wo 2016/053628 A1 I} A1 0O 0O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/053628 Al

7 April 2016 (07.04.2016) WIPOIPCT
(51) International Patent Classification: (74) Agent: CHENG, Guanyao; Shumaker & Sieffert, P.A.,
GO6T 1/20 (2006.01) 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(21) International Application Number: (US).
PCT/US2015/050465 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
16 September 2015 (16.09.2015) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: Enghsh DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
14/504,047 1 October 2014 (01.10.2014) Us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, 84, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
ATTN: International IP Administration, 5775 Morchouse . o
Drive, San Diego, California 92121-1714 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: KOTTILINGAL, Sudeep Ravi; 5775 More- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

house Drive, San Diego, California 92121-1714 (US).
KHAN, Moinul; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US). SHARP, Colin Christopher;
5775 Morehouse Drive, San Diego, California 92121-1714

(US).

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: TRANSPARENT PIXEL FORMAT CONVERTER

PROCESSOR
26

F 3

TFC
24

F Y

A 4

GRAPHICS MEMORY
4

—~ 4

FIG. 3

(57) Abstract: A transparent format
converter (TFC) may determine that a
request by at least one processor for
graphics data stored in graphics
memory is indicative of a request for
graphics data in a first data format. The
TFC may retrieve the graphics data in a
second data format from the graphics
memory based at least in part on the re-
quest for the graphics data in the
graphics memory. The TFC may con-
vert the retrieved graphics data from
the second data format to the first data
format. The TFC may store the conver-
ted graphics data in the first data
format into a memory that is accessible
by the at least one processor.

WO 2016/053628 A1 |IIIWAT 00T 00O A AR

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))
a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

WO 2016/053628 PCT/US2015/050465

1
TRANSPARENT PIXEL FORMAT CONVERTER

TECHNICAL FIELD

[0001] This disclosure relates to a transparent pixel format converter.

BACKGROUND
[0002] Graphics data, such as a graphics image or frames of a video, may be made up of
pixels. Pixel data, such as information regarding pixels of the graphics data, may be
arranged according to a specified pixel format, which may define the number of bits of
memory associated with a pixel of data, and which may also define the order of the
color components within the pixel of data. Pixel data arranged according to a specified
pixel format in memory may be compressed according to the pixel format and may also
be arranged in memory locations of the memory according to the pixel format.
Typically, pixel formats may be classified as linear pixel formats or tile-based pixel

formats.

SUMMARY
[0003] In general, the present disclosure relates to a transparent format converter (TFC)
that transparently converts between different pixel formats, such that the TFC may
provide processing cores with a view of graphics data according to pixel formats
supported by the processing cores, regardless of the underlying pixel format of the
graphics data. The TFC may enable the processor cores to treat the graphics data as if
the graphics data are arranged according to the pixel formats supported by the processor
cores.
[0004] In one aspect, the present disclosure is directed to a method for pixel processing.
The method may include determining, by a transparent format converter (TFC), that a
request by at least one processor for data stored in a first data buffer is indicative of a
request for the data in a first data format. The method may further include retrieving, by
the TFC, the data in a second data format from the first data buffer based at least in part
on the request for data stored in the first data buffer. The method may further include
converting, by the TFC, the retrieved data from the second data format to the first data
format. The method may further include storing, by the TFC, the converted data in the

first data format into a second data buffer that is accessible by the at least one processor.

WO 2016/053628 PCT/US2015/050465

2
[0005] In another aspect, the present disclosure is directed to a computing device. The
computing device may include a first data buffer. The computing device may further
include a second data buffer. The computing device may further include at least one
processor. The computing device may further include a transparent format converter
configured to: determine that a request by the at least one processor for data stored in
the first data buffer is indicative of a request for the data in a first data format; retrieve
the data in a second data format from the first data buffer based at least in part on the
request for data stored in the first data buffer; convert the retrieved data from the second
data format to the first data format; and store the converted data in the first data format
into the second data buffer that is accessible by the at least one processor.
[0006] In another aspect, the present disclosure is directed to an apparatus. The
apparatus may include means for determining that a request by at least one processor for
data stored in a first data buffer is indicative of a request for the data in a first data
format. The apparatus may further include means for retrieving the data in a second data
format from the first data buffer based at least in part on the request for data stored in
the first data buffer. The apparatus may further include means for converting the
retrieved data from the second data format to the first data format. The apparatus may
further include means for storing the converted data in the first data format into a second
data buffer that is accessible by the at least one processor.
[0007] In another aspect, the present disclosure is directed to a computer-readable
medium containing instructions. The instructions cause a programmable processor to:
determine, by a transparent format converter (TFC), that a request by at least one
processor for data stored in a first data buffer is indicative of a request for the datain a
first data format; retrieve, by the TFC, the data in a second data format from the first
data buffer based at least in part on the request for data stored in the first data buffer;
convert, by the TFC, the retrieved data from the second data format to the first data
format; and store, by the TFC, the converted data in the first data format into a second
data buffer that is accessible by the at least one processor.
[0008] The details of one or more aspects of the present disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the present disclosure will be apparent from the description and drawings,

and from the claims.

WO 2016/053628 PCT/US2015/050465

3

BRIEF DESCRIPTION OF DRAWINGS
[0009] FIG. 1 is a block diagram illustrating an example computing device that may be
configured to implement one or more aspects of this disclosure.
[0010] FIG. 2 is a block diagram illustrating example implementations of the processor,
the GPU, and the system memory of FIG. 1 in further detail.
[0011] FIG. 3 is a conceptual diagram illustrating an example functionality of the TFC
of FIG. 2.
[0012] FIG. 4 is a block diagram illustrating an example implementation of the TFC of
FIG. 2 in further detail.
[0013] FIG. 5 is a block diagram illustrating example formats of the translated address
of FIG. 4.
[0014] FIG. 6 is a block diagram illustrating an example implementation of the TFC of
FIG. 2 in further detail.
[0015] FIG. 7 is a block diagram illustrating the TFC of FIG. 2 utilizing a two-level
page table mapping to translate an example virtual address into an example physical
address.
[0016] FIG. 8 is a flowchart illustrating a process for transparently converting pixel

formats.

