International Application Published Under the Patent Cooperation Treaty (PCT)

Applicant: Paul, LAMANNA

Priority International: 133-3427

Classification:
- C08K 18/48 (2006.01)
- C08K 5/19 (2006.01)
- C08K 18/38 (2006.01)
- C08K 18/44 (2006.01)
- C08K 5/00 (2006.01)
- D06M 15/576 (2006.01)
- C08G 18/08 (2006.01)
- C08G 18/40 (2006.01)
- C09D 175/04 (2006.01)
- C07C 311/09 (2006.01)

International Application Number: PCT/US2015/064389

International Filing Date: 8 December 2015 (08.12.2015)

Filing Language: English

Publication Language: English

Priority Data:
- 33427, Minnesota, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US)

Applicant: 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

Published:
- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Title: IONIC DIOL, ANTISTATIC POLYURETHANE, AND METHOD OF MAKING THE SAME

Abstract: An ionic diol has formula wherein R represents an alkyl group having from 6 to 18 carbon atoms; R and R independently represent alkyl groups having from 1 to 4 carbon atoms; R represents an alkylene group having from 2 to 8 carbon atoms; and R represents an alkylene group having from 1 to 8 carbon atoms. Antistatic polymers are formed by copolymerization of monomers including a diisocyanate, an ionic diol, a polyether diol, and at least one non-ionic diol. Methods of making the antistatic polyurethanes are also disclosed.
IONIC DIOL, ANTISTATIC POLYURETHANE,
AND METHOD OF MAKING THE SAME

TECHNICAL FIELD

The present disclosure broadly relates to antistatic polymers and methods of making them.

BACKGROUND

Antistats or antistatic agents are used to dissipate electrostatic or static charge. Electrostatic charge buildup is responsible for a variety of problems in the processing and the use of many industrial products and materials. Electrostatic charging can cause materials to stick together or to repel one another. In addition, static charge buildup can cause objects to attract dirt and dust that can lead to fabrication or soiling problems and can impair product performance. Sudden electrostatic discharges from insulating objects can also be a serious problem. When flammable materials are present, a static electric discharge can serve as an ignition source, resulting in fires and/or explosions.

Electrostatic charge is a particular problem in the electronics industry, because modern electronic devices are extremely susceptible to permanent damage by electrostatic discharges. The buildup of electrostatic charge on insulating objects is especially common and problematic under conditions of low humidity and when liquids or solids move in contact with one another (tribocharging).

Static charge build-up can be controlled by increasing the electrical conductivity of a material. This can be accomplished by increasing ionic or electronic conductivity. The most common means of controlling static accumulation today is by increasing electrical conductivity through moisture adsorption. This is commonly achieved by adding moisture to the surrounding air (humidification) or by the use of hygroscopic antistatic agents, which are generally referred to as humectants because they rely on the adsorption of atmospheric moisture for their effectiveness. Most antistatic agents operate by dissipating static charge as it builds up; thus, static decay rate and surface conductivity are common measures of the effectiveness of antistatic agents. Antistatic agents can be applied to the surface (external antistatic agent) or incorporated into the bulk (internal antistatic agent) of the otherwise insulating material. Internal antistatic agents are commonly employed in polymers such as plastics.

Generally, internal antistatic agents fall into one of the following classes: (1) ones that are mixed directly into a molten polymer during melt processing; (2) ones that are mixed into a polymer solution, coated, and dried, or (3) ones that dissolve into a monomer (with or without a solvent) that is subsequently polymerized.

Antistatic agents are known and used over a broad range of chemical classes, including organic amines and amides, esters of fatty acids, organic acids, polyoxyethylene derivatives, polyhydric alcohols, metals, carbon black, semiconductors, and various organic and inorganic salts. Many are also surfactants and can be neutral or ionic in nature. Many low molecular weight, neutral antistatic agents have sufficiently high vapor pressures and thus are unsuitable for use at high temperatures (e.g., polymer melt processing) due to material losses that occur via evaporation. Many other neutral antistatic agents have

1

-1-
insufficient thermal stability to survive polymer melt processing or other high temperature processing conditions.

Most non-metallic antistatic agents are generally humectants that rely on the adsorption and conductivity of water for charge dissipation. Thus, their effectiveness is typically diminished at low atmospheric humidity. Because many of these antistatic agents are also water-soluble, they are easily removed by exposure of the material to water (e.g., washing) and therefore are not very durable.

Metal salts of inorganic, organic, and fluoroorganic anions are also useful as antistatic agents in certain polymer compositions. Alkali metal salts are most commonly used due to cost and toxicity considerations and to the high affinity of alkali metal cations, especially lithium, for water. However, most metal salts are not compatible with polymers of moderate to low polarity, such as polypropylene, polyester, and polycarbonate. This incompatibility can result in inadequate antistatic agent performance and/or an unacceptable reduction in physical properties or transparency in a finished polymeric article. Consequently, the use of metal salts as internal antistatic agents is generally limited to highly polar and/or hydrophilic polymer matrices.

SUMMARY

There is a continuing need for antistatic agents, and especially antistatic agents that can be incorporated into coatings and polymer melt compositions.

In one aspect, the present disclosure provides an ionic diol represented by the formula:

$$\text{R}^2\text{O}$$

$$\text{R}^1\text{N}-\text{R}^4\text{OC}^\text{H}$$

$$\text{R}^5\text{OCH}_2\text{CHCH}_2\text{OH}$$

$$\text{CF}_3\text{SO}_2\text{N}^-$$

wherein

- \text{R}^1\text{ represents an alkyl group having from 6 to 18 carbon atoms;}
- \text{R}^2\text{ and R}^3\text{ independently represent alkyl groups having from 1 to 4 carbon atoms;}
- \text{R}^4\text{ represents an alkylene group having from 2 to 8 carbon atoms; and}
- \text{R}^5\text{ represents an alkylene group having from 1 to 8 carbon atoms.}

In another aspect, the present disclosure provides an antistatic polyurethane having a polymer backbone comprising:

- at least one divalent segment a) represented by the formula
wherein

R^1 represents an alkyl group having from 6 to 18 carbon atoms,

R^2 and R^3 independently represent alkyl groups having from 1 to 4 carbon atoms,

R^4 represents an alkylene group having from 2 to 18 carbon atoms, and

R^5 represents an alkylene group having from 2 to 18 carbon atoms.

