wO 2016/154001 A1 [N I 000 00000 OO

(43) International Publication Date
29 September 2016 (29.09.2016)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2016/154001 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 11/30 (2006.01) GO6F 12/14 (2006.01)

International Application Number:
PCT/US2016/023142

International Filing Date:
18 March 2016 (18.03.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/136,340 20 March 2015 (20.03.2015) US
62/136,385 20 March 2015 (20.03.2015) US
Applicant: RIVETZ CORP. [US/US]; 1209 Orange

Street, Wilmington, DE 19801 (US).

Inventors: SPRAGUE, Michael; 73 Bedford Street, New
York, NY 10014 (US). SPRAGUE, Steven; 111 Swamp
Road, Richmond, MA 02154 (US).

Agents: FESSENDEN, Giovanna, H. et al,; Hamilton,
Brook, Smith & Reynolds, P.C., 530 Virginia Rd, P.O.
Box 9133, Concord, MA 01742-9133 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: AUTOMATED ATTESTATION OF DEVICE INTEGRITY USING THE BLOCK CHAIN

Service orovider

200

FIG, 2A; example deviee authendcation sysiern according 1o the invention.

(57) Abstract: Systems and methods are disclosed that provide for a full validation of an unknown client device prior to acceptance
of a block chain transaction would provide further security for block chain transactions. The health of the device can be attested to
prior to engaging in electronic transactions. In some embodiments, automation of full device integrity verification is provided as part
of a block chain transaction. Certain aspects of the invention enable trust in devices. Some embodiments operate on the tundamental
premise that a reliable relationship with a device can make for a much safer, easier and stronger relationship with an end user.
Achieving this requires knowing with confidence that a device involved in a current transaction is the same device it was in previous
transactions.

WO 2016/154001 PCT/US2016/023142

AUTOMATED ATTESTATION OF DEVICE INTEGRITY USING THE BLOCK
CHAIN

RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No.,
62/136,340 filed on March 20, 2015 and U.S. Provisional Application No.,
62/136,385 filed on March 20, 2015. The entire teachings of the above applications

are incorporated herein by reference.

BACKGROUND

[0002] The advent of decentralized transaction systems such as Bitcoin has
provided the Internet with a reliably secure protocol for recording ownership over
digital value known as the block chain. The system is rooted in private keys that
enable people to exercise that digital value. However, when these keys are stored
digitally, and particularly when they are transacted, they are vulnerable to theft
which can result in substantial losses. Industry has for years anticipated a need for
high-assurance operations in endpoint devices. Already deployed hardware security
can be used to enhance the security and privacy for interactions between people and
the block chain.

[0003] The block chain behind Bitcoin, the common ledger that is built on the
backs of thousands of peered servers, is devised to be mathematically impenetrable.
As long as a majority of participating peers act in support of the community one
cannot leverage enough compute power to edit records of the past and thus steal
value. With such a large community maintaining its integrity, it is deemed that only
a vulnerability in elliptic curve cryptography could compromise the block chain.
However, while the block chain itself is well secured, how an individual transacts
with it is either very complex or subject to a number of well-known malware
attacks. The result is that the quality of the instructions to the block chain are critical

to assuring the quality of the protected transaction ledger.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

SUMMARY

[0004] Most of the transactions captured in the Bitcoin block chain record a
transfer of value from one person to another. Public keys represent the parties
involved. Corresponding private keys enable a participant to claim the result. As
there is no other method of oversight or control, it is paramount that the private key
be secured. The block chain is an ephemeral construct. People can only interact with
it through their control of a network connected device. Broadly speaking there are
three ways in which this takes place. A) The person controls a machine that is itself
a peer and writes directly into the block chain. B) The person uses a web site or
mobile app to instruct a server acting on their behalf, or C) the person uses a web
site or app to propagate a transaction that is locally formed.

[0005] In general, a private key is applied to sign a request. The execution
environment is responsible for the accuracy of the request and protection of the
private key. Attestation to the health and origin of the execution environment
establishes its reliability.

[0006] There are a number of widespread tools that can be leveraged for
improving the security of the execution environment. This ranges from hardware
backed device identity to full trusted execution environments. The consumer web is
the most broadly distributed services platform that is constructed on user
identification methods rather than device identification. Unlike mobile telephony or
cable television, for example, where service is authenticated by the enabling device,
the web requires that end-users conduct the identification protocol, i.e. enter
username and password. While there are benefits to the portability of this method, it
is dangerously susceptible in practice. Users are terrible at remembering complex
passwords and irritated by repetitive requests. The result is passwords like
“GoYanks” and session keys that are allowed to persist for days. A device, on the
other hand, will happily engage in a cryptographic authentication well beyond the
capacity of any human with any of thousands of credentials stored in its hardware.
And it will do it over and over without fatigue.

[0007] Except in extreme circumstances, portability in the form of
username/password, has a role to play. But most of the time users engage with the

same devices for the same interactions. By leveraging the devices they own to

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-3-

conduct basic authentication this consistency can be rewarded with immediate
access for users and increased assurance for service providers.

[0008] The Internet is largely accessed by multi-purpose devices. PC’s, Tablets
and Phones may host hundreds of applications and the vibrant market for new apps
drives a very open environment. This is very user friendly until one of those apps
disguises a malicious intent and begins to vandalize or steal from the other apps on
the device. In addition to knowing whether the device is the same one it was before,
a service provider should ask it, are you in the same state as before. When
significant changes are known to have occurred this can indicate a potential threat.
This knowledge enables service providers to take remedial action or at least request
further confirmation from the device operator that the machine is still safe.

[0009] The user will often not know if their device is compromised, but if it can
be detected, for example, that the BIOS has changed, a service can take cautionary
steps.

[0010] Installing and running apps is meant to be very simple. However, there is
a class of apps that can benefit greatly from strong assurance of their origin and
opaque separation from the execution of other apps. This may be, for example, a
Trusted Execution Environment or TEE. Unlike an app running on the primary OS
and memory stack, an app running in a TEE can have access to cryptographic
primitives that can be exercised without snooping by the OS. In ideal circumstances
it also has direct access to user input and display to ensure a private interaction with
the operator of the device.

[0011] Both proprietary and standards based solutions in support of device
security have worked their way into the supply chain. The Trusted Platform Module,
or TPM, for instance, is a security chip embedded on the motherboard of most
modern PC’s. The technology is specified by the Trusted Computing Group (TCG),
a non-profit consortium of dozens of major vendors. It was designed largely in
support of enterprise network security but has a huge role to play in simplifying the
consumer web. TPM’s having be shipping for half a dozen years and are now widely
prevalent in modern PC’s. Microsoft logo compliance beginning in 2015 will further

ensure that no machine is delivered without a TPM.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-4 -

[0012] A TPM is relatively simple. It serves three basic purposes: PKI, BIOS
integrity and encryption. While the technology has been pursued for well over a
decade, it is only recently that devices with support for a TEE have become
available. Intel began delivery of commercial solutions in 2011 and Trustonic
launched in 2013. The platforms and associated tools are reaching the level of
maturity required for consumer use. Deploying an app into a TEE is akin to
delivering a dedicated hardware device. Execution and data are cryptographically
isolated from any other function of the host.

[0013] The chip has no identity of its own, but can be asked to generate key
pairs. AIK’s, or Attestation Identity Keys, can be marked as “non-migratable” so
that the private half of the key pair will never be visible outside the hardware. This
provides an opportunity to establish a machine identity that cannot be cloned.
Currently deployed TPM’s, version 1.2, are limited to RSA and SHA-1. Version 2.0,
coming soon, will be much more agile. The TPM also implements an Endorsement
Key (EK). The EK is installed during manufacture and can be used to prove that the
TPM is in a fact a real TPM. A system supporting a TPM will load Platform
Configuration Registers (PCR’s) during its boot sequence. Beginning with the
firmware, each step in the boot process measures its state and the state of the next
process and records a PCR value. As the PCR’s are captured in the tamperproof
TPM a reliable “quote” of the system’s BIOS integrity can subsequently be
requested. A PCR doesn’t capture what actually happened it only captures, through
a series of hashes, that nothing is changed. This is particularly important for
protection against the most serious and otherwise undetectable attacks where a
hacker compromises the machine bios or installs a secret hypervisor. Combined with
an assurance signature from virus scanning software, one can establish a reliable
state of machine health. TPM’s also provide bulk encryption services. Encryption
keys are generated in the TPM, but not stored there. Instead they are encrypted with
a TPM bound Storage Root Key and returned to the requesting process. A process
wishing to encrypt or decrypt a blob of data will first mount the desired key. The
key is then decrypted in the hardware and made available for ciphering. As with
most TPM keys, encryption keys can be further protected with a password if desired.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-5-

[0014] Trustonic (htip:/fwwvw trystonic com) 1s a joint venture of ARM, G+D

and Gemalto. Trustonic provides a trusted execution environment across a broad
array of smart devices. The goal is to enable the secure execution of sensitive
application services. Trustonic is an implementation of the Global Platform standard
for Trusted Execution Environments. Apps written to execute in the Trustonic TEE
are signed and measured. Devices supporting Trustonic provide an isolated
execution kernel so that a loaded app cannot be spied on by any other process
running on the device, including debug operations on a rooted device. Trustonic
was formed in 2012 and now ships with half a dozen manufactures and supports a
couple dozen service providers. Over 200 million devices have now shipped with
Trustonic support.

[0015] Intel vPro is collection of technologies built into modern Intel chip set.
New machines marketed with vPro support the Intel TXT Trusted Execution
Technology. Intel offers a secure processing environment in the Management
Engine (ME) that enables protected execution of numerous cryptographic functions.
One use of this capability has been the deployment of TPM 2.0 functionality
implemented as an app in the ME. The Management Engine also supports secure
display functions for conducting fully isolated communications with the user. In this
manner an app executing in the ME can take direction from the user with a
substantially reduced risk of compromise.

[0016] ARM TrustZone provides the silicon foundations that are available on all
ARM processors. The primitives isolate a secured world of execution from the
common execution space. ARM provides the designs that are then built into a
number of standard processors. To take advantage of TrustZone, apps can either be
deployed as part of system firmware by the manufacturer or can be delivered after
the fact through third party tools like Trustonic, Linaro or Nvidia’s open source
micro kernel.

[0017] Some embodiments of the present invention apply these technologies
into a set of services for enhancing the transaction environment that connects people
and the block chain.

[0018] The concept of second factor authentication is well established though in

limited use. It is perhaps utilized most prominently by Bitcoin service sites, where

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-6-

breaching a login can provide immediate and irreversible theft of funds. Most
people are familiar with second factor in the form of a SMS confirmation or key fob.
You enter your username and password and then you enter the code messaged to
your registered phone. Second factor authentication is an important step for login
security, however, it burdens the user with additional work. Even if we understand
why it’s important, mankind is naturally lazy. Many sites allow users to opt out of
repeated confirmations and many users readily select this time saving degradation of
security. A further example method, may be to first validate with the device from
which the authentication request is sent. Using a TPM or any other secure source of
cryptographic key sets, a web service can ask the device to prove it is the same
device it was before. This request can be transparent to the user (or further secured
with a PIN) and provides a level of assurance whereby hassling the user for identity
and authentication can often be bypassed.

[0019] A machine generated cryptographic proof tends to be far more reliable
than a short username and eight character password, both of which are probably
based on memorable facts attributed to the user. The user is best relegated to the job
of protecting the device. Ten thousand years of evolution has trained people to
protect valuable objects. Yet we find it hard to remember even a ten digit phone
number. Devices, on the other hand, are purpose-built for blazingly fast math. If a
user finds him or herself without a regularly used device, the service can fall back on
user identification procedures. When it’s not the common use case a user will be
willing to accept more onerous identification procedures.

[0020] According to an example embodiment of the invention, the first step of
leveraging device identity is enrollment. In one preferred embodiment, device
enrollment may be enacted under the oversight of some other trusted entity. For
example, enrollment of a phone could take place at the point of sale where binding
between the end user and the device identity can be established with physical
presence. However, in many use cases this level of person-to-device association is
neither necessary nor desired. Device identity and attributes that could be considered
Personally Identifying Information (PII) should not be inextricably linked. Basic
device identity is purely anonymous. To reliably enroll a device we only need two

things: A) The ability to generate a key pair that is locked to the device, and B)

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-7-

assurance of the provenance and quality of the device environment that provides this
service. The latter is provided either by social engineering or supply chain crypto.
While nothing is absolute, a device registered in the presence of a respected
purveyor is likely to be a real device. It is important to the lasting reputation of that
purveyor. Trust in a device that is keyed on the manufacturing floor and can be
confirmed with the OEM certificate authority, likewise, is built on the reputation of
that manufacturer.

[0021] According to some embodiments, enrollment involves establishing a
uniqueness which can be queried but not spoofed. For this, the TPM (or similar
hardware root of trust) may be used. The TPM chip generates a key pair and returns
the public portion of the key to the client which in turn posts it to a server. A random
id 1s generated and together the couplet is transacted into Namecoin (or similar
block chain, or block chain method, devised to record named data.) Once ensconced
in the block chain, the device record can be extended and modified with attributes
such as the PCR quotes, associated Bitcoin accounts or other data. It is anticipated
that large data objects will be referenced with a hash and URL in the block chain,
rather than directly. The enrollment agent, in conjunction with the device, controls
the Namecoin account that can update this record. However, one could imagine a
scenario for self-enrolled devices where the enrollment agent is also the device.
Once enrolled a service can access the public keys of the device to validate and
encrypt communications and cryptographic assurance that the associated attributes
emanated from the device.

[0022] In a trusted execution environment, the features of device identity are
provided while further extending the ability to execute code in isolation from the
rest of the system. Embodiments of this invention provide a Bitcoin Services
Component that is packaged for deployment in a variety of TEE environments. This
results in a couple of critical enhancements to the execution of a transaction: (1)
Code is signed and authenticated by a third party trusted application manager so it
can’t be tampered with. (2) Code is executed outside the host operating environment
and is thus protected from malware. (3) Application data, beyond just keys, are

never exposed outside of the TEE.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-8-

[0023] An enrolled device can build up a record of attributes that enable service
providers to verify its state and context. Device attributes needn’t include any PII to
be useful. For example, a recent statement declaring a clean boot sequence can give
a service provider some confidence that the machine is not compromised. Attributes
that provide singular assertion of a fact can also be useful without divulging much
PII, for example, the machine operator has been validated as over 21, or as a French
citizen or member of an affinity club. In most cases, an interaction with a device is
an opportunity to collect a statement of its boot integrity. This is nothing more than a
collection of hashes that can be compared against the last boot statement. A machine
that booted in a predictable way is believably more reliable than one who has
changed BIOS or OS. In addition to PCR quotes, participating anti-virus software
can deliver a statement that the machine was cleared as of the last scan.

[0024] In some embodiments, integration of the principles of Trusted Network
Connect (TNC) would allow a full validation of an unknown client device prior to
acceptance of a transaction. The client device being in a known good condition or
state prior to the acceptance of a transaction is based on a third party’s statement that
the device is configured correctly. This type of verification addresses a broad range
of cyber security controls that may be preferably required as part of any transaction
processing system.