DETAILED DESCRIPTION
[0017] In general, the present disclosure relates to a transparent format converter (TFC)
that transparently converts between different pixel formats, such that the TFC may
provide a view of pixel data. Pixel data may be stored in a variety of different pixel
formats. Hardware designers may often create new, proprietary pixel formats that may
be processed more efficiently by hardware cores designed by the hardware designers
than well-known standardized pixel formats. For example, tile-based pixel formats may
often be created for increased memory efficiency and efficient bandwidth utilization
efficiency in lieu of linear pixel formats.
[0018] However, developers of software applications that manipulate pixel data may
often implement support for only a few well-known pixel formats in lieu of
implementing an exhaustive variety of pixel formats. In addition, the tile-based pixel
formats created by hardware designers may often be proprietary, such that the software
developers may not have knowledge of those tile-based pixel formats. In some

examples, an operating system that such software applications run on may also not

WO 2016/053628 PCT/US2015/050465

4
exhaustively support a wide variety of pixel formats. Because existing operating
systems are often adapted to run on new hardware, it may not be possible for operating
systems to continually support newly-created pixel formats implemented on such new
hardware.

[0019] The TFC of this disclosure may be configured to transparently convert between
pixel formats such that a processor that supports a first pixel format may view, through
the TFC, pixel data arranged according a second format as if that pixel data was instead
arranged according to the first pixel format supported by the processor. In accordance
with aspects of the present disclosure, the TFC may be configured to determine that a
request by at least one processor for data stored in a first data buffer is indicative of a
request for the data in a first data format. The TFC may further be configured to retrieve
the data in a second data format from the first data buffer based at least in part on the
request for data stored in the first data buffer. The TFC may further be configured to
convert the retrieved data from the second data format to the first data format. The TFC
may further be configured to store the converted data in the first data format into a
second data buffer that is accessible by the at least one processor.

[0020] FIG. 1 is a block diagram illustrating an example computing device that may be
configured to implement one or more aspects of this disclosure. As shown in FIG. 1,
computing device 2 may be a computing device including but not limited to video
devices, media players, set-top boxes, wireless handsets such as mobile telephones and
so-called smartphones, personal digital assistants (PDAs), desktop computers, laptop
computers, gaming consoles, video conferencing units, tablet computing devices, and
the like. In the example of FIG. 1, computing device 2 may include central processing
unit (CPU) 6, system memory 10, and GPU 12. Computing device 2 may also include
display processor 14, transceiver module 3, user interface 4, and display 8. Transceiver
module 3 and display processor 14 may both be part of the same integrated circuit (IC)
as CPU 6 and/or GPU 12, may both be external to the IC or ICs that include CPU 6
and/or GPU 12, or may be formed in the IC that is external to the IC that includes CPU
6 and/or GPU 12.

[0021] Computing device 2 may include additional modules or units not shown in FIG.
1 for purposes of clarity. For example, computing device 2 may include a speaker and a
microphone, neither of which are shown in FIG. 1, to effectuate telephonic
communications in examples where computing device 2 is a mobile wireless telephone,

or a speaker where computing device 2 is a media player. Computing device 2 may also

WO 2016/053628 PCT/US2015/050465

5
include a video camera. Furthermore, the various modules and units shown in
computing device 2 may not be necessary in every example of computing device 2. For
example, user interface 4 and display 8 may be external to computing device 2 in
examples where computing device 2 is a desktop computer or other device that is
equipped to interface with an external user interface or display.
[0022] Examples of user interface 4 include, but are not limited to, a trackball, a mouse,
a keyboard, and other types of input devices. User interface 4 may also be a touch
screen and may be incorporated as a part of display 8. Transceiver module 3 may
include circuitry to allow wireless or wired communication between computing device 2
and another device or a network. Transceiver module 3 may include modulators,
demodulators, amplifiers and other such circuitry for wired or wireless communication.
[0023] Processor 6 may be a microprocessor, such as a central processing unit (CPU)
configured to process instructions of a computer program for execution. Processor 6
may comprise a general-purpose or a special-purpose processor that controls operation
of computing device 2. A user may provide input to computing device 2 to cause
processor 6 to execute one or more software applications. The software applications that
execute on processor 6 may include, for example, an operating system, a word processor
application, an email application, a spreadsheet application, a media player application,
a video game application, a graphical user interface application or another program.
Additionally, processor 6 may execute GPU driver 22 for controlling the operation of
GPU 12. The user may provide input to computing device 2 via one or more input
devices (not shown) such as a keyboard, a mouse, a microphone, a touch pad or another
input device that is coupled to computing device 2 via user interface 4.
[0024] The software applications that execute on processor 6 may include one or more
graphics rendering instructions that instruct processor 6 to cause the rendering of
graphics data to display 8. In some examples, the software instructions may conform to
a graphics application programming interface (API), such as, ¢.g., an Open Graphics
Library (OpenGL®) API, an Open Graphics Library Embedded Systems (OpenGL ES)
API, a Direct3D API, an X3D API, a RenderMan API, a WebGL API, an Open
Computing Language (OpenCL™) or any other public or proprietary standard graphics
API. In order to process the graphics rendering instructions, processor 6 may issue one
or more graphics rendering commands to GPU 12 (e.g., through GPU driver 22) to

cause GPU 12 to perform some or all of the rendering of the graphics data. In some

WO 2016/053628 PCT/US2015/050465

6
examples, the graphics data to be rendered may include a list of graphics primitives,
e.g., points, lines, triangles, quadrilaterals, triangle strips, etc.
[0025] GPU 12 may be configured to perform graphics operations to render one or more
graphics primitives to display 8. Thus, when one of the software applications executing
on processor 6 requires graphics processing, processor 6 may provide graphics
commands and graphics data to GPU 12 for rendering to display 8. The graphics data
may include, e.g., drawing commands, state information, primitive information, texture
information, etc. GPU 12 may, in some instances, be built with a highly-parallel
structure that provides more efficient processing of complex graphic-related operations
than processor 6. For example, GPU 12 may include a plurality of processing elements,
such as shader units, that are configured to operate on multiple vertices or pixels in a
parallel manner. The highly parallel nature of GPU 12 may, in some instances, allow
GPU 12 to draw graphics images (e.g., GUIs and two-dimensional (2D) and/or
three-dimensional (3D) graphics scenes) onto display 8 more quickly than drawing the
scenes directly to display 8 using processor 6.
[0026] GPU 12 may, in some instances, be integrated into a motherboard of computing
device 2. In other instances, GPU 12 may be present on a graphics card that is installed
in a port in the motherboard of computing device 2 or may be otherwise incorporated
within a peripheral device configured to interoperate with computing device 2. GPU 12
may include one or more processors, such as one or more microprocessors, application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), digital
signal processors (DSPs), or other equivalent integrated or discrete logic circuitry. GPU
12 may also include one or more processor cores, so that GPU 12 may be referred to as
a multi-core processor.
[0027] Graphics memory 40 may be part of GPU 12. Thus, GPU 12 may read data from
and write data to graphics memory 40 without using a bus. In other words, GPU 12 may
process data locally using a local storage, instead of off-chip memory. Such graphics
memory 40 may be referred to as on-chip memory. This allows GPU 12 to operate in a
more efficient manner by eliminating the need of GPU 12 to read and write data via a
bus, which may experience heavy bus traffic. In some instances, however, GPU 12 may
not include a separate memory, but instead utilize system memory 10 via a bus.
Graphics memory 40 may include one or more volatile or non-volatile memories or
storage devices, such as, e.g., random access memory (RAM), static RAM (SRAM),
dynamic RAM (DRAM), erasable programmable ROM (EPROM), electrically erasable