Divalent segments b) represented by the formula

wherein

R^6 represents a divalent organic group having from 2 to 18 carbon atoms,

wherein at least one of the divalent segments b) is adjacent to at least one of the divalent segments a);

Divalent segments c) represented by the formula

wherein

R^7 represents a divalent organic group having from 2 to 12 carbon atoms, and

w represents a positive integer, wherein at least one of the divalent segments c) is adjacent to at least one of the divalent segments b); and

Divalent segments d) represented by the formula
wherein

each \(R^8 \) independently represents an alkylene group having from 1 to 8 carbon atoms,
each \(R^9 \) independently represents an alkyl group having from 1 to 4 carbon atoms,
each \(R^{10} \) independently represents H or an alkyl group having from 1 to 8 carbon atoms, and

\(v \) represents a positive integer, wherein at least one of the divalent segments d) is adjacent to at least one of the divalent segments b), wherein terminal carbonyl groups on adjacent divalent segments are not directly bonded to each other, and wherein terminal -O- groups on adjacent divalent segments are not directly bonded to each other.

In a third aspect, the present disclosure provides a method of making an antistatic polyurethane, the method comprising steps:

a) reacting a first diol with a molar excess of a diisocyanate to form a first prepolymer, wherein the first diol is represented by the formula

\[
\text{HO-CHCH}_2\text{-OH}
\]
wherein

\[R^1 \] represents an alkyl group having from 6 to 18 carbon atoms;

\[R^2 \] and \[R^3 \] independently represent alkyl groups having from 1 to 4 carbon atoms;

\[R^4 \] represents an alkylene group having from 2 to 18 carbon atoms

\[R^5 \] represents an alkylene group having from 2 to 18 carbon atoms; and

wherein the diisocyanate is represented by the formula

\[\text{OCN-R}^6\text{-NCO} \]

wherein \[R^6 \] represents a divalent organic group having from 2 to 18 carbon atoms;

b) reacting the first prepolymer with a second diol to form a second prepolymer, wherein the second diol is represented by the formula

\[H\left(\text{O-} R^7\right)_w\text{OH} \]

wherein

\[R^7 \] represents a divalent organic group having from 2 to 12 carbon atoms,

\[w \] represents a positive integer; and

c) reacting the second prepolymer with a third diol to form the antistatic polyurethane, wherein the third diol is represented by the formula

\[\text{HO-} R^8\text{-C-} R^8\text{-OH} \]

wherein

each \[R^8 \] independently represents an alkylene group having from 1 to 8 carbon atoms,

each \[R^9 \] independently represents an alkyl group having from 1 to 4 carbon atoms,

each \[R^{10} \] independently represents H or an alkyl group having from 1 to 8 carbon atoms, and
v represents a positive integer.

In a fourth aspect, the present disclosure provides antistatic polyurethanes made according to methods of making an antistatic polyurethane according to the present disclosure.

When formulated into water-based coating compositions, antistatic polyurethanes according to the present disclosure may exhibit good dispersibility in water. Additionally, they may be uniformly incorporated into a variety of polymer melt compositions.

Antistatic polyurethanes according to the present disclosure may be used to provide coatings having static decay times of less than 7 seconds, and may impart a degree of protection due to their durability.

The properties of the antistatic polyurethanes of the present disclosure can be relatively easily tuned by adjustment of ratios of the polyol and polyisocyanate. For example, glass transition temperature (Tg), which also affects antistatic performance, can be modified by the percentage of both the surfactant diol and polypropylene glycol in the formulation. Antistatic polyurethane according to the present disclosure are useful; for example, in water-based coating compositions and as antistatic additives in polymer extrusion processes.

Features and advantages of the present disclosure will be further understood upon consideration of the detailed description as well as the appended claims.

DETAILED DESCRIPTION

Ionic diols according to the present disclosure are represented by the formula:

\[
\begin{align*}
\text{R}^1\text{N-}\text{R}^2\text{O-}\text{R}^3\text{OC}-\text{R}^4\text{COCH}_2\text{CHCH}_2\text{OH} \\
(\text{CF}_3\text{SO}_2)_2\text{N}^-
\end{align*}
\]

R^1 represents an alkyl group having from 6 to 18 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, and even more preferably 8 carbon atoms. Examples include hexyl, cyclohexyl, octyl, isooctyl, dimethylcyclohexyl, nonyl, decyl, dodecyl, hexadecyl, and octadecyl groups.

R^2 represents an alkyl group having from 1 to 4 carbon atoms. Examples include methyl, ethyl, n-propyl, isopropyl, and butyl groups. Preferably, R^2 represents a methyl or ethyl group.

R^3 represents an alkyl group having from 1 to 4 carbon atoms. Examples include methyl, ethyl, n-propyl, isopropyl, and butyl groups. Preferably, R^2 represents a methyl or ethyl group.

R^4 independently represents a linear alkylene group having from 2 to 4 carbon atoms. Examples include, ethylene (i.e., -CF\text{LCl}_2-), propan-1,2-diyl (i.e.,...
-CH₂CHiCH^)-), propan-1,3-diyl, and butan-1,4-diyl groups. Preferably, R⁴ represents ethan-1,2-diyl or propan-1,2-diyl.

R⁵ represents an alkylenegroup having from 1 to 8 carbon atoms, preferably 2 to 4 carbon atoms. Examples include methylene, ethylene, propan-1,2-diyl, propan-1,3-diyl, butan-1,4-diyl groups, hexan-1,6-diyl, cyclohexan-1,4-diyl, and octan-1,8-diyl groups.

Antistatic polyurethanes according to the present disclosure comprise divalent segments a), b), and c), corresponding to the various components (e.g., polyols and polyisocyanates) used in their preparation. The divalent segments are arranged such that terminal carbonyl groups on adjacent divalent segments are not directly bonded to each other, and terminal -O- groups on adjacent divalent segments are not directly bonded to each other.

In some embodiments, the divalent segments a) are represented by the formula

wherein R¹, R², R³, R⁴, and R⁵ are as previously defined.

Divalent segments b) are represented by the formula

wherein R⁶ represents a divalent organic group having from 2 to 18 carbon atoms, which may be, for example, a divalent residue of a diisocyanate (i.e., the divalent group remaining when the two -NCO groups are removed from the diisocyanate). In some preferred embodiments, R⁶ represents a divalent organic group having from 6 to 16 carbon atoms, more preferably 12 to 16 carbon atoms. In some embodiments, R⁶ represents a divalent organic group having from 2 to 12 carbon atoms, more preferably 4 to 8 carbon atoms.
Examples of suitable divalent organic groups include the divalent residues of the following diisocyanates: isophorone diisocyanate (IPDI); 4,4’-methylene-bis-phenylisocyanate (MDI); hexamethylene diisocyanate (HDI); 2,4-tolylene diisocyanate (TDI); bis(4-isocyanatocyclohexyl)methane (H-MDI); 3,5,5-trimethyl-1-isocyanato-3-isocyanatomethylcyclohexane; 1,3-bis(isocyanatomethyl)-cyclohexane. In some preferred embodiments, R^6 is hexan-1,6-diyl or methylene bis(cyclohexan-4-yl). Other diisocyanates are described, for example, in U.S. Pat. Nos. 3,641,199 (Niederhauser et al.); 3,700,643 (Potts et al.); and 3,931,117 (Potts et al.). Many suitable diisocyanates are available commercially (e.g., from Bayer MaterialScience, Pittsburgh, Pennsylvania, or Dow Chemical Co., Midland, Michigan) and/or can be prepared by known methods.

