发明名称
一种有色半透明油墨

摘要
一种有色半透明油墨，各组分的重量配比为，有色油墨：光油：固化剂：稀释剂 50：10～40：25～40：10～20。本发明的目的是提供一种有色半透明油墨，具有成本低，对可见光有较高的吸光性，从而改变可见光的透射率，达到在没有光源或弱光源的时候，光将无法透过基底材料，但在强背光源的前提下，光可以透过，并显示出图案。
1. 一种有色半透明油墨，其特征在于，各组分的重量配比为，有色油墨：光油：固化剂：稀释剂 50：10～40：25～40：10～20。

2. 根据权利要求1所述的一种有色半透明油墨，其特征在于，有色油墨、光油、固化剂和稀释剂之间的重量配比为 50：20：30：12。

3. 根据权利要求1或2所述的一种有色半透明油墨，其特征在于，有色油墨为精工1000系列彩色油墨，光油为日本精工800光油，固化剂为日本精工1000硬性剂，稀释剂为深圳市日正天783开油水。

4. 根据权利要求3所述的一种有色半透明油墨，其特征在于，其中有色油墨中的黑色油墨选用的是精工765透明黑。
说明书

一种有色半透明油墨

技术领域
[0001] 本发明涉及一种半透明油墨，该半透明油墨被印刷到物体的表面上，以利用对光的吸收表现出不同透过率，达到了在没有光源或弱光源的时候，光将无法透过基底材料，但在强背光源的前提下，光可以透过，并显示出图案的目的。

背景技术
[0002] 玻璃触摸屏的应用非常广泛与普及，触摸面板的控制菜单按钮，在非使用状态下为了不影响外观，一般采取不透明的处理方式，正正常情况下与旁边的黑框颜色同，当背底有光源透射时，才显示出操作的按键图案效果，而一般采取的不透明的处理方式主要分为以下几大类：1，真空镀膜或离子溅射镀膜的方式，2，贴散光片的方式，3，进口半透明油。但是，第一和第二种方式，在背底没有光源透射时所表现出来的外观效果较差，肉眼在正常情况下可以直接观看到产品的操作图案，起不到正常的隐藏效果，影响产品的外观，并且镀膜的方式成本非常高，效率低，第三种方式，一是价格成本高，不利于产品的低成本化要求，二是产品核心技术受国外供应商垄断，不利于国内的技术提升，三是产品颜色单一，无法满足外观颜色多元化个性化的需求。

发明内容
[0003] 本发明的目的是提供一种有色半透明油墨，具有成本低，对可见光有较高的吸收率，从而改变可见光的透过率，达到在没有光源或弱光源的时候，光将无法透过基底材料，但在强背光源的前提下，光可以透过，并显示出图案。
[0004] 本发明的目的是通过下述方式实现的：
[0005] 一种有色半透明油墨，各组分的重量配比为，有色油墨：光油：固化剂：稀释剂50：10～20：25～40：10～20。
[0006] 通过本发明所设定的示例，具有良好的吸收光线的效果。
[0007] 所述的有色油墨、光油、固化剂和稀释剂之间的优选的重量配比为50：20：30：12。
[0008] 有色油墨为精工1000系列有色油墨，光油选用的是日本精工800光油。
[0009] 固化剂优选为日本精工1000硬化剂；其主要成分包含有乙二醇一丁基醚，环己酮和聚甲基酸酯。
[0010] 稀释剂优选为深圳市日正天789开油水，其主要成分是异沸尔酮。
[0011] 有色油墨中的黑色油墨选用的是精工765透明黑。
[0012] 根据产品不同的透过率的要求，发明人通过利用油墨对光的吸收特性，经过长期的摸索和实践，才能归纳得到本发明的涂布方案，即将固化剂和稀释剂与有色油墨、光油组合按一定的配比要求混合得到本发明的有色半透明油墨。并经过本发明涂布各组分之间的配比来达到调整可见光透过率的目的。
[0013] 本发明通过以上成分的有效配比所具有的优势其突出的效果表现为：在没有光源
或弱光源的时候，光将无法透过基底材料，但在强背光源的前提下，光可以透过。对可见光有较高的吸收率可达到 2.8。