[0025] An exemplary embodiment is a computer-implemented method of
verifying device integrity of a user device in a block chain communication network
comprising in preparation for delivering an electronic transaction in the block chain
network, implementing a device integrity verification process as part of the
transaction including performing an internal validation of the integrity of the device
execution environment from a root of trust in the user device; and requiring an
electronic signature, such that a verification of the integrity of the signature is
applied to the block chain transaction; wherein verification of the integrity of the
signature is based on a determination of whether the execution environment of the
device is in a known good condition including based on the integrity of the
signature, allowing the transaction to proceed or requesting a remediation authority
to verify that the electronic transaction as intended by the user is allowed to proceed

even if it is determined that the execution environment of the device is not in a

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-9.

known good condition. In some embodiments verification of the integrity of the
signature includes transmitting a root of trust instruction to the block chain network
for processing, such that at least a portion of the block chain network responds by
requiring multiple electronic signatures in order to accept the electronic transaction
including creating within the execution environment of the device, an instruction
from a root of trust in the user device; requiring a first electronic signature that
corresponds to the root of trust instruction, such that a verification of the integrity of
the signature is applied to the block chain transaction; and responding to the first
electronic signature by verifying the integrity of the signature based on a
determination of whether the execution environment of the device is in a known
good condition including comparing the signature with a previously recorded
reference value; if the signature matches the previously recorded reference value,
then allowing the transaction to proceed; and if the signature does not match the
previously recorded reference value, requesting a third party out of band process to
verify that the electronic transaction as intended by the user is allowed to proceed
even if it is determined that the execution environment of the device is not in a
known good condition. In some embodiments, verifying the integrity of the
signature includes the device providing the electronic signature based on a
determination of whether the execution environment of the device is in a known
good condition; allowing the transaction to proceed if the device provides the
electronic signature; allowing the transaction as intended by the user to proceed even
if it is determined that the execution environment of the device is not in a known
good condition if the remediation authority provides the signature. Additionally, the
out of band process may further include using an N or M cryptographic key function
to confirm that at least one of an intent of the user meets predetermined
requirements, or the device integrity meets predetermined requirements, or an
additional process meets predetermined requirements. The reference value may be
generated during a registration process performed by the owner of the device
platform. The reference value may be generated based on a birth certificate assigned
to the device, wherein the birth certificate is generated by the manufacturer or
creator of the device, the manufacturer or creator of the execution environment of

the device and/or the manufacturer or creator of an application on the device. The

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-10 -

reference value may include a signature of at least one of the manufacturer or creator
of the device, the manufacturer or creator of the execution environment of the device
and/or the manufacturer or creator of an application on the device. The third party
out of band process may return a token in response to the request to verify the
transaction. Some embodiments may allow the electronic transaction to be
completed within a certain period of time if the signature does not match the
previously recorded reference value.

Some embodiments may verify that the intended electronic transaction is allowed to
proceed even if it is determined that the execution environment of the device is not
in a known good condition is based on a period of time between the registration of
the reference value and the transaction and/or the amount of the transaction.
Transactions above a threshold amount may be allowed to proceed if the period of
time meets predetermined requirements. Allowing the transaction above a certain
amount may be based on a minimum number of previously allowed transactions.
Some embodiments may further comprise using a display device indicating to the
user whether device integrity meets minimum predetermined requirements and
further actions to be taken. Other embodiments may further include notification to a
third party of the transaction, wherein in response to the notification, the third party
records the transaction and a state of the device. The third party may record
measurements associated with the device integrity for future analysis of the
transaction. In addition, assuring the privacy of the record may include
cryptographically obfuscating the record such that the record is made available only
to authorized third parties. Another exemplary embodiment is a computer-
implemented system of verifying device integrity of a user device in a block chain
communication network comprising a block chain communication network; a user
device in the block chain network; an electronic transaction in the block chain
network; a device verification process implemented as a part of the transaction in
preparation for delivery of the electronic transaction in a block chain network, the
implementation further comprising an internal validation of the integrity of the
device execution environment performed from a root of trust in the device; an
electronic signature, such that a verification of the integrity of the signature is

applied to the block chain transaction; wherein verification of the integrity of the

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-11 -

signature is based on a determination of whether the execution environment of the
device is in a known good condition including: based on the integrity of the
signature, allowing the transaction to proceed or requesting a remediation authority
to verify that the electronic transaction as intended by the user is allowed to proceed
even if it is determined that the execution environment of the device is not in a

known good condition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The foregoing will be apparent from the following more particular
description of example embodiments of the invention, as illustrated in the
accompanying drawings in which like reference characters refer to the same parts
throughout the different views. The drawings are not necessarily to scale, emphasis
instead being placed upon illustrating embodiments of the present invention.
[0027] FIG. 1A is an example digital processing environment in which
embodiments of the present invention may be implemented.

[0028] FIG. 1B is a block diagram of any internal structure of a
computer/computing node.

[0029] FIG. 2A is a block diagram showing an example device authentication
system according to the invention.

[0030] FIG. 2B is a diagram showing an example device authentication system
according to the invention.

[0031] FIG. 2C is a diagram of the components of an embodiment of the
invention.

[0032] FIG. 2D is a diagram of the Authentication System Adaptor and its
outward and inward looking interfaces.

[0033] FIG. 3A is a diagram of the sequence of packaging and delivering an
instruction by the Encoder.

[0034] FIG. 3B is a diagram of the device enrollment process according to an

embodiment of the invention.

DETAILED DESCRIPTION

[0035] A description of example embodiments of the invention follows.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-12 -

[0036] Embodiments of the present invention are systems and methods for
attesting to device health prior to engaging in electronic transactions.

[0037] Block chain transactions do not have verification or cyber security
controls on an unknown device performing the transactions. Therefore, a full
validation of an unknown client device prior to acceptance of a block chain
transaction would provide further security for block chain transactions.

[0038] Example embodiments may be founded on the principles of the Trusted
Network Connect (TNC) standards under which the integrity of a device may be
verified prior to actual enablement of the connection to a network switch.
According to TNC, a device performs a series of measurements that are securely
stored on the device. The measurements typically would include validation of the
BIOS image, the operating system (OS) and any applications that need to be verified
that they have not been altered. Upon connection to the network, the switch would
perform a validation process verifying that the measurement data matches a
reference value that was computed when the device was either previously connected
or in a current known good condition or state. The Trusted Execution Environment
(TEE) is also capable of self-measurement processes and remote attestation of the
health of the device. In some preferred embodiments, the TNC system is based on
the Trusted Computing Group (TCG) standards and typically the Trusted Platform
Module (TPM) chip is integrated.

[0039] In some embodiments, automation of full device integrity verification is
provided as part of a block chain transaction. In order to provide a validation of the
device integrity, a device that is performing a block chain instruction would perform
an internal validation of the integrity of the execution environment from a root of
trust in the device at the initialization of the block chain transaction. The device
would, with or without Human input create an instruction within the measured
environment. This instruction would then be sent to the block chain network for
processing. The block chain network will require multiple signatures to accept the
transaction. The first signature would be the created root instruction itself that would
have the verification of the signature applied to the transaction. The network then
verifies the integrity signature of the execution environment by comparing it with a

previously recorded Reference Value. If the signature matches the Reference Value

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-13 -

the transaction is allowed to proceed. If the signature and Reference Value do not
match then the system will require a third out of band process to be completed that
would verify that the transaction intended is allowed to proceed even if the
execution environment is not in a known good condition. Because, block chain
transactions do not have any verification or cyber security controls on an unknown
device performing a transaction, embodiments of the present invention would allow
a full validation of an unknown client device being in a known good condition
according to a third party’s statement that the device is configured correctly prior to
the acceptance of a transaction. Some embodiments of the present invention,
therefore, can address a broad range of cyber security controls that should be

required as part of any block chain transaction processing system.

[0040] Digital Processing Environment

[0041] An example implementation of a system according to the invention for
attesting to device health prior to engaging in transactions 100 may be implemented
in a software, firmware, or hardware environment. FIG. 1A illustrates one such
example digital processing environment in which embodiments of the present
invention may be implemented. Client computers/devices 150 and server
computers/devices 160 (or a cloud network 170) provide processing, storage, and
input/output devices executing application programs and the like.

[0042] Client computers/devices 150 may be linked directly or through
communications network 170 to other computing devices, including other client
computers/devices 150 and server computer/devices 160. The communication
network 170 can be part of a wireless or wired network, remote access network, a
global network (i.e. Internet), a worldwide collection of computers, local area or
wide area networks, and gateways, routers, and switches that currently use a variety
of protocols (e.g. TCP/IP, Bluetooth®, RTM, etc.) to communicate with one
another. The communication network 170 may also be a virtual private network
(VPN) or an out-of-band network or both. The communication network 170 may
take a variety of forms, including, but not limited to, a data network, voice network

(e.g. land-line, mobile, etc.), audio network, video network, satellite network, radio

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-14 -

network, and pager network. Other electronic device/computer networks
architectures are also suitable.

[0043] Server computers 160 may be configured to provide a user device
authentication system 100 which communicates with authenticators to confirm a
requestor’s identity prior to allowing the requestor to access resources protected by
the authentication system. The server computers may not be separate server
computers but part of cloud network 170.

[0044] FIG. 1B is a block diagram of any internal structure of a
computer/computing node (e.g., client processor/ device 150 or server computers
160) in the processing environment of FIG. 1A, which may be used to facilitate
displaying audio, image, video or data signal information. Each computer 150, 160
in FIG. 1B contains a system bus 110, where a bus is a set of actual or virtual
hardware lines used for data transfer among the components of a computer or
processing system. The system bus 110 is essentially a shared conduit that connects
different elements of a computer system (e.g., processor, disk storage, memory,
input/output ports, etc.) that enables the transfer of data between elements.

[0045] Attached to the system bus 110 is an I/O device interface 111 for
connecting various input and output devices (e.g., keyboard, mouse, touch screen
interface, displays, printers, speakers, audio inputs and outputs, video inputs and
outputs, microphone jacks, etc.) to the computer 150, 160. A network interface 113
allows the computer to connect to various other devices attached to a network (for
example the network illustrated at 170 of FIG. 1A). Memory 114 provides volatile
storage for computer software instructions 115 and data 116 used to implement
software implementations of device integrity attestation and authentication
components of some embodiments of the present invention. Such device integrity
attestation and authentication software components 115, 116 of the user
authentication system 100 (e.g. encoder 210, Trusted Execution Environment (TEE)
applet 208, authentication site 206 of FIG. 2A) described herein may be configured
using any programming language, including any high-level, object-oriented
programming language, such as Python.

[0046] In an example mobile implementation, a mobile agent implementation of

the invention may be provided. A client server environment can be used to enable

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-15 -

mobile security services using the server 190. It can use, for example, the XMPP
protocol to tether a device authentication engine/agent 115 on the device 150 to a
server 160. The server 160 can then issue commands to the mobile phone on
request. The mobile user interface framework to access certain components of the
system 100 may be based on XHP, Javelin and WURFL. In another example mobile
implementation for OS X and 10S operating systems and their respective APIs,
Cocoa and Cocoa Touch may be used to implement the client side components 115
using Objective-C or any other high-level programming language that adds
Smalltalk-style messaging to the C programming language.

[0047] The system may also include instances of server processes on the server
computers 160 that may comprise an authentication (or attestation) engine 240 (FIG.
2), which allow registering a user, selecting authenticators/attesters for confirming a
requestor is a registered user, communicating with the authentications in regards to
confirming a requestor’s identity, and executing algorithms, such as statistical
algorithms to compute confidence scores, to allow or deny the requestor access to
resources protected by the system.

[0048] Disk storage 117 provides non-volatile storage for computer software
instructions 115 (equivalently “OS program”) and data 116 used to implement
embodiments of the system 100. The system may include disk storage accessible to
the server computer 160. The server computer can maintain secure access to records
related to the authentication of users registered with the system 100. Central
processor unit 112 is also attached to the system bus 110 and provides for the
execution of computer instructions.

[0049] In an example embodiment, the processor routines 115 and data 116 are
computer program products. For example, if aspects of the authentication system
100 may include both server side and client side components.

[0050] In an example embodiment, authenticators/attesters may be contacted via
instant messaging applications, video conferencing systems, VOIP systems, email
systems, etc., all of which may be implemented, at least in part, in software 115,
116. In another example embodiment, the authentication engine/agent may be

implemented as an application program interface (API), executable software

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-16 -

component, or integrated component of the OS configured to authenticate users on a
Trusted Platform Module (TPM) executing on a computing device 150.

[0051] Software implementations 115, 116 may be implemented as a computer
readable medium capable of being stored on a storage device 117, which provides at
least a portion of the software instructions for the user authentication system 100.
Executing instances of respective software components of the user authentication
system 100, such as instances of the authentication engine, may be implemented as
computer program products 115, and can be installed by any suitable software
installation procedure, as is well known in the art. In another embodiment, at least a
portion of the system software instructions 115 may be downloaded over a cable,
communication and/or wireless connection via, for example, a browser SSL session
or through an app (whether executed from a mobile or other computing device). In
other embodiments, the system 100 software components 115, may be implemented
as a computer program propagated signal product embodied on a propagated signal
on a propagation medium (e.g. a radio wave, an infrared wave, a laser wave, a sound
wave, or an electrical wave propagated over a global network such as the Internet, or
other networks. Such carrier medium or signal provides at least a portion of the
software instructions for the present user device authentication system 100 of FIG.
2A.

[0052] Certain example embodiments of the invention are based on the premise
that online services may be significantly enhanced when a device can be trusted to
be what it says it is and to execute instructions exactly as asked. A service provider
generally has confidence in its servers because they are under administrative control
and usually protected physically. However, nearly all of the service provider’s
services are delivered to users through devices the service provider knows very little
about and over which it rarely exerts any control.

[0053] Through the use of Trusted Execution technology, certain ineventive
embodiments are able to provide a service provider with an oasis of trust in the
unknown world of consumer devices. Basic capabilities such as "sign this", or
"decrypt this" are executed outside the murky world of the main OS. Keys can be
generated and applied without ever being exposed in memory and can be attested to

through a chain of endorsements traced back to the device manufacturer.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-17 -

[0054] Certain aspects of the invention enable trust in devices. Some
embodiments operate on the fundamental premise that a reliable relationship with a
device can make for a much safer, easier and stronger relationship with an end user.
Achieving this requires knowing with confidence that a device involved in a current
transaction is the same device it was in previous transactions. It also requires
assurance that a device will not leak protected information if it is requested to
perform sensitive operations such as decryption or signing.

[0055] One example preferred embodiment includes device code executed in the
Trusted Execution Environment (TEE). The TEE preferably is a hardware
environment that runs small applets outside the main OS. This protects sensitive
code and data from malware or snooping with purpose-built hardware governed by

an ecosystem of endorsements, beginning with the device manufacturer.

[0056] Device Integrity Attestation/Authentication - Some Example
Embodiments

[0057] FIG. 2A is a block diagram showing an example device authentication
system according to the invention, with components 200. With these system
components 200, web developers and app developers can make use of hardened
encryption and identity keys in endpoint User Devices 205 through an application
program interface (API). In addition, further services may be provided built on
these system components 200 for device management, backup, attestation, etc. To
support this system, the registration of identity keys and a set of device management
services for attestation, backup and device grouping, are managed.

[0058] In a preferred example embodiment, it would be the intent of the system
not to maintain mission critical data as in conventional approaches, but rather to
provide a platform for seamless yet very secure connections between Service
Providers 204 and User Devices 205. On one end of the system is the Encoder 210
which prepares an instruction for a User Device 205 and at the other is the Device
Rivet which is the Trusted Execution Environment (TEE) applet 208 that can act on
that instruction. A Protocol according to an embodiment of the invention defines

how these instructions and replies are constructed.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-18 -

[0059] The Device Rivet or TEE applet 208 preferably embodies the innovative
binding between the physical and digital works. The Device Rivet or TEE applet
208 locks features of identity, transaction and attestation to the hardware of the
Device 205.

[0060] The system 200, according to an embodiment of the invention shown in
FIG. 2B, may use a secure socket to maintain a persistent connection with all
devices. This channel is used for pairing and other administrative functions. Library
code 209 may be provided to service providers for simplifying the construction and
signing of an instruction. This Library 209, for example, could be implemented in a
programming language, such as an object-oriented, high-level programming
language with dynamic semantics like Python.