WO 2016/053628 PCT/US2015/050465

7
programmable ROM (EEPROM), Flash memory, a magnetic data media or an optical
storage media.
[0028] In some examples, GPU 12 may store a fully formed image in system memory
10. Display processor 14 may retrieve the image from system memory 10 and output
values that cause the pixels of display 8 to illuminate to display the image. Display 8
may be the display of computing device 2 that displays the image content generated by
GPU 12. Display 8 may be a liquid crystal display (LCD), an organic light emitting
diode display (OLED), a cathode ray tube (CRT) display, a plasma display, or another
type of display device.
[0029] FIG. 2 is a block diagram illustrating example implementations of processor 6,
GPU 12, and system memory 10 of FIG. 1 in further detail. As shown in FIG. 2,
processor 6 may execute at least one software application 18, graphics API 20, GPU
driver 22, and memory management unit (MMU) 23, each of which may be one or more
software applications or services. In some examples graphics API 20 and GPU driver
22 may be implemented as hardware units of CPU 6.
[0030] Memory available to processor 6 and GPU 12 may include system memory 10
and frame buffer 16. Frame buffer 16 may be a part of system memory 10 or may be
separate from system memory 10. Frame buffer 16 may store rendered image data.
MMU 23 may be hardware configured to handle requests for access to memory, such as
system memory 10 or graphics memory 40, from CPU 6. For example, MMU 23 may
handle memory access requests from software application 18. MMU 23 may perform
translations of virtual memory addresses to physical memory addresses using one or
more page tables or translation lookaside buffers (TLBs) to handle such memory access
requests.
[0031] In some examples, processor 6 may include or have access to one or more
caches 15, such as level one (L1) cache, level two (L2) cache, level three (L3) cache,
and the like. One or more caches 15 may provide faster memory access to processor 6
relative to system memory 10 and may store copies of data from frequently accessed
memory locations of system memory 10.
[0032] Software application 18 may be any application that utilizes the functionality of
GPU 12. For example, software application 18 may be a graphical user interface (GUI)
application, an operating system, a portable mapping application, a computer-aided
design program for engineering or artistic applications, a video game application, or

another type of software application that uses 2D or 3D graphics.

WO 2016/053628 PCT/US2015/050465

8
[0033] Software application 18 may include one or more drawing instructions that
instruct GPU 12 to render a GUI and/or a graphics scene. For example, the drawing
instructions may include instructions that define a set of one or more graphics primitives
to be rendered by GPU 12. In some examples, the drawing instructions may,
collectively, define all or part of a plurality of windowing surfaces used in a GUIL In
additional examples, the drawing instructions may, collectively, define all or part of a
graphics scene that includes one or more graphics objects within a model space or world
space defined by the application.
[0034] Software application 18 may invoke GPU driver 22, via graphics API 20, to
issue one or more commands to GPU 12 for rendering one or more graphics primitives
into displayable graphics images. For example, software application 18 may invoke
GPU driver 22, via graphics API 20, to provide primitive definitions to GPU 12. In
some instances, the primitive definitions may be provided to GPU 12 in the form of a
list of drawing primitives, e.g., triangles, rectangles, triangle fans, triangle strips, etc.
The primitive definitions may include vertex specifications that specify one or more
vertices associated with the primitives to be rendered. The vertex specifications may
include positional coordinates for each vertex and, in some instances, other attributes
associated with the vertex, such as, e.g., color coordinates, normal vectors, and texture
coordinates. The primitive definitions may also include primitive type information (e.g.,
triangle, rectangle, triangle fan, triangle strip, etc.), scaling information, rotation
information, and the like.
[0035] Based on the instructions issued by software application 18 to GPU driver 22,
GPU driver 22 may formulate one or more commands that specify one or more
operations for GPU 12 to perform in order to render the primitive. When GPU 12
receives a command from CPU 6, a graphics processing pipeline may execute on shader
processors 48 to decode the command and to configure a graphics processing pipeline to
perform the operation specified in the command. For example, an input-assembler in the
graphics processing pipeline may read primitive data and assemble the data into
primitives for use by the other graphics pipeline stages in a graphics processing
pipeline. After performing the specified operations, the graphics processing pipeline
outputs the rendered data to frame buffer 16 associated with a display device.
[0036] Frame buffer 16 stores destination pixels for GPU 12. Each destination pixel
may be associated with a unique screen pixel location. In some examples, frame buffer

16 may store color components and a destination alpha value for each destination pixel.

WO 2016/053628 PCT/US2015/050465

9
For example, frame buffer 16 may store Red, Green, Blue, Alpha (RGBA) components
for each pixel where the “RGB” components correspond to color values and the “A”
component corresponds to a destination alpha value. Although frame buffer 16 and
system memory 10 are illustrated as being separate memory units, in other examples,
frame buffer 16 may be part of system memory 10.
[0037] In some examples, a graphics processing pipeline may include one or more of a
vertex shader stage, a hull shader stage, a domain shader stage, a geometry shader stage,
and a pixel shader stage. These stages of the graphics processing pipeline may be
considered shader stages. These shader stages may be implemented as one or more
shader programs that execute on shader units 46 in GPU 12. Shader units 46 may be
configured as a programmable pipeline of processing components. In some examples,
shader unit 46 may be referred to as “shader processors” or “unified shaders,” and may
perform geometry, vertex, pixel, or other shading operations to render graphics. Shader
units 46 may include shader processors 48, ecach of which may include one or more
components for fetching and decoding operations, one or more ALUs for carrying out
arithmetic calculations, one or more memories, caches, and registers.
[0038] GPU 12 may designate shader units 46 to perform a variety of shading
operations such as vertex shading, hull shading, domain shading, geometry shading,
pixel shading, and the like by sending commands to shader units 46 to execute one or
more of a vertex shader stage, a hull shader stage, a domain shader stage, a geometry
shader stage, and a pixel shader stage in a graphics processing pipeline. In some
examples, GPU driver 22 may include a compiler configured to compile one or more
shader programs, and to download the compiled shader programs onto one or more
programmable shader units contained within GPU 12. The shader programs may be
written in a high level shading language, such as, ¢.g., an OpenGL Shading Language
(GLSL), a High Level Shading Language (HLSL), a C for Graphics (Cg) shading
language, an OpenCL C kernel, etc. The compiled shader programs may include one or
more instructions that control the operation of shader units 46 within GPU 12. For
example, the shader programs may include vertex shader programs that may be
executed by shader units 46 to perform the functions of a vertex shader stage, hull
shader programs that may be executed by shader units 46 to perform the functions of a
hull shader stage, domain shader programs that may be executed by shader unit 46 to
perform the functions of a domain shader stage, geometry shader programs that may be

executed by shader unit 46 to perform the functions of a geometry shader stage and/or

