PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7

HO04L 29/06 Al

(11) International Publication Number:

WO 00/56028

(43) International Publication Date: 21 September 2000 (21.09.00)

(21) International Application Number: PCT/CA00/00277

(22) International Filing Date: 15 March 2000 (15.03.00)

(30) Priority Data:
60/124,487
09/515,092

us
us

15 March 1999 (15.03.99)
29 February 2000 (29.02.00)

(71) Applicant: TEXAR SOFTWARE CORP. [CA/CA]J; Suite 135,
1101 Prince of Wales Drive, Ottawa, Ontario K2C 3W7
(CA).

(72) Inventor: BACIC, Eugen; 56 Castlethorpe Crescent, Nepean,
Ontario K2G 5R1 (CA).

(74) Agent: MITCHELL, Richard, J.; Marks & Clerk, P.O. Box
957, Station B, Ottawa, Ontario K1P 587 (CA).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, Fl, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: A SECURE NETWORK

O

_l
18
14 Clle
@‘
18

Client

Server

(87) Abstract

Internet Connectlon

A secure network includes a network server and a plurality of clients connected. A security server, typically physically separate from
the network server, contains a database storing access rights for the network. A security agent at the network server controls access to the
network server by communicating with the security server over the network in response to an access request from a client to determine

access rights for the client.

AL
AM

AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
uG
us
Uz
VN
YU
YAu4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/56028 PCT/CA00/00277

10

20

25

A Secure Network
Cross Reference to Related Application

This application claims the benefit under 35 USC 119(e) of US provisional application
no. 60/124,487 filed on March 15, 1999.

Field of the Invention

This invention relates to the field of computer networks, and in particular to a secure

network with sophisticated access controls.
Background of the Invention

As computer networks grow, security is becoming more of a concern with each passing
day. Organizations view and relate to information differently and Have differing
requirements for the protection, dissemination, and modification of their information
stores. Most organizations are moving towards heavily interconnected systems with links
to the Internet. System architectures that were safe, due to limited accessibility, even a
few short years ago are now being designed with wide access capabilities to meet the

requirements of internal users, shareholders, customers, and clients.

For example, suppliers may wish to give third party customers limited access to their
networks in order to facilitate design, ordering and accounting functions. Such third
parties must not, however, have access to confidential corporate data, although in the case
of co-operative design work, for example, there may be specific data files that the
customer is authorized to access that would not normally be available to external

organizations. This requires the ability to exercise highly sophisticated access control.

To meet security concerns, many organizations have opted for firewalls, virtual private
networks (VPNs), and virus protection. These are commonly referred to as first
generation security solutions. General access to host systems is provided based on the

premise that once authenticated, users can be given full freedom to perform their duties.

Not only do first generation products protect only the perimeter, but they are islands of
security, each performing a single task very well. They operate under their own control
and their own rules; they do not play well with others, such as in the case of the third

party customer example given above. These products have been defined and refined to

-1-

WO 00/56028 PCT/CA00/00277

10

15

20

25

control external access to information and ensure that only legitimate users gain access to
networks and their resources. Once a user is past these defenses, little, if any, security

exists to protect valuable corporate information assets.

Windows NT and UNIX systems, for example, offer access controls, but these are often
implemented incorrectly, or disabled altogether, due to previous bad experiences on the
part of users or systems administrators. Moreover, they are sufficiently different to offer

little help in integrating security.

First generation companies cannot obtain the trust required from their competitors to
create integrated solutions. The fear of competitive advantage ensures that players will
not engage in an integration effort. While some companies have emerged to provide a
limited form of integration for audit, they do not address the other concerns that security

officers have, nor is it clear that they will provide solutions in the foreseeable future.

Reliance on first generation products that protect the periphery of the information rather
than the information itself is no longer sufficient. Security requirements are changing,
placing new demands on security officers and system administrators. They must now

fulfil six security demands:

¢ Integration among existing security products.

¢ A high water mark for overall network security.

e Controlled trust between systems even within an Intranet.
e Centralized and uniform controls.

e Compartmentalized and configurable information controls.

e Flexible and customer-oriented security rules.

First generation security products can be viewed as offering a wall of protection around
information stores. Even though this wall may be sufficiently strong to thwart outside
attack, it does not dissuade attack from the most common access point: the inside. These
products are not designed to stop authorized users from accessing information. They are
meant primarily to authenticate that a user is authorized to access the resources on the

network. Once inside, few checks are performed, giving the user free rein.

WO 00/56028 PCT/CA00/00277

15

20

25

30

Because of their distributed nature and the requirement to secure communications
between machines, networked architectures are much more difficult to secure than single
machines. This inherent difficulty is exacerbated by the fact that most networks do not
have security systems and policies which were designed for the entire network. In most
cases, security has been grown by combining preexisting security systems as individual

machines are connected.

With advances in network computing, increased requirements to share information and
processing power among physically separate locales, and worries about information
sensitivity, existing security can no longer suffice. When two or more computer systems
are linked, their security policies often clash and overall security actually diminishes. If
policies have evolved over time, rather than being designed for the network, solving these

problems becomes more difficult.

To deal with combined legacy architectures, encryption is used to at least guarantee that
information gets safely to its destination. Encryption, however, is a coarse technique for
protecting information from disclosure. With no standardized method of creating security
policies, encryption has become the de facto method of protecting information network-
wide, even though its use surrenders the fine-grained control that was available prior to

the networking of the computers.

The need for a security infrastructure has been fueled by the desire to provide new
solutions in the face of increasing incidents of unauthorized access to and manipulation of
computer systems, data, and communications. Malicious misuse of computer systems can

be classified into three groups. based on the origins of the threat:

e Outsider Threat — This is an external individual or group attempting to breach
the security of the system. Outsiders breach communications access controls but
operate under the constraints of the communications protocols. This is the
standard cracker attack. Outsider attacks are typically defended against by proper
system administration and correctly designed and implemented access-control

protocols and mechanisms, such as virtual private networks (VPNs) and firewalls.

e Malicious Software — This is a piece of malicious code introduced into the

system. The attack takes place within the communications perimeter, but remains

23

WO 00/56028 PCT/CA00/00277

10

15

20

25

bounded by the general access available to the operating system and the executing
user. Malicious software may be introduced with or without a user’s consent.

The most common forms of this attack are the virus and Trojan horse.

e Insider Threat — Here, the perpetrator is an individual with authorized access to
the system. An insider may have wide-reaching control of the system or its
components. The perpetrator may opt to replace hardware or software, and may
observe any communications channel. This attack occurs within the boundaries of
the VPN or firewalls as the perpetrator is an authenticated user. Insider threats

commonly come from disgruntled or compromised employees.

A solid defense against insider threats can deter perpetrators by ensuriné that they will get
only a poor return on their investment. Such a defense can limit the damage done,
minimize the information stolen or modified, and ensure that the perpetrator can be
caught. In many cases, such a defense can stop most attacks, alerting authorities and
ensuring that the threat is limited to system components which the insider generally has

access to.

