area networks ("SAN") using IDE, SCSI or other disk buses;
network attached storage ("NAS") or other systems capable of storing
and/or processing data.

In a particular implementation of the hash file system disclosed
herein, the symbol(s) may be derived using one or more hash or
checksum generating engines, programs, or algorithms, including but
not limited to MD4, MD5, SHA, SHA-1, or their derivatives. Further, the
symbol(s) may comprise parts of variable or invariable length symbols
derived using a hash or checksum generating engine, program, or
algorithm, including but not limited to MD4, MD5, SHA, SHA-1, or other
methods of generating probabilistically unique identifiers based on data
content. In a particular implementation disclosed herein, file seeks, or
lookups for retrieving data or checking on the existence/availability of
data, may be accelerated by looking at all or a smaller portion of the
symbol, with the symbol portion indicating or otherwise providing the
routing information for finding, retrieving, or checking on the

existence/availability of the data.

Further disclosed herein is a system and method for a hash file
system wherein the symbols allow for the identification of redundant
copies within the system and/or allow for the identification of copies

within the system redundant with data presented to the system for filing

11

WO 01/61563 PCT/US01/04763

10

15

20

25

30

and storage. The symbols allow for the elimination of, or allow for the
screening of, redundant copies of the data and/or parts of the data in
the system or in data and/or parts of data presented to the system,
without loss of data integrity and can provide for the even distribution
of data over available storage for the system. The system and method
of the present invention as disclosed herein requires no central
operating point and balances processing and/or input/output ("1/0")
load across all computers, supercomputers, or other devices capable of
storing and/or processing data attached to the system. The screening |
of redundant copies of the data and/or parts of the data provided
herein allows for the creation, repetitive creation, or retention of
intelligent boundaries for screening other data in the system, future

data presented to the system, or future data stored by the system.

The present invention is illustrated and described in terms of a
distributed computing environment such as an enterprise computing
system using public communication channels such as the Internet.
However, an important feature of the present invention is that it is
readily scaled upwardly and downwardly to meet the needs of a
particular application. Accordingly, unless specified to the contrary the
present invention is applicable to significantly larger, more complex
network environments as well as small network environments such as

conventional LAN systems.

With reference now to Fig. 1, the present invention may be
utilized in conjunction with a novel data storage system on a network
10. In this figure, an exemplary internetwork environment 10 may
include the Internet which comprises a global internetwork formed by
logical and physical connection between multiple wide area networks
("WANSs") 14 and local area networks ("LANs") 16. An Internet
backbone 12 represents the main lines and routers that carry the bulk
of the data traffic. The backbone 12 is formed by the largest networks
in the system that are operated by major Internet service providers

12

WO 01/61563 PCT/US01/04763

10

15

20

25

30

("ISPs") such as GTE, MCI, Sprint, UUNet, and America Online, for
example. While single connection lines are used to conveniently
illustrate WANs 14 and LANs 16 connections to the Internet backbone
12, it should be understood that in reality, multi-path, routable physical
connections exist between multiple WANs 14 and LANs 16. This
makes internetwork 10 robust when faced with single or multiple failure

points.

[t is important to distinguish network connections from internal
data pathways implemented between peripheral devices within a
computer. A "network" comprises a system of general purpose, usually
switched physical connections that enable logical connections between
processes operating on nodes 18. The physical connections
implemented by a network are typically independent of the logical
connections that are established between processes using the network.
In this manner, a heterogeneous set of processes ranging from file
transfer, mail transfer, and the like can use the same physical network.
Conversely, the network can be formed from a heterogeneous set of
physical network technologies that are invisible to the logically
connected processes using the network. Because the logical
connection between processes implemented by a network is
independent of the physical connection, internetworks are readily

scaled to a virtually unlimited number of nodes over long distances.

In contrast, internal data pathways such as a system bus,
peripheral component interconnect ("PCI") bus, Intelligent Drive
Electronics ("IDE") bus, small computer system interface ("SCSI") bus,
and the like define physical connections that implement special-
purpose connections within a computer system. These connections
implement physical connections between physical devices as opposed
to logical connections between processes. These physical connections
are characterized by limited distance between components, limited

number of devices that can be coupled to the connection, and

13

WO 01/61563 PCT/US01/04763

10

15

20

25

30

constrained format of devices that can be connected over the

connection.

In a particular implementation of the present invention, storage
devices may be placed at nodes 18. The storage at any node 18 may
comprise a single hard drive, or may comprise a managed storage
system such as a conventional RAID device having multiple hard drives
configured as a single logical volume. Significantly, the present
invention manages redundancy operations across nodes, as opposed
to within nodes, so that the specific configuration of the storage within

any given node is less relevant.

Optionally, one or more of the nodes 18 may implement storage
allocation management ("SAM") processes that manage data storage
across nodes 18 in a distributed, collaborative fashion. SAM processes
preferably operate with little or no centralized control for the system as
whole. SAM processes provide data distribution across nodes 18 and
implement recovery in a fault-tolerant fashion across network nodes 18

in a manner similar to paradigms found in RAID storage subsystems.

However, because SAM processes operate across nodes rather
than within a single node or within a single computer, they allow for
greater fault tolerance and greater levels of storage efficiency than
conventional RAID systems. For example, SAM processes can recover
even where a network node 18, LAN 16, or WAN 14 become
unavailable. Moreover, even when a portion of the Internet backbone
12 becomes unavailable through failure or congestion, the SAM
processes can recover using data distributed on nodes 18 that remain
accessible. In this manner, the present invention leverages the robust
nature of internetworks to provide unprecedented availability, reliability,

fault tolerance and robustness.

With reference additionally now to Fig. 2, a more detailed
conceptual view of an exemplary network computing environment in

which the present invention is implemented is depicted. The

14

WO 01/61563 PCT/US01/04763

10

15

20

25

30

internetwork 10 of the preceding figure (or Internet 118 in this figure)
enables an interconnected network 100 of a heterogeneous set of
computing devices and mechanisms 102 ranging from a supercomputer
or data center 104 to a hand-held or pen-based device 114. While
such devices have disparate data storage needs, they share an ability
to retrieve data via network 100 and operate on that data within their
own resources. Disparate computing devices 102 including mainframe
computers (e.g., VAX station 106 and IBM AS/400 station 116) as well
as personal computer or workstation class devices such as IBM
compatible device 108, Macintosh device 110 and laptop computer 112
are readily interconnected via internetwork 10 and network 100.
Although not illustrated, mobile and other wireless devices may be

coupled to the internetwork 10.