Divalent segments c) are represented by the formula

$$[\text{O}-\text{R}^7]^w\text{O}$$

wherein R^7 represents a divalent organic group having from 2 to 12 carbon atoms, w represents a positive integer (e.g., 1, 2, 3, 4, 5, 8, 10, 12, or 15, or more). Examples of divalent organic groups R^7 include: the divalent groups $-\text{R}^{11}-\text{OCO}-\text{R}^{11}$ wherein each R^{11} independently represents an alkylene group having from 2 to 4 carbon atoms, preferably ethan-1,2-diyl or propan-1,2-diyl; $-\text{R}^{12}-\text{OC}$

wherein R^{12} represents an alkylene group having from 2 to 11 carbon atoms, and alkylene groups having from 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. In some preferred embodiments, R^7 is an alkylene group having 2 to 4 carbon atoms, more preferably ethylene or propylene.

The divalent segments d) are represented by the formula

$$[\text{O}-\text{R}^8\text{C}^{\text{R}^{10}}]$$
wherein each R^8 independently represents an alkylene group having from 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. Examples include methylene, ethylene (i.e., ethan-1,2-diyl), propan-1,2-diyl, butane-1,4-diyl, hexan-1,6-diyl, cyclohaxan-1,4-diyl, and octan-1,8-diyl.

Each R^9 independently represents an alkyl group having from 1 to 4 carbon atoms. Examples include methyl, ethyl, propyl, isopropyl, and butyl groups.

Each R^{10} independently represents H or an alkyl group having from 1 to 8 carbon atom. Examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, hexyl, cyclohexyl, heptyl, and octyl groups.

v represents a positive integer, preferably in the range of from 3 to 50. Examples include, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more.

In some preferred embodiments, the antistatic polyurethane may further comprise divalent units e) corresponding to added chain extenders such as alkanediols and/or alkanediamines having from 1 to 8 carbon atoms, preferably 2 to 4 carbon atoms. For example, the antistatic polymer may further comprise divalent segments such as

$$[O-R^4-O-C-N-R^8-N=O] \quad \text{or} \quad [H-N-R^4-N-C-N-R^8-N=O]$$

wherein R^4 and R^7 are as previously defined.

Divalent monomeric units a) to d) may be present in any amounts. In some preferred embodiments, on a relative molar basis, the antistatic polymer comprises 0.5 to 30 moles of divalent unit a) (preferably 1 to 25 moles), 40 to 70 moles of divalent unit b) (preferably 45 to 65 moles), 1 to 40 moles of divalent unit c) (preferably 6 to 30 moles), and 1 to 10 moles of divalent unit d) (preferably 1 to 6 moles).

Antistatic polyurethanes according to the present disclosure can be made, for example, by reacting at least one diisocyanate with at least one diol, preferably in the presence of a catalyst such as, e.g., dibutyltin dilaurate. Conditions and catalysts for polyurethane formation are well known to those of ordinary skill in the polyurethane art. In some preferred embodiments, a single diisocyanate is used.

The diisocyanate includes a diisocyanate represented by the formula

$$\text{OCN-}R^6\text{-NCO}$$

wherein R^6 is as previously defined. Exemplary suitable diisocyanates include: isophorone diisocyanate (IPDI); 4,4'-methylenediphenylisocyanate (MDI); hexamethylene diisocyanate (HDI); 2,4-tolylene diisocyanate (TDI); bis(4-isocyanatocyclohexyl)methane (H-MDI); 3,5,5-trimethyl-1-isocyanato-3-isocyanatomethylcyclohexane; 1,3-bis(isocyanatomethyl)cyclohexane. Other diisocyanates are described, for example, in U.S. Pat. Nos. 3,641,199 (Niederhauser et al.); 3,700,643 (Potts et al); and
Many suitable diisocyanates are available commercially (e.g., from Bayer MaterialScience, Pittsburgh, Pennsylvania, or Dow Chemical Co., Midland, Michigan) and/or can be prepared by known methods.

A molar excess of the diisocyanate(s) is reacted with one ionic diol represented by the formula:

\[
\text{HO-CHCH}_2\text{-OH}
\]

\[
\text{O=C} \quad \text{R}^5
\]

\[
\text{O=C} \quad \text{R}^4
\]

\[
\text{R}^2 \text{-N} \text{-R}^3
\]

\[
\text{R}^1
\]

\[
\text{(CF}_3\text{SO}_2)_2\text{N}^-
\]

wherein \(R^1\) to \(R^5\) are as previously defined. Diols of this type can be prepared, for example, by sequential reaction of an ionic mono-alcohol with a cyclic anhydride (e.g., malonic anhydride, succinic anhydride, valeric anhydride), and then reaction of that product with glycidol; for example, as described in the examples hereinbelow. Exemplary suitable mono-alcohols and general synthetic methods for their preparation are described in, for example, U.S. Pat. No. 6,706,920 B2 (Lamanna et al.) and include octyldimethyl-2-hydroxyethylammonium bis(trifluoromethanesulfonyl)imide. In one easy method, corresponding quaternary ammonium surfactant mono-alcohols with halide counterions can be ion exchanged to provide the bis(trifluoromethanesulfonyl)imide salts; for example using LiN(SO_2CF_3)_2 from 3M Company.

Reaction of the excess diisocyanate and ionic diol(s) results in an isocyanate-functional first prepolymer, which is then reacted with at least one chain extender diol independently represented by the formula

\[
\text{H} \left(\text{O-R}^7 \right)_w \text{-OH}
\]

wherein \(R^7\) is as previously defined. Exemplary diols include ethylene glycol, propylene glycol, butylene glycol, 1,4-di(hydroxy)diol, 1,6-di(hydroxy)hexane, 1,4-di(hydroxycyclohexane, poly(alkylene oxide) diols (e.g., polyethylene glycol diols and polypropylene glycol diols), polycarbonate diols, polyester diols, polyurethane diols, and combinations thereof. Suitable polyalkylene oxide diols include, for example, polyethylene oxide diols, and polypropylene oxide diols. Suitable polycarbonate diols include, for example, those aliphatic polycarbonate diols marketed by Bayer MaterialScience AG under the trade designation "DESMOPHEN" (e.g., in grades C 1100, C 1200, C 2100, C 2200, and C 3100 XP), by
Perstorp under the trade designation "OXYMER" (e.g., OXYMERM112) and 1,6-hexanediol polycarbonate, and Kuraray America under the trade designation "POLYOL" P-series and C-series.

