NITRIC OXIDE DELIVERY SYSTEM

Applicant: GENO LLC, Cocoa, FL (US)

Inventors: David H. Fine, Cocoa Beach, FL (US); Bryan Johnson, Orlando, FL (US); Gregory Vasquez, Cocoa, FL (US); Jody Fuller, Merritt Island, FL (US); Ryan Denton, Titusville, FL (US)

Appl. No.: 14/163,531
Filed: Jan. 24, 2014

Related U.S. Application Data
Continuation of application No. 12/951,811, filed on Nov. 22, 2010, now Pat. No. 8,646,445.

Publication Classification
Int. Cl.
A61M 16/10 (2006.01)
A61M 16/00 (2006.01)

U.S. Cl.
CPC A61M 16/104 (2013.01); A61M 16/1075 (2013.01); A61M 16/0057 (2013.01)
USPC 128/202.26

ABSTRACT
An ambulatory or stationary device for delivery of a therapeutic amount of nitric oxide to an individual’s lungs.
Figure 1
NITRIC OXIDE DELIVERY SYSTEM

CLAIM OF PRIORITY

[0001] This application claims the benefit of prior U.S. Provisional Application No. 61/263,332, filed on Nov. 20, 2009, which is incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] This description relates to ambulatory and stationary devices for the delivery of nitric oxide.

BACKGROUND

[0003] Nitric oxide (NO), also known as nitrosyl radical, is a free radical that is an important signaling molecule. For example, NO causes smooth muscles in blood vessels to relax, thereby resulting in vasodilation and increased blood flow through the blood vessel. These effects are limited to small biological regions since NO is highly reactive with a lifetime of a few seconds and is quickly metabolized in the body.

[0004] Typically, NO gas is supplied in a bottled gaseous form diluted in nitrogen gas (N₂). Great care has to be taken to prevent the presence of even trace amounts of oxygen (O₂) in the tank of NO gas because NO in the presence of O₂ is oxidized into nitrogen dioxide (NO₂). Unlike NO, the part per million levels of NO₂ gas is highly toxic if inhaled and can form nitric and nitrous acid in the lungs.

SUMMARY

[0005] In one embodiment, a system for delivering a therapeutic amount of nitric oxide includes a liquid reservoir containing dinitrogen tetroxide, a tube coupled to the reservoir, a first ribbed tube coupled to the tube: wherein the tube includes a surface-activated material coated with a reducing agent and a patient interface coupled to the first ribbed tube, wherein the tube converts nitrogen dioxide into nitric oxide prior to reaching the patient interface. The tube can be a quartz tube or a silica tube. The tube can be any compatible material that can have a bore size of about 50 microns or less. The tube can have a bore size of about 25 microns or less. The tube can have a bore size of 10 microns or less. The tube can be sealed. The system is activated by braking off the tip of the sealed tube. The tube can be quartz. The system can further include a valve coupled to the reservoir and the tube, wherein the valve can act as a variable sized hole. The system can further include an air pump in communication with the reservoir. The pump can be a battery-driven pump. The system can further include a source of pressurized inhalable gas such as air or oxygen. The system can further include a heating element associated with the reservoir. The patient interface can be a mouth piece, nasal cannula, face mask, fully-sealed face mask, or an endotracheal tube attached to a ventilator or anesthesia machine. In certain embodiments, the reservoir can contain compressed nitrogen dioxide or without a diluent gas, for example, the reservoir can further include nitrogen, air, oxygen-enriched air, or substantially pure oxygen. The surface-activated material can be a silica gel. The antioxidant can be ascorbic acid, alpha tocopherol, or gamma tocopherol. The antioxidant can be any antioxidant that is capable of reducing nitrogen dioxide to nitric oxide, even if the yield is very low. The surface active material should have a very large effective surface area to allow for multiple collisions so that even a 50% yield at each site leads to 99.99% effective yield when the process is repeated many thousands of times. The system can further include a second ribbed tube including a surface-activated material saturated with a reducing agent. Any appropriate reducing agent that can convert NO₂ or N₂O₅ to NO can be used as determined by a person of skill in the art. For example, the reducing agent can include a hydroquinone, glutathione, and/or one or more reduced metal salts such as Fe(II), Mo(VI), NaI, Ti(III) or Cr(III), thiols, or NO₂−. The reducing agent can be an antioxidant. The antioxidant can be an aqueous solution of an antioxidant. The antioxidant can be ascorbic acid, alpha tocopherol, or gamma tocopherol. Any appropriate antioxidant can be used depending on the activities and properties as determined by a person of skill in the art. The antioxidant can be used dry or wet. The patient interface can be a delivery tube to the patient’s mouth or nose or to a tube in the throat, or to a ventilator for anesthesia machine that delivers gas to a patient. The system can be adapted to be worn on a patient’s body.