Internet-based network 120 comprises a set of logical
connections, some of which are made through Internet 118, between a
plurality of internal networks 122. Conceptually, Internet-based
network 120 is akin to a WAN 14 (Fig. 1) in that it enables logical
connections between geographically distant nodes. Internet-based
networks 120 may be implemented using the Internet 118 or other
public and private WAN technologies including leased lines, Fibre

Channel, and the like.

Similarly, internal networks 122 are conceptually akin to LANs 16
(Fig. 1) in that they enable logical connections across a more limited
distance than WAN 14. Internal networks 122 may be implemented
using various LAN technologies including Ethernet, Fiber Distributed
Data Interface ("FDDI"), Token Ring, Appletalk, Fibre Channel, and the
like.

Each internal network 122 connects one or more redundant
arrays of independent nodes (RAIN) elements 124 to implement RAIN
nodes 18 (Fig. 1). Each RAIN element 124 comprises a processor,

memory, and one or more mass storage devices such as hard disks.

15

WO 01/61563 PCT/US01/04763

10

15

20

25

30

RAIN elements 124 also include hard disk controllers that may be
conventional IDE or SCSI controllers, or may be managing controllers
such as RAID controllers. RAIN elements 124 may be physically
dispersed or co-located in one or more racks sharing resources such
as cooling and power. Each node 18 (Fig. 1) is independent of other
nodes 18 in that failure or unavailability of one node 18 does not affect
availability of other nodes 18, and data stored on one node 18 may be

reconstructed from data stored on other nodes 18.

In a particular exemplary implementation, the RAIN elements 124
may comprise computers using commodity components such as Intel-
based microprocessors mounted on a motherboard supporting a PCI
bus and 256 megabytes of random access memory ("RAM") housed in
a conventional AT or ATX case. SCSI or IDE controllers may be
implemented on the motherboard and/or by expansion cards connected
to the PCI bus. Where the controllers are implemented only on the
motherboard, a PCI expansion bus may be optionally used. In a
particular implementation, the motherboard may implement two
mastering EIDE channels and a PCI expansion card which is used to
implement two additional mastering EIDE channels so that each RAIN
element 124 includes up to four or more EIDE hard disks. In the
particular implementation, each hard disk may comprise an 80 gigabyte
hard disk for a total storage capacity of 320 gigabytes or more per
RAIN element. The hard disk capacity and configuration within RAIN
elements 124 can be readily increased or decreased to meet the needs
of a particular application. The casing also houses supporting

mechanisms such as power supplies and cooling devices (not shown).

Each RAIN element 124 executes an operating system. In a
particular implementation, the UNIX or UNIX variant operating system
such as Linux may be used. It is contemplated, however, that other
operating systems including DOS, Microsoft Windows, Apple Macintosh
08, 08/2, Microsoft Windows NT and the like may be equivalently

16

WO 01/61563 PCT/US01/04763

10

15

20

25

30

substituted with predictable changes in performance. The operating
system chosen forms a platform for executing application software and
processes, and implements a file system for accessing mass storage
via the hard disk controller(s). Various application software and
processes can be implemented on each RAIN element 124 to provide
network connectivity via a network interface using appropriate network
protocols such as user datagram protocol ("UDP"), transmission control
protocol (TCP), Internet protocol (IP) and the like.

With reference additionally now to Fig. 3, a logic flow chart is
shown depicting the steps in the entry of a computer file into the hash
file system of the present invention and wherein the hash value for the
file is checked against hash values for files previously maintained in a

set, or database.

The process 200 begins by entry of a computer file data 202
(e.g. "File A") into the hash file system ("HFS") of the present invention
upon which a hash function is performed at step 204. The data 206
representing the hash of File A is then compared to the contents of a
set containing hash file values at decision step 208. If the data 206 is
already in the set, then the file's hash value is added to a directory list
at step 210. The contents of the set 212 comprising hash values and
corresponding data is provided in the form of existing hash values 214
for the comparison operation of decision step 208. On the other hand,
if the hash value for File A is not currently in the set, the file is broken
into hashed pieces (as will be more fully described hereinafter) at step
216.

With reference additionally now to Fig. 4, a further logic flow
chart is provided depicting the steps in the process 300 for breakup of
a digital sequence (e.g. a file or other data sequence) into hashed
pieces. This process 300 ultimately results in the production of a
number of data pieces as well as corresponding probabilistically unique

hash values for each piece.

17

WO 01/61563 PCT/US01/04763

10

i5

20

25

30

The file data 302 is divided into pieces based on commonality
with other pieces in the system or the likelihood of pieces being found
to be in common in the future at step 304. The results of the operation
of step 304 upon the file data 302 is, in the representative example
shown, the production of four file pieces 306 denominated A1 through

A5 inclusively.

Each of the file pieces 306 is then operated on at step 308 by
placing it through individual hash function operations to assign a
probabilistically unique number to each of the pieces 306 A1 through
A5. The results of the operation at step 308 is that each of the pieces
306 (A1 through A5) has an associated, probabilistically unique hash
value 310 (shown as A1 Hash through A5 Hash respectively). The file
division process of step 304 is described in greater detail hereinafter in
bonjunction with the unique "sticky byte" operation also disclosed

herein.

With reference additionally now to Fig. 5, another logic flow chart
is shown depicting a comparison process 400 for the hash values 310
of each piece 306 of the file to those of existing hash values 214
maintained in the set 212. Particularly, at step 402, the hash values
310 for each piece 306 of the file are compared to existing hash values
214 and new hash values 408 and corresponding new data pieces 406
are added to the set 212. In this way, hash values 408 not previously
present in the database set 212 are added together with their
associated data pieces 406. The process 400 also results in the
production of records 404 showing the equivalence of a single hash
value for all file pieces with the hash values 310 of the various pieces
306.

With reference additionally now to Fig. 6, yet another logic flow
chart is shown illustrating a process 500 for the comparison of file hash
or directory list hash values to existing directory list hash values and

the addition of new file or directory list hash values to the database

18

WO 01/61563 PCT/US01/04763

10

15

20

25

30

directory list. The process 500 operates on stored data 502 which
comprises an accumulated list of file names, file meta-data (e.g. date,
time, file length, file type etc.) and the file's hash value for each item in
a directory. At step 504, the hash function is run upon the contents of
the directory list. Decision step 506 is operative to determine whether
or not the hash value for the directory list is in the set 212 of existing
hash values 214. If it is, then the process 500 returns to add another
file hash or directory list hash to a directory list. Alternatively, if the
hash value for the directory list is not already in the database set 212,
the hash value and data for the directory list are added to the database
212 set at step 508.