WO 2016/053628 PCT/US2015/050465

10
pixel shader programs that may be executed by shader units 46 to perform the functions
of a pixel shader. A vertex shader program may control the execution of a
programmable vertex shader unit or a unified shader unit, and include instructions that
specify one or more per-vertex operations.
[0039] Graphics memory 40 may include on-chip storage or memory that physically
integrated into the integrated circuit of GPU 12. If graphics memory 40 is on-chip, GPU
12 may be able to read values from or write values to graphics memory 40 more quickly
than reading values from or writing values to system memory 10 via a system bus.
[0040] GPU 12 may also include transparent format converter (TFC) 24. TFC 24 may
be hardware that enables CPU 6 or any other processing cores that do not support the
pixel format according to which pixel data 41 is stored in graphics memory 40 to view
pixel data 41 stored in graphics memory 40 as if pixel data 41 is stored in graphics
memory 40 according to a pixel format that is supported by CPU 6. In other words,
CPU 6, through TFC 24, can read and write pixel data 41 stored in graphics memory 40
in a pixel format that it supports. For example, if pixel data 41 is stored in graphics
memory 40 in a tiled pixel format, and if CPU 6 supports a linear pixel format, such as
NV12, TFC 24 may provide to CPU 6 a linear-based view of pixel data 41 such that
pixel data 41 appears to CPU 6 to be arranged in a linear pixel format, such as NV 12,
that is supported by CPU 6. TFC 24 may translate any writes by CPU 6 to pixel data 41
according to a pixel format supported by CPU 6 back to the pixel format in which it is
stored in graphics memory 40. TFC 24 therefore enables CPU 6 to treat pixel data 41 as
if it was in a pixel format supported by CPU 6, so that CPU 6 may read and write to
pixel data 41 according to a pixel format supported by CPU 6 while pixel data 41 is
stored in graphics memory 40 in a pixel format not supported by CPU 6.
[0041] In accordance with aspects of the present disclosure, TFC 24 may determine that
a request by CPU 6 for pixel data 41 stored in graphics memory 40 is indicative of a
request for pixel data 41 in a first data format. TFC 24 may retrieve pixel data 41 in a
second data format from graphics memory 40 based at least in part on the request for
pixel data 41 in graphics memory 40. TFC 24 may convert the retrieved pixel data 41
from the second data format to the first data format. TFC 24 may store the converted
pixel data 41 in the first data format into a memory, such as a cache, that is accessible
by processor 6.
[0042] In some examples, TFC 24 may be specific hardware logic that is included in
GPU 12. In some other examples, TFC 24 may include shader code that is executed by

WO 2016/053628 PCT/US2015/050465

11
shader processors 48 of shader units 46. In other examples, TFC 24 may be hardware
that is included in computing device 2 but is not specifically included in GPU 12. For
example, TFC 24 may be incorporated into CPU 6, or may be a standalone hardware
component that is separate from CPU 6 and GPU 12.
[0043] FIG. 3 is a block diagram illustrating an example functionality of TFC 24 of
FIG. 2. As shown in FIG. 3, graphics memory 40 may store pixel data 41 that follow a
tile-based pixel format. Processor 26 may be a processing core that is not capable of
reading from and writing to the tile-based pixel format. For example, processor 26 may
support linear pixel formats but not tile-based pixel formats. To enable processor 26 to
read and write to pixel data 41, TFC 24 may provide view 43 of pixel data 41 stored in
graphics memory 40 to processor 26 that is independent of how pixel data 41 is stored
in graphics memory 40. View 43 may represent pixel data 41 in a pixel format that is
supported by processor 26, such that from processor 26’s viewpoint, graphics data is
laid out in view 43 according to a pixel format that processor 26 supports, such as YUV,
NV12, and the like. TFC 24 therefore enables processor 26 to read and write to pixel
data 41 as if pixel data 41 is stored in graphics memory 40. TFC 24 may receive the
read and write requests from processor 26 and may translate the read and write requests
to appropriate read and write requests for the tile-based pixel format of pixel data 41.
[0044] TFC 24 presenting view 43 to processor 26 may include presenting a colored
aperture to processor 26. A colored aperture may be an address range, either physical
and/or virtual, which may be used to access memory with a specific target pixel format.
For example, TFC 24 may present a virtual address range to processor 26 that processor
26 may make memory accesses to in order to access pixel data 41 in a pixel format that
is supported by processor 26. TFC 24 may be able to determine that processor 26 is
attempting to read from or write to pixel data 41 in a pixel format that is supported by
processor 26 based on the virtual address of the memory request from processor 26 if
TFC 24 determines that processor 26 is attempting to read from or write to the colored
aperture. If multiple different software applications and/or different processors requests
access to pixel data 41, TFC 24 may provide a unique color aperture for each of the
different software applications and/or different processors that do not overlap. In this
way, TFC 24 may be able to determine the requesting software application and/or
processor as well as the pixel formats supported by those software applications and/or
processors based at least in part on the virtual address included in the request for access

for pixel data 41 from those software applications and/or processors.