[0006] The reservoir can be spherical or cylindrical. The reservoir can be a fused silica reservoir. The reservoir can be a non-reactive metal reservoir. The non-reactive metal can include palladium, silver, platinum, gold, aluminum or stainless steel. The reservoir can be an aluminum reservoir or a stainless steel reservoir. The system can further include an insulation covering the reservoir and the tube. The insulation covering can further include an alkaline solution. The solution can be activated charcoal which absorbs NO₂, which can also serve as a safety measure in case of catastrophic failure of the system. The alkaline solution can be calcium oxide, sodium hydroxide, sodium carbonate, potassium hydroxide, ammonium hydroxide or sodium silicate.

[0007] In another embodiment, a device for delivering nitric oxide to a patient can include a liquid reservoir containing dinitrogen tetroxide, a tube coupled to the reservoir, wherein tube has a bore size of about 25 microns more or less, a first ribbed tube including a surface-activated material saturated with an aqueous solution of an antioxidant, that is coupled to the tube and a patient interface coupled to the first ribbed tube, wherein the first ribbed tube converts nitrogen dioxide into nitric oxide prior to reaching the patient interface. The device can further include a heating element associated with the reservoir. The device can also include an air pump in communication with the reservoir. The pump can be a battery-driven pump. The device can further include a nitric oxide and a nitrogen dioxide monitor. The monitor can be a conventional monitor that withdraws the gaseous sample from the flow to the patient and delivers it to the detector by means of a sampling tube. The monitor can also be mounted in line with the gas plumbing going to the patient so that it is part of the side wall of the tubing. The advantage of such an inline monitor is that the output is very fast, and that there is no need for a sample line and no need to correct the output for the formation of nitrogen dioxide (and loss of nitric oxide) in the tubing to the monitor.

[0008] In a further embodiment, a hollow tube including a body having a first end and a second end, wherein the body includes multiple concentric hollow ribs and contains a surface-activated material. The surface-activated material can be saturated with an aqueous solution of an antioxidant to convert nitrogen dioxide into nitric oxide. The surface-activated material can include a silica gel, activated charcoal, activated carbon, activated alumina or calcium sulfate.

[0009] Other features will become apparent from the following detailed description, taken in conjunction with the
accompanying drawings, which illustrate by way of example, the features of the various embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a diagram of a NO delivery system.
[0011] FIG. 2 is a diagram illustrating the N$_2$O$_4$ reservoir and critical flow restrictor.
[0012] FIG. 3 is a diagram illustrating a standard NO generation cartridge.
[0013] FIG. 4 is a diagram illustrating a tube with multiple concentric hollow ribs.
[0014] FIG. 5 is a diagram illustrating an expanded view of a tube with multiple concentric hollow ribs.
[0015] FIG. 6 is a diagram illustrating a rib.
[0016] FIG. 7 is a graph illustrating temperature versus NO output for a 25 micron diameter ribbed tube packed with ascorbic acid/silica gel powder.
[0017] FIG. 8 is a graph illustrating air flow rate versus NO output for a 50 micron diameter ribbed tube packed with ascorbic acid/silica gel powder.
[0018] FIG. 9 is a graph illustrating NO and NO$_2$ output for a ribbed flexible tube. The graph further illustrates relative humidity, temperature at the outlet, ambient temperature and NO$_2$/NOX ratios.

DETAILED DESCRIPTION

[0019] Nitric oxide (NO), also known as nitrosyl radical, is a free radical that is an important signaling molecule in pulmonary vessels. Nitric oxide (NO) can moderate pulmonary hypertension caused by elevation of the pulmonary arterial pressure. Inhaling low concentrations of nitric oxide (NO), for example, in the range of 1-100 ppm can rapidly and safely decrease pulmonary hypertension in a mammal by vasodilatation of pulmonary vessels.

[0020] Some disorders or physiological conditions can be mediated by inhalation of nitric oxide (NO). The use of low concentrations of inhaled nitric oxide (NO) can prevent, reverse, or limit the progression of disorders which can include, but are not limited to, acute pulmonary vasoconstriction, traumatic injury, aspiration or inhalation injury, fat embolism in the lung, acidosis, inflammation of the lung, adult respiratory distress syndrome, acute pulmonary edema, acute mountain sickness, post cardiac surgery acute pulmonary hypertension, persistent pulmonary hypertension of a newborn, perinatal asphyxia syndrome, alveolar membrane disease, acute pulmonary thromboembolism, heparin-protein reactions, sepsis, asthma and status asthmaticus or hypoxia. Nitric oxide (NO) can also be used to treat chronic pulmonary hypertension, bronchopulmonary dysplasia, chronic pulmonary thromboembolism and idiopathic or primary pulmonary hypertension or chronic hypoxia. NO can also be used to treat influenza. NO can further be used to inhibit the replication of the influenza virus in the lungs.