With reference additionally now to Fig. 7, a comparison 600 of
the pieces 306 of a representative computer file (i.e. "File A") with their
corresponding hash values 310 is shown both before and after editing
of a particular piece of the exemplary file. In this example, the record
404 contains the hash value of File A as well as the hash values 310 of
each of the pieces of the file A1 through A5. A representative edit of
the File A may produce a change in the data for piece A2 (now
represented by A2-b) of the file pieces 306A along with a
corresponding change in the hash value A2-b of the hash values 310A.
The edited file piece now produces an updated record 404A which
includes the modified hash value of File A and the modified hash value
of piece A2-b.

With reference additionally now to Fig. 8, a conceptual
representation 700 is shown illustrative of the fact that composite data
(such as composite data 702 and 704) derived by means of the system
and method of the present invention, is effectively the same as the
data 706 represented explicitly but is instead created by a "recipe”, or
formula. In the example shown, this recipe includes the concatenation
of data represented by its corresponding hashes 708 or the result of a
function using the data represented by the hashes. The data blocks

19

WO 01/61563 PCT/US01/04763

10

15

20

25

30

706 may be variable length quantities as shown and the hash values
708 are derived from their associated data blocks. As previously
stated, the hash values 708 are a probabilistically unique identification
of the corresponding data pieces but truly unique identifications can be
used instead or intermixed therewith. It should also be noted that the
composite data 702, 704 can also reference other composite data
many levels deep while the hash values 708 for the composite data can
be derived from the value of the data the recipe creates or the hash

value of the recipe itself.

With reference additionally now to Fig. 9, another conceptual
representation 800 is shown of how the hash file system and method of
the present invention may be utilized to organize data 802 to optimize
the reutilization of redundant sequences through the use of hash
values 806 as pointers to the data they represent and wherein data 802
may be represented either as explicit byte sequences (atomic data) 808

or as groups of sequences (composites) 804.

The representation 800 illustrates the tremendous commonality
of recipes and data that gets reused at every level. The basic structure
of the hash file system of the present invention is essentially that of a
"tree" or "bush" wherein the hash values 806 are used instead of
conventional pointers. The hash values 806 are used in the recipes to
point to the data or another hash value that could also itself be a
recipe. In essence then, recipes can point to other recipes that point to
still other recipes that ultimately point to some specific data that may,
itself, point to other recipes that point to even more data, eventually
getting down to nothing but data.

With reference additionally now to Fig. 10, a simplified diagram
900 is shown illustrative of a hash file system address translation
function for an exemplary 160 bit hash value 902. The hash value 902
includes a data structure comprising a front portion 904 and a back

portion 906 as shown and the diagram 900 illustrates a particular "0 of

20

WO 01/61563 PCT/US01/04763

10

15

20

25

30

1" operation that is used for enabling the use of the hash value 902 to

go to the location of the particular node in the system that contains the

corresponding data.

The diagram 900 illustrates how the front portion 904 of the hash
value 902 data structure may be used to indicate the hash prefix to
stripe identification ("ID") 908 and how that is, in turn, utilized to map
the stripe ID to IP address and the ID class to IP address 910. In this
example, the "S2" indicates stripe 2 of index Node 37 912. The index
stripe 912 of Node 37 then indicates stripe 88 of data Node 73
indicated by the reference numeral 914. In operation then, a portion of
the hash value 902 itself may be used to indicate which node in the
system contains the relevant data, another portion of the hash value
902 may be used to indicate which stripe of data at that particular node
and yet another portion of the hash value 902 to indicate where within
that stripe the data resides. Through this three step process, it can
rapidly be determined if the data represented by the hash value 902 is
already present in the system.

With reference additionally now to Fig. 11, a simplified exemplary
illustration of an index stripe splitting function 1000 is shown for use
with the system and method of the present invention. In this
illustration, an exemplary function 1000 is shown that may be used to
effectively split a stripe 1002 (S2) into two stripes 1004 (S2) and 1006
(87) should one stripe become too full. In this example, the odd
entries have been moved to stripe 1006 (S7) while the even ones
remain in stripe 1004. This function 1000 is one example of how stripe
entries may be handled as the overall syétem grows in size and
complexity.

With reference additionally now to Fig. 12, a simplified illustration
1100 of the overall functionality of the system and method of the
present invention is shown for use, for example, in the backup of data

for a representative home computer having a number of program and

21

WO 01/61563 PCT/US01/04763

10

15

20

25

30

document files 1102A and 1104A on Day 1 and wherein the program
files 1102B remain the same on Day 2 while one of the document files
1104B is edited on Day 2 (Y.doc) together with the addition of a third

document file (Z.doc).

The illustration 1100 shows the details of how a computer file
system may be broken into pieces and then listed as a series of recipes
on a global data protection network ("gDPN") to reconstruct the original
data from the pieces. This very small computer system is shown in the
form of a "snapshot" on "Day 1" and then subsequently on "Day 2". On
"Day 1", the "program files H5" and "my documents H6" are illustrated
by numeral 1106, with the former being represented by a recipe 1108
wherein a first executable file ié represented by a hash value H1 1114
and a second represented by a hash value H2 1112. The document
files are represented by hash value H6 1110 with the first document
being represented by hash value H3 1118 and the second by hash
value H4 1116. Thereafter on "Day 2", the "program files H5" and "my
documents" H10 indicated by numeral 1120 show that the "program
files H5" have not changed, but the "my document H10" have. H10
indicated by numeral 1122 shows the "X.doc" is still represented by
hash value H3 1118 while "Y.doc" is now represented by hash value H8
at number 1124. New document file "Z.doc" is now represented by

hash value H9 at numeral 1126.

In this example, it can be seen that on Day 2, some of the files
have changed, while others have not. In the files that have changed,
some of the pieces of them have not changed while other pieces have.
Through the use of the hash file system of the present invention, a
"snap shot" of the computer system can be made on Day 1 (producing
the necessary recipes for reconstruction of the computer files as they
exist then) and then on Day 2 through the reuse of some of the
previous day's recipes together with the reformulation of others and the

addition of new ones to describe the system at that time. In this

22

WO 01/61563 PCT/US01/04763

10

15

20

25

30

manner, the computer system may be recreated in its entirety at any
point in time on both Day 1 or Day 2 as well as on any subsequent day.