WO 2016/053628 PCT/US2015/050465

12
[0045] FIG. 4 is a block diagram illustrating an example implementation of TFC 24 of
FIG. 2 in further detail. As shown in FIG. 4, processor S0A and processor 50B may each
request access to pixel data 41 stored in graphics memory 40. While processor S0A may
not support or have knowledge of the underlying pixel format of pixel data 41 stored in
graphics memory 40 for which processor 50A is requesting access, processor 50B may
support and/or have knowledge of the underlying pixel format of pixel data 41 stored in
graphics memory 40 for which processor 50B is requesting access. Examples of
processor SOA may include CPU 6 as well as any other processing hardware that does
not support or have knowledge of the pixel format of pixel data 41 stored in graphics
memory 40. More specifically, if processor 50A is CPU 6, software application 18
executing on CPU 6 may request access to pixel data 41 stored in graphics memory 40.
Examples of processor 50B may include GPU 12, shader processors 48, video encoders,
video decoders, display processors, displays, digital signal processors (DSPs), camera
processors, video processors, and the like that support and/or have knowledge of the
pixel format of pixel data stored in graphics memory 40.
[0046] Processors S0A and 50B may each request access to pixel data 41 stored in
graphics memory 40. As discussed above, pixel data 41 that processors S0A and 50B
requests access to may be arranged according to a particular pixel format that is
supported by processor S0B but is not supported by processor 50A.
[0047] Processor S0A may make a request for data from virtual address 51A and
processor 50B may make a request for data from virtual address 51B. MMU 52A may
use page table 54A to handle the request for data from processor S0A to convert virtual
address 51A to translated address 53. For example, if processor 50A is CPU 6, MMU
52A may be MMU 23. MMU 52A may convert virtual address 51A to translated
address 53, including appending one or more color bits in front of virtual address 51A,
such that one or more upper bits of translated address 53 includes the one or more color
bits, followed by virtual address 51A. The color bits may indicate to TFC 24 the pixel
format supported by processor 50A. For example, in a 64-bit addressable space, virtual
address 51A may not take up all 64 bits. Thus, MMU 52A may be able to concatenate
one or more color bits to virtual address 51A to produce a translated address 53 that is
less than or equal to 64 bits. Similarly, MMU 52B may use page table 54B to handle
the request for data from processor S0B to look up physical address 55B using virtual
address 51B. Because processor S0B supports the pixel format in which pixel data 41 is

stored in graphics memory 40, MMU 52B can translate virtual address 51B directly to

WO 2016/053628 PCT/US2015/050465

13
physical address 55B, which is a physical address of the requested data in graphics
memory 40, instead of translating virtual address 51B to a translated address.
[0048] TFC 24 may receive translated address 53 and may determine, based at least in
part on using translated address 53 to index into page table 56, physical address 55A
that indicates the location of pixel data 41 in graphics memory 40 requested by
processor 50A. TFC may retrieve pixel data 41 in graphics memory 40 based at least in
part on physical address 55A and may translate the retrieved pixel data 41 from the
pixel format according to which pixel data 41 was stored in graphics memory 40 into a
pixel format that is supported by processor SOA. Translating the retrieved pixel data 41
may include uncompressing pixel data 41, rearranging the pixel information according
to the pixel format supported by processor 50A, and the like. TFC 24 may return the
converted pixel data 41 back to processor 50A, such as by storing the converted pixel
data 41 into one or more caches in processor S0A (e.g., one or more caches 15).
[0049] Processor S0A may read and write to pixel data 41 stored in its one or more
caches according to the pixel format supported by processor S0A. In response to a cache
flush, which is when processor S0A evicts pixel data 41 A from its one or more caches,
TFC 24 may receive pixel data 41 from processor S0A along with translated address 53
that is translated based at least in part on virtual address 51A. TFC 24 may convert pixel
data 41 back to the pixel format in which it is stored in graphics memory 40, including
rearranging the pixel information into the pixel format in which pixel data 41 is stored
in graphics memory 40 and compressing the pixel information according to the pixel
format in which pixel data 41 is stored in graphics memory 40. TFC 24 may also
translate the translated address 53 into physical address 55A using page table 56, and
may store pixel data 41 to graphics memory 40 at physical address 55A.
[0050] FIG. 5 is a block diagram illustrating example formats of translated address 53 of
FIG. 4. As shown in FIG. 5, translated address 53 may include one or more significant
bits that identify the processor that is requesting access to pixel data 41 as well as
identify the one or more pixel formats supported by the processor. Translated address 53
may include the one or more significant bits concatenated to virtual address 51. In one
example, the one or more most significant bits of translated address 53 may include
color bits 57. Color bits 57 may be one or more bits that specify the pixel format
supported by the requesting processor. In another example, the one or more most
significant bits of translated address 53 may include master ID 58 that identifies the

requesting processor as well as bit 59 that is set to 1 if the most significant bit of

WO 2016/053628 PCT/US2015/050465

14
translated address 53 is 1. In another example, the one or more most significant bits of
translated address 53 may include virtual machine ID 60 that identifies the requesting
processor as being within a group of processors having similar access permissions as
well as bit 61 that is set to 1 if the most significant bit of translated address 53 is 1.
[0051] FIG. 6 is a block diagram illustrating an example implementation of TFC 24 of
FIG. 2 in further detail. As shown in FIG. 5, TFC 24 may include tag decoder 66,
translation lookaside buffer (TLB) 68, packing units 69A-69N (“packing units 69”), and
address calculation unit 67. TFC 24 may also include metadata server 64 and hardware
table walker (HTW) server 62.

[0052] As discussed above, TFC 24 may translate translated address 53 to physical
address 55A. TFC may also convert between pixel formats supported by a processor and
pixel formats of pixel data 41 stored in graphics memory 40. Tag decoder 66 may
decode translated address 53 to determine the information included in translated address
53, such as the pixel format supported by a processing core (e.g., processor S0A) that is
attempting to access pixel data 41 in graphics memory 40.

[0053] Metadata server 64 may determine one or more view definitions for translated
address 53 received by TFC 24. A view definition for translated address 53 may include
information regarding processor 50A that sent the request for pixel data 41 as well as
information regarding pixel data 41 requested through translated address 53. The one or
more view definitions may include the status of the requested pixel data 41, the start
address of the requested pixel data 41, the length of the requested pixel data 41, the
target pixel format supported by requesting processor S0A, the tile width and length of
the requested pixel data 41, the stride of the requested pixel data 41, and the like, as well
as any other necessary data that may be required to convert the pixel data 41 into a pixel
format that is supported by the requesting processor S0A. In some example, metadata
server 64 may include one or more view definitions for every translated address 53 it
receives.

[0054] Address calculation unit 67 may determine physical address 55A from translated
address 53. TLB 68 may cache one or more translated address to physical address
translations. Address calculation unit 67 may query TLB 68 to determine if TLB 68 has
cached physical address 55A of translated address 53. If TLB 68 has cached physical
address 55A of translated address 53, TFC 24 may access pixel data 41 at physical
address 55A based on the view definitions for pixel data 41 provided by metadata server

64.