[0014] 所述有色半透明油墨可以通过移印机、丝网印刷机、喷墨及人工手涂的方式被印刷或喷涂到物体（即基底材料）的表面上，并经过烘烤固化，然后达到我们所需求的低透过率的要求。

[0015] 基底材料为无色或有色透明玻璃材料。加工之后的基底材料可以用于手机、电脑屏幕、PDA、导航仪等操作面板。

[0016] 当光入射到所述物体的表面上时，入射到透明油墨上的光经过吸收之后透过物体的光通量将大幅度降低，因此，在没有光源或弱光的时候，光将无法透过物体。

附图说明
[0017] 通过以下结合附图进行的详细描述，本发明的特定示例性实施例的上述和其它方面、特点和优点将会变得更加清楚，其中：

[0018] 图 1 为本发明实施在玻璃材料上的示意图；1- 玻璃基底，2- 半透明油，3- 入射光，4- 出射光。

[0019] 图 2 为实施例 1 的所用透明无色玻璃的可见光透过率图。

[0020] 图 3 为实施例 2 的所用透明无色玻璃的可见光透过率图。

[0021] 图 4 为实施例 3 的所用透明无色玻璃的可见光透过率图。

[0022] 图 5 为实施例 4 的所用透明无色玻璃的可见光透过率图。

[0023] 图 6 为实施例 5 的所用透明无色玻璃的可见光透过率图。

具体实施方式
[0024] 参照附图提供以下描述来帮助全面理解由权利要求及其等同物限定的本发明的示例性实施例。以下描述包括各种特定的细节以帮助所述理解，但是这些细节应该被理解为只是示例性的。因此，本领域普通技术人员应该理解，在不脱离本发明的范围和精神的情况下，可对在此描述的实施例进行各种改变和修改。另外，为了清楚和简明起见，省略对公知的功能和结构的描述。

[0025] 参照图 1，此图为本发明的理论基础，正常来说，玻璃的可见光的透过率在 90% 以上，我们可以采取覆盖半透明油的方式来降低可见光的透过率，而半透明油可以按照本发明的配比进行透过率和颜色的调整，以达到透光区域的颜色在无背光源的条件下与周边颜色相同，当有背光源透过时，又可以达到显示出操作区图案效果的目的及功能。

[0026] 在本发明具体的实施方式中选用的是精工 1000 系列有油墨，其中黑色油墨选用的是精工 765 透明黑，光油选用的是日本精工 800 光油，固化剂选用的是日本精工 1000 硬化剂，其主要成分包含有乙二醇一丁基醚，环己酮，聚氨酸胺树脂，稀释剂为深圳市日正天 783 开油水，其主要成分是异佛尔酮。

[0027] 在以下实施例中，我们只以黑色油墨为实施例来作本发明相关性能的陈述及说明。

[0028] 实施例 1

[0029] 有色油墨：光油：固化剂：稀释剂 = 50 : 15 : 28 : 10,
[0030] 有色油墨、光油、固化剂、稀释剂都有深圳日正天科技公司购买

[0031] 可见光透过率参见图 2。

<table>
<thead>
<tr>
<th>光谱 (nm)</th>
<th>透过率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>2.4</td>
</tr>
<tr>
<td>430</td>
<td>3.2</td>
</tr>
<tr>
<td>480</td>
<td>4.3</td>
</tr>
<tr>
<td>530</td>
<td>5.6</td>
</tr>
<tr>
<td>580</td>
<td>6.9</td>
</tr>
<tr>
<td>630</td>
<td>8.4</td>
</tr>
</tbody>
</table>

[0033]