With reference additionally now to Fig. 13, a comparison 1200 of
various pieces of a particular document file marked by a number of
"sticky bytes" 1204 is shown both before (Day 1 1202A) and following
editing (Day 2 1202B) wherein one of thé pieces is thereby changed
while other pieces remain the same.

For example, on Day 1, file 1202A comprises variable length
pieces 1206 (1.1), 1208 (1.2), 1210 (2.1), 1212 (2.), 1214 (2.3) and
1216 (3.1). On Day 2, pieces 1206, 1208, 1210, 1214 and 1216 remain
the same (thus having the same hash values) while piece 1212 has
now been edited to produce piece 1212A (thus having a differing hash

value).

Data sticky bytes (or "sticky points") are a unique, fully
automated way to sub-divide computer files such that common
elements may be found on multiple related and unrelated computers
without the need for communication between the computers.' The
means in which data sticky points are found is completely mathematical
in nature and performs equally well regardless of the data content of
the files. In the hash file system of the present invention, all data
objects may be indexed, stored and retrieved using, for example (but
not limited to), an industry standard checksum such as: MD4, MD5,
SHA, or SHA-1. In operation, if two files have the same checksum, it
may be considered to be highly likely that they are the same file. Using
the system and method disclosed herein, data sticky points may be
produced with a standard mathematical distribution and with standard

deviations that are a small percentage of the target size.

A data sticky point is a statistically infrequent arrangement of n
bytes. In this case, an example is given with 32 bytes because of its

ease in implementation in current microprocessor technology.

23

WO 01/61563 PCT/US01/04763

10

15

20

25

30

A rolling hash of 32 bits could be generated for the file "f".

[[[i] = is the ith byte of the file "f".
/Iscramble is a 256 entry array of integers with each //being 32 bits
wide;
/Ithese integers are typically chosen to uniformly //span the range.
int t=8 //target number of trailing zeros
int hash = 0;
int sticky_bits;
for(int i=0; i<filesize; i++)
hash = hash >> 1 |[scramblel[f[i]];
//At every byte in the file, hash represents the //rolling hash of the
file.
sticky_bits = (hash - 1)*hash;
IIsticks_bits is a variable which will have the //number of ones in the
hash
/[that correspond to the number of trailing zeros in //the "hash".
number_of_bits = count_ones(stick-bits);
if(number_of_bits > t)
output_sticky_point(i);

A sticky point is defined to be a rolling hash with at least the
number of trailing zeros as the target number with the hash
represented in binary. Statistically speaking, this algorithm will find
points that are spaced at 2, where t is the target number of trailing
zeros. For this example where t=8, the algorithm will find, on averége,

sticky points that are spaced at 2/8=256 bytes apart.

A rolling hash of 32 bits may be generated for the f file where:

f[il = is the ith byte of the file f. .

scramble is a 256 entry array of random elements with each being n
bits wide;

int t=8 // target number of trailing zeros

int target_distance = 256; // 2 to the power of 8

24

WO 01/61563 PCT/US01/04763

10

15

20

25

30

int hash = 0;
int sticky_bits;
int distance = 0;
int last_point = 0;
for(int i=0; i<filesize; i++) {
hash = hash >> 1| scramblelf[i]];
//At every byte in the file hash represents the //rolling hash of the
file.
sticky_bits = (hash - 1)*hash;
/Isticks_bits is a variable which will have the //number of ones
that correspond to the number of //trailing zeros in the "hash".
number_of_bits = count_ones(stick_bits);
distance = i-last_point;
if(number_of_bits * distance/target_distance >t)
last_point =i;
output_sticky_point(i);
}

While the hashing function utilized to implement the hash file
system of the present invention requires a moderately complex
computation, it is well within the capability of present day computer
systems. Hashing functions are inherently probabilistic and any
hashing function might possibly produce incorrect results when two
different data objects happen to have the same hash value. However,
the system and method herein disclosed mitigates this problem by
using well known and researched hashing functions that reduce the
probability of collision down to levels acceptable for reliable use (i.e.
one chance in a trillion trillion), far less than the error rates otherwise

tolerated in conventional computer hardware operations.

Although as used herein, the term "Internet infrastructure"
encompasses a variety of hardware and software mechanisms, the
term primarily refers to routers, router software, and physical links
between these routers that function to transport data packets from one

25

WO 01/61563 PCT/US01/04763

10

15

20

25

network node to another. As also used herein, a "digital sequence”
may comprise, without limitation, computer program files, computer
applications, data files, network packets, streaming data such as
multimedia (including audio and video), telemetry data and any other
form of data which can be represented by a digital or numeric
sequence. The probabilistically unique identifiers produced by means
of the hash file system and method of the present invention may also

be used as URLs in network applications.

While there have been described above the principles of the
present invention in conjunction with specific implementations and
applications of the system and method of the present invention, it is to
be clearly understood that the foregoing description is made only by
way of example and not as a limitation to the scope of the invention.
Particularly, it is recognized that the teachings of the foregoing
disclosure will suggest other modifications to those persons skilled in
the relevant art. Such modifications may involve other features which
are already known per se and which may be used instead of or in
addition to features already described herein. Although claims have
been formulated in this application to particular combinations of
features, it should be understood that the scope of the disclosure
herein also includes any novel feature or any novel combination of
features disclosed either explicitly or implicitly or any generalization or
modification thereof which would be apparent to persons skilled in the
relevant art, whether or not such relates to the same invention as
presently claimed in any claim and whether or not it mitigates any or all
of the same technical problems as confronted by the present invention.
The applicants hereby reserve the right to formulate new claims to such
features and/or combinations of such features during the prosecution of

the present application or of any further application derived therefrom.

26

WO 01/61563 PCT/US01/04763

10

15

20

25

CLAIMS

What is claimed is:

1. A method for managing data comprising:

producing a probabilistically unique identifier for a digital
sequence; and

comparing said probabilistically unique identifier to a list of other

identifiers with their corresponding digital sequences.

2. The method of claim 1 further comprising:
adding said probabilistically unique identifier to said list if said

probabilistically unique identifier is not previously in said list.

3. The method of claim 1 further comprising:
removing said probabilistically unique identifier from said list if
said probabilistically unique identifier is previously in said list.

4. The method of claim 2 further comprising:
adding said digital sequence corresponding to said

probabilistically unique identifier to said list.

5. The method of claim 3 further comprising:
removing said digital sequence corresponding to said
probabilistically unique identifier from said list.

6. The method of claim 4 further comprising:

adding a correspondence between said digital sequence and said

probabilistically unique identifier for that sequence.

7. The method of claim 1 wherein said step of producing
comprises:
hashing said digital sequence to produce said probabalistically

unique identifier.