WO 2016/053628 PCT/US2015/050465

15
[0055] If TLB has not cached physical address 55A of translated address 53, address
calculation unit 67 may strip the color bits of translated address 53 and may provide the
stripped translated address to HTW server 62 to determine physical address 55A of
translated address 53. HTW server 62 may be hardware for accessing one or more page
tables (e.g., page table 54A and/or page table 56) to determine physical address 55A of
translated address 53. In response to HTW server 62 determining physical address 55A
of translated address 53, TFC 24 may access pixel data 41 at physical address 55A
based on the view definitions for pixel data 41 provided by metadata server 64.
[0056] Packing units 69 may translate between the pixel formats supported by a
requesting processing core and the pixel format of pixel data 41 stored in graphics
memory 40. Packing units 69 may perform color conversion, tiling, de-tiling,
compression, de-compression, and the like to convert between pixel formats. In some
examples, packing units 69 may include fixed function hardware. In other examples, the
functionality of packing units 69 may be implemented via other means such as via GPU
12, shader units 46, specialized digital signal processors, and the like. In some
examples, the entire functionality of TFC 24 may be implemented via shader code
executing on shader units 46.
[0057] FIG. 7 is a block diagram illustrating TFC 24 of FIG. 2 utilizing a two-level
page table mapping to translate an example virtual address into an example physical
address. Because a single-level page table may typically be managed by a high-level
operating system (HLOS), a two-level page table may enable TFC 24 to hide the
translation of addresses and the conversion of pixel formats from the HLOS, such that it
may appear to the HLOS that an MMU is simply translating a virtual address to a
physical address using a single page table.
[0058] As shown in FIG. 7, MMU 52A may be a two-level MMU that utilizes a two-
stage page table comprising page table 70 and page table 72. The HLOS may manage
page table 70 while a hypervisor or virtual machine monitor (VMM) may manage page
table 72. As discussed above, because a hypervisor or VMM may manage the second
stage mapping using page table 72, such second level mapping may be hidden from the
HLOS.
[0059] Page tables 70 and 72 may have dedicated memory segments where software
application 18 may be able to map normal pages for pixel format conversion. MMU
52A may also manage user address space and kernel address space using page table 70

and 72. The user address space may be accessible by software applications running on

WO 2016/053628 PCT/US2015/050465

16
the HLOS while the kernel address space may be accessible by low-level privileged
code such as the kernel. In this way, the kernel address space may be protected from
access by unprivileged software applications. Page tables 70 and 72 may include user
address space portion 74 for translating user address space virtual addresses and kernel
address space portion 76 for translating kernel address space virtual addresses.
[0060] In the example of FIG. 7, virtual address 51A may be 0x7800, which may be in
the user address space. MMU 52A may utilize virtual address 51A to index into page
table 70 to translate virtual address S1A into intermediate physical address 71 of
Oxabcd. IPA 71 may be virtual address 51A concatenated with color bits, such as color
bits 57, MMU 52A may use IPA 71 to index into page table 72 to translate intermediate
physical address 71 into intermediate physical address 73 of 0x1002000. IPA 73 may
retain the color bits of IPA 71 in its one or more most significant bits. Intermediate
physical address 73 may be the same as translated address 53 of FIG. 4.
[0061] TFC 24 may strip the color bits 0x1000000 from physical address 73 of
0x1002000 and pay provide the resulting address 0x2000 to HTW server 62 to
determine physical address 55A. Because the resulting address 0x2000 may be in the
kernel address space, HTW server 62 may utilize the resulting address 0x2000 to index
into kernel address space portion 76 of page table 70 to result in an address of Oxceed.
HTW server 62 may further utilize the address of Oxceed to index into kernel address
space portion 76 of page table 72 to result in physical address 55A of 0x0800. HTW
server 62 may provide physical address 55A of 0x0800 into TFC 24, and TFC may
access graphics memory 40 at physical address 55A of 0x0800. In this way, kernel
address space portion 76 of page tables 70 and 72 may act as page table 56 of FIG. 4 for
converting translated address 53 into physical address 55A.
[0062] By utilizing the kernel address space and kernel address space portion 76 of page
tables 70 and 72 to determine physical address 55A, TFC 24 may use the security
regime imposed by a processor, such as CPU 6, to perform the translation of virtual
address 51A to physical address 55A. The security regime may also enable TFC 24 to
be memory efficient in creating multiple color apertures for multiple software
applications and/or multiple processing cores.
[0063] FIG. 8 is a flowchart illustrating a process for transparently converting pixel
formats. As shown in FIG. &, the process may include determining, by TFC 24, that a
request by at least one processor for data stored in a first data buffer is indicative of a

request for the data in a first data format (102). The process may further include

WO 2016/053628 PCT/US2015/050465

17
retrieving, by TFC 24, the data in a second data format from the first data buffer based
at least in part on the request for data stored in the first data buffer (104). The process
may further include converting, by TFC 24, the retrieved data from the second data
format to the first data format (106). The process may further include storing, by TFC
24, the converted data in the first data format into a second data buffer that is accessible
by the at least one processor (108).
[0064] In some examples, the request by the at least one processor for data stored in the
first data buffer includes a request for data stored at a virtual address 51A, and
retrieving, by TFC 24, data in a second data format from the first data buffer further
comprises retrieving, by TFC 24, the data in the second data format from the first data
buffer at a physical address 55A that corresponds to the virtual address. In some
examples, the process may further include determining, by MMU 52A, a translated
address 53 based at least in part on the virtual address 51A, and determining, by TFC
24, the physical address 55A based at least in part on the translated address 53.
[0065] In some examples, one or more most significant bits of the translated address 53
comprises one or more color bits, and wherein the one or more color bits indicate at
least a pixel format supported by the one or more processors. In some examples,
determining the translated address 53 further includes determining, by MMU 52A, the
one or more color bits based at least in part on the virtual address 51A. In some
examples, the process may further include determining, by MMU 52A using a first level
page table 70, an intermediate physical address 71 based at least in part on the virtual
address 51A, and determining, by MMU 52A using a second level page table 72, the
translated address 53 based at least in part on the intermediate physical address 71. In
some examples, determining, by TFC 24, the physical address 55A based at least in part
on the translated address 53 further includes determining, by TFC 24, the physical
address 55A based at least in part on a kernel address space portion 76 of one or more
page tables 70 and 72.
[0066] In some examples, the second data buffer comprises a cache for the at least one
processor. In some examples, the data comprises pixel data 41, the first data format
comprises a first pixel format, and the second data format comprises a second pixel
format. In some examples, the process further includes receiving, by TFC 24 from the at
least one processor, second data in the first data format, converting, by TFC 24, the
second data from the first data format to the second data format, and storing, by TFC

24, the converted data in the second data format into the first data buffer.