Preferably, the isocyanate-functional first prepolymer is present in a molar excess relative to the chain extender diol, resulting in excess isocyanate groups relative to the hydroxyl groups of the chain extender diol.

If higher molecular weights are desired, various chain extenders such as, for example, substituted- or unsubstituted-alkanediols and/or alkanediamines having from 1 to 8 carbon atoms, preferably 12 to 4 carbon atoms may be reacted with any terminal isocyanate groups on the antistatic polymers/prepolymers according to the present disclosure. Examples of suitable diols and diamines include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 2,2-dimethylolpropionic acid, 1,2-ethanediamine, 1,3-propanediamine, and 1,6-hexanediamine.

If desired, antistatic polyurethanes according to the present disclosure can be combined with one or more conventional additives commonly used in the art such as, for example, dyes, pigments, antioxidants, ultraviolet stabilizers, flame retardants, surfactants, plasticizers, tackifiers, fillers, and mixtures thereof to provide an antistatic composition. In particular, performance enhancers (for example, polymers such as polybutylene) can be utilized to improve the antistatic characteristics in, for example, melt additive polyolefin applications.

Antistatic polyurethanes according to the present disclosure can be used in coating compositions (e.g., as dissolved or dispersed in water and/or organic solvent) or with various insulating (e.g., dielectric) materials (i.e., coated directly onto an insulating material) provided these antistatic polyurethanes are compatible with the coating and/or insulating materials. Thus, the antistatic polyurethane preferably performs well as an antistat and does not adversely affect other properties of the coating and/or insulating materials.

Antistatic polyurethanes according to the present disclosure may comprise about 0.1 to about 50 weight percent of an antistatic coating composition, based on the solids in the coating composition.

Antistatic coating compositions including an antistatic polyurethane according to the present disclosure can be applied from aqueous or organic solvents (including solutions of binders) to a variety of insulating materials including, for example, fabric, fibers, electronic components, electronic packaging, compact discs, and molded or blown objects (e.g., surgical gowns). The coating composition is preferably water-based, but may contain organic solvent. In some embodiments, the coating composition is solvent-based. Examples of solvents include ethers, esters, ketones, and alcohols.

Insulating materials that are suitable for topical treatment include materials that have relatively low surface and bulk conductivity and that are prone to static charge build-up. These materials include both synthetic and naturally-occurring polymers (or the reactive precursors thereof, for example, monofunctional or multifunctional monomers or oligomers) that can be either organic or inorganic in nature, as well as ceramics, glasses, and ceramic/polymer composites, ceramers, or the reactive precursors thereof.
Insulating materials that are suitable for blending with antistatic polyurethanes according to the present disclosure may include thermoplastic polymers and thermosetting compositions, for example. Suitable synthetic polymers (which can be either thermoplastic or thermoset) include commodity plastics such as, for example, poly(vinyl chloride), polyethylenes (high density, low density, very low density), polypropylene, polybutylene, and polystyrene; engineering plastics such as, for example, polyesters (including, for example, poly(ethylene terephthalate) and poly(butylene terephthalate), polyamides (aliphatic, amorphous, aromatic), polycarbonates (for example, aromatic polycarbonates such as those derived from bisphenol A), polyoxymethylene, polyacrylates and poly(methyl methacrylate), some modified polystyrenes (for example, styrene-acrylonitrile (SAN) and acrylonitrile-butadiene-styrene (ABS) copolymers), high-impact polystyrenes (SB), fluoroplastics, and blends such as poly(phenylene oxide)-polystyrene and polycarbonate-ABS; high-performance plastics such as, for example, liquid crystalline polymers (LCPs), polyetherketone (PEK), polysulfones, polyimides, and polyetherimides; thermosets such as, for example, alkyd resins, phenolic resins, amino resins (for example, melamine and urea resins), epoxy resins, unsaturated polyesters (including so-called vinyl esters), polyurethanes, allylics (for example, polymers derived from allyl diglycol carbonate), fluoroelastomers, and polyacrylates; and the like and blends thereof. Suitable naturally occurring polymers include proteinaceous materials such as silk, wool, and leather; and cellulose materials.

Thermoplastic and thermoset polymers, including those described above, are preferred insulating materials, as these polymers can either be topically treated with the antistat or can be combined with the antistat (in bulk) to form a blend. Melt processing of the antistat into a thermoplastic polymer is preferred, because it eliminates the use of hazardous solvents and volatile organic compounds (VOCs). Preferably, the thermoplastic polymers are melt-processable at elevated temperatures, for example, above about 150 °C, more preferably above about 240 °C, and even more preferably above about 280 °C. Preferred thermoplastic polymers include, for example, polypropylene, polyethylene, polybutylene, copolymers of ethylene and one or more alpha-olefins (for example, poly(ethylene-butene) and poly(ethylene-octene)), polyethers, polyurethanes, polycarbonates, polyetherimides, polyimides, polyetherketones, polysulfones, polystyrenes, ABS copolymers, polyamides, fluoroelastomers, and blends thereof.

The antistatic polyurethane can also be blended with monomers, curable oligomers, or curable polymers followed by polymerization or curing to form a crosslinked thermoset polymer containing the antistat. Preferred thermoset polymers include polyurethanes, epoxy resins, and unsaturated polyesters.

Antistatic polyurethanes according to the present disclosure can further be applied to an insulating material using techniques known in the art such as, but not limited to, dip coating, spray coating, swirl coating, spin coating, extrusion hopper coating, curtain coating, gravure coating, air knife coating, and the like. The coating thickness varies as a function of the insulating material.
SELECT EMBODIMENTS OF THE PRESENT DISCLOSURE

In a first embodiment, the present disclosure provides an ionic diol represented by the formula:

\[
\begin{array}{c}
\text{R}^1\text{N}^+\text{R}^2 \quad \text{O} \quad \text{O} \quad \text{OH} \\
\text{R}^3
\end{array}
\]

\[(\text{CF}_3\text{SO}_2)_2\text{N}^-\]

wherein

- \(\text{R}^1\) represents an alkyl group having from 6 to 18 carbon atoms;
- \(\text{R}^2\) and \(\text{R}^3\) independently represent alkyl groups having from 1 to 4 carbon atoms;
- \(\text{R}^4\) represents an alkylene group having from 2 to 8 carbon atoms; and
- \(\text{R}^5\) represents an alkylene group having from 1 to 8 carbon atoms.