[0061] In one example preferred embodiment, the TEE may be implemented as
a mobile phone hardware security chip separate execution environment that runs
alongside the Rich Operating System and provides security services to that rich
environment. The TEE offers an execution space that provides a higher level of
security than a Rich OS. In another example embodiment, the TEE may be
implemented as a virtual machine. While not as secure as a Secure Element (SE)
(aka SIM), the security offered by the TEE is sufficient for some / many
applications. In this way, the TEE can deliver a balance allowing for greater
security than a Rich OS environment with considerably lower cost than an SE.
[0062] The Ring Manager 212 can be implemented as a service provided to end-
users for managing collections (or Rings) of User Devices 205. Devices 205 may be
grouped into a single identity and used to backup and endorse each other. Rings
may be associated with other rings to create a network of devices. In some preferred
embodiments, the rings are a collection of individual device public keys (as opposed
to a new key). If there are not many shared devices in the environment, preferably
the list of devices preferably may short because of the potential for increased
computational and bandwidth resources may expended and introduce a time cost in
order to encrypt a message with all of the public keys on a device list.

[0063] In a non-preferred example embodiment, a ring may be implemented as a

shared private key on top of the unique private key of the Device 205. It should be

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-19 -

noted, however, it is not typical to share a “private key”, nor would it be desirable to
have a long-lived shared symmetric key.

[0064] One aspect of the system according to an embodiment of the invention
enrolls a device and equips it with a service provider's keys. Inventive API's enable
secure execution of a number of sensitive device-side transactions, including:
getting a reliable and anonymous device id - on request, an embodiment of the
invention will generate a signing key for a device. The public key is hashed into a
string that can be used to identify and communicate with a device. The private key
remains locked in the hardware and can only be applied on behalf of the service that
requested the ID; getting a device to sign something - the private key of the device
identity can be used to sign things proving that this particular device was involved.
The signing ceremony is executed in secure hardware such that the key is never
exposed to normal processing environment of the device; getting a device to encrypt
something - an encryption key can be generated on request and applied to any blob
of data. Encryption and decryption is triggered locally and takes place within the
secure execution environment so as to protect the key; creating a Bitcoin account -
the device can be asked to generate a new Bitcoin account using the random number
generator (RNG) built into the TEE; signing a Bitcoin transaction - the device can
apply its private Bitcoin account key to sign a transaction and then return it to the
service provider; securing confirmation - newer TEE environments support trusted
display and input in addition to trusted execution. Trusted display enables a simple
confirmation message, such as "confirm transaction amount," to be presented to an
end user; joining devices to share and backup identities - most users have several
devices. Certain embodiments of the invention enable multiple devices to be bound
into a ring so they can interchangeably present themselves to a service provider on
behalf of the user.

[0065] A Service Provider calls a Third Party Agent/Process to create hardware
keys in a device. Different types of keys are available depending on the purpose,
such as for crypto-coins or data encryption. Hardware keys are governed by simple
usage rules established during creation. For example, a key may require that usage
requests are signed by the Service Provider that created the key, or that the user

confirms access through the Trusted User Interface (TUI).

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-20 -

[0066] A Device Rivet 208 will only respond to an instruction from a Service
Provider 204 that has been "paired" with the Device 205. The Authentication Web
Site 206 conducts the pairing ceremony as it is able to confirm the integrity and
identity of both device and the service provider. When a Device 205 is paired it
acquires the public key of the Service Provider 204, while the Service Provider gets
a uniquely generated identity and public key for the Device 205.

[0067] While the Third Party Agent/Process supports local calls, ideally all
instructions are signed by the Service Provider 204. This protects a device key from
being applied by a rogue application. An Encoder 210 is provided to help prepare
and sign device instructions on the application server.

[0068] There is a class of apps that benefit greatly from strong assurance of their
origin and opaque separation from the execution of other apps. This is known as a
Trusted Execution Environment or TEE. Unlike an app running on the primary OS
and memory stack, an app running in a TEE has access to cryptographic primitives
that can be exercised without snooping by the OS. On certain platforms, the app also
has direct access to user input and display to ensure a private interaction with the
operator of the device. While the technology has been pursued for well over a
decade, it is only recently that devices with support for a TEE have become
available. For example, Intel began delivery of commercial solutions in 2011 and
Trustonic, an ARM joint venture, was launched in 2013.

[0069] Deploying an applet into a TEE is akin to delivering a dedicated
hardware device. Execution and data are cryptographically isolated from any other
function of the host. While most applications of Trusted Execution technology have
been concerned with enterprise security or DRM, an embodiment of the invention
instead provides an applet that is focused on the needs of common web services.
Crypto currencies such as Bitcoin have highlighted the need for consumer key
security.

[0070] An embodiment of the invention provides a native API that translates
calls into a secure environment. While different TEE environments follow very
different architectures, the API of an embodiment of the invention is designed to

present a uniform interface to the application.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-21 -

As with all TEE applets, TEE applets according to embodiments of the invention
cannot be installed and initialized without a Trusted Application Manager, or TAM.
The TAM plays a role akin to a certification authority (CA). A TAM secures a
relationship with a device manufacturer and also signs all applets that may be loaded
into the device. In this way the TAM expresses assurance about the provenance and

integrity of both the applet and the TEE.

[0071] Device Integrity Attestation

[0072] Embodiments of the invention provide device integrity attestation by
automating the assurance of device integrity against a known state as a signatory on
a block chain transaction. The system implemented by an embodiment of the
invention is comprised of the several components shown in FIG. 2C. A Device
Adapter 220 is a software service running on an endpoint device that provides an
interface to a Service Provider 204 application and integrates with the Device TEE
208. The Trusted Execution Environment (TEE - sometimes TrEE) is a mobile
phone hardware security chip separate execution environment that runs alongside
the Rich OS and provides security services to that rich environment. The TEE offers
an execution space that provides a higher level of security than a Rich OS; though
not as secure as a Secure Element (SE) (aka SIM), the security offered by the TEE is
sufficient for some / many applications. In this way, the TEE delivers a balance
allowing for greater security than a Rich OS environment with considerably lower
cost than an SE. Another component, the Device TEE 208 is a software program
that executes in a hardware secured TEE. The Device TEE 208 is specially designed
to execute cryptographic functions without compromise from malware or even the
device operator. Another component, the Device Registrar 221 is a service that
registers a device into the block chain 222. A block chain 222 is used both to store
device registration and attributes and to execute transactions. There may be different
block chains. Another supporting component is a Service Provider 204 which is the
application seeking to conduct a transaction with a device. OEM (Original
Equipment Manufacturer) 223 is the entity that built the device and/or a Trusted
Application Manager (TAM) authorized to cryptographically vouch for the

provenance of the device.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
0D

[0073] According to an embodiment of the invention, when the Device Adapter
221 shown in FIG. 2C software runs for the first time it will ask the Device TEE 208
to generate a public/private key pair. The public key is signed by an endorsement
key established during device manufacturing. This signed public key is sent to the
Device Registrar 221 and validated with the OEM 223. Registration may involve
confirmation from the device operator. Registration may involve endorsement at the
point of sale in the presence of a clerk. The Registrar may ask the device for a
Device Measurement Record which includes one or more of the following: a
composite value of the Platform Configuration Registers (PCR's) generated by the
boot process, BIOS Version, OS Version, GPS Location. This data is signed by the
device private key. It is further signed by the Registrar. The resulting data set
becomes the gold reference or Reference Value for future integrity checks.
Confirmation from the device operator may be required in collecting the gold
reference or Reference Value. This data set is posted into a public cryptographic
ledger. The public record established cryptographic proof of the time of registration
along with the endorsement of the registrar. The registration may further include
attribute data, such as location or company name or device make/model. The
registration may reference a signed document that sets out the policy terms of the
registrar at the time of registration. The Device Registrar 221, or another trusted
integrity server, creates a block chain account key (a public/private key pair) that
can be referenced as a signatory in a multi-signature transaction on the block chain.
A signatory the value represented in the block chain transaction cannot be spent or
transferred unless co-signed by the Registrar.

[0074] To sign a transaction the integrity server expects a recent measurement
from the device. This measurement may be requested directly of the Device Adaptor
or fetched by the server through a persistent sockets connection with the device. The
current measurement is compared against the gold measurement or Reference Value
in the block chain. If the measurements match the transaction is signed. If the
measurements match but the recent measurement is older than a specified time
window, the request is rejected. If the measurements do not match, the request is
rejected. If there is a rejection, the transaction may have been prepared with another

manual signatory that can be asked to override the rejection. If the measurements do

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-23 -

not match, the device may be put through a registration renewal where a new
measurement is gathered. Every time a measurement matches, the device
registration record can be updated with a success count. The integrity server may be
given policy rules that will accept a measurement which doesn't match if the
problem is not deemed severe in light of other matching measurements or attributes.
[0075] A system, according to an embodiment of the invention, may be
implemented with a collection of trusted devices rather than an integrity server to do
the work of matching measurements and signing the transaction. The system may
match integrity measurements directly during transaction processing using features

built into a smart block chain system such as that being developed by Ethereum.

[0076] Device Integrity Attestation - Authentication Web Site

[0077] In an example embodiment, Authentication Web Site 206 may be a
JSON API written in Python, which uses the Third Party Agent/Process private key
to enroll the identity keys of Devices 205 and Service Providers 204. During
enrollment, the public key of the User Device 205 or Service Provider 204 is
recorded by the TEE applet 208. Enrollment enables the TEE applet 208 to pair a
Device 205 with a Service Provider 204. The result of pairing is that a User Device
205 has a service public key, endorsed by a Third Party Agent/Process and can
therefore respond to Service Provider 204 instructions.

[0078] The Protocol according to an embodiment of the invention specifies the
structure of an instruction and the signing/encryption that must be applied for the
Device 205 to accept the instruction. The instruction itself may, for instance, be
prepared as a C structure that contains the instruction code, version data and
payload. The entire structure preferably is signed by the service provider key and
delivered to the device TEE applet 208 by calling a device local command.

[0079] Preferably, every User Device 205 should present unique identity
credentials. Devices may join a ring so as to act as a singular entity. In one
embodiment, a Device 205 can support group ID's that are locally stored as a list,
but publicly translate into cross-platform authentication. The TEE Adapter 216 may
be configured as the interface between the Device Rivet/TEE applet 208 bolted into

the TEE and the outside world of partner apps and online services. In

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-24 -

implementation, it can manifest in one or more diverse forms, which would be at
least partially dictated by the basic capabilities across devices, hardware support and

OS architecture.

[0080] Device Integrity Attestation - Authentication System Adaptor

The Authentication System Adaptor 214 is composed of outward and inward
looking interfaces as shown in FIG. 2D. The inward looking interface, the TEE
Adapter 216, handles proprietary communications with the Device Rivet 208. The
Host Adaptor 217 is provided to expose services to third-party applications. The
Host Adaptor 217 presents the interface of the Authentication System Adaptor 214
through different local contexts, such as browsers or system services. Multiple
realizations for diverse contexts are anticipated though initially this may be an
Android service and a windows com process. The Socket Adaptor 215 connects the
client environment Authentication Web Site 206. The TEE Adaptor 216 component
is the proprietary glue that pipes commands into the Device Rivet 208. In an
Android implementation the Authentication System Adaptor 214 may manifest as an
Android NDK service app and may be configured to launch at boot. The
Authentication System Adaptor 214 prepares message buffers that are piped to the
Device Rivet 208 and then synchronously awaits notification of a response event.
The Host Adaptor 217 is primarily there to isolate the TEE Adapter 216 from the
host environment. The Host Adaptor 217 operates in a potentially hostile
environment. There will therefore typically be limited assurance that the client has
not been compromised. The Host Adaptor's role is therefore primarily to facilitate
easy access to the Device Rivet 208. Instructions from a Service Provider 204
intended for the Device Rivet 208 will be signed by the Service Provider 204 and
then passed through to the TEE Adapter 216 and Device Rivet 208.

[0081] First Service Provider Registered to a Device

[0082] According to an example embodiment, the Authentication Web Site 206
is the first service provider registered to a Device 205. The Authentication Web Site
206 has the special capability of being able to pair additional service providers with

that Device 205. Communications with the Authentication Web Site 206 may be

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-25.

handled through the web API and should be authenticated. In one example, this is
implemented with an API key. In a preferred example embodiment, this is
implemented using an SSL key swap. In some embodiments, all requests will be
signed.

[0083] The relationship with devices may be dependent on being able to sign
instructions with the private key. Such a private key is highly sensitive and is
protected. Preferably, the private key is encased in an HSM.

[0084] In some embodiments, multiple keys are used, such that if one is
compromised the whole system is not lost. This should, for example, should make it
more difficult for an attacker to know which devices are connected with a
compromised key. Furthermore, the system 200 is preferably in near constant
contact with all Devices 205 through the Socket Adapter 215 shown in FIG. 2C,
which can facilitate frequent rotation of the keys.

The Authentication Web Site 206 may comprise several sub-components. A Device
ID is the unique identifier, in a UUID, assigned to a device by the Authentication
Web Site 206 or other Registration Agent. An ephemeral pointer, Device Pointer,
may be provided to a device 150 that can be requested by any local application. The
Device Pointer can identify a current socket session to the Authentication Web Site
206 and therefore can be used to establish a device communication channel and to
look up the permanent identifier, the Device ID. The root of a device registration
includes a unique, anonymous identifier, a registration date, a public key paired to a
private key held in the device hardware and an endorsement signature from the
Registration Agent. This information is recorded in the Device Registration Record.
The TEE applet 208 embodies the binding between the physical and digital works.
The Device Rivet 209 locks features of identity, transaction and attestation to

hardware.

[0085] Protocol for Processing Instructions

[0086] The counterpart to the Device Rivet 209 is the Encoder 210. The
Encoder 210 prepares a command to be executed by a specific device which is
signed and/or encrypted by the Service Provider 204. The Service Provider public

keys are preloaded into the device during a pairing process conducted by

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-26 -

Authentication Web Site 206. This allows the Device Rivet 209 to validate the
origin of the request, and if needed decrypt the contents of the instruction.

The sequence of packaging and delivering an instruction is shown in FIG. 3A. The
Service Provider 204 generates an Instruction Record with the help of the Encoder
210 libraries. The instruction includes the type, the target device and payload. The
instruction may be encoded with the device key and must be signed by the service
provider key. The device key is fetched from the Authentication Web Site 206, or
directly from the block chain, by looking up the Device Registration Record.