[0021] Generally, nitric oxide (NO) is inhaled or otherwise delivered to the individual’s lungs. Providing a therapeutic dose of NO would treat a patient suffering from a disorder or physiological condition that can be mediated by inhalation of NO or supplement or minimize the need for traditional treatments in such disorders or physiological conditions.

[0022] Currently, approved devices and methods for delivering inhaled NO gas require complex and heavy equipment. NO gas is stored in heavy gas bottles with nitrogen and no traces of oxygen. The NO gas is mixed with air or oxygen with specialized injectors and complex ventilators, and the mixing process is monitored with equipment having sensitive microprocessors and electronics. All this equipment is required in order to ensure that NO is not oxidized into nitrogen dioxide (NO$_2$) during the mixing process since NO$_2$ is highly toxic. However, this equipment is not conducive to use in a non-medical facility setting (e.g., combat operations, remote wilderness, at home, while shopping or at work) since the size, cost, complexity, and safety issues restrict the operation of this equipment to highly-trained professionals in a medical facility.

[0023] NO treatment is effective, but a patient’s mobility may be limited since the treatment requires bulky and/or heavy equipment. Accordingly, a light, portable, ambulatory device for delivering NO with air has the potential to improve a patient’s quality of life. The device may be powered by a small, battery-driven pump or by patient inhalation (similar to smoking a cigar). Additionally, a treatment providing NO (e.g., converting N$_2$O$_4$ into NO) would be more cost effective than oxygen therapy.

[0024] The delivery devices disclosed herein are self-contained, portable systems that do not require heavy gas bottles, gas pressure and flow regulators, sophisticated electronics, or monitoring equipment. Additionally, the delivery devices are easy to use and do not require any specialized training. Moreover, the delivery devices allow an individual to self-administer a NO treatment. The delivery devices are also lightweight, compact, and portable. According to one embodiment, the NO delivery device is the size of a coke can for one-time use or short-term treatments lasting from 24 to 200 hours. Alternatively, the treatment can last from 5 to 20 minutes in a catheterization laboratory, to 6 hours during the day, to 24 hours per day to weeks at a time. In another embodiment, the NO delivery device is the size of a cigarette or a conventional inhaler. Alternatively, the NO delivery device is a larger device, yet portable device that can deliver NO for longer periods of time. In one embodiment, the NO delivery device can deliver NO for 4 days at 80 ppm NO and a flow rate of 1 L/min from a source of only 1 gram of liquid N$_2$O$_4$ or less than 0.7 mL of N$_2$O$_4$. In another embodiment, NO delivery device can deliver NO for several days from a source of only 0.5 gram of liquid N$_2$O$_4$.

[0025] As shown in FIG. 1, the NO delivery system includes reservoir 101. Generally, the reservoir 101 supplies NO lasting a few minutes to one or more days of continuous use, depending upon the method of storing the NO. In one embodiment, the reservoir 101 stores a therapeutic amount of N$_2$O$_4$ that is converted into NO. The therapeutic amount of NO is diluted to the necessary concentration while it is still N$_2$O$_4$ before the NO$_2$ is converted into NO. In another embodiment for long-term use for many days, the NO is stored as liquid dinitrogen tetroxide (N$_2$O$_4$) that is vaporizable into NO$_2$, typically, which in turn, is converted into NO. In various embodiments, the reservoir 101 is sized to hold a few milligrams to tens of grams of liquid N$_2$O$_4$. For short-term treatments, the reservoir 101 can be sized to contain a few milligrams of N$_2$O$_4$. For example, the reservoir 101 may be sized to hold approximately 7 mg of N$_2$O$_4$ (1), which would provide 20 ppm of NO for ten minutes. For long-term applications, the reservoir 101 may be sized to contain 10 or more g of N$_2$O$_4$ for long-term use such as several weeks. For example, a reservoir containing approximately 0.3 g of N$_2$O$_4$ may provide 20 ppm of NO at 20 L/min. for 24 hours, and a reservoir containing 10 g of N$_2$O$_4$ would provide a continuous
supply of NO for approximately 30 days. In other examples, the reservoir 101 is sized to hold less then 1 ml, 2 ml, 3 ml, 4 ml, 5 ml or 10 ml of liquid N₂O₄.