<table>
<thead>
<tr>
<th>光谱 (nm)</th>
<th>透过率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>680</td>
<td>9.7</td>
</tr>
<tr>
<td>730</td>
<td>11.3</td>
</tr>
<tr>
<td>780</td>
<td>12.8</td>
</tr>
</tbody>
</table>

[0034] 实施例 2

[0035] 有色油墨：光油：固化剂：稀释剂 = 50 : 20 : 30 : 12。可见光透过率参见图 3。

[0036]

<table>
<thead>
<tr>
<th>光谱 (nm)</th>
<th>透过率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>4.2</td>
</tr>
<tr>
<td>430</td>
<td>5.4</td>
</tr>
<tr>
<td>480</td>
<td>6.7</td>
</tr>
<tr>
<td>530</td>
<td>8.2</td>
</tr>
<tr>
<td>580</td>
<td>9.8</td>
</tr>
<tr>
<td>630</td>
<td>11.5</td>
</tr>
<tr>
<td>680</td>
<td>13.0</td>
</tr>
<tr>
<td>730</td>
<td>14.7</td>
</tr>
<tr>
<td>780</td>
<td>16.3</td>
</tr>
</tbody>
</table>

[0037] 实施例 3
有色油墨：光油：固化剂：稀释剂 = 50 : 25 : 32 : 14。可见光透过率参见图 4。

透过率数据

<table>
<thead>
<tr>
<th>波长 (nm)</th>
<th>透过率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>6.3</td>
</tr>
<tr>
<td>430</td>
<td>7.7</td>
</tr>
<tr>
<td>480</td>
<td>9.3</td>
</tr>
<tr>
<td>530</td>
<td>10.5</td>
</tr>
<tr>
<td>580</td>
<td>12.7</td>
</tr>
<tr>
<td>630</td>
<td>14.5</td>
</tr>
<tr>
<td>680</td>
<td>16.1</td>
</tr>
<tr>
<td>730</td>
<td>17.5</td>
</tr>
<tr>
<td>780</td>
<td>19.2</td>
</tr>
</tbody>
</table>

实施例 4

有色油墨：光油：固化剂：稀释剂 = 50 : 30 : 34 : 16。可见光透过率参见图 5。

<table>
<thead>
<tr>
<th>波长 (nm)</th>
<th>透过率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>6.4</td>
</tr>
<tr>
<td>430</td>
<td>7.8</td>
</tr>
<tr>
<td>480</td>
<td>9.5</td>
</tr>
<tr>
<td>530</td>
<td>11.3</td>
</tr>
<tr>
<td>580</td>
<td>13.1</td>
</tr>
<tr>
<td>630</td>
<td>15.0</td>
</tr>
<tr>
<td>680</td>
<td>16.7</td>
</tr>
<tr>
<td>730</td>
<td>18.6</td>
</tr>
<tr>
<td>780</td>
<td>20.3</td>
</tr>
</tbody>
</table>
实施例 5

有色油墨：光油：固化剂：稀释剂 = 50 : 35 : 36 : 18。可见光透过率参见图 6。

<table>
<thead>
<tr>
<th>光谱 (nm)</th>
<th>透过率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>8.5</td>
</tr>
<tr>
<td>430</td>
<td>10.1</td>
</tr>
<tr>
<td>480</td>
<td>12.1</td>
</tr>
<tr>
<td>530</td>
<td>14.1</td>
</tr>
<tr>
<td>580</td>
<td>16.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>光谱 (nm)</th>
<th>透过率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>18.1</td>
</tr>
<tr>
<td>680</td>
<td>19.9</td>
</tr>
<tr>
<td>730</td>
<td>21.8</td>
</tr>
<tr>
<td>780</td>
<td>23.7</td>
</tr>
</tbody>
</table>

虽然已经参照本特定示例性实施例显示并描述了本发明，但是本领域技术人员应该理解，在不脱离由权利要求及其等同物限定的本发明的范围和精神的情况下，可在此做出形式上和细节上的各种改变。
图 6