[0087] Protocol for Enrolling the Device

[0088] Device enrollment or creation of a birth certificate for a device on the
block chain is essential to example embodiments of the invention. The enrollment
process, shown in FIG. 3B, must be hassle free or even transparent to the user.
Ideally, a fully reputable Device ID would include personalization of the
relationship between a device and a user with a PIN or other memory test; as well as
legal binding between the user and the device, for example, by registering the device
in presence of a sales clerk. It would look up the endorsement keys of the OEM that
manufactured the device to ensure provenance. It also might include training on the
purpose, power and anonymity of device registration. We can start with just creating
the ID transparently. Because of this variability in the context of the registration, the
Registration Agent should record the context of enrollment to ensure that trust is
being extended where it's due. For example, testing an OEM endorsement key
makes it vastly more certain that the Device Rivet is operating in a proper TEE.
[0089] In an example embodiment shown in FIG. 2C, when the Device Adapter
220 software runs for the first time it will ask the Device TEE 208 to generate a
public/private key pair. The public key is signed by an endorsement key established
during device manufacturing. This signed public key is sent to the Device Registrar
221 and validated with the OEM 223. Registration may involve confirmation from
the device operator or registration may involve endorsement at the point of sale in
the presence of a clerk. The Registrar 221 will ask the device for a Device
Measurement Record which includes one or more of the following: a composite

value of the Platform Configuration Registers (PCR's) generated by the boot

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-27 -

process, BIOS Version, OS Version, GPS Location, BIOS identifier, a network
interface identifier, attributes about the Device, such as number of files, size of files,
directories, indexes and data/search tree structures, processor identifying number of
the Device, or other such information. This data is signed by the device private key
and may be further signed by the Registrar 221. The resulting data set becomes the
gold reference for future integrity checks. Confirmation from the device operator
may be required in collecting the gold reference. This data set is posted into a public
cryptographic ledger, such as Namecoin. The public record established
cryptographic proof of the time of registration along with the endorsement of the
registrar. The registration may further include other attribute data, such as location
or company name or device make/model. The registration may reference a signed
document that sets out the policy terms of the registrar at the time of registration.
The Device Registrar 221, or another trusted integrity server, creates a block chain
account key (a public/private key pair) that can be referenced as a signatory in a
multisig transaction on the block chain. A signatory value represented in the block
chain transaction cannot be spent/transferred unless co-signed by the Registrar 221.
To sign a transaction the integrity server expects a recent measurement from the
device. This measurement may be requested directly of the device adapter or fetched
by the server through a persistent sockets connection with the device. The current
measurement is compared against the gold measurement in the block chain. If the
measurements match the transaction is signed, if the measurements match but the
recent measurement is older than a specified time window, the request is rejected. If
the measurements do not match the request is rejected. If there is a rejection, the
transaction may have been prepared with another manual signatory that can be asked
to override the rejection. If the measurements do not match the device may be put
through a registration renewal where a new measurement is gathered. Every time a
measurement matches, the device registration record can be updated with a success
count. The integrity server may be given policy rules that will accept a measurement
which does not match if the problem is not deemed severe in light of other matching
measurements or attributes. This system may be implemented with a collection of
trusted devices rather than an integrity server to do the work of matching

measurements and signing the transaction. This system may match integrity

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-08 -

measurements directly during transaction processing using features built into a smart

block chain system such as that being developed by Ethereum.

[0090] Birth Certificate for a Device on the Block Chain

[0091] An embodiment may be a method for creating a birth certificate for a
user device in a block chain communication network comprising: establishing a
device identity for the user device by generating a public/private key pair that is
locked to the user device; signing of the public key of the device by an endorsement
key established during manufacturing or creation of the device, manufacturing or
creation of the execution environment of the device and/or manufacturing or
creation of an application on the device; and enrolling the device with a trusted third
party including: requesting and obtaining the generated public key from the device;
requesting and obtaining a device measurement record of the device containing
attributes related to the device Platform Configuration Registers (PCR), BIOS, OS
and/or GPS; endorsing of the device measurement record by the third party and the
device; and registering the device into the block chain including posting the
endorsed device measurement record into a public cryptographic ledger; and
creating a block chain account key pair that can be referenced as a signatory in a
multi signature transaction on the block chain. In some embodiments the method
may include enrolling the device with a third party is at the request of the first
service provider seeking to pair with the device. In some embodiments, enrolling the
device may be provided as a service. Endorsing of the device measurement record
by the device may include signing of the record by the device private key. Endorsing
of the device measurement record by the third party may be provided as a service.
The registration may further include signing of a document that sets out the policy
terms of the registration provider at the time of registration. The public
cryptographic ledger may be Namecoin. The endorsed device measurement record
may establish a Reference Value for transactions between a service provider and the
device. Additionally, confirmation by the device operator is required to obtain the
device measurement record of the device attributes from the device. The device
attributes may further include location, company name and/or device make/model.

Further, the transaction between a service provider and the device may require the

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-20 .

device to generate and provide a device measurement record that is compared to the
established Reference Value for the device. In other embodiments, the transaction is
allowed if the comparison results in a match or the transaction is rejected if the
comparison results in no match or the transaction is rejected if the comparison
results in a match and the record provided by the device is older than a specified
time window or the device is required to re-create its birth certificate if the
comparison results in no match. Additionally, registering the device into the block
chain may further include creating a device registration record that is updated with a
success count if the comparison results in a match. The comparison may be
implemented by a collection of trusted devices. The entity performing the
comparison may be independent of the entity performing the registration.

[0092] Another embodiment may be a system comprising a block chain
communication network; a user device in the block chain network; a trusted third
party; and a system for creating a birth certificate for the user device, said system
configured to establish a device identity for the user device by generating a
public/private key pair that is locked to the user device; sign the public key of the
device using an endorsement key established during manufacturing or creation of
the device, manufacturing or creation of the execution environment of the device
and/or manufacturing or creation of an application on the device; and enroll the
device with the trusted third party by: requesting and obtaining the generated public
key from the device; requesting and obtaining a device measurement record of the
device containing attributes related to the device Platform Configuration Registers
(PCR), BIOS, OS and/or GPS; endorsing of the device measurement record by the
third party and the device; and registering the device into the block chain by posting
the endorsed device measurement record into a public cryptographic ledger; and
creating a block chain account key pair that can be referenced as a signatory in a

multi signature transaction on the block chain.

[0093] Using Transactions on the Block Chain to Accumulate Ownership Rights
[0094] A bitcoin Wallet functions similarly to a bank account and can be used to
receive and store bitcoins as well as transfer them to others in the form of electronic

transaction in the Bitcoin block chain. A bitcoin address is a unique identifier that

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-30 -

allows a user to receive bitcoins. Bitcoins are transferred by sending them to a
bitcoin address. The transactions in the bitcoin block chain are usually free.
However, transactions that send and receive bitcoins using a large number of
addresses will usually incur a transaction fee. A Wallet stores the private keys so
that the user can access bitcoin addresses.

[0095] Systems and methods may be provided whereby a transaction on the
block chain accumulates or achieves an ownership right.

[0096] A service may be provided whereby a bitcoin transaction accumulates to
a new license right. This would be done by integrating a smart contract with
attribute information in the transaction record that would identify the chain of
transactions that accumulate to a right. Ultimately this right would be bound to the
original Wallet address. Every time a specific item is purchased it would
incorporate the last transaction as part of the attribute data of the current transaction
assuring that the accumulation of transactions could be quickly and efficiently
verified by reading the information on the block chain. The act of performing many
small transactions on the block chain would enable an account to easily accumulate
to an ownership right or a replay right. Once a specific level is reached, the
accumulation would stop and a persistent right would be written to the block chain.
[0097] Some embodiments may include systems and methods for attesting to
device health prior to engaging in electronic transactions.

[0098] This would be done by integrating a smart contract with attribute
information in the transaction record that would identify the chain of transactions
that accumulate to a right. Ultimately this right would be bound to the original
Wallet address. Every time a specific item is purchased it would incorporate the last
transaction as part of the attribute data of the current transaction assuring that the
accumulation of transactions could be quickly and efficiently verified by reading the
information on the block chain. The act of performing many small transactions on
the block chain would enable an account to easily accumulate to an ownership right
or a replay right. Once a specific level is reached, the accumulation would stop and a
persistent right would be written to the block chain.

[0099] A system for may be provided for accumulating a value attached to

transactions in a block chain communication network associated with a bitcoin

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-31 -

account, the system comprising a block chain communication network; an electronic
transaction in the block chain network; a bitcoin account; a transaction record
associated with the bitcoin account; a transaction interrogation process implemented
as a part of executing the electronic transaction in a block chain network. The
implementation may further comprise a checking of the transaction record for the
existence of a previous transaction associated with the account; and based on the
existence of a previous transaction: obtain an accumulated value attached to the
previous transaction; increment the obtained accumulated value; attach the
incremented accumulated value to the transaction in the transaction record; and
apply the incremented accumulated value to the transaction.

[00100] The implementation of the transaction interrogation process may further
comprise setting a plurality of charges incurred for executing the electronic
transaction to zero and indicating the achievement of a Right associated with the
account, based on the incremented accumulated value reaching or exceeding a
predetermined maximum accumulated transaction value.

[00101] The implementation of the transaction interrogation process may further
comprise creating a new transaction record associated with the account; and storing
an indication of the achieved Right in the newly created transaction record.

[00102] The electronic transaction may be associated with a specific Item, the
transactions in the transaction record associated with the account form a chain with
cryptographic assurance and the implementation of the transaction interrogation
process may further comprise: allowing a user to query the last transaction recorded
in the transaction record associated with the account; and calculating a level of
expenditure for the specific Item based on cryptographic assurance of the formed
chain.

[00103] Applying the accumulated value to the transaction may include
associating the achieved Right with a cryptographic key; storing the key in a tamper
resistant storage; obtaining a set of transactions contributing to the accumulated
value associated with the achieved Right; and verifying the set of transactions prior
to applying the accumulated value to the transaction.

[00104] In some systems, the set of transactions must be completed within a

specific period of time in order to contribute to the achievement of the Right. The

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-32 -

achieved Right expires after a specific period of time and/or expires based on the
lack of use of the Right. The achieved Right is used as part of a multiple signature
transaction to enable the purchase of additional transactions requiring an indication
of the achieved Right.

[00105] In some systems, the transaction is associated with a single Item and
involves two achieved Rights and the accumulated values associated with the Rights

are cryptograhically merged to result in a single accumulated value.

[00106] Assured Computer Instructions to Cloud Services and Peer Services
[00107] The current state of computing is based on an authentication model in
which devices connect to a cloud service like Twitter and then assume that the
follow-on data is correct. Encrypted transport is commonly used and the assurance
model is based on assuring the whole computer that sends the data. Technologies
like anti-virus and integrity validation are provided for the host system. An
assumption is made that the complex system is okay and to trust the critical data
delivered.

[00108] Authentication may be augmented with assured computer instructions
that are formed within the local device from both remote sources to assure these
instructions are correct and to then deliver these instruction to remote services for
processing. The system may collect data from user input, device input, remote
system input and then provide a secure mechanism for the user to confirm this is the
intended transaction to be performed. The cloud service receives this assured
instruction and verifies that the elements of the transaction are correct. The
verification process may also impose local or remote policies that are verified prior
to the transaction being accepted for processing. The resulting data can then be
logged.

[00109] In a general purpose computing device, typically, authentication is used
to connect to critical services. Even with strong authentication there is no assurance
that the information sent to the cloud is the information the user intends. Malware
can find many ways to alter the data and result in the theft or compromise of
sensitive data. The purpose of this invention is to collect a number of sources of both

local and remote data to assure that the information provided is the data that is

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-33 -

intended. Certain data could also be locally masked to assure a process has been
completed but the detailed private information remains masked. Services can then
verify the transactions are intended and incorporate a number of additional process
steps internally and externally that are controlled by the user. This can assure
logging and additional verification to assure the transaction is correct. This can be
used in financial systems but also to control the internet of things from door locks to
medical devices.

[00110] In some systems, a secure sub system is used for assembling a secure
instruction for delivery to another computer system. The secure sub system collects
and appends additional information such as time, location, identity, compliance or
other critical data locally or remotely and provide the user a mechanism to securely
confirm the instruction prior to the instruction being signed and then sent.

[00111] In some systems, when the protected instruction is received, it is verified
prior to being processed. Verification can be done locally or remotely and may
include additional user verification, confirmation or signature from logging systems,
other critical process steps, location or time.

[00112] In some systems, local data could be tokenized to protect privacy. For
example, the users phone number could be used to say they are a specific provider’s
customer and in good standing but all that is passed on is the good standing status
and not the users name or phone number. This is done by contacting the provider
locally and having the confirmation data include a provider transaction identity that
can be remotely verified.

[00113] Some systems may leverage the local attestation data to assure the
isolated execution environment can be prove that it is in a known condition at the
time of the transaction.

[00114] Systems may be configured with a logic script that is cryptographically
assured to provide the policy required for a specific transaction. The script
validation may be included as part of the transaction verification data.

[00115] Systems may include local or remote approvals prior to the transaction
being released (i.e. multi signal on the client side). The systems may receive real
time data that is locally assured and then modified so the instruction is a delta to a

real time state, for example, to increase speed of a pump. In some systems, the

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-34 -

verifying device assures that the transaction came from a known source that meets
the minimum number of parameters. In other systems, the receiving device
additionally verifies local or remote information.

[00116] While this invention has been particularly shown and described with
references to example embodiments thereof, it will be understood by those skilled in
the art that various changes in form and details may be made therein without

departing from the scope of the invention encompassed by the appended claims.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
35 -

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-36 -

1. Component Specification

2. System Overview

Rivetz enables web developers and app developers to make use of hardened
encryption and identity keys in endpoint devices through a simple API. To support
this system we manage the registration of identity keys and a set of device

management services for attestation, backup and device grouping.
Rivetz consists of:

¢ A client module that exposes a handful of privacy, identity and
authorization functions implemented in device hardware.

e A web service hosted at Rivetz.net that enables enrolment and pairing
of devices and services

e A protocol by which instructions are communicated to a device from a
service provider

Rivetz.net will further provide services built on this framework for device

management, backup, attestation, etc.

Rivetz.net is a JSON API written in Python that uses the Rivetz private key to enrol
the identity keys of devices and services providers. During enrolment the public key
of the device or service provider is recorded by Rivetz. Enrolment enables Rivetz to
pair a device with a service provider. The result of pairing is that a device has a
service public key, endorsed by Rivetz and can therefore respond to service provider

instructions.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

-37 -

The Rivetz protocol specifies the structure of an instruction and the

signing/encryption that must be applied for the device to accept it. The instruction

itself is prepared as a C structure that contains the instruction code, version data and

payload. The entire structure is signed by the service provider key and delivered to

the Rivet by calling a device local command

Rivetz uses a secure socket to maintain a persistent connection with all riveted

devices. This channel is used for pairing and other administrative functions.

Rivetz provides library code to service providers for simplifying the construction

and signing of an instruction. This library will be initially provided in Python. Other

languages will follow.

3.

Tenets

We provide tools to the web community - Our customers are the
vast number of web services and apps that need reliable device
authentication and real crypto. In large part this community
understands "sign" and "encrypt" and gets lost when asked to
specify how. We will decide for them.

We cannot be a point of failure - Rivetz cannot be another system to
which you transfer your trust. We play a valued role in enrolment, pairing
and management services (and the Rivet itself), but our server should not
be depended on for every transaction.

We do not track users - Our system is designed to manage
devices. We do not identify or track the users that operate them.

We only trust hardware - Rivetz only puts trust in cryptographic
primitives backed by hardware. When not available we will not
attempt to "harden" a weak root, but rather will be upfront about the
trust level of the endpoint.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-38 -

4. System Components

This documentation is divided into the discreet components that comprise our
system. For each component we describe the functions it exposes, the data it

manages and the implementation decisions behind its actualization.

It is the intent of Rivetz to maintain no mission critical data, but
rather to provide a platform for seamless yet very secure
connections between service providers and devices. On one end is
the RivetzEncodst which prepares an instruction for a device, and at
the other is the LaviceRivel which is the TEE applet that can act on
that instruction. The RivatzFrotocot defines how these instructions
and replies are constructed

AR

gy

Sy

Submit

JORERERRRRRR

o

Title Of New Component

Device Ruvet - The Rivetz TEE applet that embodies our binding between
- the physical and digital works. The Device Rivet locks
features of identity, transaction and attestation to hardware
and forms the basis of our technical offering.

Ring Manager The Ring Manager is a service provided to end-users for
- managing cotlections {or Rings) of devices. Devices may be
grouped o a single identity and used to backup and
- endorse each other. Rings may be associated with other rings
: to create a network of devices.

The Rivetd ar 1 the interface between the DeviceRivet
- bolted into the TEE and the outside world of partner apps
- and online services. In implementation it manifests in one or
- more diverse forms. While we strive to present the same
basic capabilities across devices, hardware support and OS
architecture will dictate what's actually possible and how
these features are presented.