[0026] In one embodiment, the reservoir 101 can contain 1 g (about 0.7 ml) of N₂O₄ (102). The reservoir 101 can be attached to a tiny orifice or tube with a very narrow bore, 103. The reservoir 101 and the tube 103 can be covered by insulation 115. Since N₂O₄ boils at 21°C, the pressure inside the reservoir would be approximately 15 psi at 31°C, 30 psi at 41°C and 60 psi at 51°C. For example, instead of a gas regulator to control the resin, the gas within a device the temperature can be controlled such that the pressure inside the device is controlled precisely. As the gas vaporizes, one molecule of N₂O₄ forms two molecules of NO₂. Using the known physical gas properties of NO₂, a critical orifice hole of about 3 to 4 microns would leak out NO₂ at about 0.16 ml per minute. If this 0.16 ml of NO₂ were diluted into a gas stream of 2 liters per minute, the resulting concentration would be 80 ppm (parts per million). The same result can be achieved by using for example, a quartz tube 103 with a 25 micron diameter bore size and about 20 inches long.

[0027] The pressure inside the reservoir 101 can be controlled very precisely by controlling the temperature. The flow rate Q out of the reservoir is proportional to the differential pressure, the fourth power of the diameter of the tube, and inversely proportional to the length of the tube. This equation was tested for this application:

\[Q = \alpha \Delta P^4 \]

[0028] 128 µL.

[0029] In one embodiment, a small ON/OFF valve can be inserted between the reservoir and the fine tube. The valve can act as a variable sized hole. In another embodiment, the quartz tube can be sealed off with a hot flame and have no valve; resulting in an extremely simple device with just a reservoir which is heated to a known temperature and a fine tube. The device can be activated by heating the reservoir and cutting the tube to the desired length.

[0030] In another embodiment, the NO delivery system can include an air pump 104 that blows about 0.5 to 2 L/min of air through a tube 105. In other embodiments, the air pump can operate at about 4 to 20 L/min. The heated N₂O₄ source can leak NO₂ slowly into a stream to form a concentration of about 80 ppm of N₂O₄ in air. This is then passed through a short (about 1 inch) ribbed tube 106 containing the silica gel and ascorbic acid. If the packed tube is not ribbed and has smooth walls, then the tube needs to be in the vertical position so as to prevent a path whereby the air could bypass the silica gel and ascorbic acid, to avoid settling of the fine powder.

[0031] A second back up ribbed tube 108 may be located just before the cannula 107. There are reasons for doing so: First, the second tube can convert any NO₂ that is formed in the interconnecting tubing back into NO. Second, the second tube can provide a doubly redundant NO₂ to NO reactor, in case of failure of the first tube, 106. Third, the second tube can guarantee the absence of NO₂ and therefore can replace the need for having a NO₂ monitor for safety purposes. The safety is further enhanced when the two tubes are made from different batches of silica and ascorbic acid.

[0032] FIG. 1 illustrates the air intake (arrow 109) and air intake connection 110 to the air pump 104. The pressurized air then leaves the pump. For ambulatory use, this air flow can be in the range of 0.1 to 5 L/min. In one embodiment, the pump is a battery-driven pump. The air can also be supplied by a compressor. The air can also be supplied from a wall outlet, such as in a hospital. Oxygen can be used to replace the air, provided that the internal components of the system are suitable for use with pure oxygen. The liquid N₂O₄ contained in the reservoir 101 is connected to a ribbed tube 106 that contains a surface-activated material containing an aqueous solution of an antioxidant, by means of a fine fused capillary tube 103. The tube can be a silica tube, a fused silica tube or a quartz tube. The tube can have a bore size of about 50 microns or less, 25 microns or less, for example, 15 microns, 10 microns or 5 microns. The tube can have a bore size of 10 microns or less. The size of the tube can be chosen based on the concentration that is needed and the flow volume. In one embodiment, to deliver 80 ppm at 20 L/min, a bore size of 80 microns or more may be required. The tube can be of the type that is used for gas chromatography. The tube has no interior coating and may be coated on the outside with a polyamide protective layer to prevent the tube from breaking. The tube can be 30 inches long or as little as 0.25 inches so long as the pressure drop across the tube is calculated to provide the correct amount of flux of NO₂ to provide the therapeutic dose. Tubing lengths of between 0.1 to 50 inches have been used.