WO 2016/053628 PCT/US2015/050465

18
[0067] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium. Computer-readable media may include computer data
storage media or communication media including any medium that facilitates transfer of
a computer program from one place to another. Data storage media may be any
available media that can be accessed by one or more computers or one or more
processors to retrieve instructions, code and/or data structures for implementation of the
techniques described in this disclosure. By way of example, and not limitation, such
computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic storage devices, or any
other medium that can be used to carry or store desired program code in the form of
instructions or data structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium. For example, if the
software is transmitted from a website, server, or other remote source using a coaxial
cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless
technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic
cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. Disk and disc, as used herein,
includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc where disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the above should also be included
within the scope of computer-readable media.
[0068] The code may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” and
“processing unit,” as used herein may refer to any of the foregoing structure or any
other structure suitable for implementation of the techniques described herein. In
addition, in some aspects, the functionality described herein may be provided within
dedicated hardware and/or software modules configured for encoding and decoding, or
incorporated in a combined codec. Also, the techniques could be fully implemented in

onge or more circuits or logic elements.

WO 2016/053628 PCT/US2015/050465

19
[0069] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (i.c., a chip set). Various components, modules or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0070] Various aspects of the present disclosure have been described. These and other

aspects are within the scope of the following claims.

WO 2016/053628 PCT/US2015/050465

20
CLAIMS:

1. A method for pixel processing, comprising:

determining, by a transparent format converter (TFC), that a request by at least
one processor for data stored in a first data buffer is indicative of a request for the data
in a first data format;

retrieving, by the TFC, the data in a second data format from the first data buffer
based at least in part on the request for data stored in the first data buffer;

converting, by the TFC, the retrieved data from the second data format to the
first data format; and

storing, by the TFC, the converted data in the first data format into a second data

buffer that is accessible by the at least one processor.

2. The method of claim 1, wherein:

the request by the at least one processor for data stored in the first data buffer
comprises a request for data stored at a virtual address; and

retrieving, by the TFC, data in a second data format from the first data buffer
further comprises retrieving, by the TFC, the data in the second data format from the

first data buffer at a physical address that corresponds to the virtual address.

3. The method of claim 2, further comprising:

determining, by a memory management unit (MMU), a translated address based
at least in part on the virtual address; and

determining, by the TFC, the physical address based at least in part on the

translated address.

4. The method of claim 3, wherein one or more most significant bits of the
translated address comprises one or more color bits, and wherein the one or more color

bits indicate at least a pixel format supported by the one or more processors.

5. The method of claim 3, wherein determining the translated address further
comprises:
determining, by the MMU, the one or more color bits based at least in part on

the virtual address.

WO 2016/053628 PCT/US2015/050465

21

6. The method of claim 3, further comprising:

determining, by the MMU using a first level page table, an intermediate physical
address based at least in part on the virtual address; and

determining, by the MMU using a second level page table, the translated address

based at least in part on the intermediate physical address.

7. The method of claim 3, wherein determining, by the TFC, the physical address
based at least in part on the translated address further comprises:
determining, by the TFC, the physical address based at least in part on a kernel

address space portion of one or more page tables.

8. The method of claim 1, wherein the second data buffer comprises a cache for the

at least one processor.

9. The method of claim 1, wherein:
the data comprises pixel data;
the first data format comprises a first pixel format; and

the second data format comprises a second pixel format.

10. The method of claim 1, further comprising:

receiving, by the TFC from the at least one processor, second data in the first
data format;

converting, by the TFC, the second data from the first data format to the second
data format; and

storing, by the TFC, the converted data in the second data format into the first
data buffer.

11. A computing device comprising:
a first data buffer;
a second data buffer;
at least one processor; and

a transparent format converter configured to:

WO 2016/053628 PCT/US2015/050465

22

determine that a request by the at least one processor for data stored in
the first data buffer is indicative of a request for the data in a first data format;

retrieve the data in a second data format from the first data buffer based
at least in part on the request for data stored in the first data buffer;

convert the retrieved data from the second data format to the first data
format; and

store the converted data in the first data format into the second data

buffer that is accessible by the at least one processor.

12. The computing device of claim 11, wherein:

the request by the at least one processor for data stored in the first data buffer
comprises a request for data stored at a virtual address; and

the TFC is further configured to retrieve the data in the second data format from

the first data buffer at a physical address that corresponds to the virtual address.

13. The computing device of claim 12, further comprising:

a memory management unit (MMU) configured to determine a translated
address based at least in part on the virtual address,

wherein the TFC is further configured to determine the physical address based at

least in part on the translated address.

14. The computing device of claim 13, wherein one or more most significant bits of
the translated address comprises one or more color bits, and wherein the one or more

color bits indicate at least a pixel format supported by the one or more processors.

15. The computing device of claim 13, wherein the MMU is further configured to:

determine the one or more color bits based at least in part on the virtual address.

16. The computing device of claim 13, wherein the MMU is further configured to:
determine, using a first level page table, an intermediate physical address based
at least in part on the virtual address; and
determine, using a second level page table, the translated address based at least

in part on the intermediate physical address.

WO 2016/053628 PCT/US2015/050465

23
17. The computing device of claim 13, wherein the TFC is further configured to:
determine the physical address based at least in part on a kernel address space

portion of one or more page tables.

18. The computing device of claim 11, wherein the second data buffer comprises a

cache for the at least one processor.

19. The computing device of claim 11, wherein:
the data comprises pixel data;
the first data format comprises a first pixel format; and

the second data format comprises a second pixel format.

20. The computing device of claim 11, wherein the TFC is further configured to:
receive from the at least one processor, second data in the first data format;
convert the second data from the first data format to the second data format; and

store the converted data in the second data format into the first data buffer.

21. An apparatus comprising:

means for determining that a request by at least one processor for data stored in a
first data buffer is indicative of a request for the data in a first data format;

means for retrieving the data in a second data format from the first data buffer
based at least in part on the request for data stored in the first data buffer;

means for converting the retrieved data from the second data format to the first
data format; and

means for storing the converted data in the first data format into a second data

buffer that is accessible by the at least one processor.

22. The apparatus of claim 21, wherein:

the request by the at least one processor for data stored in the first data buffer
comprises a request for data stored at a virtual address; and

the means for retrieving data in a second data format from the first data buffer
further comprises means for retrieving the data in the second data format from the first

data buffer at a physical address that corresponds to the virtual address.

WO 2016/053628 PCT/US2015/050465

24
23. The apparatus of claim 22, further comprising:
means for determining a translated address based at least in part on the virtual
address; and
means for determining the physical address based at least in part on the

translated address.

24. The apparatus of claim 23, wherein one or more most significant bits of the
translated address comprises one or more color bits, and wherein the one or more color

bits indicate at least a pixel format supported by the one or more processors.

25. The apparatus of claim 23, wherein the means for determining the translated
address further comprises:
means for determining the one or more color bits based at least in part on the

virtual address.