The Rivet £ produces a instructionRecord and
processes a ResponseRecord These are message data
structures that are deﬁned to, and interpreted by, the
DeviceRivet (the trustlet).

=Net 1s a service operated by Rivetz for pairing
deV1ces and service providers into an endorsed relationship.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-39 .

5. System Functions

Please refer to the RivetsUisatiases

6. Ring Manager

The Ring Manager is a service provided to end-users for managing collections (or
Rings) of devices. Devices may be grouped into a single identity and used to backup
and endorse each other. Rings may be associated with other rings to create a network

of devices.

[]
ot
o]

s

7
o
[¢]

7. @@mpaﬁent Context

(package, patterns, frameworks, preconditions, usage)

8. Component Diagram

9. Component Decomposition

e
z
1

. Submit §
Title Of New Component: feii

Al
\\\\\\Q \\\\\Q\

10. Entity Responsibility

(the business or technical entities controlled by this component)

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-40 -

11. Interface Specification

12. Rivetz Net

Net s a service operated by Rivetz for pairing devices and service

providers into an endorsed relationship.

Originally we intended to put device registration into Namecoin for permanence and
transparency, but privacy concerns shelved this plan for the time being. As we begin
to collect attestation data on devices this decision will be reassessed. (see the topic

history for detail).

[]
]
i

sy

e & o o
P I]
bas

vepel

13. Component Context

poot
-

£

<

1 1s the first service provider registered to a device and has the special

capability of being able to pair additional service providers with that device.

14. Web API

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-41 -

All communications with the Web API need to be authenticated. We could use an
API key or better yet, an SSL key swap. We could ask that all requests be signed,

but we have to be cognizant of keeping our system simple to use.

15. Private Key

Rivetz relationship with devices is dependent on being able to sign instructions with
our private. It is of course paramount that we protect this key. We should seek to

encase the key in an HSM.

16. Entity Responsibility
(the business or technical entities controlled by this component)

SRR LR AR A,

 Subit
Title Of New Entlty
Device I - The unique identifier, in a {

3t or other Re

o

3
N
\\\\ e

Bevice Pointer An ephemsral pointer to a device that can be requestied by
- any local application. The DevicePointer can dentify a
- current socket session to RivewsNe

S

¢ and therefore can be used
to establish a device cemmunicaﬁi on cham "E d to lock up

: The root of a device registration includes a unique,

- anonymous identifier, a registration date, a public key paired
to a private key held in the device hardware and an

- endorsement signature from the Rex ¢ (assumed
| to be Rivetz for now.)

The unif}ue 1dcnrrﬁcr mcd o mdts_h an i
sent {rom Riv

Vs,
hd

The RivetzNet uses a block chain infrastructure (currently
. Namecoin) to store, stamp and publish its registrations. This
- works by purchasing a name/value pair record in the block
chain and thus must have an originating account. The fact
that a Rivetz controlled account purchased a record is
interpreted as endorsement.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-42 -

Rivetr identity Key © Unique public/private key pair generated to represent the
- endorsement of Rivetz Corp. This key pair should be rotated
. often and protected in hardware. Ideally, our protocol's
would be such that even if the key pair is stolen, the system
is not unduly compromised.

The unique identifier assigned to a ServiceProvider by

conio N T
l\,\\r’ StziNet.

- Service Provider A record created for cach registered Service Provider that

- Registration Record wants to send instructions to a Riveted device. This includes

' - the service provider name, registration date, public key and
endorsement signature {by Rivetz).

17. Eﬂ‘iﬁ&?‘f&&@ Specification

18. Register Device

Given unique identifier and a public key, purchase a record of this binding in the
block chain. The purchase is made with RiverzUainAccount thus endorsing the
registration. Ideally, the Rivetz signature would only be applied if the device can

supply an endorsement key from the OEM.

19. Register Service Provider

Creates a service provider ID for the given organization. The registration must also

+v and the

include the URL where the SP hosts its implementation of Rivet:

public identity to verify communications.

20. Get Device 1D

Given a DsvicaPointar returns the Dsvicsil known to the requesting

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-43 -

S The unique identifier assrgned to a Sex \\‘o\\\ by RivetzNet.

Device An ephemeral p@mter tog deyru that can be requested by any local
Pointer appircatmn The DevicePonter can identify a current sockst sessinn
o RivetzNet and theretore can be used {o edtablish 4 device
- communication channel and to ook up the permanent identifier, the
Deviceld

Returns: DevicelD

21. Pair Device

Before a ServicePravider can send an instruction it must register its id and public
key with the target device. This enables the device to confirm the origin of an
instruction before executing it. Pairing a device will automatically create a new

identity key on the device

Serv: The unique identifier assrgned to a Service? et by RivetzNe

Dy
Device Anephemeral pmnter toa deuce that can be requested by any iaeai
Pointer 3;\»;}%504310;1 Ehe nter can identify a current socket seasion

and therefore can be used o establich a device

to Nive

cammunicat‘i on channeg and to }Go}{ up the permanent identifier, the
5 i 0

22 ijse Case Referenee

o RegisterDeviceWithRivets - Before a Rivet can do anything it needs to register
Wrth RrvetzNet Regrstratron results in the generation of a unique identity key.
Regrstratron relres on an endorsement

o RegisterDeviceWithServiceProvider - A service provider needs to have their
ServrceProvrderID and publrc 1dent1ty key registered with a device before that
device will respond to any requests Evenin...

o RegisterServiceProviderWithRivets - Anyone seeking to code to the Rivetz
system needs to regrster asa ServrceProvrder Initial registration is a simple as
filling out a form on RivetzNet (http.//rivetz. ..

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-44 -

A Hardware Security Module is a physical computing device that
safeguards and manages digital keys for strong authentication and
provides cryptoprocessing.

1. Device ID

assigned to a device by the

2. Device Pointer

An ephemeral pointer to a device that can be requested by any local application. The
DevicePointer can identify a current socket session to RivetzNet and therefore can
be used to establish a device communication channel and to look up the permanent

™M

identifier, the Devicelly,

Datatype:

3. Rivetz ldentity Key

Unique public/private key pair generated to represent the endorsement of Rivetz
Corp. This key pair should be rotated often and protected in hardware. Ideally, our
protocol's would be such that even if the key pair is stolen, the system is not unduly

compromised.

4. Device Registration Record

The root of a device registration includes a unique, anonymous identifier, a

registration date, a public key paired to a private key held in the device hardware

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
- 45 -

and an endorsement signature from the Reg: nAgent (assumed to be Rivetz for

now.)

5. Dispatch ID

6. Rivetz Coin Account

The RivetzNet uses a block chain infrastructure (currently Namecoin) to store,
stamp and publish its registrations. This works by purchasing a name/value pair
record in the block chain and thus must have an originating account. The fact that a

Rivetz controlled account purchased a record is interpreted as endorsement.

7. Service Provider ID

:\

The unique identifier assigned to a JerviceFrovider by RivetaNsat.

8. Service Provider Registration Record

A record created for each registered Service Provider that wants to send instructions
to a Riveted device. This includes the service provider name, registration date,

public key and endorsement signature (by Rivetz).

9. Rivetz Encoder

The RivelzEncoder produces an instructionRecard and processes a
otd. These are message data structures that are
deflned to, and mterpreted by, the DsviceRivet (the trustlet).

S 0
NEagpOnse

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
- 46 -

a. Component Context

neoder 1s software written to be hosted by our partners.

The RivetzEnoodsy is distributed as public open source.

b. Entity Responsibility

2

Submit

Title Of New Entity: |
¢. Interface Specification

e

d. Implementation

e. Use Case Reference

12 - Rivetz provides the mechanics for encrypting text or images but
expects partners to project the interface for their service, whether it be a messaging

application.

10. Service Provider ldentity Key

The private portion of the service provider identity is used by the RivetzEncoder to

sign instructions. The public portion is provided to Rivetz and to paired devices.

11. Device Rivet

The Rivetz TEE applet that embodies our binding between the physical and digital
works. The Device Rivet locks features of identity, transaction and attestation to

hardware and forms the basis of our technical offering.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-47 -

a. Component Context

We currently have two target platforms for hosting the DeviceRivet implementation:
Trustonic on Android and Intel ME for Windows PC's. Both environments have
limited processing and are specifically architected to be simple for the sake of

security and resource usage.

Trustonic Trusted Apps (TA's) are implemented with the Android NI3X compiler in
C. Interfacing with the TA is done using a shared memory buffer. Commands are
packed into a memory block and notification is sent to the Trustonic controller to
load and execute the TA. Notification is synchronous. The host app (a regular
Android app) waits for response. A Trusted App is expected to store its data on the
host, however, the Trustonic controller provides a secure wrapper so that the data

X

can only be opened when running in the Tk,

For the Intel implementation apps are written in Java and signed by Intel's master
key. We were able to get the DAL SDK from Intel for this purpose and they began

in December to show active support from our efforts.

b. Component Description

The implementation is quite different across platforms and integration with the

tor will further incur device specific methods. However, the logical

implementation is intended to be the same and the input data structures are by

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-48 -

necessity the same. The rest of the Rivetz system would like to treat devices as all

supporting the same interface, yet some with more or less feature sets.

There are three main areas of functionality in the DeviceRivet (the Trustlet):

Z

e Device Enrollment - This 1s the process by Whlch the Device
establishes an identity with the RegistrationAgent (the RivetzNe

e Instruction Processing - Execute a glven 1nstruct10n Thisis a 51gned data
structure that originates from a ServiceProvide

e Security Primitives - Simple security functlonahty exposed for local
application usage.

c. Entity Responsibility

AR AR A,

§ Submit §
Title Of New Entlty i
Account Keys AccountKeys are held securely by the DeviceXivetr. They

never leave the confines of a trusted exeeuiﬁon environment.,
They are generated, siored and apphied in a secure wrapper
that is bound to the device.

sutPin which is used
WS are appiied i any

Account Pin Accaunti{eve may he bound 10 an

uctionRecord into a
i 1s interpreted according

A Rivetz Instruction is a data package targeted to be
processed by an identified DyeviceRivet. It contains the
command, payload and required signatures to instruct a

1

device to perform some action in the Rivetz Ti:E applet.

A

,/

Every instruction destined for a I} =t must be signed
- by the issuing ServiceFrovider. The service provider must
have registered with the RivetzNet. A registered service
provider will have it's public key endorsed by Rivetz and
distributed to all registered devices..

ey

The return status and payload that results from the processing

d. Interface Specification

I. Enroll Device

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-49 -

ii. Generate Key

iii. Encrypt with Key

Vo

The TEEAdapter looks up named encrypt key in the ServiceProvi

iv. Decrypt with Key
v. Process Instruction

e. Use Case Reference

o {reateKey - Create a key pair in the DeviceRivet for either signing and
encrypting. Actors ServiceProvider Description The primary purpose of
Rlvetz is to secure and apply...

o UreatelocalUser - Establish a local entity that can authorize use of the Rivet
in cases where no ServiceProvider authorization is given Actors Select/create
Actors from ProductActors...

EnorypiS : - Rivetz provides the mechanics for encrypting text or

1mages but expects partners to project the interface for their service, whether

itbea messaglng apphcatlon

o NegisterDevice WithRivetz - Before a Rivet can do anything it needs to
regl ster Wlth RivetzNet. Regl stration results in the generation of a unique
identity key. Registration relies on an endorsement...

12. Instruction Payload

"33 Instructlon Record

A Rivetz Instruction is a data package targeted to be processed by an identified

DeviceRivet It contains the command, payload and required signatures to instruct a

Y
H

HH applet.

device to perform some action in the Rivetz

a. Data Structure

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

-50 -

Versionih -~ integer The version 1ci éynll);af;?;iﬁ?;a structure for

ServiceVrovideniy LD The unique identifier of the service provider

: issuing this instruction

______________ \\\ mtegerThemstmctlontypeldentlﬁerThlSdetermmeS
how to interpret the contents of the payload

blob Arbitrary data blob

¢ byte(512) Hash of the instruction signed by the service
: provider key

b. Instruction Types

~ RIVETZ DO TEXT CONFIRMATION - The payload contains a text

- message and a signed hash.

- The message string will be
displayed along with a

. confirmation and cancel

- button. On confirmation, the

- device will sign the message

5 and return it.

- RIVETZ DO _IMAGE CONFIRMATION _ The payload contains an
? . image and a signed hash.
_ The image will be displayed
~ along with confirm and
cancel buttons.

RIVETZ DISPLAY IMAGE . The payload contains an
5 - image encrypted with the
- device key and a hash signed
- by the publisher. The image
: is displayed by the
DeviceRivet. There is no

RIVETZ DISPLAY TEXT _ The payload contains text
5 . encrypted with the device
- key and a hash signed by the
~ publisher. The text is
rendered by the
DeviceRivet There is no
return,

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-51 -

RIVETZ CREATE BITCOIN ACCOUNT A new bitcoin account is
5 5 . created and the public
address is returned

RIVETZ UPDATE SP LIST . The payload contains the
? . ID's and public keys of the
service providers that have
been reglstered by the
RegistrationAgent (That's
Rivetz). This 11st is signed
by the 1 \C\ R
 that registered the device. In
other words, only the system
. who registered the device
: can update the list of
- registered service providers.

RIVETZ SIGN VC TXN - 0x0001 The payload contains a fully
- populated Virtual Coin
- (Bitcoin, Litecoin, Peercoin,
- etc) transaction that is to be
- signed with the named
Bitcoin account key
maintained by the

A \\\\\

RIVETZ ADD KEY 0x0101 = The payload contains data to
_add an existing key to the
- Service Provider Key List.
. Recommended you create a
. new key so that it is never
seen in the normal world.

RIVETZ GET KEY 0x0102 . The payload contains the
? - request to retrieve the public
: key from a XeyRecord.
RIVETZ DELETE KEY 0x0103 The payload contains the
? : request to delete a
RIVETZ ENUM KEY 0x0104 The payload contains the
: request to get a 11st of

RIVETZ ECDSA CREATE 0x0201 The payload contains the
5 _ request to create a BUDISA

public and private Keys

Key is stored in \ S

in Riv

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-52 -

RIVETZ ECDSA SIGN 0x0202 = The payload contains the
~ request to sign data using a
: SCDSA private key.
RIVETZ ECDSA VERIFY 0x0203 The payload contains the
request to verify data using a
- EUINA public key.

RIVETZ ECDSA GETPUBPRV - 0x0204 = The payload contains the
. request to get the public
virtual coin (Bitcoin,
Litecoin, Peercoin etc)
address from a ECDSA
private key.

RIVETZ ECDSA GETPUBSIG 0x0205 The payload contains the
~request to get the BUDNA
_ public key from a s1gnature
: and message.

RIVETZ ECDH _ENCRYPT - 0x0301 The payload contains the

- request to encrypt data using
RIVETZ ECDH DECRYPT 0x0302 The payload contains the

5 . request to decrypt data using

Note that not all devices will be able to support all instructions. If the instruction is
not supported the DeviceRivet will return NOT _SUPPORTED. See

\\\\ aseReco

14. Instruction Type

>
(2]
(@]
=
[/;]
-
Q
=
=
<
L
c
(1]
-
=
Q
=
S
&
o
Q
-+
13
(7]
-
=
(1]
-
<
e
(1]
(e]
*
-
=
(1]
z
%
s
o
”/
s
2
11/
7
%
’ s
)

15. Instruction Signature

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-53 -

Every instruction destined for a DxeviceRivetr must be signed by the issuing
ServiceProvider. The service provider must have registered with the RivetzNet, A
registered service provider will have its public key endorsed by Rivetz and

distributed to all registered devices.