[0033] When heated, the liquid N₂O₄ will vaporize to NO₂ since the boiling point of N₂O₄ is about 21°C. The vapor pressurizes the reservoir and a small amount of the gas is vaporized through the tube 103 into the first ribbed tube 106. In, or just before, the first ribbed tube 106, the NO₂ is first mixed with air and then converted to NO. The ribbed tube may also be referred to as a conversion cartridge or GenOtor. In one embodiment, a NO generation cartridge, a GENO cartridge, or a GENO cylinder may be used in place of or together with the ribbed tube. Such NO generation cartridges are described in U.S. application Ser. No. 12/541,144 (herein incorporated by reference). The first ribbed tube 106 includes an inlet and an outlet. In one embodiment, the ribbed tube is filled with a surface-active material that is soaked with a solution of antioxidant in water to coat the surface-active material. This combination may sometimes be referred to as pixie dust. The antioxidant can be ascorbic acid, alpha tocopherol, or gamma tocopherol or almost any suitable reducing agent. The surface-active material can be silica gel or any material with a large surface area that is compatible with the reducing agent.

[0034] The inlet of the ribbed tube may receive the air flow having NO₂. The inlet can also receive an air flow with NO₂ in nitrogen (N₂), air, or oxygen (O₂). The conversion occurs over a wide concentration range. In one embodiment, the ribbed tube was packed with silica gel that had first been soaked in a saturated aqueous solution of ascorbic acid. Other sizes of the cartridge are also possible. The moist silica gel was prepared using ascorbic acid (i.e., vitamin C) designated as A.C.S reagent grade 99.1% pure from Aldrich Chemical Company and silica gel from Fisher Scientific International, Inc., designated as S8 32-1, 40 of Grade of 35 to 70 sized mesh. Other similar sizes of silica gel can also be effective, provided that the particular material is tested experimentally to determine whether it is suitable. The silica gel may be moistened with a solution of ascorbic acid that had been prepared by mixing from about 5% up to 35% by weight ascorbic acid in water, stirring, and straining the water/ascorbic acid mixture through the silica gel, followed by draining. It has been found that the conversion of NO₂ to NO proceeds well when the silica gel coated with ascorbic acid is moist.
The conversion of NO\textsubscript{2} to NO does not proceed well when the NO\textsubscript{2} is bubbled through an aqueous solution of ascorbic acid alone.

[0035] NO gas can then exit from the first ribbed tube 106. In one embodiment, NO exits from the first ribbed tube 106 into a NO sensor 111. The NO sensor can be directly coupled to a nasal cannula tubing 107. The NO sensor can be an optional safety device used to assure that NO gas is flowing. The NO sensor can be a separate NO monitor, or the sensor and the electronics can be mounted in the gas flow path itself. The reason for mounting in the flow path is that there is no need for a separate sample line, and also that the response time of the detector is reduced from multiple seconds to milliseconds.

[0036] In a further embodiment, the nasal cannula tubing 107 can be connected to a second ribbed tube 108 that contains a surface-active material that is soaked with a solution of antioxidant in water to coat the surface-active material. The function of the second ribbed tube 108 is the same as the first ribbed tube 106 and serves as a back up in case the first ribbed tube fails to convert NO\textsubscript{2} to NO. The mixture then flows directly to a patient interface 112. The patient interface can be a mouth piece, nasal cannula, face mask, or fully-sealed face mask. The NO\textsubscript{2} concentration in the gas stream to the patient is always zero, even if the gas flow to the cannula is delayed, since the second ribbed tube will convert any NO\textsubscript{2} present in the gas lines to NO.

[0037] It is contemplated that one or more of the components of the system illustrated in FIG. 1 may not be directly connected together. FIG. 1 illustrates that the pump 104 and power module is separate from the N\textsubscript{2}O\textsubscript{4} reservoir 101 and the first and second ribbed tubes 106 and 108. The power module can be purchased and assembled separately and can have its own battery charger built in or use one way or rechargeable batteries. The pump may be powered from a electrical outlet such as in a home, can be battery operated, solar powered, or crank powered. The N\textsubscript{2}O\textsubscript{4} reservoir 101 and the first and second ribbed tubes 106 and 108 can be a disposable module. The disposable module can be purchased separately at a pharmacy for example, as a prescription drug. The disposable module can be designed to last for 6 hours, 24 hours, 2 days, 4 days, 7 days, 2 weeks, a month or longer. In one embodiment, with twice the amount of material for both N\textsubscript{2}O\textsubscript{4} and ascorbic acid gel combination in the ribbed tube, the lifetime of the disposable modules can be increased by two-fold.