In a second embodiment, the present disclosure provides an ionic diol according to the first embodiment, wherein \(\text{R}^1\) has from 6 to 10 carbon atoms.

In a third embodiment, the present disclosure provides an ionic diol according to the first or second embodiment, wherein \(\text{R}^2\) and \(\text{R}^3\) are independently methyl or ethyl.

In a fourth embodiment, the present disclosure provides an ionic diol according to any one of the first to third embodiments, wherein \(\text{R}^4\) has from 2 to 4 carbon atoms.

In a fifth embodiment, the present disclosure provides an ionic diol according to any one of the first to fourth embodiments, wherein \(\text{R}^5\) has from 2 to 4 carbon atoms.

In a sixth embodiment, the present disclosure provides an antistatic polyurethane having a polymer backbone comprising:

- at least one divalent segment a) represented by the formula

\[
\begin{array}{c}
\text{O}-\text{CHCH}_2-\text{O} \quad \text{CH}_2 \\
\text{O} \\
\text{O}=\text{C} \\
\text{R}^5 \\
\text{O}=\text{C} \\
\text{O} \\
\text{R}^4 \\
\text{R}^2\text{N}^+\text{R}^3 \\
\text{R}^1 \\
(\text{CF}_3\text{SO}_2)_2\text{N}^-
\end{array}
\]

wherein
R^1 represents an alkyl group having from 6 to 18 carbon atoms,

R^2 and R^3 independently represent alkyl groups having from 1 to 4 carbon atoms,

R^4 represents an alkylene group having from 2 to 18 carbon atoms, and

R^5 represents an alkylene group having from 2 to 18 carbon atoms;

divalent segments b) represented by the formula

\[
\begin{align*}
&\begin{array}{c}
\text{O} \\
\text{C} \quad \text{N} \\
\text{R}^6 \quad \text{H} \\
\text{N} \quad \text{C}
\end{array}
\end{align*}
\]

wherein

R^6 represents a divalent organic group having from 2 to 18 carbon atoms,

wherein at least one of the divalent segments b) is adjacent to at least one of the divalent segments a);

divalent segments c) represented by the formula

\[
\begin{align*}
&\begin{array}{c}
\text{O} \\
\text{O} \quad \text{R}^7
\end{array}
\end{align*}
\]

wherein

R^7 represents a divalent organic group having from 2 to 12 carbon atoms, and

w represents a positive integer, wherein at least one of the divalent segments c) is adjacent to at least one of the divalent segments b); and

divalent segments d) represented by the formula

\[
\begin{align*}
&\begin{array}{c}
\text{O} \\
\text{R}^8 \quad \text{C} \\
\text{R}^8 \quad \text{O}
\end{array}
\end{align*}
\]

wherein

each R^8 independently represents an alkylene group having from 1 to 8 carbon atoms,
each R^9 independently represents an alkyl group having from 1 to 4 carbon atoms,
each R^{10} independently represents H or an alkyl group having from 1 to 8 carbon atoms, and

v represents a positive integer, wherein at least one of the divalent segments d) is adjacent to at least one of the divalent segments b), wherein terminal carbonyl groups on adjacent divalent segments are not directly bonded to each other, and wherein terminal -O- groups on adjacent divalent segments are not directly bonded to each other.

In a seventh embodiment, the present disclosure provides an antistatic polyurethane according to the sixth embodiment, wherein R^1 has from 6 to 10 carbon atoms.

In an eighth embodiment, the present disclosure provides an antistatic polyurethane according to the sixth or seventh embodiment, wherein R^2 and R^3 are independently methyl or ethyl.

In a ninth embodiment, the present disclosure provides an antistatic polyurethane according to any one of the sixth to eighth embodiments, wherein R^4 has from 2 to 4 carbon atoms.

In a tenth embodiment, the present disclosure provides an antistatic polyurethane according to any one of the sixth to ninth embodiments, wherein R^5 has from 2 to 4 carbon atoms.

In an eleventh embodiment, the present disclosure provides an antistatic polyurethane according to any one of the sixth to tenth embodiments, wherein R^6 has from 12 to 16 carbon atoms.

In a twelfth embodiment, the present disclosure provides an antistatic polyurethane according to any one of the sixth to eleventh embodiments, wherein R^7 is ethylene or propylene.

In a thirteenth embodiment, the present disclosure provides an antistatic polyurethane according to any one of the sixth to twelfth embodiments, wherein R^8 has from 1 to 4 carbon atoms.

In a fourteenth embodiment, the present disclosure provides a method of making an antistatic polyurethane, the method comprising steps:

a) reacting a first diol with a molar excess of a diisocyanate to form a first prepolymer, wherein the first diol is represented by the formula
wherein

R1 represents an alkyl group having from 6 to 18 carbon atoms;

R2 and R3 independently represent alkyl groups having from 1 to 4 carbon atoms;

R4 represents an alkylen group having from 2 to 18 carbon atoms;

R5 represents an alkylen group having from 2 to 18 carbon atoms; and

wherein the diisocyanate is represented by the formula

\[
\text{OCN-R}^6\text{-NCO}
\]

wherein R6 represents a divalent organic group having from 2 to 18 carbon atoms;

b) reacting the first prepolymer with a second diol to form a second prepolymer, wherein the second diol is represented by the formula

\[
\text{H}\left(\text{O-R}^7\right)_w\text{-OH}
\]

wherein

R7 represents a divalent organic group having from 2 to 12 carbon atoms,

w represents a positive integer; and

c) reacting the second prepolymer with a third diol to form the antistatic polyurethane, wherein the third diol is represented by the formula
wherein

each R^8 independently represents an alkylene group having from 1 to 8 carbon atoms,

each R^9 independently represents an alkyl group having from 1 to 4 carbon atoms,

each R^{10} independently represents H or an alkyl group having from 1 to 8 carbon atoms, and

v represents a positive integer.

In a fifteenth embodiment, the present disclosure provides method according to the fourteenth embodiment, wherein R^1 has from 6 to 10 carbon atoms.

In a sixteenth embodiment, the present disclosure provides an antistatic polyurethane according to the fourteenth or fifteenth embodiment, wherein R^2 and R^3 are independently methyl or ethyl.

In a seventeenth embodiment, the present disclosure provides a method according to the fourteenth to sixteenth embodiments, wherein R^4 has from 2 to 4 carbon atoms.

In an eighteenth embodiment, the present disclosure provides a method according to any one of the fourteenth to seventeenth embodiments, wherein R^5 has from 2 to 4 carbon atoms.

In a nineteenth embodiment, the present disclosure provides a method according to any one of the fourteenth to eighteenth embodiments, wherein R^6 has from 12 to 16 carbon atoms.