There is a need for a second generation security product that provides security across the
network, security which is highly trustworthy, which is configurable to the needs of
clients, which can be fully integrated with existing technology, and which is centralized

for audit and administrative purposes.
Summary of the Invention

According to the present invention there is provided a secure network comprising a
secure network comprising data storage means for storing protected data; a plurality of
clients connected to said network; a security server containing a database storing access
rights to said data separately from said data; and a security agent at said data storage
means for controlling access thereto, said security agent communicating with said
security server over said network in response to an access request from a client to

determine the access rights of said client to said protected data.

The data storage means is typically located on a network server, but the invention is

equally applicable to a peer-to-peer system, in which case the data storage means can be

WO 00/56028 PCT/CA00/00277

10

15

20

25

30

distributed at the clients, or both. What is important is the fact that the security data is

decoupled from the protected data and stored independently.

The security server is separate from the network server and it alone is responsible for
controlling access to information on the network. This arrangement provides a security
architecture that can offer a full range of integrated audit, authentication, access controls,
and security policies. The invention offers a fully integrated solution that works with
existing first generation solutions. The invention does not necessarily replace existing

security solutions; it can complement and enhance them.

Due to its distributed nature, the invention can offer uniform and consistent enterprise-
wide security across the corporate network infrastructure. As this solution is completely
architecture-neutral, all corporate LANs, regardless of hosts, can be secured: Windows

95/98, Windows NT, Solaris, BSD, Linux, Macintosh, or any other.

The invention provides a set of layered security services addressing communications and
data security problems in the emerging Internet and Intranet application space. The
invention encourages interoperable, horizontal security solutions and offer the essential

components of security capability to the industry at large.

The invention is applicable to a number of security applications including:

¢ Electronic commerce for business-to-business and home-to-business applications.

e Copyright-controlled content distribution of software, reference and entertainment
materials.

e Metering of content and service.

o Secure storage of state and value.

o Securing business and personal activity on networks.

e Protecting information based upon client-specific business rules.

e Intelligent, security-aware information flow filtering.

These security requirements are addressed in several ways:

¢ Providing programmable, customer-centred security policies.

o Supporting application-specific policies by providing an extensibility mechanism
that manages add-in modules for security policies and authentication systems.

WO 00/56028 PCT/CA00/00277

15

20

.25

30

e Supporting distinct user markets and product needs by providing an extensible
security framework.

e Using a fully operational and flexible security interface that can accommodate a
broad range of formats and protocols for mediation of information flow within an
infrastructure.

e Supporting, utilizing, augmenting, and enhancing existing security products such
as firewalls, VPNs, and certificate authorities.

The invention emplioys the generic policy engine (GPE) described in our copending
application no. 60/124,487 filed on March 15, 1999, which allows programmers to create
and generate a valid security policy from a high-level, verifiable semantic description of a
security model. The invention utilizes an entity-based approach, defining entities for all
security relevant components within its boundary. It provides oné-for—one mapping
between the entities to be protected in the calling application and the security information

maintained by the system.

A functional language which is security aware and fully extensible defines the capabilities
of the invention. The language allows the operation and development of security policies
by means of the base language itself and by the security of the relevant library of
functions. In this way it is possible to define any security policy that would be relevant to

controlling information access or flow between a requesting entity and a piece of data.

Security relevant application programming interfaces (APIs) are provided so applications
can manipulate security attributes, determine the proper information flow, call the

security policy, examine audit logs, and perform regular maintenance on entities.

In another aspect the invention provides a method of controlling security in a network
having a protected data storage means, comprising the steps of storing information access
information in a security server; intercepting requests for information from said protected
data storage means and passing them to said security seﬁer; and mediating said requests
in said security server in accordance with security policies stored therein, said security
server acting as a reference monitor, controlling the flow of information within the

system.

Brief Description of the Drawings

WO 00/56028 PCT/CA00/00277

15

20

25

The invention will now be described in more detail, by way of example, only with reference

to the accompanying drawings, in which:-

Figure 1 is a diagram of a secure network in a business to business environment in

accordance with the principles of the invention;

Figure 2 shows a secure LAN in more detail;

Figure 3 is a diagram of a secured LAN showing the administration functions;

Figure 4 is a high level schematic of the overall system architecture;

Figure 5 shows the high level architecture of the Generic Policy Engine;

Figure 6 shows the GPE SQL bridge software architecture; and

Figure 7 shows the discovery agent and related software components.
Description of the Preferred Embodiments

In Figure 1, the secure network comprises a pair of local area networks (LANs) 12, 22,
typically associated with different businesses connected over a backbone 24. Each local
area network 12, 22 has a plurality of clients 14, which can be running different operating

systems, such as Windows NT, Unix, Windows 9x, etc and a local server 16.

Each local area network 12, 22 has a security server or generic policy engine 20, which
includes a database containing access information pertaining to the clients or users on the
network. The access controls can relate to the individual clients, or to specific users
identified by password. The security server 20 is responsible for all access controls on its

network.

Each LAN 12, 22 has a server 16, which typically would be UNIX or Windows NT

based, for storing programs and data available to authorized users on the network.

In addition, each server 16 has an agent 18 at its access node to the network, which
intercepts traffic to and from the network. Preferably, an agent 18 is also provided at each
client, though that is strictly not necessary for operation of the system. When a client 14
makes a request for data, the request is intercepted by an agent 18, which then
communicates with the GPE 20 to determine whether the request is authorized for that

particular client/user based on information stored in the entity database 30. The agent 18

WO 00/56028 PCT/CA00/00277

10

15

20

25

30

only provides access to the data when it receives an authorization message from the GPE
20. The agents communicate with the GPE using a messaging protocol, known as Plan

Nein.

In addition to controlling access requests, the agents 18 at the clients can also perform
identification and authentication functions (I & A) on the clients to verify the identity of

users.

As shown in Figures 2 and 3, the system can work with a certificate authority, such as
Entrust, which verifies the identity of users. The GPE 20 includes a monitor 26 and is
connected to an entity database 30 via an SQL bridge 28, described in more detail below.
The entity database 30 is populated by a discovery agent 32, which will be described in

more detail below.

The GPE Server 20, which is a Java component of the system, provides security
mediation between, and management of, entities within its domain of control. The entity
in entity database 30 is the basic secured item. Each entity has an associated security
policy written. Entity-related information is stored in a database for which a Java

Database Connectivity (JDBC) driver has been written.

The GPE Server 20 manages sessions — connections via TCP/IP — to other devices, and
clients 14 — users logged onto devices that have active sessions. It should also be noted
that sessions have a single protocol associated with them, the Plan Nein protocol for

sessions between agents 18 and the GPE server 20.

The core of the security system, shown in Figure 4, is built around the Generic Policy
Engine (GPE) 20. The GPE 20 acts as a reference monitor, controlling the flow of
information within the system. It enforces a security policy, permitting or denying
transactions based on information about the security status of the requesting party, the
object of the request, and the requested action. The GPE 20 performs the same generic

mediation function in the same manner for all requests.

The core is made up of a set of security facilities and their associated application

programming interfaces (APIs). These facilities provide six main functions:

e Audit

o Privilege

WO 00/56028 PCT/CA00/00277

10

15

20

25

e Access Control
¢ Administration
e Identification and Authentication

o Security

These six facilities, along with the GPE itself, communicate through their APIs

(Application Programming Interfaces) to a set of system agents.