[0038] The system illustrated in FIG. 1 can optionally include a NO\textsubscript{2} monitor. The NO\textsubscript{2} sensor can be a separate NO\textsubscript{2} monitor, or the sensor and the electronics can be mounted in the gas flow path itself. The reason for mounting in the flow path is that there is no need for a separate sample line, and also that the response time of the detector is reduced from multiple seconds to milliseconds. For NO\textsubscript{2}, it is especially important that the sample lines be kept as short as possible, since NO\textsubscript{2} “sticks” to the tubing walls and as a result the time constant of the system can be very long, for example minutes to hours. Having an inline sensor can eliminate this problem.

[0039] The NO and NO\textsubscript{2} sensor can be calibrated periodically and also checked periodically to ensure that they are fully functional and have not failed and/or are still in calibration. Calibration and checking can be tedious and time consuming and there is no insurance that the calibration had failed immediately after the previous calibration. For this reason it is desirable to auto calibrate the sensors. One method which has been successful is to supply a very short time spike of NO and/or NO\textsubscript{2}, such that the duration of the spike is only a few milliseconds. This is enough time to have the computer recognize the time frequency and magnitude of the spike and use the result as a calibration check.

[0040] N\textsubscript{2}O\textsubscript{4} Reservoir and Critical Flow Restrictor:

[0041] FIG. 2, is a diagram illustrating the N\textsubscript{2}O\textsubscript{4} reservoir 210 and critical flow restrictor tube 200. The reservoir 210 can be spherical or nearly spherical or tubular. The reservoir 210 can be made from a material that is chemically stable against N\textsubscript{2}O\textsubscript{4}. Based on the chemical properties, the reservoir can be manufactured out of fused silica (a high grade of quartz), aluminum or stainless steel. The reservoir can be made from a non-reactive metal such as palladium, silver, platinum, gold, aluminium or stainless steel.

[0042] The spherical shape is not only the strongest physically, but with the exit tube protruding to the center, would allow for operation in any direction with the liquid level never in contact with the tube 200 itself, thereby preventing liquid from being expelled from the system. Other shapes including geometric shapes, tubular shapes, cube shapes can be used as determined by a person of skill in the art.

[0043] The reservoir 210 and the capillary tube 200 need to be heated to provide the pressure to drive the NO\textsubscript{2} out of the reservoir. In one embodiment, the delivery system illustrated in FIGS. 1 and 2 can include a heating element for use in cold weather environs (e.g., less than approximately 5°C or those temperatures in which the antioxidant-water combination would freeze and/or the N\textsubscript{2}O\textsubscript{4} would freeze). The heating element is associated with the reservoir. The heating element may be electrically, chemically, or solar powered. For example, the heating element can be a 20 watt heater which can be an Omega Stainless Steel Sheath Cartridge Heater. The system can also include a thermoelectric cooler so that the system can both be heated and cooled. Such devices are available commercially and provide the ability to rapidly change the temperature. Alternatively, the reservoir or delivery system can be strapped or otherwise held close to an individual’s body in order to utilize the individual’s body heat to keep the system at operating temperatures (i.e., those temperatures that where NO\textsubscript{2} has sufficient vapour pressure and ascorbic acid-water remains a liquid), and to ensure that the dose of NO is adequate.

[0044] At 21°C, the pressure in the reservoir 210 would be equal to atmospheric pressure since the N\textsubscript{2}O\textsubscript{4} (reference 230 in FIG. 2, boils at this temperature). At 30°C, the vapor pressure above the liquid would be equal to about 2 atmospheres. This increases to approximately 4 atmospheres at 40°C and 8 atmospheres at 50°C. Pressures like this are sufficient to drive the vapor out of the storage vessel 210 and through the 25 micron bore tube 200 and into the air stream at the ribbed tube wherein NO\textsubscript{2} is converted into NO.

[0045] The pressure has been shown experimentally to approximately double every 10°C, which is expected from theory. Thus, to maintain a constant pressure and therefore a constant driving force, the temperature of the assembly 220 has to be controlled. A 1.0°C rise in temperature would cause the pressure to increase by about 10% and therefore the concentration in the air stream to increase by 10%. In order to maintain a constant flow rate to within say 4–5%, the temperature at the reservoir needs to be held constant to within 0.25°C.

[0046] One limitation on the amount of N\textsubscript{2}O\textsubscript{4} that the reservoir 210 can contain is related to the consequences in the event of a catastrophic failure where all the liquid N\textsubscript{2}O\textsubscript{4}
suddenly escapes into the room and vaporizes to NO. If this were to ever happen, then the NO level in the room should not exceed 5 ppm, which is the OSHA standard for the workplace. In a standard room defined in FDA Guidance document “Guidance Document for Premarket Notification Submissions for Nitric Oxide Delivery Apparatus, Nitric Oxide Analyzer and Nitrogen Dioxide Analyzer dated 24 Jan. 2000, a room is cited as 3.1x6.2x4.65 meter room, without air exchange. In order to meet this guideline, the maximum amount of N₂O₅ that can be contained in the reservoir would be about 1 gram, or 0.7 ml, which would last for about 4 days.