26. A computer-readable medium comprising instructions for causing a
programmable processor to:

determine, by a transparent format converter (TFC), that a request by at least one
processor for data stored in a first data buffer is indicative of a request for the datain a
first data format;

retrieve, by the TFC, the data in a second data format from the first data buffer
based at least in part on the request for data stored in the first data buffer;

convert, by the TFC, the retrieved data from the second data format to the first
data format; and

store, by the TFC, the converted data in the first data format into a second data

buffer that is accessible by the at least one processor.

27. The computer-readable medium of claim 26, wherein:

the request by the at least one processor for data stored in the first data buffer
comprises a request for data stored at a virtual address; and

retrieving, by the TFC, data in a second data format from the first data buffer
further comprises retrieving, by the TFC, the data in the second data format from the

first data buffer at a physical address that corresponds to the virtual address.

WO 2016/053628 PCT/US2015/050465

25
28. The computer-readable medium of claim 27, further comprising;:
determining, by a memory management unit (MMU), a translated address based
at least in part on the virtual address; and
determining, by the TFC, the physical address based at least in part on the

translated address.

29. The computer-readable medium of claim 28, wherein one or more most
significant bits of the translated address comprises one or more color bits, and wherein
the one or more color bits indicate at least a pixel format supported by the one or more

Proccessors.

30. The computer-readable medium of claim 28, wherein determining the translated
address further comprises:
determining, by the MMU, the one or more color bits based at least in part on

the virtual address.

WO 2016/053628 PCT/US2015/050465

Page1/7
2
TRANSCEIVER USER
MODULE INTERFACE DISPLAY
8
3 4
CPU
6 G1P2U DISPLAY
12 PROCESSOR
<«— || GRAPHICS I 14
GPU DRIVER MEMORY
22 40 A
A
A
Y Y

SYSTEM MEMORY
10

FIG. 1

WO 2016/053628

Page 2/7

PCT/US2015/050465

CPU G1P2U
g — |
SOFTWARE SHADER UNITS
APPLICATION 46
ﬂ |
l SHADER
PROCESSORS
GRAPHICS API 48
20
: —>
TFC
GPU DRIVER 24
22
MMU GRAPHIC4$0MEMORY
9 40
z3 41
CACHE(S)
15
I A
FRAME BUFFER
16
<

SYSTEM MEMORY
10

MEMORY

FIG. 2

WO 2016/053628 PCT/US2015/050465

Page 3/7

PROCESSOR
26

TFC
24

I

GRAPHICS MEMORY
40

41

FIG. 3

WO 2016/053628 PCT/US2015/050465

Page 4/7
PROCESSOR(S) PROCESSOR(S)
S50A 50B
VA VA
S1A 51B
PAGE PAGE
MU L) TasLe TABLE [es| MU
= 54A 54B —
1A ¢ 4
53 v
PAGE
TABLE |¢—» T2F4C
& ==
PA
PA 3958
55A
GRAPHICS
MEMORY <
40
FIG. 4
/ 53
Color Bits Virtual Address
57 51A
53
58 %9 yéd
MSB Virtual Address
MID =1 51A
60 61 Ve 3
MSB Virtual Address
VMID =1 51A

FIG. 5

PCT/US2015/050465

WO 2016/053628

Page 5/7

V&S
vd

vz -

9 'Old

_— — 9
g9 70
NETYER
gl ¥IAYIS MLH VIyaY L3N
NOZ
1INN ONIMOVd
®
77 ®
1INN ® 99
NOILVINDTVD — ¥30093d OV1
ssayaav d0.
1INN SNIMOVd
VoZ

L1INN ONIMOVd

PCT/US2015/050465

L 'Old

Page 6/7

WO 2016/053628

paaox(
00080X0
79
YIANIS MLH 000Zx0
oy : —
AMOWIIW N
SOIHAVYO 000800
0002X0 L
Vi%
. VA
vz —2d! 0008.2X0
041 000Z001.X0

WO 2016/053628 PCT/US2015/050465

Page 717

DETERMINE THAT A REQUEST FOR DATA IS
INDICATIVE OF A REQUEST FOR DATAIN A
FIRST FORMAT

l

RETRIEVE THE DATA IN A SECOND FORMAT

l

CONVERT THE RETRIEVED DATA FROM THE |—106
SECOND FORMAT TO THE FIRST FORMAT

l

STORE THE CONVERTED DATA IN THE FIRST |—108
FORMAT

102

—104

FIG. 8

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/050465

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6T1/20
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6T

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

abstract
column 24, Tine 20 - Tine 55
figures 49,50

ET AL) 1 January 2002 (2002-01-01)

column 39, Tine 63 - column 42, line 62
column 115, Tine 5 - column 118, Tine 25

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 2 515 294 A2 (NVIDIA CORP [US]) 1-30

24 October 2012 (2012-10-24)

abstract

paragraph [0002]

paragraph [0046]

paragraph [0076] - paragraph [0080]

paragraph [0082] - paragraph [0084]

figure 6
X US 6 336 180 Bl (LONG TIMOTHY MERRICK [AU] 1-30

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

11 December 2015

Date of mailing of the international search report

07/01/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Luca, Mihai Bogdan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/050465

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A,P

US 2015/084975 Al (HEINRICH STEVEN J [US]
ET AL) 26 March 2015 (2015-03-26)
abstract

paragraph [0045]

paragraph [0062] - paragraph [0063]
paragraph [0098] - paragraph [0099]

US 2015/286467 Al (KHAN MOINUL [US] ET AL)
8 October 2015 (2015-10-08)

abstract

paragraph [0057]

paragraph [0065] - paragraph [0066]
figures 5a, 5b

EP 0 680 013 A2 (SUN MICROSYSTEMS INC
[US]) 2 November 1995 (1995-11-02)

the whole document

1-30

1-30

1-30

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/050465
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 2515294 A2 24-10-2012 (N 102841671 A 26-12-2012
EP 2515294 A2 24-10-2012
W 201245961 A 16-11-2012
US 2012242671 Al 27-09-2012
US 6336180 Bl 01-01-2002 US 6336180 Bl 01-01-2002
US 6393545 B1 21-05-2002
US 2015084975 Al 26-03-2015 NONE
US 2015286467 Al 08-10-2015 US 2015286467 Al 08-10-2015
WO 2015154037 Al 08-10-2015
EP 0680013 A2 02-11-1995 DE 69527674 D1 12-09-2002
EP 0680013 A2 02-11-1995
JP HO844880 A 16-02-1996
US 5734874 A 31-03-1998
US 5933157 A 03-08-1999
US 5938756 A 17-08-1999

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report
	Page 37 - wo-search-report