The agents 18 provide a number of functions:

e Communicate between the core and network systems
e Collect and record information about the systems

e Logging security-related transactions to the GPE

The system security is based on an entity model. Everything on the system which is
being secured — users, files, servers, etc. — is defined as an entity contained in database
30. Each entity is given a unique identifier, tagged with information denoting its access

controls and privileges and security policy, and stored in a database.

When the GPE 20 receives a request to mediate a transaction, it examines the privileges
of the requesting entity, compares them to the access controls of the requested object, and

approves or disallows the transaction accordingly.

The core, shown in more detail in Figure 5, is designed in several layers, each of which
may use the exported services of the ones below it. The layered design maximizes

portability, allowing the system to port to many different operating systems.

The bottom layer of the system core is the native operating system of the machine
running the security system, and its services. This is the one layer that will vary

significantly between installations.

To ensure that system is fully portable between systems, the Java Virtual Machine (Java
VM) will run on top of the native operating systems. All the software components
belonging to this system that reside on the security server are in the form of Java byte

code. This allows the software layers above base layers to be platform-independent. The

WO 00/56028 PCT/CA00/00277

10

15

20

25

Java VM in effect acts as the security server operating system, providing full platform

and operating system independence.

Both the operating system and the Java VM are third-party components used by the
system. The first layer of system core technology is the language Interpreter, which

facilitates the implementation and verification of security policies.

The Language Interpreter compiles code written in the Idyllic language into Java byte

code, which is interpreted and executed by the Java VM.

The Security System is comprised of a number of components, shown in Figure 5. At the
topmost level resides the GPE Shell. This shell provides a command line interface to

allow operator control of the various features and attributes of the Generic Policy Engine.
The GPE itself can communicate with various agents residing on tﬁe network via the Plan

Nein protocol or the Management protocol, both of which sit atop the GPE Core.

The GPE Core is written primarily in Java with the security policy language, Idyllic,
abstracted away from Java into a functional language of its own. The core GPE
functionality and that offered by the security policies implemented within Idyllic can
access the entity databases via the JDBC. This is done via two bridges: a GPE JDBC
Bridge for the GPE proper and an Idyllic-based JDBC Bridge for the policy language.

The GPE can be viewed as a set of technologies that are responsible for the mediation of
all requests for information access from the calling agents. This mediation is

accommodated by the two custom, security-aware protocols: Plan Nein and Management.

The top layer of the system core consists of six security facilities. Each provides support

for a particular set of security related operations.

Audit

The Audit facility allows the logging of all mediated transactions. The extent and detail
of logging is controlled by the Administrator. Included in the audit facility are a
minimum set of auditable events that cannot be turned off. These are hard coded into the
audit facility, ensuring that the audit system cannot be accidentally or intentionally

circumvented.

- 10 -

WO 00/56028 PCT/CA00/00277

10

15

20

25

Privilege

The Privileges facility allows manipulation of the privilege set associated with entities.

Access Control

The Access Control facility provides replies to queries regarding the access rights of

authenticated users to objects on the network.

Administration
The Administration facility provides basic services to the Administrator. These include
the creation and control of entities, access rights, users and groups, and general

maintenance of the system.

Identification and Authentication

The Identification and Authentication facility is responsible for logging users in and out

and ensuring that they are not attempting to crack or spoof the system.

Security Policy

The Security Policy facility is tasked with defining and presenting the security policy
chosen by the client. The implementation portion of the latter two security modules is
supplied by the client or by third parties. These modules’ APIs must conform to the set

standard.

Agents

The agents 18 are the software components of system that run outside of the security
server 20. They may include support utilities and embedded operating system

components.

Designating all external components as agents and ensuring that they adhere to a
consistent protocol when communicating with the security server 20 ensures that the
possibility of abuse is minimized. It allows a single access methodology across all
software components. The consistent definition of protocol between components also

guarantees the ability to ensure the trustworthiness of not only the written agents, but also

- 11 -

PCT/CA00/00277

WO 00/56028

10

15

20

25

all software written by third parties. Restricting the access methods to the core
technology provides greater control over the traffic and interface, and thus greater trust,

reliability, and security.

Security Policy

The system allows for programmable security policies. The security policy of the
operating security system can reflect the actual operational mandate of the organization.
Therefore, if the mandate is one of primarily a confidentiality concern, the security policy
can be so defined. If the mandate is one with an integrity bent, then the security policy

can be so defined.

The Security Policy agent provides an interface for the system Administer to define the

security policy, including security-related entities.

Persistent Store
The Persistent Store management facility stores information and responds to queries

about the entities in the system.

The primary purpose of the persistent store is to provide secure, long-term storage and
retrieval of security-relevant data objects such as entities and security policies. The
persistence of these objects is independent of the memory-based manipulations performed

by the system. Persistent store modules may only be invoked by the GPE core.

The system’s persistent store is based on an SQL database. The system includes an SQL

Bridge agent which communicates between this database and the GPE.

Operating System Agents

The operating system agents 18 run on each machine within a network secured by the
system. Their function is to intercept all file requests on the operating system, re-route
them to security server, and allow or disallow them based on the result returned from the
security server. File requests may originate from users logged directly to the machine
running the OS, or they may come remotely from network connections. The agents are
inserted in the OS such that no file request can circumvent the agent and result in a breach

of security.

12 -

WO 00/56028 PCT/CA00/00277

10

15

20

25

A different Operating System agent will be required for each type of operating system on
the network.

Discovery Agent

The discovery agent is an agent that explores the system, discovering all objects, and

reporting them to the system for cataloguing.

The discovery agent is run once on each machine belonging to a domain which is being
secured by the system. This populates the database of entities 30. After the discovery
agent has run successfully, the system controls all entities on the system and can make

them available for secure transactions.

Due to the platform-dependent nature of the information being recorded, there is a

separate implementation of the discovery agent for each operating system supported.

The discovery agent uses the Plan Nein protocol as a transport mechanism for

communications with the security server 16 as will be described in more detail below

GPE

The GPE Server 20 will now be described in more detail. This consists of several
packages. The high-level software architecture is shown in Figure 6. As can be seen in
this figure, the GPE Server 20 consists of a GPE Shell , the GPE, the Plan Nein and GPE
Management protocol layers, Idyllic and the Idyllic JDBC Bridge, and the GPE JDBC
Bridge. Idyllic is the name for the customized language used in the implementation of this

invention.

The GPE Shell has the responsibility of bringing up the GPE Server. It reads in the GPE
initialization file (gpeserver.ini, by default), parsing its contents and initiating server

threads for Plan Nein and GPE Management protocol connections.

The protocol server threads spawned by the shell have the responsibility for determination
of acceptance or rejections of connections from specific IP addresses. Communication
with the GPE Server occurs via sockets using either the Plan Nein protocol, through Port

333, or the GPE Managemenf protocol through Port 334,

- 13-

WO 00/56028 PCT/CA00/00277

20

25

30

The Plan Nein protocol layer consists of two sub-layers. The lower layer is the protocol
transport layer. This layer ensures correct framing of Plan Nein messages and delivers

Plan Nein message objects to the upper Plan Nein Protocol Handler layer.