27

WO 01/61563 PCT/US01/04763

8. The method ‘of claim 7 wherein said step of hashing is

carried out by means of an industry standard digest algorithm.

9. The method of claim 8 wherein said step of hashing is
carried out by one of an MD4, MD5, SHA or SHA-1 algorithm.

5 10. The method of claim 1 wherein said step of producing
comprises:
generating a checksum for said digital sequence to produce said

probabilistically unique identifier.

11. The method of claim 1 wherein said digital sequence is

10 descriptive meta data of at least one other digital sequence.

12. The method of claim 1 wherein said digital sequence is
descriptive meta data of at least one probabilistically unique identifier.

13. The method of claim 1 wherein said digital sequence

describes a method that represents at least one digital sequence.

15 14. A method for managing data comprising:
dividing a digital sequence into a plurality of shorter digital
sequences; and
producing probabilistically unique identifiers for each said
plurality of shorter digital sequences; and
20 comparing said probabilistically unique identifiers to a list of

other identifiers.

15. The method of claim 14 further comprising the step of:

dividing said digital sequence into a plurality of shorter digital
sequences; and

25 producing a like plﬂrality of probabilistically unique identifiers

corresponding to each of said plurality of shorter digital sequences.

28

WO 01/61563 PCT/US01/04763

10

15

20

25

16. The method of claim 14 further comprising;
comparing each plurality of identifiers to said list.

17. The method of claim 14 wherein said step of dividing
produces said shorter digital sequences having individually variable

lengths.

18. The method of claim 14 wherein said step of dividing is
based on the content of said digital sequence.

19. The method of claim 14 wherein said step of dividing is

based on meta data describing said digital sequence.

20. The method of claim 14 wherein said step of dividing
produces said shorter digital sequences having substantially invariable

lengths.

21. The method of claim 14 wherein said step of producing
said like plurality of probabilistically unique identifiers comprises:
individually hashing said shorter digital sequences to produce

said like plurality of probabilistically unique identifiers.

22. The method of claim 14 further comprising the step of:
adding said plurality of shorter digital sequences and said
corresponding like plurality of probabilistically unique identifiers to said

list.

23. The method of claim 14 further comprising the step of:
removing said plurality of shorter digital sequences and said
corresponding like plurality of probabilistically unique identifiers from

said list.

24. The method of claim 9 further comprising the step of:
utilizing at least a portion of said probabilistically unique identifier

as an indicator to a location in said list for said step of comparing.

29

WO 01/61563 PCT/US01/04763

10

15

20

25

25. A computing environment comprising:

at least one list for maintaining portions of digital sequences and
corresponding probabilistically unique identifiers for each of said
portions of said digital sequences;

at least one new digital sequencé;

at least one partitioning mechanism for dividing said new digital
sequence into a plurality of shorter digital sequences and producing a
probabilistically unique identifier for each of said shorter digital
sequences; and ;

a comparison mechanism for determining if any one of said
probabilistically unique identifiers for each of said plurality of shorter

digital sequences is currently maintained in said list.

26. The computing environment of claim 25 wherein said at

least one list comprises a plurality or lists.

27. The computing environment of claim 26 wherein said
plurality of lists, each contain a portion of said probabilistically unique

identifiers.

28. The computing environment of claim 26 wherein at least
one of said plurality of lists is physically displaced from others of said

at least one list.

29. The computing environment of claim 26 wherein said
plurality of lists is partitioned based on said probabilistically unique

identifiers.

30. The computing environment of claim 28 wherein said

plurality of lists are coupled by means of a network.

31. The computing environment of claim 25 wherein said at
least one list is physically displaced from said at least one partitioning

mechanism.

30

WO 01/61563 PCT/US01/04763

10

15

20

25

32. The computing environment of claim 25 wherein said list

comprises a physically distributed database.

33. The computing environment of claim 25 wherein said at
least one partitioning mechanism and said at least one list are coupled

by means of a network.

34. The computing environment of claim 33 wherein said

network comprises a public network such as the internet.

35. The computing environment of claim 34 wherein said at
least one partitioning mechanism and said at least one list are

physically distributed.

36. The computing environment of claim 25 wherein said
probabilistically unique identifiers are produced by means of a hash

function.

37. The computing environment of claim 36 wherein said hash

function comprises an industry standard digest algorithm.

38. The computing environment of claim 37 wherein said hash
function comprises one of MD4, MD5 SHA or SHA-1 algorithms.

39. The computing environment of claim 36 wherein said
probabilistically unique identifiers are produced by means of a

checksum.

40. The computing environment of claim 25 wherein said
digital sequences are of variable length.

41. The computing environment of claim 25 wherein said

digital sequences are of invariable length.

42. The computing environment of claim 31 wherein said

comparison mechanism is operative to utilize at least a portion of said

31

WO 01/61563 PCT/US01/04763

probabilistically unique identifiers for each of said plurality of said
shorter digital sequences as a locator correlated with said list

partitions.

43. The computing environment of claim 25 wherein said

5 digital sequence comprises a data file.

44. The computing environment of claim 25 wherein said

digital sequence comprises a data stream.

45. The computing environment of claim 25 wherein said

digital sequence comprises an executable file.

10 46. The computing environment of claim 25 wherein said

digital sequence comprises a database record.

47. The computing environment of claim 25 wherein said

digital sequence comprises a database index.

48. The computing environment of claim 25 wherein said

15 digital sequence comprises a digital device image.

49. The computing environment of claim 25 wherein said

digital sequence comprises a network packet.

50. The computing environment of claim 25 wherein said

digital sequence comprises a digitized analog signal.

20 51. The computing environment of claim 25 wherein any of
said probabilistically unique identifiers and corresponding ones of said
plurality of shorter digital sequences not determined to be maintained

in said at least one list are added to said at least one list.

52. . A computer program product comprising:

32

WO 01/61563 PCT/US01/04763

10

15

20

25

a computer usable medium having computer readable code
embodied therein for managing data, said computer program product
comprising:

computer readable program code devices configured to cause a
computer to effect producing a probabilistically unique identifier for a
digital sequence; and

computer readable program code devices configured to cause a
computer to effect comparing said probabilistically unique identifier to a

list of other identifiers corresponding to other digital sequences.

53. The computer program product of claim 52 further
comprising:

computer readable program code devices configured to cause a
computer to effect adding said probabilistically unique identifier to said

list if said probabilistically unique identifier is not previously in said list.

54. The computer program product of claim 53 further
comprising:

computer readable program code devices configured to cause a
computer to effect adding said corresponding digital sequence to said
list.