In a twentieth embodiment, the present disclosure provides a method according to any one of the fourteenth to nineteenth embodiments, wherein R^7 is ethylene or propylene.

In a twenty-first embodiment, the present disclosure provides a method according to any one of the fourteenth to twentieth embodiments, wherein R^8 has from 1 to 4 carbon atoms.

In a twenty-second embodiment, the present disclosure provides a method according to any one of the fourteenth to twenty-first embodiments, wherein step c) provides a third prepolymer, the method
further comprising d) reacting the third prepolymer with at least one of an alkanediol or an alkanediamine having from 2 to 8 carbon atoms.

In a twenty-fifth embodiment, the present disclosure provides a method according to any one of the seventeenth to twenty-fourth embodiments, wherein R9 has from 12 to 16 carbon atoms.

In a twenty-third embodiment, the present disclosure provides an antistatic polyurethane made according to the method of any one of the fourteenth to twenty-second embodiments.

Objects and advantages of this disclosure are further illustrated by the following non-limiting examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this disclosure.

EXEMPLARY EXAMPLES

Unless otherwise noted, all parts, percentages, ratios, etc. in the Examples and the rest of the specification are by weight.

TABLE OF MATERIALS USED IN THE EXAMPLES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-butanediol</td>
<td>Aldrich Chemical Company, Milwaukee, Wisconsin</td>
</tr>
<tr>
<td>C-1090 POLYOL</td>
<td>Liquid polycarbonate polyol (Mw = 1000) from Kuraray America, Houston, Texas as POLYOL C-1090</td>
</tr>
<tr>
<td>DBTDL</td>
<td>dibutyltin dilaurate from Sigma-Aldrich Chemical Company, St. Louis, Missouri</td>
</tr>
<tr>
<td>DMPA</td>
<td>2,2-dimethylolpropionic acid, MW = 134.13 g/mol, Aldrich Chemical Company</td>
</tr>
<tr>
<td>ethylenediamine</td>
<td>Alfa Aesar, Ward Hill, Massachusetts</td>
</tr>
<tr>
<td>F-ODMHEA</td>
<td>octyldimethyl-2-hydroxyethylammonium bis-(trifluoromethanesulfonyl)imide prepared generally as described in Example 1 of U.S. Pat. No. 6,706,920 B2 (Lamanna et al.)</td>
</tr>
<tr>
<td>H12MDI</td>
<td>bis(4-isocyanatocyclohexyl)methane, MW = 262.35 g/mol, from Bayer MaterialScience, Pittsburgh, Pennsylvania as DESMODUR W</td>
</tr>
<tr>
<td>MEK</td>
<td>methyl ethyl ketone, Alfa-Aesar</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene terephthalate film, 2 mils (50 micrometers) thick from 3M Company</td>
</tr>
<tr>
<td>succinic anhydride</td>
<td>Aldrich Chemical Company</td>
</tr>
<tr>
<td>triethylamine</td>
<td>Aldrich Chemical Company</td>
</tr>
</tbody>
</table>
Ymer 120 Polymeric non-ionic dispersing diol, having the formula

\[
\text{HO} - \text{O} - \text{CH}_3
\]

\[\text{MW} \sim 1000 \text{ g/mol, obtained YMER N-120 from Perstorp Holding AB, Malmo, Sweden}\]

All other materials were, or can be, obtained from Aldrich Chemical Company, Milwaukee, Wisconsin.

5 **Test Method for Measuring Surface Resistivity and Volume Resistivity**

Measurements were done on a Keithley 6517A/8009 Resistivity Test Fixture (obtained from Keithley Instruments, Inc., Cleveland, Ohio) using ASTM D257-07 "Standard Test Methods for DC Resistance or Conductance of Insulating Materials" protocol. The applied voltage was 100 V. The upper limit of surface resistivity measurable by this setup is \(10^{17} \Omega/\square\) (i.e., ohms per square). All tests were done under ambient conditions.

10 **Test Method for Antistatic Testing**

Static decay measurements were done on a Model 406C Electro-tech static decay meter (obtained from Electro-Tech Systems, Inc., Glenside, Pennsylvania) using reference JKEHR008-018. Positively and negatively biased potentials of 5 kV were applied separately to each test sample, and the times required for the accumulated static charges to decay to 10% of their initial values were measured, up to a maximum of 60 sec. All tests were done under ambient conditions.
F-ODMHEA (46.2 g, 0.1 mol, $M_w = 462$ g/mol) and succinic anhydride (10.31 g, 0.102 mol, $M_w = 100.07$ g/mol) were mixed with 50 g of propylene glycol mono-methyl ether acetate (solvent), and heated to reflux for 6 hours. Glycidol (7.56 g, 0.102 mol, $M_w = 74.08$ g/mol) was added, and the mixture heated to reflux for another 4 hours. The solvent was stripped off, and IONIC DIOL A was obtained.

COMPARATIVE EXAMPLES A (CEA) AND B (CEB)

A polyurethane dispersion was prepared as follows. A 250 mL four-necked round bottom flask equipped with a mechanical stirrer, thermometer, condenser, and nitrogen inlet was charged with C-1090 POLYOL (28.96 g) and H12MDI (16.03 g). The reaction was carried out with stirring at 78 °C in the presence of DBDTL (0.01 wt. % based on the total solid). After 1 hour of reaction, 5.0 g of Ymer-120, 20 g MEK, and 1.62 g of F-ODMHEA were added. The reaction was continued for about two hrs. The resulting prepolymers were cooled to room temperature.

Aqueous dispersions of the prepolymers were made by slowly adding water to the polyurethane prepolymer with vigorous stirring. Once the prepolymer was dispersed, ethylenediamine (1.20 g in 5.0 g of water) was slowly added with stirring for further chain extension. The MEK was removed at 40°C using a rotary evaporator, resulting in a dispersion of Antistatic Polyurethane A having a solids content of 30% by weight as Comparative Example A coating solution.

Comparative Example B coating solution was prepared in the same manner as Example 1, except that the coating mixture did not contain any F-ODMHEA.

Comparative Examples A and B solutions were coated on a PET film using #10 Mayer rod (nominal wet thickness = 0.23 mm), and then the coatings were cured in a 120 °C oven for 3 minutes. The coated samples were tested (two samples per Example) for their antistatic properties as described above. Table 1 (below) reports the results, wherein "WNC" means would not charge.
A polyurethane dispersion was prepared as follows. A 250 mL tour-necked round bottom flask equipped with a mechanical stirrer, thermometer, condenser and nitrogen inlet was charged with 50.3 g of C-1090 POLYOL, 3.0 g of DMPA, 5.59 g of Ymer 120, and 41.09 g of H12MDI. The reaction was earned out under stirring at 78 °C in the presence of DBD'TT. (0.01 wt % based on the total solids). After 1 hour reaction, 2.15 g of 1,4-butanediol, 20 g of MEK, and 1.62 g of F-ODMHEA were added. The reaction was carried out for about 2 hours, cooled to room temperature, and neutralized with 2.27 g of triethylamine over 30 minutes resulting in a prepolymer.