The GPE Management layer consists of two sub-layers. The lower layer is the protocol
transport layer. This layer ensures correct framing of Management protocol messages

and delivers these messages to the upper GPE Management Protocol Handler layer.

The GPE layer provides session and database management functionality along with
application security. The GPE layer also manages the Idyllic environment. Separate
Idyllic interpreters and environments are maintained for each client. This keeps binding
namespaces for each client separate, making it impossible for one client to damage
another’s namespace through programmer error or malicious tampering. However, in
order to have access to common Idyllic functionality, the GPE maintains a parent Idyllic
interpreter for clients of each protocol. Client environments inherit bindings from their

respective parents but, as before, may only extend their own environments at run time.

The GPE manages the Idyllic JDBC Bridge, synchronized with the GPE JDBC Bridge.
When a database connection is established, the Idyllic JDBC Bridge bindings are added
into the parent Idyllic interpreter’s environment in order that clients may then begin to
access the database. When the GPE closes the entity database, these same bindings are

removed from the parent Idyllic’s environment.

During the time that the GPE Server is in its started state, all access to the entity database
is mediated by the GPE; the Plan Nein Protocol Handler passes all service requests to the
GPE. A general principle in the architecture is that protocol handlers only see the GPE,

nothing lower.
GPE SQL Bridge

Turning now to the SQL bridge 28, this is written is Java and has the responsibility for
providing a single interface to the GPE 20 regardless of the underlying implementation of
the physical database. The interface makes extensive use of the Java Database
Connectivity (JDBC) facilities provided by Java Version 1.1. The JDBC design provides
for the loading of drivers, written by database vendors, that hide the implementation

details of the database from the application. Consequently, no changes to the interface

-14 -

WO 00/56028 PCT/CA00/00277

15

20

25

are required to access Microsoft SQL 7.0, IBM’s DB2, Oracle’s SQL, or other JDBC-

compliant databases.

The interface relies upon the SQL-92 specification. This version of the standard was

selected because all major vendors of SQL database products implement it.

The physical database is accessed by software of the JDBC layer, a vendor-specific driver

loaded upon application initialization.

The Idyllic Interpreter accesses the database through the Idyllic JDBC Bridge layer. This
layer has a number of important properties. Firstly, it is pluggable, i.e., it is only present
when the GPE is ready to process client requests. Before the GPE is in placed in the
started state, it is not possible for Idyllic to access the underlying database. Similarly, if
the GPE moves from the started state to, say, the open state, this layer is removed.
Secondly, the Idyllic JDBC Bridge layer has no knowledge of the underlying connection
to the physical database; only the GPE JDBC Bridge layer has access to the Connection
object. The Idyllic layer may only issue very specific read-only requests against the
entity database. It is not possible to issue a general SQL query against the entity
database.

These facilities have been provided to add security and robustness to the architecture.
Security policies, potentially written by end users, are not considered trusted software
elements and must be prevented from accidentally or maliciously damaging the entity

database.

In the following two sections any words in italics represent method names.

The GPE JDBC Bridge

The GPE JDBC Bridge provides an abstraction layer between the GPE 20 and the
physical database 30. The bridge provides the ability to manipulate the relational
database records and tables in a way that is meaningful for the GPE. This layer provides

the following database functions:

e Management
¢ Schema creation and destruction

e Query and update

- 15 -

WO 00/56028 PCT/CA00/00277

10

15

20

25

e Security

e Lambda loader

The management interface provides the ability to open and close a database.

They provide the ability to create and destroy a database respectively. The schema
creation and destruction interfaces are defined in the GPEdatabaseCreatorInterface and

GPEdatabaseDestroyerInterface interfaces respectively.

The query interface provides the ability to execute SQL queries against the underlying
database and to manipulate the ResultSet' objects returned from these queries. It also

provides application-specific query functionality to:

¢ Find specific entities

¢ Find all children of an entity

¢ Find the parent of an entity

¢ Find all owners of an entity, historical and current

e Find all access to, and modifications of, a given entity

¢ Find attributes associated with an entity, including security policy
e Update entity attributes and inter-entity relationships

e Load security policy lambda expressions for Idyllic interpreters

The security interface provides the ability to grant or deny access to specific sets of tables
and table columns within a GPE database. This interface is used in conjunction with the
creation of a database (primarily) in order to ensure that the GPE has read-write access to

its own database.

The lambda loader interface provides a facility analogous to a Java ClassLoader.
Essentially, it allows for a named lambda expression to be loaded into an Idyllic
interpreter on demand. This interface may be implemented such that lambda expressions
may be loaded from the GPE database. However, in future releases, on demand loading

from parent GPEs may be supported.

' URL: http://java.sun.com/products/jdk/1.2/docs/api/java/sql/ResultSet.html

-16-

WO 00/56028 PCT/CA00/00277

10

15

20

25

30

The ldyllic JDBC Bridge

The Idyllic JDBC Bridge is both pluggable and opaque with respect to the underlying
JDBC Connection object. The principal responsibility of this layer is to facilitate access
to persistent entity store with minimal user programming. This software layer
implements a read-only interface for the GPE database and relies upon the functionality
provided by the GPE JDBC bridge described in the previous section. The functions

provided by the interface are:

¢ Find specific entities

e Find all children of an entity

o Find the parent of an entity

e Find all owners of an entity, historical and current

¢ Find attributes of entity and inter-entity relationships

e Find all access to, and modifications of, a given entity

The add and remove behaviour provides the ability for the Idyllic interpreter to access a
database or have its access terminated. This is achieved by adding or removing bindings
from the Idyllic interpreter’s environment. ResultSet objects are not returned by methods
defined in this class. Instead, specific columns from selected table rows are retrieved and
List objects created from the results. These List objects are then manipulated in a familiar

way by the Idyllic interpreter. The Idyllic interpreter never sees low level SQL objects.

The advantage of this design is that the underlying database may change completely
without affecting the Idyllic Bridge software.

GPE Database Schema

The GPE database design consists of several linked tables, with the master table being the
entity table. Each entity stored in the database has an associated 32 bit integer key, called
the Entity Identifier, or eid. The eid is unique across all objects managed by the GPE.
Therefore, our assumption is that no GPE will ever manage more than 2°? entities. A

simplified view of the GPE database schema is shown in Figure 6.

In this section all words in bold represent database table names. Words in italic are field

names.

-17 -

WO 00/56028 PCT/CA00/00277

10

20

25

The Entity table

The master table, entity, has 10 columns. The primary key is eid, an integer.

The Name field is a 256 character string that allows a user friendly description to be

associated with the entity. The number 256 has been chosen as this represents the most

common maximum length of filenames in an operating system.

The EntityDataTableName is a 64 character string whose value is the name of a table
where entity-specific data is stored. For example, if the entity represents a user,
EntityDataTableName might have the value, User. The User table might then have the
columns: name, last login time, authentication method and other data. The
EntityDataTableName can be thought of as providing the ability to subclass an entity by
adding columns with entity-specific data. In the example shown iﬁ,
EntityDataTableName would have the value EntityData and the fields in the extended

entity would be Version, Division, Domain, Machine, LocalObject and Identifier.

The IsActive field is a bit field — a boolean — that stores whether the entity is currently
able to participate in security policy decision making. If this field has the value zero, its
associated security policy is considered inaccessible and security mediation requests

return the result of the Global Default Secﬁrity Policy for the entity concerned.