55. The computer program product of claim 52 wherein said
computer readable program code devices configured to cause said
computer to effect producing comprises:

computer readable program code devices configured to cause a
computer to effect hashing said digital sequence to produce said

probabilistically unique identifier.

56. The computer program product of claim 55 wherein said
computer readable program code devices configured to cause a
computer to effect hashing is carried out by means of an industry

standard digest algorithm.

33

WO 01/61563 PCT/US01/04763

10

15

20

25

57. The computer program product of claim 56 wherein said
computer readable program code devices configured to cause a
computer to effect hashing is carried out by one of an MD4, MD5, SHA
or SHA-1 algorithm.

58. The computer program product of claim 52 wherein said
computer readable program code devices configured to cause a
computer to effect producing comprises:

computer readable program code devices configured to cause a
computer to effect generating a checksum for said digital sequence to
produce said probabilistically unique identifier.

59. The computer program product of claim 52 further
comprising:

computer readable program code devices configured to cause a
computer to effect creating a directory list containing said

probabilistically unique identifier for said digital sequence.

60. The computer program product of claim 52 further
comprising:

computer readable program code devices configured to cause a
computer to effect dividing said digital sequence into a plurality of
shorter digital sequences; and

computer readable program code devices configured to cause a
computer to effect producing a like plurality of probabilistically unique
identifiers corresponding to each of said plurality of shorter digital

sequences.

61. The computer program product of claim 60 wherein said
computer readable program code devices configured to cause a
computer to effect dividing produces said shorter digital sequences
having individually variable length.

34

WO 01/61563 PCT/US01/04763

10

15

20

25

62. The computer program product of claim 60 wherein said
computer readable program code devices configured to cause a
computer to effect dividing produces said shorter digital sequences

having substantially invariable length.

63. The computer program product of claim 60 wherein said
computer readable program code devices configured to cause a
computer to effect producing said like plurality of probabilistically
unique identifiers comprises:

computer readable program code devices configured to cause a
computer to effect individually hashing said shorter digital sequences to
produce said like plurality of probabilistically unique identifiers.

64. The computer program product of claim 60 further
comprising:

computer readable program code devices configured to cause a
computer to effect adding said plurality of shorter digital sequences
and said corresponding like plurality of probabilistically unique |

identifiers to said list.

65. The computer program product of claim 52 further
comprising:

computer readable program code devices configured to cause a
computer to effect utilizing at least a portion of said probabilistically
unique identifier as an index into a table of locations for said list for

said step of comparing.

66. A method for establishing an identifier for at least a portion
of a digital sequence comprising:

performing a function on said at least a portion of said digital
sequence to produce a probabilistically unique symbol therefore;

establishing a correspondence between said at least a portion of

said digital sequence and said probabilistically unique symbol; and

35

WO 01/61563 PCT/US01/04763

10

15

20

25

utilizing said probabilistically unique symbol as said identifier.

67. The method of claim 66 wherein said identifier and said
corresponding at least a portion of said digital sequence are

maintained in at least one data list.

68. The method of claim 67 wherein at least a portion of said
identifier is utilizable as a pointer to a location of said corresponding at

least a portion of said digital sequence within said at least one data list.

69. The method of claim 66 wherein said at least a portion of
said digital sequence comprises at least a portion of a data file and
said identifier is uniquely related to a content of said at least a portion

of said data file.

70. The method of claim 66 wherein said at least a portion of
said digital sequence comprises at least a portion of a data stream and
said identifier is uniquely related to a content of said at least a portion

of said data stream.

71. The method of claim 66 wherein said at least a portion of
said digital sequence comprises at least a portion of an executable file
and said identifier is uniquely related to a content of said at least a

portion of said executable file.

72. The method of claim 66 wherein said step of performing a
function is carried out by the step of:
hashing said at least a portion of said digital sequence to

produce said probabilistically unique symbol.

73. The method of claim 72 wherein said step of hashing is
carried out by means of an industry standard digest algorithm.

74. The method of claim 73 wherein said step of hashing is
carried out by means of one of an MD4, MD5, SHA or SHA-1 algorithm. "

36

WO 01/61563 PCT/US01/04763

10

15

20

25

75. A computer program product comprising:

a computer usable medium having computer readable code
embodied therein for establishing an identifier for at least a portion of a
digital sequence comprising: |

computer readable program code devices configured to cause a
computer to effect performing a function on said at least a portion of
said digital sequence to produce a probabilistically unique symbol
therefore; |

computer readable program code devices configured to cause a
computer to effect establishing a correspondence between said at least
a portion of said digital sequence and said probabilistically unique
symbol; and

computer readable program code devices configured to cause a
computer to effect utilizing said probabilistically unique symbol as said

identifier.

76. The computer program product of claim 75 wherein said
identifier and said corresponding at least a portion of said digital

sequence are maintained in at least one data list.

77. The computer program product of claim 76 wherein at least
a portion of said identifier is utilizable as a pointer to a location of said
corresponding at least a portion of said digital sequence within said at

least one data list.

78. The computer program product of claim 75 wherein said at
least a portion of said digital sequence comprises at least a portion of a
data file and said identifier is uniquely related to a content of said at

least a portion of said data file.

79. The computer program product of claim 75 wherein said at

least a portion of said digital sequence comprises at least a portion of a

37

WO 01/61563 PCT/US01/04763

10

15

20

25

data stream and said identifier is uniquely related to a content of said

at least a portion of said data stream.

80. The computer program product of claim 75 wherein said at
least a portion of said digital sequence comprises at least a portion of
an executable file and said identifier is uniquely related to a content of

said at least a portion of said executable file.

81. The computer program product of claim 75 wherein said
computer readable program code devices configured to cause a
computer to effect performing a function is carried out by:

computer readable program code devices configured to cause a
computer to effect hashing said at least a portion of said digital

sequence to produce said probabilistically unique symbol.

82. The computer program product of claim 81 wherein said

. computer readable program code devices configured to cause a

computer to effect hashing is carried out by means of an industry
standard digest algorithm.

83. The computer program product of claim 82 wherein said
computer readable program code devices configured to cause a
computer to effect hashing is carried out by means of one of an MD4,
MD5, SHA or SHA-1 algorithm.

84. A method for managing data comprising:

producing a probabilistically unique identifier for a digital
sequence; and

comparing said probabilistically unique identifier to a list of other

identifiers corresponding to other digital sequences.
85. The method of claim 84vfurther comprising:

adding said probabilistically unique identifier to said list if said
probabilistically unique identifier is not previously in said list.