[0047] While the safety code was written for high pressure gas bottles where the pressure is typically greater than 2000 psi, it is much less likely to happen when the internal pressure is only 8 atmospheres, which is equivalent to only 112 psi. Indeed, high pressure gas bottles are considered empty when the pressure falls below 150 psi. Another approach for exceeding this limit, a storage vessel that can include a reservoir 210 and tube 300 can be surrounded with an alkaline solution 240 that can neutralize the acidic N₂O₅/NO₃ in case of a leak. In the event of a catastrophic rupture, the reservoir 210 can be designed to leak into the surrounding alkaline solution, thereby neutralizing the toxic N₂O₅. Alkaline solutions can be any solution with a pH higher than 7. Any alkaline solution can be used, including but not limited to calcium oxide (flaked lime), sodium hydroxide, sodium carbonate, potassium hydroxide, ammonium hydroxide, sodium silicate. The same alkaline solution can also be used to neutralize any residual N₂O₅ after use or if the system was discarded prematurely. In another example, activated charcoal can be used to absorb NO₂ and can be used in packaging.

[0048] In another embodiment, the N₂O₅ and the reservoir needs to be heated to about 50° C. or higher in order to stabilize the pressure in the storage vessel. A heating element can be used. The heating element may be electrically, chemically, or solar powered. In one embodiment, chemical energy from an exothermic reaction can be used to provide the heat. One compound which could provide this energy is powdered calcium oxide (CaO). When mixed with water it releases energy in the form of heat. This material is also the slaked lime that is used in concrete. It has also been packaged in a format to heat foodstuffs. The added advantage of this material is that it is also alkaline, and the same material can be used to neutralize the N₂O₅/NO₃ in the scenario described above.

[0049] Packed Tube:

[0050] In a general process for converting NO₂ to NO, an air flow having NO₂ is received by a standard NO generation cartridge through an inlet 305 and the air flow is fluidly communicated to an outlet 310 through the surface-active material 320 coated with the aqueous antioxidant as illustrated in FIG. 3. Typically, when a tube is packed with a powder, the powder tends to settle, much like a cereal box with corn flakes. Settling occurs due to vibration that is encountered during shipping, as well as during normal use. This is especially the case when the powder is fragile, like corn flakes, and cannot be well packed or when it is not possible to tightly compact the powder. For example, in packed columns for liquid chromatography, the powder is packed and used at high pressures; these columns are usually packed as a slurry to force the powder to be tightly packed. If the powder has an active surface material, such as silica gel, activated charcoal, activated carbon, activated alumina or dessicants such as calcium sulphate (DRIERITE®), to name just a few, and if it is desired to flow gas through the cartridge so that it comes into contact with the active surface, then the powder cannot be packed too tightly or the packed material can fracture, and allow gas to flow freely without creating too large of a pressure drop. In these cases, the technique that is used commercially today is to pack the powder and try and keep it tightly packed by means of a spring. In addition, the tubes have to be used vertically, so that as the powder settles, there will be no free gas path, 330, which the gas can take to bypass the reactive bed 320, as shown in FIG. 3. If the tubes are not used vertically, then settling of the powder creates a channel 330 across the tube where the gas can flow preferentially. Creation of a channel negates the effect of the powder and renders the cartridge useless. This problem is so severe that a packed tube like this can only be used if the cartridge is vertical.

[0051] FIG. 4-6 illustrates a tube with multiple concentric hollow ribs that overcomes this problem and allows for a powdered cartridge to be used at any angle, even after it has been exposed to severe vibrations. The tube can be made with all surface-active material including but not limited to silica gel, activated charcoal, or Drierite. The tube can be packed vertically and the powder, 422, is allowed to fill from the bottom to the top, also filling up all the volume enclosed by the ribs. If the tube were then vibrated and placed horizontally, the powder in the ribs would settle, as shown in 424. However, as long as the ribs are deep enough, the gas would not have a preferred channel. Gas flow would find the path to the settled volume more difficult than travelling through the powder bed.

[0052] FIG. 6 shows the close up detail of one of the ribs. For simplicity, the ribs are drawn as triangles, although in practice they can have rounded corners and a round top. L is the length at the base of the triangle, and A is the height of the powder above the base. As long as L is always less than 2 A, the preferred path for the air would be L, and not A. However, if the decrease in volume was so large that L was greater than 2 A, then the air channel in the rib would be the path of least resistance and the air would travel up into the channel, across the channel and down the other side to the next rib.