The Expiry field contains a date and time at which the entity requires re-confirmation of
its status within the database. If the entity is not re-confirmed at this time, it is deleted
from the database. Expiry may be thought of as implementing a lease mechanism not

unlike that found in the Jini environment’.

The SecurityPolicyName field is a 64 character string that points at the name column of
the SecurityPolicy table. SecurityPolicyName is a foreign key, although we do not define
it to be so as we do not automatically delete the entity when the referenced named

security policy is deleted (as would normally occur).

The Owner field is a 32-bit integer which stores the eid of another entity which is the

owner of the entity identified in Name.

2 URL: http://www.sun.com/jini/

-18 -

WO 00/56028

10

15

20

25

PCT/CA00/00277

The LastModified field is a date and time field. The value stored here represents the point

in time at which the entity was last changed in some way.

The LastAccess field is a date and time field. The value stored here represents the point

in time at which the entity was last accessed.

The isPrivate field is a bit field.

The SecurityPolicy table

The SecurityPolicy table has two columns, name and lambda.

The name field is a 64-character string that represents the unique name of a security
policy. It is the primary key for the table. This field is referenced by the
SecurityPolicyName field of the entity table.

The lambda field is an 8000-byte string that stores the S-expression representing the
security policy. It is this table that is accessed by the LambdaLoader class. While 8000
bytes may not seem a large string when one considers the complexity of potential security
policies, it should be noted that one policy may reference another, thereby making it
possible to build elaborate policies from small building blocks, much as is done with

standard software applications or components.

The RelatedEntity table
The title of this section is a misnomer as there is no actual table called RelatedEntity.
There are instead 13 tables, with the names as shown in Figure 6. All these tables have

the same columns: eid, eid2, and allow.

The eid and eid2 fields contain 32-bit integer values that represent entity identifiers. Both

columns are foreign keys and are related to the primary key of the entity table.

The allow field is a bit field that represents the not operator for the relationship. More
clearly stated, if the table name were read, the tuple <eid, eid2, allow> were <98993,
100456, 0> would be taken to mean, “entity 98993 may read entity 100456.” In other

words, the allow column represents a relationship which does apply.

Table 1 explains the meaning of the various fields.

-19-

WO 00/56028 PCT/CA00/00277

10

15

Table 1

Name Meaning

Child eid is a child of eid2

Parent eid is a parent of eid2

Group eid is a member of group eid2

Level eid is a member of level eid2

Categories eid is a member of category eid2

Read eid has read access to eid2

Write eid has write access to eid2

Execute eid has execute access to eid2

Copy eid can copy eid2

ReferencedBy eid is referenced by eid2. This is not used
in release 1.0 and is used in conjunction
with the ExternalEntity table described
in the next section.

The ExternalEntity table
This table is for use in GPE Servers that are linked in hierarchical relationships. When
such a situation arises, it is necessary to have references to externally-stored entities. This

is the responsibility of the ExternalEntity table.

This table has three columns. The localEID field is an integer entity identifier that
represents the local view of an externally-stored entity. The value stored in this field may
appear in the eid or eid? fields of RelatedEntity tables. A value used in localEID may

not be used in the eid field of the entity table and vice versa.

The URL field is a 256 character string that stores the access protocol and location of the
externally-stored entity. The access protocol is included here in order to allow for the
definition of alternate access mechanisms that may need to traverse firewalls (for
example).

The remoteEID column is an integer entity identifier that represents the remote view of
the externally-stored entity. By having local and remote views linked through this table

we do not need globally unique entity identifiers.

Discovery Agent Specification

-20 -

WO 00/56028 PCT/CA00/00277

10

20

25

The discovery agent 32 (Figure 2) is responsible for populating the entity database 30 as
noted above. The discovery agent, shown in more detail in Figure 7, is an agent that runs
in privileged or supervisor mode on a machine. The discovery agent explores the
machine, discovers all objects, and reports them to the Generic Policy Engine (GPE) 20

for cataloguing.

The discovery agent 32 is run once on each machine belonging to a domain under the
aegis of the security server 16. This initial step must be performed by the security
administrator user before the system can accede to requests for data. This step populates
the database 30 of controlled objects, known as entities. After the discovery agent 32 has
run successfully, the security system controls all entities on the machine and can therefore

make them available for secure transactions.

Due to the platform-dependent nature of the information being recorded, there will be a

separate implementation of the discovery agent for each operating system supported.

The discovery agent uses the Plan Nein protocol as a transport mechanism for issuing

transaction requests to the security server 16.

Basic Operations

Objects catalogued by the discovery agent include user logins, user groups, logical disk

drives and their files, and other logical and physical devices.

When the discovery agent encounters an object to be catalogued, it will issue a request to
the GPE for the creation of a new entity for the object.” If the transaction is successful, the
GPE will respond with a newly-generated unique entity identifier, or eid. This can later

be used as a reference to the entity.

Once the create transaction has been acknowledged, the discovery agent issues update
transactions that include the eid, the name of the entity attribute being updated, and the

new value of that attribute.

If the object in question is nested, such as a file directory, the discovery agent opens it

and processes all its elements recursively.

At the GPE end, each create or update transaction is validated. If a transaction is

accepted, the GPE invokes its Persistent Store API to perform the associated database

221 -

WO 00/56028 PCT/CA00/00277

10

15

20

25

transaction on the specified entity. If the transaction is not accepted then a rejection

notification is returned to the discovery agent.

Discovery Agent Operation
The discovery agent progresses through seven phases of operation:
1. Phase 0 — Launch
2. Phase 1 — Initialization
3. Phase 2 - Cataloguing users
4. Phase 3 — Cataloguing user groups
5. Phase 4 — Cataloguing files
6. Phase 5 — Cataloguing devices
7. Phase 6 — Shutdown

On some platforms it is possible to omit Phase 3. The phases following Phase 1 are

highly platform-dependent.

Phase 0: Launch

When a new machine is to be added to the control domain, the security administrator
issues the appropriate command from the Admin Console shown in Fig. 5. This causes a
message to be sent directly to the Administration API, directing it to start the discovery

agent.

The Administration facility then repackages the start command, including the eid machine
prefix for the machine to be catalogued, and calls the GPE API. The GPE in turn calls
out to the appropriate machine via the Dispatcher, causing the discovery agent to begin

execution.

Phase 1: Initialization

The discovery agent authenticates itself to the system and awaits permission to proceed.
The discovery agent then initializes its internal cache. The machine itself is catalogued

by sending a create transaction to the GPE with the name field set to the machine’s name.

.22

WO 00/56028

10

15

20

25

Phase 2:

PCT/CA00/00277

Cataloguing Users

In this phase the list of user logins is opened and traversed. On some operating systems,

such as UNIX, these are read from a disk file. On other systems they are read from a

system repository (e.g., the Windows Registry) or using a system API call.

For each user encountered three actions occur:

1.

2.

Phase 3:

A create transaction is issued.

Entity fields are filled in using update transactions. These include the entity
name (uid), the list of access rights associated with the user (if applicable), and

the last modified and last accessed dates (from the last login date).