38

WO 01/61563

AN Q O 18
.o o.. ./

18

16

16

INTERNET

L
=
O
o
>
Q
<C
m

16

16

PCT/US01/04763

N
FIG.1

PCT/US01/04763

WO 01/61563

2111

SN 1t BT Sl siovnm ¢ vl SN —| =]
e —/ o—
] = = T =h o ! =
| = = | =1 TN =
I Z| ||l = =
A LIR=iEn= = HFRLRE
1 ln 40 Srgl S0 % (1]l £ V) 11n 40 SF
EJEMJirﬂL_' o W SH | =p
i _U_. r_ _ﬂm_. . -Jf — ol -f_|_.: =
(MYOMLIN TYNUIIN] by~ (CEoNGENTNEIN]) ¢ N HOMIEN NEEIN |
_ | YEINO Y.LYQ HO
(MYOMLIN G35Vd LINGILNI) S3LNdNOOEIdNS
3\
)
mSsmu,,:m\,_m__m LINYALIN v L=
— 1| 1 XVA
ei—— =
=
43LNdINOD
Ne\i YALNINOI NId O I Tlvdoondl &
— == o

vil

S

N

chl

\'

_w 0l p

80} ™

\\
v

WO 01/61563 PCT/US01/04763

N1

ENTER FILE INTO
HASH FILE SYSTEM

Y .
—202
DATAFOR A
FILE
Y

PERFORM HASH | *—204
FUNCTION

/ HAI\:SIII:;I;FAOR s

216

5

BREAK FILE INTO
HASHED PIECES

i
/
EXISTING ,[_/—/
HASHES ADD FILE’S HASH \

214

TO ADIRECTORY
LIST 200

DATABASE OF

HASH VALUES AND

CORRESPONDING
DATA

212

FIG.3

WO 01/61563 PCT/US01/04763

411

BREAKUP METHOD FOR FILE
OR DATA SEQUENCE INTO
HASHED PIECES

A

y
/ SEQUENCE
DATA 302

Y

\ DIGITAL SEQUENCE IS DIVIDED INTO
PIECES BASED ON COMMONALITY 306

WITH OTHER PIECES IN THE SYSTEM
OR LIKELIHOOD OF PIECES BEING IN
COMMON IN FUTURE y,

304

/ PECEA /PIECEA2/ PECEAS /PECEM / PIECEAS [

308 y
3\ EACH PIECE OF DIGITAL SEQUENCE IS
310 PASSED THROUGH HASH FUNCTION
TO ASSIGN PROBABALISTICALLY
\‘ UNIQUE NUMBER TO EACH PIECE 4

A
/ MHASH //A2HASH// A3HASH //A4HASH // ASHASH /

/ PIECEA //PIECE A2/ PIECE A3 //PIECEM /] PIECE A5 /

Vol \
306

FIG.4 "

PCT/US01/04763

5/11

WO 01/61563

G Old

A

y1va
007 " ONIANOSFHHOD
I N ANV SINTVA HSYH
40 3Svav1va
e ™
/ HSVHGY / 90
7 HSVH Y / ™\
/ HSYHEY / S303ld
VST, v1vd >>\m_z
0le / HSVHW / /
SIHSVH SIHSVH
/ VHOHSWH / >>m_z\ @z:m_x\m_
$3031d 40 INTYA HSYH HLIM $3931d 7 7
TiY 404 INIVA HSYH ITONIS 40 5
JONTTVAINDT ONIMOHS GH0TY o0p il My
% A
v
38vAvL1va Ol
a3aay vLvad ONIANOdSTHHOD ANV SANTVA
20y —] “HSYH MIN aNV WA1SAS NI SINTVA HSYH

ONILSIX3 OL 39YdNOD FONINOSS TvLIoId
Y 40 303Id HOV4 ¥04 S3NTVYA HSVH

90¢ \‘\« ; //
T / w30ad //w3oad//ev3oad /fevaoad// waoad /

= / HSWHSY // HSWHY// HSWHEY //HSVHTY // HSWHIV /

WO 01/61563 PCT/US01/04763

6/11

ADD FILE HASH OR
DIRECTORY LIST HASH
TO ADIRECTORY LIST

<
-

Y

ACCUMULATE LIST
OF FILE NAMES
FILE META-DATA
AND FILE'S HASH
FOR EACH ITEM
IN A DIRECTORY

502

504 y

HASH FUNCTION
RUN ON CONTENT
OF DIRECTORY LIS

—CD

YES

214

/ ! 508
EXISTING
HASHES ADD HASH AND

DATA FOR
DIRECTORY
LIST TO 500

DATABASE
|

IN DATff‘BASE

DATABASE OF
HASH VALUES AND
CORRESPONDING
DATA

212

FIG.6

WO 01/61563 PCT/US01/04763

M1

/ ATHASH //A2HASH//A3HASH //A4HASH // A5HASH [a— 310

/ PIECEM //PIECE A2/ PIECEA3 //PECEA4// PIECE AS /\

DIGITAL SEQUENCE IS
REPRESENTED AS:

/ HASHOFA / | 404

/ ATHASH [/
/ A2HASH / 310
/ A3HASH /

/ MHASH /
/ ASHASH /

306

/ AMHASH //A2RASH// A3HASH //AHASH // ASHASH Ja— 310A

/ PIECEM //PIECE A2/ PIECEA3 //PIECEA4// PIECE AS /\

NEW VERSION OF DIGITAL 306A
REPRESENTED AS:
' 404A

/ HASHOFA [
/ AMHASH / ‘\k

/ A2HASH / 310A 0
/ A3HASH /

/ MHASH /

/ A5SHASH /

FIG.7

PCT/US01/04763

WO 01/61563

811

8'Old

LA YLYA
00L 0# YLV / 9# 404 HSVH
// ~ 214 404 HSVH /
[¢# 404 HSVH
6 Y1YQ (#9404 HSVH
21# 904 HSVH (SIHSVH A8 QILYOIONI
#4904 HSYH 8 YLva YL¥(40 ONISSID0Hd
O 404 HSVH L#Y1YQ 219140 3LI0dND
6% 404 HSVH
8# 404 HSVH TAVIVa 015
J# 904 HSVH ,
G# 904 HSVH e# VLYQ
£ 404 HSVH ~[7104 HSVH
G# 40 HSVH Z#VLYa €104 HSVH
2# 404 HSVH VAH VA\ G# 404 HSVH
#4104 HSVH ~{Z# 404 HSVH
¢ / o viYa Lo
802 J#V1YQ (SIHSYH AG GILYOION]
V.13 40 NOILYNALYINOD)
901 o V1Y 3LISONOI