16. Account Keys

AgcouniKeys are held securely by the DeviceRivet. They never leave the confines of
a trusted execution environment. They are generated, stored and applied in a secure

wrapper that is bound to the device.

17. Account Pin

AccountXeys may be bound to an Account™in which is used to test
user consent before SccountNeys are applied in any transaction.

18. Response Record

The return status and payload that results from the processing of an

nstructionRecord
ERER SR LM RS AN L LR S N

a. Status Codes

- RETURN INSTRUCTION EXECUTED A generic return for an instruction
: that was executed by the

Neavice R fvet
AAUVIONI VL

wilype provided in the
cord is unsupported on
this device

RETURN NOT SUPPORTED The

> provided in the
ord 1s unknown

RETURN NOT KNOWN The

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-54 -

RETURN CONFIRMATION OK ~ The request for confirmation was
. confirmed by the user. The payload
. of the return will include a hash of
the confirmation object (image or
text) signed by the device

RETURN CONFIRMATION CANCELLED The request for confirmation was
- - cancelled by the user

RETURN CONFIRMATION EXPIRED The request for confirmation was
. neither confirmed nor cancelled by
. the user within the time limit

19. Rivet Adapter

The RivetQdaptor is the interface between the DeviceRivet bolted
into the TtE and the outside world of partner apps and online
services. In implementation it manifests in one or more diverse
forms. While we strive to present the same basic capabilities across
devices, hardware support and OS architecture will dictate what's

actually possmle and how these features are presented.

a. Diagram
b. Sub-Components

The Rivstddaptor is composed of outward and inward looking
interfaces. The inward looking interface, the TEEAdapter, handles
proprietary communications with the trustlet (the DaviceRivet). The
Hostdgaptoy is provided to expose services to third-party
applications.

Please refer to the individual sub-components for interface and
implementation details.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

3 -- The Nostddaptor presents the interface of the
otdgaptor through different local contexts, such as browsers or
system services. Multiple realizations for diverse contexts are
anticipated though initially this is an Android service and a windows
com process.

Sockeat Adaptar -- Connects the client environment to RivetzNst.

pior -- This component is the proprietary glue that pipes
commands into our trustlet running in Trustonic or Intel ME.

¢. Implementation

In the Android implementation the RivetAdapior manifests as an Android NI

service app. It is configured to launch at boot. The RivetAdaptor prepares message
buffers that are piped to the Trustlet and then synchronously awaits notification of a
response event. The manifest of the Android app presents a series of intents for a
third-party to trigger. The app, the NI3X binaries and the Trustlet are all packaged

into a single APK for distribution.

d. Use Case Reference

) ; o - Establish a local entity that can authorize use of the Rivet
in cases where no ServiceProvider authorization is given Actors Select/create
Actors from ProductActors...

{ 1¢ - Rivetz provides the mechanics for encrypting text or
1mages but expects partners to project the interface for their service, whether
itbea messaglng apphcatlon

o RegisterDevice WithRivetr - Before a Rivet can do anything it needs to
register Wlth RivetzNet. Reglstratlon results in the generation of a unique
1dent1ty key Reglstratlon relies on an endorsement...

3 NerviceProvider - A service provider needs to have their

Serv1ceProv1derID and pubhc 1dent1ty key registered with a device before

that device will respond to any requests. Even in...

° :\ 33 \x\

20. Host Adapter

The HostAdaptor presents the interface of the RivetAdaptor through different local

contexts, such as browsers or system services. Multiple realizations for diverse

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-56 -

contexts are anticipated though initially this is an Android service and a windows

com process.

The Haost « 1s primarily there to isolates the TEEAdapter from the host

environment. However it does have a minimal UT presence on the host machine. It

presents the "About" page and is the item the end user can identify in their apps list.

A

Eventually the HostAdaptor will present RingManager services such as backup or

Jjoin.

t‘\’\\ ON
MHEIMSH \\\\‘

g
e
7
7%
z
)
o,
Db
%5
7
///
//

or operates in a potentially hostile environment. We
will therefore typlcally have limited assurance that the client has not
been compromised. The MHastagap
facilitate easy access to the DovicaRivel. Instructions from a

siday intended for the DaviceRivet will be signed by the

v and then passed through to the TEEAdapter and

LocaiSserviceProvider role may be constructed by the
ot and then signed by the TEEAdapter or other entity
prior to the instruction being passed to the DavicaRivet,

o

Certain local services such as Encrypt and Decrypt are allowed to
be called using the LocaiSsrviceProvidsr role and the Hostadap
provides an interface for these services IocaIIy for the convenience

of our customers. These may be disallowed on certain platforms.

s
pesd
'}

\\

,,4
(%
i

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-57-

i GetPointer

We want to protect the permanent device identifiers from abuse. A validated service
provider will need to ask, "what device is this?" So that a rogue app cannot get a

¢. The Device
t. With the

useful response with the same question we use a Tievice?¥

is an identifier that's only valid during a socket connection with R:

uier in hand, the ServiceProvider can query RivetzNet directly for the

permanent D¢ I} or to request pairing. The SocketAdaptor stores the

DevicePointer in memory whenever it connects to Rivet

Return: Device P‘omter -- An ephemeral pointer to a device that can be requested

by any local application. The Dev nier can wdentify a current socket session to

ot and therefore can be used to sstablish a device communication channeal

RRERY
Aa

and o look up the permanent identifier, the Dovice)

. GetHash

For signing and encrypting instructions the ServiceProvider needs to sign a hash of

the object.

Passes an instructionNsoord to the TEEAdapter and returns
NesponssRseord, The Rivet will need the glven the context in which
o process the instruction so it needs the ServiceSrovideril) passed
in the clear.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-58 -

A Rivetz Instruction is a data package targeted to be
processed by an identified DieviceRivet. It contains the
command payload and requlred s1gnatures to 1nstruct a

Return: Rasponse Raowrd -- The return status and payload that
results from the processing of an instructionRecard.

y -- Data as an unspecified collection of bytes of any length

v. Decrypt

The unique identifier ass1gned to a ServiceFrovider by

b. Android Implementation

v 18 the standard Java portion of the Rivetz client for Android. It
exposes it's interface through /nfents, the standard mechanism for cross app

communications. For example:

servicaProvideyin,

LiStrdng

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/023142

WO 2016/154001

-59 .

GO

7

it

ST

3

R SR

i

1S

10N

Each act

defined as a separate class that inherits from

For example:

~
aon.

ti

o5

o =
& o]
oS e
ik £
G . 7

iy b f
43 “

ot v
v £o
o o
&g £
8
e
5
£z
%
53
74 t
a
&
{05
£
£
v
LA
o
o
o

s s

e e

= =

I fod fod
B &= =

reayy

% ;

“rd o al
b5 o :
“ & e
g 57 iy

5 o

4 % o
" £ po;
%

23
oy
o
&

3
te)

9
P
i
et et

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

canalto=
Trustlet RivernziotionPairiSpll, inatructi

The TEEAdapter defines the JNI (Java Native Interface) code that passes an

instruction through to the DeviceRivet

i, Android Intent Documentation

These definitions are pulled into the SDK pages for public display. See

D A N1
5 iy Wil an
FAVELEATL QLATENnY

iy,
H

Submit s
3

Title Of New Android Intent: :

CREATEXERY Create a key of the specified type. Rivetz

- stores the key in a local hardware encrypted
- storage space unique to the Service Provider.
: Keys are named for future reference.

INSTRUCT CRY

Decrypts the given data object with the
named key

Removes the key identified by K e
from the Service Provider's key sets

Encrypts the given data object with the
named key. Generally this is used with a
public key loaded through

INSTRUCT _LOADKEY.
INSTRUC XECUTY Provide a server-signed instruction to a
deV1ce While the Rivet may be tasked with
local unsigned requests, ideally instructions
are signed by a service provider key
established during service provider
registration.

- Gets the key data from the named key stored
- in the Rlvet Results will vary based on the
evType. Symmetric keys and private keys
are returned encrypted with a unique key
protected by the device hardware.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-61 -

Get a termporary unique pointer to the
device that can be used for making web
requests to Rivetz Net

Summary
Summary
Summary

Loads an arbitrary public key into the
Service Prov1der key set for use with

A Service Provider needs to register or pair
with a device before the Rivet will respond
to any instructions. This process is
essentially a key exchange ceremony
brokered by Rivetz.net.

INSTRUCT SIGN Sign a blob of data with the named key. The
- algorithm to be used is established when the
5 key is created.

Sign a coin transaction with the named coin
: (wallet) key

INSTRUCT VERWY - Verify a signature for a given object. Result
. code: Rivet RESULT OK signifies that the
signature passed.

¢. Windows Implementatlon

d. Use Case Reference

Creatslocailissey - Establish a local entity that can authorize use of
the Rivet in cases where no ServiceProvider authorization is given
Actors Selectlcreate Actors from ProductActors...

¢ - Rivetz provides the mechanics for encrypting text or

1mages but expects partners to project the interface for their service, whether
it be a messaging application...

21. Socket Adapter

Connects the client environment to RivatsNeat.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-62 -

o {
s

e T
.

L] w

L Uise \ ASE Wy

a. Component Context

b. Entity Responsibility

Subm |t

Title Of New Entity: :

ST
B,

The URL where we host Rivet

Session Object Defines the keys and other data for a temporal session
: between {wo secure endpoints,

C. Interface Specification

l. Connect

Open a connection with the server. The server will return a DevicePointer assigned
to this session. Connect is called when the RivetAdapior starts.
Arguments: none

Returns: none
ii. Disconnect

Disconnect from the server and discard the DsvicaSointar.
Arguments: none

Returns: none
Hi. GetPointer

Return the current ¢ »v or null if there is no session.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-63 -

Arguments: none
Returns: Bevice Pointer - An ephemeral poinier to a device that can be requested

by any tocal application. The Dev wuter can identify a current socket seasion 1o

Net and therefore can be used to establish a device communication channel

3

and to look up the permanent identifier, the Devicely,

iv. Instruct

R

Receive an insiryotion \at, pass it to the rivet and
asynchronously post the ResponssRecord, Every instruction will
come with a unique LDispatohiil that is used by RivetzNst to match
the Instruction to the response. Note that some instructions may
involve user interaction through the TUI and therefore may incur
considerable elapsed time before a response is posted.

Ve
i
1
v
2
rrid
s
oy
s
42
7
%
%
o
“
P4
/

DhapatchiD The unig e 1dmin‘ux am,d o mamh an §

A Rivetz Instruction is a data package targeted to be
processed by an identified DeviceRivet. It contains the
command, payload and required s1gnatures to instruct a

device to perform some action in the Rivetz . applet.

DispaichiD {he st que iden‘aﬁer used to match an {

TNICTH \»
macionReeorg

rd iemmed by the

of a Inst

d. Use Case Reference

22. TEE Adaptor

This component is the proprietary glue that pipes commands into our trustlet running

in Trustonic or Intel ME.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-64 -

a. Design Concepts

The Trustonic and Intel ME environments follow the same basic architecture: the

host system serializes data into a memory buffer and then triggers the THE to
process. This is a blocking (synchronous) request. Control is returned when the T

exits, presumably after writing response data in the memory buffer.

¥

As our TEY code can do more than one thing, part of the data structure passed in
needs to identify the procedure to execute. This in turn determines how the rest of

the data structure is interpreted.

Likewise, the instruction being executed needs context data that provides the keys to

work with. As the TEE has no native persistent memory, data records are encrypted

by the THE and given to the TEEAdapter to store and return when needed. Records
are stored per ServiceProvider and include the device identity, wallet and encryption

keys unique to the given service provider

b. Component Diagram

All the work happens in the T Loader where data from parameters and storage is

serialized into a structure to be passed via shared memory to the TEX environment.

l. TEE Communication Record

For every request, the TEE Adapter takes the input, packages a data structure for the

‘& and calls execute on the Trusted Applet environment. When the execution is
complete, the shared memory is recast as a response record. Any return data is

prepared for the original calling function and the ServicePr

back to disk.

er Record is stored

c. Entity Responsibility

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

- 65 -
. . i Submlt 3
Title Of New Entlty i
Service Provider The Service Provider context information that is provided to
Record the TEE when U processes an instruction,

d. Interface Specification
. Process Instruction

Called by the Sockatddaptary when it receives an instruction from
the Rivetztnceodsy. The instruction is a packaged blob meant to be
processed directly by the Tt without parsing.

dev I © The unique identifier ass1gned to a Sen
5 \\ Vg \\ i,

A Rivetz Instruction is a data package targeted to be
processed by an identified DeviceRivet. It contains the
command, payload and requlred s1gnatures to instruct a

device to perform some action in the Rivetz

The Tesddaptar will load the ServiceFroviderRecary, serialize it into
a memory buffer along with the instructionRscord and the trlgger

/
“h
rry
e
Srbes
—

the TEX to process. On TEE exit, the ServiceFroviderReoo
written back to disk and the response blob is returned to the

N eV N o 3
Wit ot A sfamtay
DTS TARGI LM

ii. Encrypt

Local request to encrypt using a named key. Encryption keys
belong to a SarviceFroviderRacord and are created using the
Lre ::\t\\\ Y mstructlon

Service Prov The unique identifier ass1gned to a ServiceVFravider by

\\ ¢ Jat
\ § LA

An arbitrary string assigned to a key created in the Rivet.

N ™

Data Blob Data as an unspecified collection of bytes of any length

. Decrypt

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
- 66 -

Local re uest to decry t using a named ke

The unique identifier ass1gned to a ServiceProvider by

An arbitrary string a531gned toa key created in the Rivet.

e. Android Implementation

The Android implementation uses the Java Native Interface (JNI) implemented by

the Android N,

In order to communicate with the Trustonic applet, the DeviceRivet, we need to use
Android JNI code. Each intent fired on a RivetAction will have a corresponding JNI

function defined that takes us into a C++ implementation environment.

EOBXTHRN BAPORT BRI T
Java oom rivetz Trustlet BivetzdctionPair 18 i tes!
dat ageing

}

f. Use Case Reference

23. Service Provider Record

The Service Provider context information that is provided to the T when it

processes an instruction.

a. Structure

This topic is just for getting the concepts down.

e e

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-67 -

A persistent object that stores the Tt keys in the Ri
environment. Each key is created on behalf a Sen cebr
given a name and a usage rules.

b. Reallzatlon

This is expected to be a flat file of binary data that can be easily serialized into and

back out of the TEE memory buffer.

Details and datatypes are defined and maintained in the source code at {:iiHub. See

R o N Q S ¥ o\ N
NI R R e R RO N R R R e S Y e]
LG AT IHxOay

s d § D e A & F 5 Y Deadone oyl
N RS RN R R R R NN ST aN e g
NS TG T RO OIS INE M TMGEMN

25. Instruction Processing Protocol

a. Overview

The counterpart to the DeviceRivet i

prepares a command to be executed by a specific device which is signed and/or

encrypted by the Servi eProvider public keys are preloaded

into the device during a pairing process conducted by RivetzNet, This allows the

et to validate the origin of the request, and if needed decrypt the contents

of the instruction.

The sequence of packaging and delivering an instruction is pretty straightforward.

S B
The ServiceProvider

acord with the help of R

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
- 68 -

libraries. The instruction includes the type, the target device and payload. The
instruction may be encoded with the device key and must be signed by the service

e

provider key. The device key is fetched from Rivets!

iet, or directly from the block
chain, by looking up the DeviceRes

26. Device Enrollment Protocol

a. Overview

Device enrollment is the pedestal on which our entire ecosystem stands.