The eid/uid pair are cached for use in Phases 3 and 4. -

Cataloguing User Groups

In this phase, the list of user groups (sometimes called workgroups) is opened and

traversed.

On some systems these do not exist, in which case this phase is skipped. The

group information is obtained either directly from a file (as on UNIX, for example) or via

system API calls. This process is similar to that of Phase 2.

For each group discovered four actions occur:

1.

2.

A create transaction is issued.

Entity fields are populated using update transactions. These include the entity
name (from the human-readable group name, or, if present, the numeric group
id, or gid), the list of access rights associated with the group (if applicable),
and the last modified and last accessed dates (from the last login date, if

applicable).
The eid/gid pair are cached for use in Phase 4.

For each group, each constituent user’s eid is looked up in the local cache. An
update is then issued for the user’s eid to add the group’s eid to its Groups

privilege list.

-23.-

WO 00/56028 PCT/CA00/00277

10

15

20

25

Phase 4: Cataloguing Files

In this phase, the machine’s entire file tree is catalogued. Each permanently mounted
logical disk drive present on the system is catalogued. Starting at the root, each file tree
is walked and every directory and file encountered is catalogued. No assumption is made
as to whether the directory entries are ordered lexicographically or by file type (e.g.,

subdirectories first, followed by regular files.)

Scratch files are catalogued, as these are frequently used for hiding Trojan horses or
covert channels. The security administrator can remove them from the catalogue at a
later date if this is deemed appropriate. If the operating system includes devices in file
trees, these are skipped (they are handled in Phase 5). Soft links to files residing on other

machines are entirely skipped.
For each directory entry, two or three actions are performed:
1. A create transaction is issued.

2. Entity fields are populated using update transactions. These include the
Entity name (from the absolute path of the file), the owner (from the eid
corresponding to the uid of the file owner), the list of access rights (from the
assigned file access attributes), and the last modified and last accessed dates
(from same). Some file systems do not store a last accessed date; in such

cases the last modified date is used.

3. If the directory entry is a file directory, its subdirectories are catalogued

recursively.

Phase 5: Cataloguing Devices

Devices catalogued in this phase include logical devices, physical devices, I/O ports, and
network connections. Some operating systems group these in special subdirectories or
make them appear as files having special file attributes. Other operating systems
enumerate them in a system repository, such as the Windows Registry. Human-readable
names are utilized for all devices and ownership is granted to the host machine. Attributes
such as last accessed and last modified are set to some logical value, typically the current

time, but all these can be adjusted by the administrator later. The goal is to ensure

- 24 -

WO 00/56028 PCT/CA00/00277

10

15

20

25

unauthorized use of these devices is stopped ensuring sensitive information does not leave

the machine.

Phase 6: Shutdown

The final phase of the discovery agent operation consists of cleaning up. Dynamically
allocated data objects are destroyed and memory and other resources are released.

Finally, the agent ends its session and terminates.

In the event that a fatal error occurred in one of the previous phases, Phase 6 will roll
back all issued transactions. This means that all entities created for objects on the local

machine are removed.

The GPE performs transaction checkpointing. Consequently, the discovery agent can
rescind a block of transactions easily, should an trrecoverable error occur. The
performance benefit of this scheme is that it permits the rollback of many sequential

transactions without incurring a large volume of network traffic.

At the beginning of a transaction block, the discovery agent 32 synchronizes with the
GPE 20 by issuing a begin transaction. The discovery agent then performs all the
transactions required to populate the system’s Persistent Store with entities representing
objects discovered on the machine being scanned. If Phase 6 is reached and the scan has
proceeded successfully, then the discovery agent issues a commit transaction to the GPE.
This directs the GPE to commit all transactions in the current block. In the case of fatal

error, a rollback transaction would be issued, canceling all transactions in the block.

Homogenous Security in an Heterogeneous Environment

Compatibility with existing secure and non-secure software lets the system provide
security enhancement across the enterprise or within a well-defined domain, such as a
single department. It offers a single point of reference for all transactions requiring
secure mediation. A request for information, be it from the web server, the FTP server, a
file server, or an individual desktop, can be mediated consistently by the security server.
All systems can offer identical levels of security which have been defined to meet the
customer’s needs, from the C2 level security common in commercial UNIX systems to

the A1 security demanded by the military.

-25-

WO 00/56028 PCT/CA00/00277

15

20

25

30

As a fully distributed solution, each security system can communicate with its neighbors
to ensure that corporate security is maintained. In addition, it does not need to be
deployed company-wide but can be used only within the most sensitive areas, allowing
for a controlled rollout. As more products are brought online in an organization, the
security of the information increases. When the security operates across the enterprise,

information is protected to the maximum extent possible.

Each element of information can be protected according to where and how it was created.
This allows information to carry its own security policy between domains in an
organization. As information is transmitted between authorized parties, the security
policy defining how that information is to be handled is also transmitted, even if the

recipient’s security policy differs substantially from that of the sender.

One example of an agent 18, suitable for a Unix machine, will now be described. The
Unix agent's primary purpose is to mediate access to various Unix system resources by
users and processes. Users and processes are known as acfors. Actors perform actions
with or on resources. All running processes are considered actors because they make use
of the resources on a system and require interaction with the operating system. Users are
represented by the interactive shells they use and the programs that the shell initiates.

The shells interact with the operating system and make the requests for resources. There
are a variety of possible requests that actors can make of the operating system involving
many different types of resources. These resources that are acted upon can be files;
communication channels, such as network communication or interprocess communication
(IPC); shared memory; device access, such as tape drives, modems, sound systems,
CDROM drives, floppy drives, or optical drives; and kernel services. These resources are

known as elements.

OS agent

The Unix agent 18 is responsible for intercepting any kind of request for access to
elements that actors ask of the operating system. In Unix, this task is normally handled
by the kernel. The Unix agent intercepts these calls, gathers some information about the
request, sends a query to the GPE, and waits for a reply. If the reply is to allow the

request, the agent will pass the request to the operating system kernel, which will process

-26 -

WO 00/56028 PCT/CA00/00277

10

15

20

25

30

it as it would have in the first place. If the reply is to deny the request, the agent will not
pass the request on to the operating system, returning a failure code to the requesting

actor.

The Unix agent is intended to monitor a number of elements of the operating system. The
monitoring of elements is most likely to be realized through the monitoring of system
calls. This might not apply to all elements or even to all Unix variants, but should offer

sufficient functionality to accomplish the principle goals of the agent.

The most important of these are file access and network access. The file element and the
network elements will be the focus of most monitoring activity. In most variants of Unix
operating systems, these two elements can be covered by monitoring a small group of

system calls.

Traditional Unix systems use monolithic kernels as their core supervisor program. This
makes it hard to distribute applications such as a Unix agent, which effectively needs to
be part of the kernel. To distribute a kernel-type product for different platforms, the
source code, or at least a library together with some source code, need to be distributed to
customers. The setup time for this becomes an issue and some proprietary source

becomes visible.

Modern Unix vendors now distribute operating systems with runtime loadable module
support. A design goal of the agent is that it be developed as a runtime module for as
many operating systems and architectures as possible, where such facilities exist. This
makes distribution much easier, with only operating system versions being the sole reason

for recompilation. There is almost no risk of giving away any proprietary secrets.

