
USOO894.944.4B1

(12) United States Patent (10) Patent No.: US 8,949,444 B1
Ma et al. (45) Date of Patent: Feb. 3, 2015

(54) FLOW CONTROL SCHEME FOR PARALLEL (56) References Cited

(75)

(73)

(*)

(21)

(22)

(51)

(52)

(58)

FLOWS

Inventors: Qingming Ma, Santa Clara, CA (US);
Kannan Varadhan, San Jose, CA (US);
Rohini Kasturi, Livermore, CA (US)

Assignee: Juniper Networks, Inc., Sunnyvale, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1018 days.

Appl. No.: 12/502,808

Filed: Jul. 14, 2009

Int. C.
G06F 15/16

U.S. C.
USPC .. 709/228

Field of Classification Search
USPC .. 709/228, 241
See application file for complete search history.

(2006.01)

1OO N

PROXY
DEVICE
120-1

DEVICE
1O-2

REGUEST

DEVICE
110-1

META-PACKET

U.S. PATENT DOCUMENTS

7,796,942 B2*
2006/0129697 A1*
2008/02O1486 A1*
2009.0109849 A1*
2010/0325420 A1*

9/2010 Duffy et al. 455/7
6/2006 Vange et al. ... TO9.245
8, 2008 HSu et al. TO9,238
4/2009 Wood et al. 370,235
12/2010 Kanekar 713,151

* cited by examiner
Primary Examiner — Ryan Jakovac
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP
(57) ABSTRACT
A method includes a proxy device receiving from a source
device a request to establish a flow to a destination device:
generating, based on the request, a meta-packet that indicates
that the flow to the destination device is to be proxied; deter
mining whether a pre-established flow connecting the proxy
device to another proxy device that leads toward the destina
tion device exists; sending the meta-packet on the pre-estab
lished flow, when it is determined that the pre-established
flow exists; receiving by the other proxy device, the meta
packet, and establishing the flow to the destination device
based on the meta-packet, where the proxy devices assign one
or more of a source address, a source port, a destination
address, or a destination port, associated with the Source
device and the destination device, to the pre-established flow.

21 Claims, 7 Drawing Sheets

NETWORK

PROXY
DEVICE

RESOURCE
130

US 8,949,444 B1 Sheet 2 of 7 Feb. 3, 2015 U.S. Patent

ÅèJOWE W

0

92

OZZ

US 8,949,444 B1 U.S. Patent

99 || LSE TOER-,

~ oz.

US 8,949,444 B1 Sheet 4 of 7 Feb. 3, 2015 U.S. Patent

NOLLSE5DNOO

U.S. Patent Feb. 3, 2015 Sheet 5 of 7 US 8,949,444 B1

400 N
RECEIVE AREQUEST TO ESTABLISHA TCP FLOW TO A

DESTINATION DEVICE
405

GENERATE AMETA-PACKET BASED ON THE REGUEST
410

A PRE-ESTABLISHED TOP
FLOWEXISTS TOWARD A DESTINATION INCLUDED IN

THE META-PACKET2
415 NO YES

SEND THE META-PACKET ON ESTABLISHA NEW TCP FLOW
THE PRE-ESTABLISHED TOP TOWARD THE DESTINATION

FLOW 435
420

RECEIVE THE META-PACKET SEND THE META-PACKET ON
ON THE PRE-ESTABLISHED THE NEW TCP FLOW

TCP FLOW 440
425

RECEIVE THE META-PACKET
ON THE NEW TCP FLOW

445

ESTABLISHA TCP FLOW TO
THE DESTINATION DEVICE

430

ESTABLISHA TCP FLOW TO
THE DESTINATION DEVICE

450

FIG. 4

U.S. Patent Feb. 3, 2015 Sheet 6 of 7 US 8,949,444 B1

500

MONITOR RTTS ASSOCATED WITHACKS
505

SELECTA BANDWIDTH BASED ON THE MONITORED RTTS
510

DETERMINE SENDINGRATES FOREACH ACTIVE TCP FLOW
BASED ON THE SELECTED BANDWIDTH

515

APPLY BANDWIDTH SHARING POLICES
520

FIG. 5

U.S. Patent Feb. 3, 2015 Sheet 7 of 7 US 8,949,444 B1

600
N

APPLY ASINGLE RETRANSMISSION TIMER FOR ALL TCP FLOWS
605

DETECT TCP SEGMENT LOSS
610

MODIFY THE AVAILABLE BANDWIDTH
615

MODIFY SENDINGRATES FOR ALL TCP FLOWS BASED ON
MODIFIED BANDWDTH

620

F.G. 6

US 8,949,444 B1
1.