27. Intercede Onboarding Process

The following roughly describes the steps that Rivetz will need to complete to start

using Intercede for installing a DeviceRavet,

See fntercedetGroup for background and docs.

e

a. KEY SETUP:

e First create a test Transport Key (we'll call this the TTK).

e Generate three random 256-bit values and store them as Sharel, Share?2,
Share3

e Perform an XOR operation between the shares (Sharel XOR Share2
XOR Share3) to obtain the TTK.

e Create files for each of the three shares and encrypt them individually with
the three PGP keys that Intercede sent to Rivetz.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
- 69 -

e (Generate a 256-bit test Personalization Master Key (a TPMK) and store this
in Rivetz code somewhere.

e Encrypt the TPMK with the TTK as described in the Intercede document and
send this via e-mail to Intercede.

e Generate a test Purchase Receipt Key (TPRK).

e (Generate a "customer reference" number for Rosie Wallet or whatever test
Service Provider we want.

e Send the public portion of the TPRK (we can call this the TPRPK) to
Intercede.

b. BUILD DEVICE RIVET APPLICATION

e We should modify the current DxeviceRivet software to be able to accept a
personalization package. The personahzatlon package will contain a key that
is derived from the TPMK.

e C(Create software on the Rivetz.net server side that derives the personalization
key for each individual DieviceRivet.

e Update the Rivetz provisioning protocols to use the shared DeviceRiy
personalization key to establish trust between the device and Rlvetz.net. This
will likely involve the TieviceRiver generating new device-specific keys and
signing/encrypting those for Rivetz.net with the personalization key for that
particular DeviceRivet,

o Include the M
RivetAdapt)1:“) to assist in installing the Devi
package.

VAM client library in our real world application (the
ceRivet and personalization

¢, Execution

I. Transport Key

To build the random values, sharel, share2, share2:

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-70 -

It should look like this:
aPESL566hAET05ETeasad54bhideba4 8T 955824852%a0822207b8081233ac54,
What this command does is pipe the linux kernel random data through a text

processing tool (tr) that pulls out alphanumeric characters, truncates the result to a
random number of characters (with head) and then pipes this into sha256sum.

Finally, it uses tr again to remove the trailing space and hyphen

Do this three times and XOR the results together using a python command line call:

This results in:

£70820hodB42812128:38e2 72508997 804esbibEE5530%e808748h1b01394dER
What this does is cast each of the hex strings to int, XOR's them together and then

formatting the result back into hex

Note that these files are all ASCII hex representation. To translate into binary do

SRS SRS S 5 P o e Eptan S RoRone Vs LA RS - .
croosad liainume e Sdevlurandon § nead s Sl sl 058
Sdeviinrandon E heag ~a Ayt ehE28ssum ooy =4 shioso ol ral
SRS 5 P o e Eptan S RoRone Vs LA RS - .
croosad liainume e Sdevlurandon § nead s Sl sl 058
Sdeviinrandon E heag ~a Ayt ehE28ssum ooy =4 shos el el

Sty o 028 ¢

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

pyvthon -o s

gua - odmport reciplent.oase

Yoy e 1 S o S 3 = s
cat ghared § R U s U fharel . bin

rypted share foy regiplisnt gog ~-uncryplh Sr REYS1Ds

ii. Personalization Master Key

1. generate random number

2. convert to binary

3. encrypt with Transport Key and then pipe into hex format for
delivery to Intercede

DR R eia g &
e Rk R

ii. Key Verification

A check value (KCV) may also be calculated and sent to Intercede. The optional
check value ensures that the Personalization Master Key is correct once imported

O

into the Intercede HSM — the check value is computed as follows.

e Use the (unencrypted) Personalization Master Key to encrypt one block (16
bytes) of binary zero’s. (Use ECB mode, no padding.)

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-72 -

e The first 3 bytes of the output are the check value (KCV). Transmit the KCV
to Intercede.

e The process of importing the key into My TAM at Intercede will verify the
KCV (if supplied), and provide additional verification that the key exchange
has been performed correctly.

Sanho BUNO00000U0H0000BU0N000000UG00000 | i v oy £ Srelentn
ses-U56sech snopad -K Jgat TPMKD | sxd o-p o 258 aulo=by =g s
TEME oy

iv. Purchase Receipt Key

This is supposed to mimic the Google Play receipt key for in app purchases. The key
is used to sign the device SUID during provisioning. Intercede uses this as a receipt

of "purchase".

This generates a 2048 bit RS A key in the file TPRK.pem and then extracts the

public key into TPRPK .pem which is to be sent to Intercede.

From openssl.org: "PEM form is the default format: it consists of the DER format
base64 encoded with additional header and footer lines. On input PKCS#8 format

private keys are also accepted.”

AN A
Y

From Google Play documentation: "The Base64-encoded K58 public key
generated by Google Play is in binary encoded, X.509
subjectPublicKeyinfo DER SEQUENCE format. It is the same public key
that is used with Google Play licensing."”

This delivers a binary format key

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-73 -

28. Rivetz Use Cases

Rivetz provides an SDK to partners for accomplishing simple yet critical
transactions with a device. This spans authentication to messages to Bitcoin signing.
The interface is a systems interface but some services will engage the user for PIN

entry, visual confirmation, etc.

a. Use Cases

§ :
3 Submit
§

Title Of New Use Case ——

rrrrrrrrre

Create a key pair in the DeviceRivet for either signing and
encrypting.

Given an encrypted object and a key name, decrypt the
object either for TUI display or to return to the requester.

- Rivetz provides the mechanics for encrypting text or images
- but expects partners to project the interface for their service,
: whether it be a messaging application or some other.

Before a Rivet can do anything it needs to register with
RivetzNet, Registration results in the generation of a unique
identity key.

Ny

A service provider needs to have their ServiceProviderii
and public identity key registered with a device be fore that
device will respond to any requests.

Anyone seeking to code to the Rivetz system needs to
register as a ServiceProvider

,,/

- Package a short message that will be delivered to the target

endpoint device and displayed to the user with secure display

. if available. The communicated is signed both ways to

ensure the confirmation is valid. The message may be an
image or text.

Sign Bitcoin - (iven a fully formed bitcoin transaction (where the origin
- account s owned by the target device hardware), sign the

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

-74 -
Transaciion - ransaction and return i In mwost cases this should also

tnvolve prompting the user for contirmation with secure
display, if avaitable, or at least common display otherwise.

- Given a named key and object reference, return a signed hash
: of the object

tiser Recovers 5 Summary
Forgotten Device

Verify the signature on an object with a named or given key.

Actors

&
y
N
N
N
H

S
Submit

A

.

Title Of New Actor:

A Rivetz employee responsible for the relationship with a

o

Service Provider | Service Provider's use the capabilities provided to Rivetz to
enhance their own services. They are our partners and the
primary source of income.

iser is someone who is engaged with a primary
feature/function of our service.

A System Administrator engages with the installation,
configuration and maintenance of our service

- An entity that can load and endorse a trusted application into
| a trusted execution environment (i)

29. Trusted Application Manager

An entity that can load and endorse a trusted application into a trusted execution

D)

Ny
X

environment ('

a. Definition

H St asrFad nadiMawriant d It st afleen s ey
In the world of Trustonic GissgokedAndDevriant and intercadearoup

are established as TAN's.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-75 -

30. Service User

A ServiceUser is someone who is engaged with a primary feature/function of our

service.

a. Definition

31. System Administrator

A System Administrator engages with the installation, configuration and

maintenance of our service

a. Definition

32. Account Representative

R

A Rivetz employee responsible for the relationship with a ServiceFrovider

a. Definition

33. Service Provider

Service Provider's use the capabilities provided to Rivetz to enhance their own

services.

Definition

Service Providers need to be registered with the RivetzNet in order to do business
with us, or more specifically, to access our API's and sign instructions targeted to

riveted devices.

a. Demo Service Provider

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

ideril) that can be easily handed out to

It's clear that we need to have a ServiceProv

developers for early testing and experimentation. We are doing this already, but with

a random 1 tit has embedded. For example:

R O R RN
TNETRUCT ORFEATEXEYS

It should be noted that a device activated with the demo SPID will incur a royalty to

Intercede and Trustonic just like a production Rivet.

34. Register Service Provider with Rivetz

Anyone seeking to code to the Rivetz system needs to register as a

-~ . . s
Ty A AT ST IS Y
SONVICEFOVINN

nitial registration is a simple as filling out a form on RivetzhNet

¥

:Q‘\Q N
RN

o § § oy
Sry Rideyy § el
SYERNNNN S),

D R . 3 o N - N AN - Fay &
NorvicaNravider AccauntRanrasantativea
AETFICEFTOVIAET, QoaiiniNagprasaniative

b. Description

1. Service Provider creates local public/private keys

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-77 -

2. Service provider goes to HT T form on rivetz.com
! ations®) and inputs the following

bl ‘i oy N
W ddene fie S e Y L SN O

M $ DV OO ANANMOTSITaMNISY
(.\ PRAE A DTV Gl T it \e\\.ﬁtx\ni

information:

e (Company Name

e Contact: First Name, Last Name, Position, Email, Phone
e Company Website

e Company Address: Street, City, State/Province, Country

3. Service Provider Clicks "I Accept" to terms of service agreement.
4. Service Provider selects a password and confirms it (user name
will be the given contact email)

e we tell them that this can be replaced by device authentication later

5. Service Provider is requested to upload a public key

e This can be skipped and done later
e We should also provide more secure ways of obtaining the public key
than this upload

6. If key is provided, then a SPID (service provider ID) is generated
and emailed to the customer

e Ifnokey is provided an email confirmation is sent with a pending
message and instructions on providing the key.

N 3 y
R S B N R T A R T A R A T
7. AccountNaprassan

"8

tive will receive notification of anew registration

e At this point the data can be loaded into S:
may choose to follow up personally.

sForce and Account Rep

L. Variation: New Service Provider Returns
to Provide Key

1. Service Provider logs in with email and password

2. Service Provider notes "pending" state of account

3. Service Provider clicks to fix pending state and is prompted with a
entry box for their public key

4. Once the key is posted, a SPID is created and emailed to the
Service Provider contact email

5. The account is no longer pending

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/023142

-78 -

ative is notified of the change in the account.

Notes

Description

Notes

e

hing this is not a secure process as it uses a public key. It is

Description

Notes

SUBSTITUTE SHEET (RULE 26)

a.
b.
C.

C.
35. User Recovers Forgotten Device PIN

36. Verify Something
Verify the signature on an object with a named or given key.

Select/create Actors from Froguats

Summary

WO 2016/154001

a
b.
C

WO 2016/154001 PCT/US2016/023142
-79 -

37. Create Key

Create a key pair in the DeviceRivet for either signing and encrypting.

b. Description

The primary purpose of Rivetz is to secure and apply keys within
endpoint devices. Encryption (privacy) keys or signing (identity) keys are
generated using the cryptographic tools in the Ttz and securely stored
on the device using the Ttt&'s storage key Bitcoin address keys similarly

maintained but have nuances, see

/’/’

All keys are created in the context of a ¢ atvawvidsy, In other words,
every key is stored along with the Sar Frovideni that requested its
creation. Every key is given a name that is unique with the context of the

N =~
deenistedaaet Y
YOV i‘\\\)S...?.

When a key is created the rules for its usage are specified in any

combination. These are:
o requlre 51gned request to apply the key by the key's creator (the
\\“ ¥ \\\\& rovigde \)
e require user confirmation to apply the key through trusted user interface
e require result displayed in TUI

See DaorypiSomaething and VerifySomething for more discussion at
what it means to have the result displayed in TUI.

¢. Notes

38. Create Bitcoin Account

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-80 -

Generate a new Wallet Account id in the device hardware

a. Actors

b. Description

Like all Riveted keys, the new Bitcoin Account is created within the

context of a ServiceFrovidey and given a name. The ServiceFrovider app
may hide this name or present it as a feature to the end user.

When creating a Bitcoin Address the SenvicaFrovidar must specify
whether the account requires TUI confirmation to sign a transaction.

P

¢. Notes

39. Encrypt Something

Rivetz provides the mechanics for encrypting text or images but expects partners to
project the interface for their service, whether it be a messaging application or some

other.
Decryption keys can be marked so as to require TUI display of the decrypted object.

MJS> Note that this is distinct from requiring TUI confirmation.

Sorvicoe lter Nerciealrmuicas
JANFICRLIZATN, DENVICaMTOVIAe)

b. Description

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-81 -

The Rivatddapiar will have to have the public key of the target device this
is either provided directly by the Sary

wrovidar or previously recorded in
the DeviceRivet during a pairing of devices. On the encryption side, the
JavicaRivet need not be involved, as the operation is a public key
operation only. Regardless, on the encryption side, the inputs to the

function at the Hostddaptar interface (or Rivatztincoday) include:
* Target device ID or target device static public encryption key (the encryption key

must be known by the entity performing the encryption) * (Optional) Data to be
encrypted

In the simplest instantiation, Rivetz only provides the U3 operation. When this is
done, the data to be encrypted or decrypted is not passed to the Rivetz software, but
instead the Rivetz software will simply output the shared secret from the ECDS
operation. Then it is up to the external software to perform data encryption using

that shared secret.

¢. Notes

40. Send a Secure Confirmation Request

Package a short message that will be delivered to the target endpoint device and
displayed to the user with secure display if available. The communicated is signed

both ways to ensure the confirmation is valid. The message may be an image or text.

a. Actors

O . N =~ O M YT
N P e e e T o ArUYetal boar
DEIVICETTOVIAST, Darvicalsey

b. Description

The value of a secure confirmation request is knowing that there is very little chance
(if any) that the message could be confirmed by some other device than the one
intended. Further, that the device is displaying a confirmation that could only come

the source indicated. To accomplish this requires a registration of keys from both the

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-82 -

device and the service provider and a TYE at the device to ensure that nothing
untoward is going on when the message is being processed and presented for display

in the wild fringe of the network (user's devices).

The service provider will expect to simply declare a message and a target device and
await for a response. The keying infrastructure should be independent of all parties
and public so as to ensure that only the math is at play as long as the source code is

trusted.

¢. Notes

41. Sign Something

Given a named key and object reference, return a signed hash of the object

b. Description

Note that identity keys will follow the key usage rules as described in CreateXey.

¢. Notes

42. Register Device with Rivetz

Before a Rivet can do anything it needs to register with RivetzNet. Registration

results in the generation of a unique identity key.

Registration relies on an endorsement from the TrustedApp

ensure the DeviceRivet is properly executing in a secure environment. (Ideally a key

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

established by the Tt

jo)

waer will locally sign the Device

registration key)

a. Actors

s

Registration takes place the first time the RivetAdapior is invoked and results in a

key pair created in the Rivet and the public key shared with R

device is registered it will attempt to connect to Ri iet through a R

socket whenever it is live.
1. Device creates local public/private keys

These keys should be locally stored as an identity key to the service provider

"Rivetz".