The agent must be made as transparent as possible to the operating system. This means
that users must not, where possible, know or suspect that an agent is monitoring the

system.

The agent must not, where possible, conflict with or hinder in any way the normal
operation of the system on which it resides. There should be no loss of functionality to

the system or the users of the system.

The agent must be able to use a communications channel directly to an outside source.

This communication channel should be a widely used transport/network protocol such as

27 -

WO 00/56028 PCT/CA00/00277

10

20

25

30

TCP/IP. The use of sockets is greatly recommended for as much compatibility as

possible.

In the event that it is not possible to communicate directly to an outside source from the
agent, a suitable intermediate method should be employed. The method must be secure
against unauthorized use, spoofing or abuse for covert communications. The method
used must not leave any tell tale signs of its actions or leave any information that
originated with the agent, the centralized GPE or the communication session between

these two.

The agent will communicate with the GPE using a proprietary application layer protocol.
The protocol stack should be designed and coded in such a way as to be easily replaced
with another protocol stack. This enables the agent to be more easily integrated into other
systems where the need to use another protocol is required. The protocol stack is
integrated into the agent, necessitating a recompilation of the source code in the event a

different stack is required.

The agent should be designed and coded so that extra functionality can easily be added
with a recompilation. This will not be possible in every case, but good design practices
shall take precedence over ease of coding. An example of added functionality is an agent
that presently monitors file access becomes one that monitors file access and sockets.
The basic architecture of the agent should allow for adding or removing such

functionality without completely rewriting the module.

An example of such an agent is designed as a kernel module for a Unix machine, and in

particular is designed for use with FreeBSD 3.1.

The system's call interface has to be monitored and system calls intercepted. In order to
do this, the system call table in the kernel will has to be modified by replacing the
existing calls with special calls for the security system and saving the old calls for the
execution of the original request, should the GPE allow it. To do this, we make use of the
KLD module loading routine. The loading routine is actually a kernel function that is
called from user land via a generic system call. All work done inside the kernel will never
be interrupted since the kernel is never preempted; thus the replacement of the system

calls is an atomic action.

-28 -

WO 00/56028 PCT/CA00/00277

10

15

20

25

30

The system call table is an array of structures. The structure is called sysent and is defined
in /usr/include/sys/sysent.h. The array is initialized in file

/usr/src/sys/kern/init sysent.c.

The system structure is composed of two entries:

struct sysent { /* system call table */
int sy narg; /* number of arguments */
sy call t *sy call; /* implementing function */

}i

It is very important to note that the index of the sysent array corresponds to the index of

the system call name array, syscallnames/].

To clarify, the system call open in the syscallnames array is at index 5. Therefore, the
corresponding kernel function for the open system call can be found in the sysent array at
index 5. Conversely, you can use the system include file
/usr/include/sys/syscall.h to index into the sysent array. The structure found
in the sysent array holds two members: the first is the number of arguments to the system

call, and the second is a pointer to the implementing function.

The KLLD Module Interface makes use of the system linker for loading files into kernel

space and making the relevant table entries for the linked list of modules.
The file resides in /usr/src/i1386/kern and is called kern linker.c.

In accordance with the invention, the security system is the sole mediator for all
information requests. By brokering all requests, trust between systems, networks, and
users can be defined. This provides assurance that information will remain where it
belongs unless an authorized individual attempts access. Blanket trust of similar systems
is not provided, and the general rule of operation for the system is to deny access unless it

is explicitly allowed by the security policy.

As the security system is the sole mediator, all controls are centralized. These controls
are uniform in form and appearance. The centralized administrative facilities allow

security officers and administrators to access restricted areas to fine-tune security and

-29.

WO 00/56028 PCT/CA00/00277

10

15

20

25

examine critical security information, such as audit logs. To maximize functionality, the
administrative utilities are written in Java™ to provide a uniform look-and-feel,

regardless of the platform a site uses for administrative purposes.

For information to be properly protected, it must be compartmentalized. Most security
products today compartmentalize at the file or directory level. The system according to
the present invention has no such restrictions. As it mediates information access based on
an object-oriented approach, it does not matter whether information is compartmentalized
to the directory level, the file level, the page level, the paragraph level, or the byte level.

The compartment size is definable by the customer.

The smaller the information object being protected, the less efficient the mediation. If
every byte must be brokered by the security system, performance will be seriously
hindered. Under normal use the product will operate based on normal-sized pieces of
information; files and pages for most institutions, and files and paragraphs for the
military.

Unlike other security products on the market, the security system provides for true
security policy customization. It can mediate regardless of the security policy a specific
piece of information may require. If information migrates from one domain with an
integrity policy to another with a disclosure or confidentiality policy, the system can
understand the security requirements of the policies and act accordingly. Security
policies are not restricted to those provided by the system supplier; customers can use
powerful administrative functions to customize security policies that accurately reflect

their own operational practices, something no other product can offer.

Security without performance and transparency is worthless. The present invention is fast
and transparent to end-users, as long as they are performing their duties and not
attempting actions which contravene the security policy. If users are performing their
duties, they will not be aware of the actions of the underlying security system, ensuring

that valid access attempts are quickly permitted and invalid ones quickly disallowed.

-30-

WO 00/56028 PCT/CA00/00277

15

20

25

We claim:

1. A secure network comprising:

data storage means for storing protected data;

a plurality of clients connected to said network;

a security server containing a database storing access rights to said data separately
from said data; and

a security agent at said data storage means for controlling access thereto, said
security agent communicating with said security server over said network in response to
an access request from a client to determine the access rights of said client to said

protected data.

2. A secure network as claimed in claim 1, wherein said data storage means is

located on a network server.

3. A secure network as claimed in claim 1, wherein said security agent, in response
to an access request, exchanges control messages with said security server to determine

said access rights.

4. A secure network as claimed in claim 3, further comprising a security agent at
each client for intercepting access requests to said data storage means and obtaining

authorization from said security server in response to said access requests.

5. A secure network as claimed in claim 2, wherein said security server is physically

separate from said network server.

6. A secure network as claimed in claim 1, wherein said security server contains a
database based on an entity model, each item on the network to be secured being defined

as an entity, each entity describing the security attributes of an item to be protected.

7. A secure network as claimed in claim 6, wherein each entity has a unique
identifier, tagged with information denoting its access controls, privileges and security

policy.

8. A secure network as claimed in claim 6, wherein said database is accessed via an

SQL bridge.

23] -

WO 00/56028 PCT/CA00/00277

10

15

20

25

9. A secure server as claimed in claim 1, wherein the security server has a layered

core structure, each of which uses the services of the underlying layer.

10. A secure network as claimed in claim 9, wherein bottom layer of said core is the
native operating system of a physical machine, and said virtual machine is implemented

above said bottom layer.

11. A secure network as claimed in claim 10, wherein a security language is

implemented above said virtual machine to provide APIs for programmers to customize a
security policy.
12. A secure network as claimed in claim 11, wherein said virtual machine is

implemented in JAVA and a language interpreter layer is located between said JAVA-

implemented virtual machine and said security language layer.

13. A secure network as claimed in claim 1, wherein said security server is connected

to an authentication authority to authenticate the identity of users of the system.