Aqueous dispersions were accomplished by slowly adding water to the prepolymer with vigorous stirring. Once the prepolymer was dispersed, ethylenediamine (2.86 g in 5.0 g water) was slowly added for further chain extension under the stirring. MEK was removed at 40 °C on a rotary evaporator, resulting in a polyurethane dispersion with a solid content of 30% by weight as Comparative Example C coating solution.

Comparative Example D coating solution was prepared in the same manner as Comparative Example C coating solution, except that it did not contain F-ODMHEA.
Comparative Examples C and D solutions were coated on a PET film using #10 Mayer bar, and then the coatings were cured in a 120 °C oven for 3 minutes. The coated samples were tested for their antistatic properties as described above. Table 2 (below) reports the results, wherein “WNC” means would not charge.

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>SAMPLE</th>
<th>SIDE</th>
<th>S_{R_c} ohm/square</th>
<th>V_{R_c} ohm-cm</th>
<th>STATIC DECAY, seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC</td>
<td>1</td>
<td>coated</td>
<td>2.0×10^{13}</td>
<td>2×10^{15}</td>
<td>47.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uncoated</td>
<td>1×10^{15}</td>
<td>1×10^{16}</td>
<td>38.16</td>
</tr>
<tr>
<td>CED</td>
<td>1</td>
<td>A</td>
<td>1.5×10^{16}</td>
<td>5×10^{16}</td>
<td>WNC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>4×10^{16}</td>
<td>3×10^{16}</td>
<td>WNC</td>
</tr>
</tbody>
</table>

EXAMPLE 1

H12MDI (20.65 g), C-1090 POLYOL (21.14 g), Ymer 120 (2.5 g), and DBTDL (0.03 g) were charged into a 250 mL flask and heated to 80°C for 2 hours under stirring. Then, 3.2 g of 1,4-butanediol, 10.0 g of IONIC DIOL A, 50.0 g of MEK were added and the mixture was held at 70-80 °C for 2 hours. A polyurethane solution with a high viscosity was obtained. The coating solution was coated on a PET film using a #10 Mayer rod, and then the coating was cured in a 120 °C oven for 3 minutes.

The coated samples (two samples per Example) were tested for their antistatic properties as described above. Table 3, below summarizes the results.

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>SAMPLE</th>
<th>SIDE</th>
<th>S_{R_c} ohm/square</th>
<th>V_{R_c} ohm-cm</th>
<th>STATIC DECAY, seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX1</td>
<td>1</td>
<td>coated</td>
<td>2.9×10^{12}</td>
<td>2×10^{15}</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uncoated</td>
<td>5×10^{15}</td>
<td>3×10^{15}</td>
<td>5.91</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>coated</td>
<td>2.1×10^{12}</td>
<td>6×10^{15}</td>
<td>5.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uncoated</td>
<td>2×10^{15}</td>
<td>5×10^{15}</td>
<td>5.03</td>
</tr>
</tbody>
</table>

EXAMPLE 2 (EX2)

H12MDI (18.93 g), 10.0 g of C-1090 POLYOL, 2.5 g of Ymer 120, and 0.03 g of DBTDL were charged into a 250 mL flask, and heated to 80°C for 2 hours with stirring. Then, 2.94 g of 1,4-butanediol, 15 g of IONIC DIOL A, and 50.0 g of MF.K were charged and the mixture was held at 70-
S0°C for 2 hours. A polyurethane solution with a high viscosity was obtained. The solution was coated on a PET film using #10 Mayer bar, and then the coating was cured in a 120 °C oven for 3 minutes.

The coated samples (two samples per Example) were tested for their antistatic properties as described above. Table 4 (below) reports the results.

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>SAMPLE</th>
<th>SIDE</th>
<th>S_R' ohm/square</th>
<th>V_R' ohm-cm</th>
<th>STATIC DECAY, seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX2</td>
<td>1</td>
<td>coated</td>
<td>1.3 x 10^{12}</td>
<td>2 x 10^{16}</td>
<td>3.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uncoated</td>
<td>3 x 10^{16}</td>
<td>2 x 10^{15}</td>
<td>3.73</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>coated</td>
<td>1.4 x 10^{12}</td>
<td>4 x 10^{15}</td>
<td>3.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uncoated</td>
<td>5 x 10^{15}</td>
<td>3 x 10^{15}</td>
<td>3.58</td>
</tr>
</tbody>
</table>

All cited references, patents, and patent applications in the above application for letters patent are herein incorporated by reference in their entirety in a consistent manner. In the event of inconsistencies or contradictions between portions of the incorporated references and this application, the information in the preceding description shall control. The preceding description, given in order to enable one of ordinary skill in the art to practice the claimed disclosure, is not to be construed as limiting the scope of the disclosure, which is defined by the claims and all equivalents thereto.
What is claimed is:

1. An ionic diol represented by the formula:

 \[
 R^2 \quad O \quad O \quad H
 \]

 \[
 R^1 - N - R^4 - O C - R^5 - C O C H_2 C H_2 C H_2 O H
 \]

 \[
 (C F_3 S O_2)_2 N^- \]

 wherein

 - \(R^1 \) represents an alkyl group having from 6 to 18 carbon atoms;
 - \(R^2 \) and \(R^3 \) independently represent alkyl groups having from 1 to 4 carbon atoms;
 - \(R^4 \) represents an alkylene group having from 2 to 8 carbon atoms; and
 - \(R^5 \) represents an alkylene group having from 1 to 8 carbon atoms.