[0053] In one embodiment, the ribbed tube can be scaled up to be used in a packed bed reactor. At the present time powdered bed reactors are all situated vertically so as to avoid the problem. With the ribbed design, they can be situated at any angle, including horizontally.

Example 1

[0054] The table below was generated with an air flow of 1 LPM air (using a mass flow controller), with an ascorbic acid/silica gel powder ribbed reactor. The NO₃ was supplied from a reservoir heated to 61° C. in a water bath. The NO reading is approximately 79 ppm. The fused quartz tube was 25 micron id and supplied by Restek as a “Guard column” ("GC"). The length of the GC column started at 39.88 inches. The GC column (except the last 2 inches) and liquid vessel are submerged in the water bath. Table 1 shows the relationship between length and concentration from this experiment.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>88.00</td>
<td>36.80</td>
<td>NA</td>
<td>NA</td>
<td>61.8</td>
<td>1</td>
</tr>
<tr>
<td>76.50</td>
<td>41.95</td>
<td>42.33 -0.91%</td>
<td>11.5 621</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>64.25</td>
<td>50.33</td>
<td>50.40 -0.14%</td>
<td>12.25 61.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>50.00</td>
<td>64.77</td>
<td>-1.52%</td>
<td>14.25 61.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>39.88</td>
<td>79.00</td>
<td>81.21 -2.80%</td>
<td>10.125 61.3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The results show that within the limits of experimental error the output is inversely proportional to the length.
Example 2

[0055] In this example, the length of the 25 micron diameter tube was held at 38\%6 inches. The GeNO3tor cartridge was a ribbed tube that was packed with the ascorbic acid/silica gel powder. The temperature of the storage vessel and the tube were varied from about 49\°C. to just over 60\°C. FIG. 7 demonstrates that over this temperature range, the increase in output was approximately linear, increasing 10-fold from 44 ppm at 50\°C. to 88 ppm at 60\°C.

Example 3

[0056] In this example a tube with a 50 micron id tube was used. The output of this tube was 64 ppm at 10 liter per minute and 28 ppm at 20 liters per minute; doubling the flow of air resulted in the output being halved, as expected. See FIG. 8. For this diameter, the expected output should vary with the 4\th power of the diameter as compared to a tube of 25 microns, or a factor of 16. From example 2, the output at 50\°C. and 11 per minute was 44 ppm, which translates to an expected output of 70 ppm. This compares to the measured output of 65 ppm, which is within the limits of experimental error.

Example 4

[0057] In this example, a ribbed flexible tubing was used. The rubber tube was packed with 40 g of ascorbic acid/silica gel powder. 100 ppm of NO\textsubscript{2} was supplied in oxygen at 5 Lpm. The experiment was carried out over the course of approximately 42 hours as depicted in FIG. 9. FIG. 9 further illustrates that NO was released steadily for about 40 hours.

[0058] The various embodiments described above are provided by way of illustration only and should not be construed to limit the claimed invention. Those skilled in the art will readily recognize various modifications and changes that may be made to the claimed invention without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the claimed invention, which is set forth in the following claims.

1.-42. (canceled)
43. A device for use in administering nitric oxide comprising:
 a reservoir including liquid dinitrogen tetroxide and gaseous nitrogen dioxide;
 a tube coupled to the reservoir, wherein the tube is configured to regulate the release rate of nitrogen dioxide gas from the reservoir; and
 a temperature control element associated with the reservoir.

44. The device of claim 43, wherein the reservoir is spherical.
45. The device of claim 43, wherein the reservoir is made from a non-reactive metal.
46. The device of claim 45, wherein the non-reactive metal is palladium, silver, platinum, gold, aluminum, or stainless steel.
47. The device of claim 43, wherein the temperature control element includes a heating element.
48. The device of claim 43, wherein the temperature control element includes a cooling element.
49. The device of claim 43, wherein the tube has a bore size of about 50 microns or less.
50. The device of claim 43, wherein the reservoir is covered with insulation.
51. The device of claim 43, wherein the reservoir and tube are covered with insulation.
52. The device of claim 43, wherein the reservoir is surrounded with an alkaline solution.
53. The device of claim 52, wherein the reservoir is covered with insulation including an alkaline solution.
54. The device of claim 52, wherein the alkaline solution includes calcium oxide, sodium hydroxide, sodium carbonate, potassium hydroxide, ammonium hydroxide, or sodium silicate.
55. The device of claim 43, wherein the tube has a first end and a second end, wherein the first end is coupled to the reservoir and the second end is sealed.

* * * * *