2. Device makes HTTF REST call to rivetz.net requesting registration with signature

of public key as unique identifier

previously registered) with its unique device ID and a RabbitM} queue name to

listen for incoming commands

4. Device starts up RabiitMyQ to listen to incoming commands on queue specified

¢. Notes

43. Sign Bitcoin Transaction

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-84 -

Given a fully formed bitcoin transaction (where the origin account is owned by the
target device hardware), sign the transaction and return it. In most cases this should
also involve prompting the user for confirmation with secure display, if available, or

at least common display otherwise.

b. Description

c. Notes

44, Create Local User

Establish a local entity that can authorize use of the Rivet in cases where no

v authorization is given

* TEEAdapter

* Rivetz.net (Optional)

b. Description

In order to enable fast and easy use of the DeviceRivet, the DeviceRivet may allow

the creation of a "local user". The Lacailiser is defined to be an entity that is not an

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-85 -

authorized ServiceProvider, but that is allowed to access the DeviceRivet in some

N

capacity. While a ServiceProvider may be allowed to create and manage bitcoin

keys and provide other services, the {.ccailser may only be authorized to perform

certain operations. These operations may include:
* Creating and using encryption keys
* Creating and using signature keys

The properties of a local user are as follows:

- The authorization for a L.ocailiser will initially be held on the local platform, but

AN

could later be protected elsewhere
- The L.ocallser is optionally authorized by Rivetz.net

- The L.ocalliser may be hidden from the actual human user or application. It may be

managed within the Rivet,

- Protection of the authorization for the Lacaillser can be enhanced over time to

include encryption with a user password or use of some other protection mechanism

- From an application perspective, the HostAdaptor provides an interface that makes
the notion of the f.ocalilser transparent, other than the fact that the keys associated

ser are not accessible through any interface other than through the

We should be careful in considering the name of the "local user", as this is a user
from the DeviceRivet perspective, but not necessarily from the external perspective.
One concept is that the local user is handled by the TEEAdapter. The TEEAdapter

establishes a shared secret with the DeviceRivet or creates a public key that

authorizes the local user with the DxeviceRiver,

¢. Notes

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-86 -

45. Local User

This 1s an entity that can access the DeviceRivet without participation from a

formal Se

Some decisions should be made about the provisioning of a L.acalliser, but one

N

possibility 1s that Rivetz.net authorizes the Localliser during a provisioning step
in the same manner that might be done with a typical ServiceFrovider (e.g.
through a "pairing" operation). If this is the case, Rivetz can still maintain control

over who can access DeviceRivet services and also, down the road, provide some

strong protections over access to the L.ocailiser role (by ensuring the

authorization for the {.ocailiser 1s strongly protected and controlled by some

trusted entity).

A decision should also be made about the manner in which the LocaiUser 1s
authorized. For simplicity, we could require that operations by the Locaiifser
require the same kind of authorization as operations from a ServiceFrovider (e.g.

through a signature operation) or, in the short term, we could simply allow the

i,

Laogcallser to utilize a share secret (e.g. a password, passphrase or random value).

46. Register Device with Service Provider

A service provider needs to have their Sevvice¥Frovideril) and public identity key

registered with a device before that device will respond to any requests.

Even in cases where the named key (identity, privacy or coin) does not require a
signed request, the ID of the requesting party must be known to the the device.
RivetzNet is responsible for endorsing the relationship between a device and a

service provider. In this way we maintain some control over the ecosystem. It also

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-87-

enables us to provide services to end users regarding the use, backup and migration

of service provider keys.

b. Description

1. Local service provider app makes request to Rivatddaptor for
device pointer

2. Device makes HTTH REST call to RivaetzNeat with new device
pointer and device ID (NOTE: need authentication here....could
use public key or API key, similar to above) as well as public key

3. Response from server includes RabhtMy queue to await incoming
service provider's public key

4. Service provider passes device pointer to their servers

5. Service provider makes H1TH REST call with device pointer and
SP's public key

6. Response to service provider includes device public key

7. Service provider's public key is pushed to device

¢. Notes

47. Decrypt Something

Given an encrypted object and a key name, decrypt the object either for TUI display

or to return to the requester.

b. Description

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-88 -

When a privacy key pair is created it needs to be marked with key usage rules that
specify whether the request needs to be signed and/or confirmed by the user through
the TUI. Further, the key can be designated as for TUI Display only meaning that

anything it decrypts stays in secure world.

¢. Notes

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-89 -

CLAIMS

What is claimed is:

1. A computer-implemented method of verifying device integrity of a user device
in a block chain communication network comprising:
in preparation for delivering an electronic transaction in the block
chain network, implementing a device integrity verification process as part of
the transaction including;
performing an internal validation of the integrity of the device
execution environment from a root of trust in the user device; and
requiring an electronic signature, such that a verification of
the integrity of the signature is applied to the block chain transaction;
wherein verification of the integrity of the signature is based
on a determination of whether the execution environment of the
device is in a known good condition including:
based on the integrity of the signature, allowing the
transaction to proceed or requesting a remediation authority to
verify that the electronic transaction as intended by the user is
allowed to proceed even if it is determined that the execution

environment of the device is not in a known good condition.

2. The method of Claim 1 wherein verification of the integrity of the signature
includes:
transmitting a root of trust instruction to the block chain network for
processing, such that at least a portion of the block chain network responds
by requiring multiple electronic signatures in order to accept the electronic
transaction including:
creating within the execution environment of the device, an
instruction from a root of trust in the user device;
requiring a first electronic signature that corresponds to the
root of trust instruction, such that a verification of the integrity of the

signature is applied to the block chain transaction; and

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-90 -

responding to the first electronic signature by verifying the
integrity of the signature based on a determination of whether the
execution environment of the device is in a known good condition
including:
comparing the signature with a previously recorded
reference value;
if the signature matches the previously recorded
reference value, then allowing the transaction to proceed; and
if the signature does not match the previously recorded
reference value, requesting a third party out of band process to
verify that the electronic transaction as intended by the user is
allowed to proceed even if it is determined that the execution

environment of the device is not in a known good condition.

3. The method of Claim 1 wherein verifying the integrity of the signature includes:

the device providing the electronic signature based on a
determination of whether the execution environment of the device isin a
known good condition;

allowing the transaction to proceed if the device provides the
electronic signature;

allowing the transaction as intended by the user to proceed even if it
is determined that the execution environment of the device is not in a known

good condition if the remediation authority provides the signature.

4. The method as in Claim 2 wherein the out of band process further includes using
an N or M cryptographic key function to confirm that at least one of: an intent of
the user meets predetermined requirements, or the device integrity meets
predetermined requirements, or an additional process meets predetermined

requirements.

5. The method as in Claim 2 wherein the reference value is generated during a

registration process performed by the owner of the device platform.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

6.

10.

11.

12.

-9] -

The method as in Claim 2 wherein the reference value is generated based on a
birth certificate assigned to the device, wherein the birth certificate is generated
by the manufacturer or creator of the device, the manufacturer or creator of the
execution environment of the device and/or the manufacturer or creator of an

application on the device.

The method as in Claim 2 wherein the reference value includes a signature of at
least one of the manufacturer or creator of the device, the manufacturer or
creator of the execution environment of the device and/or the manufacturer or

creator of an application on the device.

The method as in Claim 2 wherein the third party out of band process returns a

token in response to the request to verify the transaction.

The method as in Claim 2 further allowing the electronic transaction to be
completed within a certain period of time if the signature does not match the

previously recorded reference value.

The method as in Claim 2 wherein verifying that the intended electronic
transaction is allowed to proceed even if it is determined that the execution
environment of the device is not in a known good condition is based on a period
of time between the registration of the reference value and the transaction and/or

the amount of the transaction.

The method as in Claim 10 wherein transactions above a threshold amount are

allowed to proceed if the period of time meets predetermined requirements.

The method as in Claim 11 wherein allowing the transaction above a certain

amount is based on a minimum number of previously allowed transactions.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

13.

14.

15.

16.

17.

-92 -

The method as in Claim 1 further comprising using a display device indicating to
the user whether device integrity meets minimum predetermined requirements

and further actions to be taken.

The method as in Claim 1 further including notification to a third party of the
transaction, wherein in response to the notification, the third party records the

transaction and a state of the device.

The method as in Claim 14 wherein the third party records measurements

associated with the device integrity for future analysis of the transaction.

The method as in Claim 14 further assuring the privacy of the record including
cryptographically obfuscating the record such that the record is made available

only to authorized third parties.

A computer-implemented system of verifying device integrity of a user device in
a block chain communication network comprising:

a block chain communication network;

a user device in the block chain network;

an electronic transaction in the block chain network;

a device verification process implemented as a part of the transaction
in preparation for delivery of the electronic transaction in a block chain
network, the implementation further comprising:

an internal validation of the integrity of the device execution
environment performed from a root of trust in the device;

an electronic signature, such that a verification of the integrity
of the signature is applied to the block chain transaction;

wherein verification of the integrity of the signature is based
on a determination of whether the execution environment of the
device is in a known good condition including:

based on the integrity of the signature, allowing the

transaction to proceed or requesting a remediation authority to

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
-03 -

verify that the electronic transaction as intended by the user is
allowed to proceed even if it is determined that the execution

environment of the device is not in a known good condition.

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142
1/8

Network

{50

PCT/US2016/023142

WO 2016/154001

2/8

di Oid

L6~1NYHOOHd SO Gii—-1 INILNOH
G JOVHOLS W51 FiT AMOWaN
QE\\
SNE WNELSAS
JOVAHIENI LN FOV4H41NI
" J0ES300Hd , \
HHOMIAN WHINTD S30IA30 O

mS\\
091 dmw.\w

)

2/

SUBSTITUTE SHEET (RULE 26)

WO 2016/154001 PCT/US2016/023142

200

Service provider

204

FIG. A example device aunthentication system according 10 the invention,

WO 2016/154001 PCT/US2016/023142
4/8

200

l {fthmnt -«el
¢ e Erooder
U1K - FUN—
TR
. ~.,
e .
- .,
" .
g N
€

_é,ﬂ; ARV »
Serif:f:gf::ld . | —— we am' 4 fing Mansgey
L 2040 2006 P I AR

e -
A A 4 [
e P

51

A

&erwlr. sPravider } O e Device 2 ioq
shent app 214 f@’ TEE AP?I&!‘ "

P ZaLA ST

FIG. 2B: example device authentication sysiem according to the invention.

WO 2016/154001 PCT/US2016/023142
5/8

e E— t
Biock Chain e s S 0T e Rgg?gtra;“ :m«--mm““waw-vm“'t-g CE
a2 221 223

A

3

&

¥ Y

............. o - H T
3! €] | £1
Service Providey b el Device Adapaier -—-————ﬁn»»w“w—-—lki Deviee TEE {

204 | 220

an s e

FIG. 2C: Components of an embodiment of the invention

WO 2016/154001 PCT/US2016/023142
6/8

Auntunh cation N
web 3 ;'i'e wak sdastsr e 73
e R ; g

Socket Adagter |H——

20 215 i_

A
b4

R o 1
B4 R =
TEE Adagter - > Devigiire

Lile _ TEE 208
b

. = Eml
Thirdwam%‘* -« » Hostdds terﬂm‘ .
Componant o .0?2 l“; X

FIG. 2D Authentication System Adaptor and its outward and inward Jooking interfaces.

WO 2016/154001 PCT/US2016/023142

7/8

I N
} i
IR
\‘| iJ
'm.j

Service S | T . Davice T8
Provider Encoder Adupter ‘

£ Service
User

L Lid

T Y !]
| RrEp@ns]
f wsiractian |
'

i
1
f
{
i
1
t

S S

1
f
T deorypt % eheck
H sgnatire {
- |
i

pressesure display B

3

|
|
t
{
|
}

i
|
!
i
1
}
|
i
|
t
i
|
;

!
i
H
i
i
t
H
i
i
H
i
t
¢
i
i
!

5 - ~rEsgonse
;
B

b

'rgi— e o Rt gest [FRSRONIEY s i

N ! N

b deendesvmidats o ! i i

deeodevnidats |
e + 3

i rasponse H * ,

1 { i ;
| P70 rhesk sig with §
§ i { devics BBy |

| - ;
| 1 .

>

FICL 3A: sequence of packaging and delivering an instruction by the Facader.

WO 2016/154001

.

J <

S0 it

LA

8/8

At Pl caidn
web
 Sibe

PCT/US2016/023142

Service
User

Sevvice
Prov. App

- “3_ Device ¢

TEE

Adapter | e TEE | Ecosystem
H ” v

f F ' L
i o . i { H H
{ e aggu - i i H
i i L A A !
e G T W ity siRnle jratafise | i
| t D R |

poigunch appes—iw : 3

3 H

;
i
i
]
[
;

1
{
t
i
j
1
t
¢
i
|
f
H
i
1
t
i
1
I
3
§
i
b
t

r-m«-«--»w»ww«-umtcmriuo‘r Lt g Rat i

% t |
& —aagsint fonded — 4

1
i i H
b Saein enroit--gpd i
I i
1
H

|
[.
y R neak B waye
{

-

i
[— ‘
b ogererate W

Eq..\.l

=Rk g e

re e e e e o e o e e
A

¥ MRt

X

i
|

f

e
i
b

28

I
§
{
i
|
i
i
t
i
t
}
i
b
i
i
1
|
i
i
|
f
t
|

sl ¥ ragistration fren SACRR iy

]

) }
e ORI tranERction recoviiede &1
v Ll

FIG 3B Device enrollment process according to an embodinment of the invention.

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 16/23142

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 11/30, GO6F 12/14 (2016.01)
CPC - GO6F 21/72
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched 5 classification system followed by classification symbols)
IPC(8): GO6F 11/30, GO6F 12/14 (2016.01)

CPC: GO6F 21/72

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 713/189, 713/190, 713/176 (Keyword limited; terms below); IPC(8): GO6F 11/30; GO6F 12/14 (2016.01) (Keyword limited; terms

below); CPC: GO6F21/72, GO6F21/10, GO6F2221/2107, H04L9/08, H04L63/0428 (Keyword limited; terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase; Google (Scholar, Patents, Web)
Terms used: blockchain transaction device verification integrity authentication root trust internal signature condition root "birth certificate”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2014/0357295 A1 (SKOMRA et al.}, 04 December 2014 (04.12.2014), entire document, 1-7,13-17

--- especially Abstract; para (0013}, [0025), [0065], [007 1], [0095], [0135], [0139), [0153], [0155], | ----eeeeeeeeme

Y [0160], [0173], [0182], [0212], [0234], {0237], [0262)-[0263], [0269] 8

Y US 2015/0081566 A1 (SLEPININ), 19 March 2015 (19.03.2015), entire document, especially 8

Abstract; para [0057]

A US 2006/0129825 A1 (SALOMON et al.), 15 June 2006 (15.06.2006), entire document 1-17

A US 2011/0307703 A1 (OGG et al.), 15 December 2011 (15.12.2011), entire document 1-17

A US 2014/0136838 A1 (MOSSBARGER), 15 May 2014 (15.05.2014), entire document 1-17

A US 2014/0279526 A1 (JACKSON), 18 September 2014 (18.09.2014), entire document 1-17

D Further documents aro listed in the continuation of Dua C. D

* Special categories of cited documents: “T" later document published after the international filing date or priority

“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

“E” earlier application or patent but published on or after the international “X™ document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

“L” docgment w}g’llchhmﬁy thrglw doubtil on p?omyﬁ:lalm(s) or whlcl;lls step when the document is taken alone
cited to establish the publication date of another citation or other “Y” document of particular relevance; the claimed invention cannot be
special reason (as specified)) o considered top involve an inventive step when the document is

“0O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than

the priority date claimed &” document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
06 June 2016 (06.06.2016) 2 6 J U L 2016
Name and mailing address of the ISA/US Authorized officer:
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. Box 1450, Alexandria, Virginia 22313-1450
. PCT Helpdesk: §71-272-4300
Facsimile No. 571-273-8300 PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

LS

PN TAERSZ X PUBEAT By Z iy 0T A S0 2 7 i V2 26 0 42 T 480 1 1)
RGATT 5, HAGR K FERT S fe itk — P iy k. B IR v] LLLE
BEAT R P AC B 2 HIRRNIE . AE 28 Ty 3, Al A B e VR SR RY
F AL BB O X HRBEAT B 0 — T 0 o A BH A S8 0 T AR A AR A5 T ik
Hro LBy AT L B Y R SR AR W) DAY R 2 A B 2 4
B4 5 B AR S R BIEAR R T HRAE. S ERFEWHEMS 54
HIT A 5) BE 86 2 SE i A8 B A [+ 52 2%

	Biblio page:1
	Description page:2
	Claims page:90
	Drawings page:95
	ISR page:103