14. A secure network as claimed in claim 1, wherein said agent intercepts all file
requests on the operating system of said network server, re-routes them to security server,

and allows or disallows them based on the result returned from the security server.

15. A secure network as claimed in claim 1, wherein a said agent runs on each

machine within the network secured by the security server.

16 A secure network as claimed in claim 15, further comprising a discovery agent
that explores a network device, discovering all objects, and reporting them to the security

server for cataloguing in the database.

17. A method of controlling security in a network having a protected data storage
means, comprising the steps of:

storing information access information in a security server;

intercepting requests from information from said protected data storage means and
passing them to said security server; and

mediating said requests in said security server in accordance with security policies
stored therein, said security server acting as a reference monitor, controlling the flow of

information within the system.

-3

WO 00/56028 PCT/CA00/00277

10

15

20

25

18. A method as claimed in claim 17, wherein said server stores said security policies
in a database based an entity model, each entity storing the security attributes of an item

to be protected.

19. A method as claimed in claim 18, wherein each entity has a unique identifier,

tagged with information denoting its access controls, privileges and security policies.

20. . A method as claimed in claim 19, wherein when the security server receives a
request to mediate a transaction, said security server examines the privileges of the
requesting entity, compares them to the access controls of the requested object, and
approves or disallows the transaction according to the information stored in the entity

database.

21. A method as claimed in claim 17, wherein the security server works with an

authentication authority to authenticate the identity of users.

22. A method as claimed in claim 18, wherein the security server communicates with

said database via an SQL bridge.

23. A method as claimed in claim 17, wherein said requests are intercepted by an

agent which communicates with said security server to mediate said requests.

24. A method as claimed in claim 23, wherein a said agent is located at said security

server at the operating system level to intercept said requests.

25. A method as claimed in claim 23, wherein a said agent is run on each machine

connected to the network to be secured.

26. A method as claimed in claim 18, wherein a discovery agent explores a network

device, discovering all objects, and reports them to the security server for cataloguing.

27. A method as claimed in claim 26, wherein the discovery agent is run once on each
machine belonging to a domain which is being secured by the security server to populate

the entity database.

28. A method as claimed in claim 17, wherein said protected data storage means is

located on a network server.

-33-

PCT/CA00/00277

WO 00/56028

JEYSET
gam 10
—

i

[)

1/7

T '8y

uojjosuuog jaulsiug

SEYSETS
gaM 10 3|4

)

e

SUBSTITUTE SHEET (RULE 26)

PCT/CA00/00277

WO 00/56028

2/7

0¢

aseqejeq Az

8bplig sseqejeqg

\\I// \}\)
J9A138 3dH 8y} Jo} juaby

aseqeieq Aijuz
oy} bupsindog
1uaby Assnoasiq

jousauf ay | o 4

rA it

~—""T]

Adjjod
Aanoas
woysny

A13r00s1q 9y}

Nu

lanlag
gGaM 10 3|4

ulaN ueld

=]
=
- a0
I = | ===
Rpoyiny ooy
uonjedljusyiny uojiEsjIUBYINY — .n,
%849 /(VN
~ 000000D — '3 i
oy — ==
= r
) juaby
NN\ m — /
. 81 a9 ri
m J = | ===
%W jusby i \

81

I
.

j000104d A31anoag

SUBSTITUTE SHEET (RULE 26)

PCT/CA00/00277

WO 00/56028

3/7

{ss900.ig uopefjeisuy)
19AJ8S 34D 8y} 104

aseqeleq Apuy
ay} Bupeindoy

weby Ai1er00s1g

sseqejeq Ayug

Ay
Aalod An

%

0¢

obpyig aseqejeq

QWR

Aunn
Hpny

@

8]0SU0D UjWPY

unn
uonealUaYINY

D)

Aimn

ipny

Aojjod
Ajanoag

19930.g
0} aujydep aoejislu| Jesn |eaydery

1090j04d
juswsabaury

Ann
[04]U0D SSB00Y

sAleASIuIWpY

———f030}014 AlUNI3S

uojyedluayiny

A98y9
Apoyiny
uopEsRUSYINY
uoyBORUSYINY oo

Y0849 Q0

N

It

|OUOD) SSBODY J9sn-pug

Fig. 3

SUBSTITUTE SHEET (RULE 26)

WO 00/56028 PCT/CA00/00277

4/7

Rules
"
APls
Logs Facilities
™ Generic Policy Engine
ldyllic '
<> Virtual Machine
Fig. 4

SUBSTITUTE SHEET (RULE 26)

WO 00/56028 PCT/CA00/00277

5/7
GPE Shell
Plan Nein Management
dyllic.

JDBC

Java VM

0S

Fig. 5

SUBSTITUTE SHEET (RULE 26)

WO 00/56028 PCT/CA00/00277
6/7
Gaild Copy .
. EntityData
hiscs heenctty || RelatedEntity Zoaty
s <cidl, eid2, allow> veioa
Rexd Entity LoaiObjoct
Execute ﬁ Ideatifier
EntityDataTableName
IsActive)
Expity
SeaurityPolicyName
' Comiodift SecurityPolicy
ExternalEntity LastAcoess
<SocalEID> IsPrivate <amc>
url tambxia
remoteEID T
Fig.6

SUBSTITUTE SHEET (RULE 26)

PCT/CA00/00277

WO 00/56028

7/7

eseqejeq Ayug

ebplig eseqejeqg

Hpny

Adjj0d
A}janoas
woysny

L b4

M
A1anoosig o

19A198 34D 9y} 104
aseqejeq A1ju3
ayj bupeindod
juaby Asanossig

10903014 A}1inoes

ujaN ueld

9A438 3dD 8Y; 1o}
aseqejeq Aiju3
8y} Supeindog
juaby Aianroasig

j09030.4d Aj14noes
ujaN ueld

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

n ational Application No

PCT/CA 00/00277

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04L29/66

According to International Patent Classification (IPC) or to both national classification and {PC

B. FIELDS SEARCHED

IPC 7 HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

TEEE COMMUNICATIONS MAGAZINE,
vol. 5, no. 6,
pages 136-140, XP002142299

ISSN: 0163-6804

Retrieved from the Internet:
<URL:www.iel.ihs.com>
‘retrieved on 2000-07-07!
abstract

1ine 25

-right-hand column, line 26
line 61

1ine 37

‘Online!
- June 1997 (1997-06)

Royal Melbourne Institute, Australia

page 136, right-hand column, line 13 -
page 138, left-hand column, line 24
page 138, right-hand column, line 39 -

page 140, righgfhand column, line 14 -

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X ZAHIR TARI: "Using agents for secure 1-7,9,
access to data in the Internet" 17-23,28

-/—=

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X document of particular relevance; the claimed invention
canhnot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
meﬂts, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

11 July 2000

Date of mailing of the international search report

25/07/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Adkhis, F

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

lm itional Application No

PCT/CA 00/00277

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Catagory °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

US 5 764 890 A (MCKELVIE SAMUEL J ET AL)
9 June 1998 (1998-06-09)

abstract

figure 1

column 1, line 7 - line 12

column 3, line 5 - line 46

column 4, line 43 —column 6, line 36

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int tionat Application No

PCT/CA 00/00277

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5764890 A 09-06-1998 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