NER

PCT/US01/04763

WO 01/61563

911

viva | [viva | [viva | [viva | [viva | [viva viva | [viva] [viva | [viva | [vivad | [viva
OINOLY| [OINOLY| [oINOLY] [OINOLY| [OINOLY o__%z//./ﬂo_zpz OINOLY| |oINOLY| foINOLY| JoINOLY| |oiNOLY
008 HSYHHSYHHSYHIHSYHIHSYHIHSYH 808 wWJ/ HSYHHSYHHSYHHSYHHSVYHHSYH \womx/
J/ 4/% viva | [viva viva | [viva
LSOOV w OINOLY| foioly|l 3LSOdNOI OINOLY| oINOLY
NS N S |//\
HSYHIHSYHHSYH HSVHIHSYH! JHSYHIHSYHIHSYHHSVHHSYHIHSYHI | THSYHIHSYHIHSYHIHSYHIHSYHIHSYH! FHSYHIHSYHHSYHIHSYHIHSYHHSYH HSYHIHSYHHSYHIHSYHHS YHIHSYH
34S0dW02 311SOdINOD 31ISOdINOI ALISOdINOD 311SOdIN0D
viva 1 viva HSVHHSYHHSYHHSYHHSYHHSYH) HSYHHSVHHSYHHSYHHSYHHSYH VTV
e 08 “iolv] |oiioLy] 808 DINOLY] & gog
w 311SOdINOD 311SOdNOD
A X %X X X X XX L. xxx//xmom v/»l 4
THSYHHSYHIHSYHIHSYHIHSYHHSYH JHSYHIHSYHHSYHIHSYHIHSYHHSYH HSVHIHSYHIHSYHIHSYRHSYHIHSYH HSYHIHSYHHSYHHSYHHSYHHSYHI <€~_—Z08
708
3LISOdN0D 3LISOdINOD ~L 311S0dN03, 311S0dI0D
\., B] _ "
HSYHHSVHIHSVHHSYHHSYHHSVH| <t—~— 908
08)
[\\JH 311SOdN0D <708 SE

PCT/US01/04763

WO 01/61563

10/11

~-- 111 00
== T0] 0i0
~-- 11]0l0
~-- [g] 010
~~— 11]010
===10] 010
=== T1T0i0 900}
——= [V [0l0 \\
=== 111010
\«1 —--_J0] 0i0
IS ZS
L
AN
AN
AN
Wﬂ == 1] 010
000} i Y AT
- 11100
==T5T o0 o\ I\ S
— 1i{o0] PO YO0
eV
T om0 340439
= mwwm X3aNI
¢001 ZS

veel

d414v

006

3didiS YiVa

16

£1300N | 3dbi1s

0167

vl

3didLS

88

135440

alviva |-«—¢lb
3did.LS X4aNI

/€ JAON | ¢ 3dIYLS

806
906

{ Movd 1

0L Ol

€. 3dON V1v@
88 3dI4LS

L€ 3AON
X3ANI € 3dIbLS

SS34ady
dl SSV10
dl ss3yaay
di OL i 3dI¥1S

al 3didLS OL
Xl438d HSVH

706

LNO¥4

010

¢06 N

HSVH 119 09}

- SIOON TV

PCT/US01/04763

WO 01/61563

1111

: 9Zh— .
€10l N
002} \\
A TM 6H w:J SH gy S:N N:J
emw |azonvronn| *E | vy
Ve w 912} Alm ¢H ¥H IH ¢H
i)
71Zh |
ozl QI9NYHONN] €7 o
-~ 9900 2H 1162} 066 3X3'9
f o < [6H916Y) 2090007 PH 9166} 209 00d'A kst
qaLag ’z oH 10991 277} JOTA EH €8 170} 200'X 4N LH 6129 0€:8 IXT'Y
iz — — Ho H
A A 6H €18 101 200X
0Lz} | J3ONVHONN . /2: 2zl -
ﬁ vz | ooe—_| 1z i N smanmoo i 9H SINIWNO0T AW Ax\
GH SITI4 INYYO0Yd
| [SEENHONA Nvs vao |EH ST WVMOONd 775y q 7, 2 wvam
f o am_mo_m/w@,_rm ¢t AMMF
900Z . .
Drabtbisles L TR | | w2 a ooaal | w3
902 il . RSt €H 000X o 3xav ¢H 000X I m:_m_mxw_,*
ﬁ bl - 902 | bl = SININND0G ANl |STT4 Wvdo0Yd SINTNND0A AW WY990Yd
g e g vee A o A A o r
ININNOOC QYoM LNFWNJOA QHOM S A\ L VROl | Tug YeOM

H41NdINOD INOH

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US01/04763
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) ¢ GO6FL7/30
UsSCL : 707/201,1,100,101

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 707/201,1,100,101

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
DIALOG (COMPSCI,ELECTRON,PATENTS,EECOMP)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No,

X US 5,016,009 A (WHITING et al.) 14 May 1991, Abstract, Column 6, line 17, Column 1-85
7, line 46.

X US 5,126,739 A (WHITING et al.) 30 June 1992, Abstract, Column 6, line 15 - Column | 1-85
7, line 43.

X US 5,140,321 A (JUNG) 18 August 1992, Abstract, Column 3, line 49 - Column 4, line 1-85
61.

A US 5,406,279 A (ANDERSON et al.) 11 April 1995, Abstract, Specification. 1-85

X US 5,281,967 A (JUNG) 25 January 1994, Abstract, Column 3, line 55 - Column 4, line 1-85
52.

A US 5,754,844 A (FULLER) 19 May 1998, Abstract, Specification. 1-85

X US 5,850,565 A (WIGHTMAN) 15 December 1998, Column 2, line 49 - Column 3, line } 1-85
39.

X US 5,831,558 A (HARVELL) 03 November 1998, Abstract, Column 1, line 12 - Column | 1-85
3, line 4.

D Further documents are listed in the continuation of Box C. D See patent family annex.

b Special categories of cited documents: “T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X» document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “Y” document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O” document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than the & document member of the same patent family
priority date claimed
Date of the actual completion of the international search DTa of mailin§ of the international searci report
2001-05-05 1
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks Paul R Li
Box PCT au 1tz g
Washington, D.C. 20231 Y ez C7«’\/\—0‘0'/
Facsimile No. (703)305-3230 Telephone No. 305-9600

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