2. The ionic diol of claim 1, wherein \(R^1 \) has from 6 to 10 carbon atoms.

3. The ionic diol of claim 1 or 2, wherein \(R^2 \) and \(R^3 \) are independently methyl or ethyl.

4. The ionic diol of any one of claims 1 to 3, wherein \(R^4 \) has from 2 to 4 carbon atoms.

5. The ionic diol of any one of claims 1 to 4, wherein \(R^5 \) has from 2 to 4 carbon atoms.

6. An antistatic polyurethane having a polymer backbone comprising:

 at least one divalent segment a) represented by formula
wherein

R^1 represents an alkyl group having from 6 to 18 carbon atoms,

R^2 and R^3 independently represent alkyl groups having from 1 to 4 carbon atoms,

R^4 represents an alkylene group having from 2 to 18 carbon atoms, and

R^5 represents an alkylene group having from 2 to 18 carbon atoms;

divalent segments b) represented by the formula

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\text{N} \\
\text{R}^{6} \\
\text{N} \\
\text{C}
\end{array}
\]

wherein

R^6 represents a divalent organic group having from 2 to 18 carbon atoms,

wherein at least one of the divalent segments b) is adjacent to at least one of the divalent segments a);

divalent segments c) represented by the formula

\[
\left(\text{O-}R^7\right)_{w}\text{O}
\]

wherein

R^7 represents a divalent organic group having from 2 to 12 carbon atoms,
w represents a positive integer, wherein at least one of the divalent segments c) is adjacent to at least one of the divalent segments b); and
divalent segments d) represented by the formula

```
R^10
O
R^8
C
R^8
O

R^8
O
CH_2
CH_2
O
R^9
```

wherein

each R^8 independently represents an alkylene group having from 1 to 8 carbon atoms,
each R^9 independently represents an alkyl group having from 1 to 4 carbon atoms,
each R^{10} independently represents H or an alkyl group having from 1 to 8 carbon atoms, and

v represents a positive integer, wherein at least one of the divalent segments d) is adjacent to at least one of the divalent segments b), wherein terminal carbonyl groups on adjacent divalent segments are not directly bonded to each other, and wherein terminal -O- groups on adjacent divalent segments are not directly bonded to each other.

7. The antistatic polyurethane of claim 6, wherein R^1 has from 6 to 10 carbon atoms.

8. The antistatic polyurethane of claim 6 or 7, wherein R^2 and R^3 are independently methyl or ethyl.

9. The antistatic polyurethane of any one of claims 6 to 8, wherein R^4 has from 2 to 4 carbon atoms.
10. The antistatic polyurethane of any one of claims 6 to 9, wherein R^5 has from 2 to 4 carbon atoms.

11. The antistatic polyurethane of any one of claims 6 to 10, wherein R^6 has from 12 to 16 carbon atoms.

12. The antistatic polyurethane of any one of claims 6 to 11, wherein R^7 is ethylene or propylene.

13. The antistatic polyurethane of any one of claims 6 to 12, wherein R^8 has from 1 to 4 carbon atoms.

14. A method of making an antistatic polyurethane, the method comprising steps:
 a) reacting a first diol with a molar excess of a diisocyanate to form a first prepolymer, wherein the first diol is represented by either of formula

 \[
 \text{HO-CHCH}_{2}\text{-OH} \\
 \text{O} \\
 \text{O=C} \\
 \text{O} \\
 \text{R}^5 \\
 \text{R}^4 \\
 \text{R}^2\text{-N}^+\text{-R}^3 \\
 \text{R}^1 \\
 \text{(CF}_3\text{SO}_2)\text{N}^- \\
 \]

 wherein

 R^1 represents an alkyl group having from 6 to 18 carbon atoms;

 R^2 and R^3 independently represent alkyl groups having from 1 to 4 carbon atoms;

 R^4 represents an alkenylene group having from 2 to 18 carbon atoms

 R^5 represents an alkenylene group having from 2 to 18 carbon atoms; and
wherein the diisocyanate is represented by the formula

\[
\text{OCN-R}^6\text{-NCO}
\]

wherein \(R^6\) represents a divalent organic group having from 2 to 18 carbon atoms;

b) reacting the first prepolymer with a second diol to form a second prepolymer, wherein the second diol is represented by the formula

\[
\text{H-}
\left(\text{O-}R^7\text{-}\right)_w\text{OH}
\]

wherein

\(R^7\) represents a divalent organic group having from 2 to 12 carbon atoms,

\(w\) represents a positive integer; and

c) reacting the second prepolymer with a third diol to form the antistatic polyurethane, wherein the third diol is represented by the formula

\[
\text{HO-}
\left(\text{R}^8\right)_v
\text{R}^8\text{-R}^{10}\text{-OH}
\]

wherein

\(R^8\) independently represents an alkylene group having from 1 to 8 carbon atoms,

\(R^9\) independently represents an alkyl group having from 1 to 4 carbon atoms,

\(R^{10}\) independently represents \(H\) or an alkyl group having from 1 to 8 carbon atoms, and

\(v\) represents a positive integer.
15. The method of claim 14, wherein R^1 has from 6 to 10 carbon atoms.

16. The method of claim 14 or 15, wherein R^2 and R^3 are independently methyl or ethyl.

17. The method of any one of claims 14 to 16, wherein R^4 has from 2 to 4 carbon atoms.

18. The method of any one of claims 14 to 17, wherein R^5 has from 2 to 4 carbon atoms.

19. The method of any one of claims 14 to 18, wherein R^6 has from 12 to 16 carbon atoms.

20. The method of any one of claims 14 to 19, wherein R^7 is ethylene or propylene.

21. The method of any one of claims 14 to 20, wherein R^8 has from 1 to 4 carbon atoms.

22. The method of any one of claims 14 to 21, wherein step c) provides a third prepolymer, the method further comprising d) reacting the third prepolymer with at least one of an alkanediol or an alkanediamine having from 2 to 8 carbon atoms.

23. An antistatic polyurethane made according to the method of any of claims 14 to 22.
A. CLASSIFICATION OF SUBJECT MATTER

INV. C08G18/48 C09K3/16 C08G18/75 C08K5/00 C08G18/08
C09D175/04 C08G18/32 C08K5/19 C08G18/38 C08G18/44
D06M15/576 C08G18/40 C07C311/09

According to International Patent Classification (IPC) and both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

- C08G
- C08K
- C09K
- C09D
- D06M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:

Electronic database consulted during the international search (name of data base and, where practicable, search terms used):

- EPO-Internal
- WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed
- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **AU** document member of the same patent family

Date of the actual completion of the international search: 10 March 2016

Date of mailing of the international search report: 11/04/2016

Name and mailing address of the ISA/Authorized officer:

- European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
- Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016
- Neugebauer, Ute
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP 2009144051 A</td>
<td>02-07-2009</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 2005120158 A</td>
<td>12-05-2005</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2385476 AI 12-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60018597 DI 14-04-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60018597 T2 29-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1232206 AI 21-08-2002</td>
</tr>
<tr>
<td>JP 2013076081 A</td>
<td>25-04-2013</td>
<td>JP 2013253254 A 19-12-2013</td>
</tr>
<tr>
<td>TW 1230176 B</td>
<td>01-04-2005</td>
<td>TW 1230176 B 01-04-2005</td>
</tr>
<tr>
<td>Wo 0125326 AI</td>
<td>12-04-2001</td>
<td></td>
</tr>
</tbody>
</table>