FLOW CONTROL SCHEME FOR PARALLEL
FLOWS

BACKGROUND

During the operation of various types of network environ
ments, such as, for example, wide area networks (WANs).
thousands of traffic flows may be setup and torn down. Net
work devices may utilize Substantial processing resources to
provide setup, window control, and buffer management func
tionalities. Additionally, bandwidth allocation and conges
tion avoidance becomes problematic.

Various techniques have been implemented to address
these issues. For example, a single Transport Control Protocol
(TCP) connection (known as “tunnel mode’) may be utilized.
The advantages of “tunnel mode' include low processing
overhead and high bandwidth efficiency. However, a disad
vantage of “tunnel mode” is the loss of application visibility,
since all application packets are transmitted through the same
port number. In a different approach, different TCP connec
tions between systems may be utilized for different end-to
end TCP flows. An advantage to this approach is that appli
cation visibility is maintained. However, the disadvantages to
this approach are high overhead and less bandwidth, process
ing and memory efficiency.

SUMMARY

According to one implementation, a method may include
receiving, by a proxy device, from a source device, a request
to establish a flow to a destination device; generating, by the
proxy device, based on the request, a meta data unit that
indicates that the flow to the destination device is to be prox
ied; determining, by the proxy device, whether a pre-estab
lished flow connecting the proxy device to another proxy
device exists; sending, by the proxy device, the metadata unit
on the pre-established flow that connects the proxy device to
the other proxy device, when it is determined that the pre
established flow exist; receiving, by the other proxy device,
the meta data unit; and establishing, by the other proxy
device, the flow to the destination device based on the meta
data unit.

According to another implementation, a network device
may establish and maintain pre-established flows to other
network devices, the pre-established flows leading towards
destination devices, and the pre-established flows for use by a
Source device requesting a flow to one of the destination
devices; receive a request, originating from the source device,
to establish a flow to the one of the destination devices;
generate a meta-packet that indicates the flow to the one of the
destination devices is to be proxied; determine, based on the
request, whether one of the pre-established flows to one of the
other network devices corresponds to the flow leading toward
the one of the destination devices requested by the source
device; and utilize the one of the pre-established flows to the
one of the other network devices when it is determined that
the one of the pre-established flows corresponds to the flow to
the one of the destination devices requested by the source
device.

According to yet implementation, a computer-readable
medium may have stored thereon instructions, executable by
at least one processor. The computer-readable medium may
include one or more instructions for selecting network
devices to establish and maintain pre-established flows; one
or more instructions for establishing and maintaining pre
established flows to the selected network devices for use
when requests, to destination devices, originating from

10

15

25

30

35

40

45

50

55

60

65

2
Source devices are received; one or more instructions for
receiving a request from one of the source devices to establish
a flow to one of the destination devices; one or more instruc
tions for generating a meta-packet based on the received
request, where the meta-packet indicates that the flow to the
one of the destination devices is to be proxied; one or more
instructions for determining, based on the request, whether
one of the pre-established flows to one of the selected network
devices corresponds to an intermediary flow leading towards
the one of the destination devices; and one or more instruc
tions for providing to the one of the source devices, the flow
to the one of the destination devices, when it is determined
that the one of the pre-established flows and the one of the
selected network devices provide the intermediary flow lead
ing towards the one of the destination devices.

According to still another implementation, a network
device may include means for selecting network devices to
establish and maintain pre-established flows; means for
establishing and maintaining pre-established flows to the
selected network devices for use by source devices; means for
receiving a request from one of the source devices to establish
a flow to a destination device; means for generating a meta
packet based on the received request, where the meta-packet
indicates that an intermediary flow leading towards the des
tination device is to be proxied; means for determining, based
on the request, whether one of the pre-established flows and
one of the selected network devices correspond to the inter
mediary flow leading towards the destination device; means
for sending the generated meta-packet to the one of the
selected network devices, when it is determined that the one
of the pre-established flows and the one of the selected net
work devices correspond to the intermediary flow leading
towards the destination device; means for assigning one or
more of a source address associated with the one of the source
devices, a source port associated with the one of the Source
devices, a destination address associated with the destination
device, or a destination port associated with the destination
device, to the one of the pre-established flows; and means for
providing to the one of the source devices, the flow to the
destination device, via the one of the selected network
devices, based on the meta-packet.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more embodiments described herein and, together with the
description, explain these embodiments. In the drawings:

FIG. 1 is a diagram illustrating an overview of exemplary
embodiments described herein;

FIG. 2 is a diagram illustrating exemplary components of a
device that may correspond to one or more of the devices
depicted in FIG. 1;

FIGS. 3A and 3B are diagrams illustrating exemplary func
tional components of the proxy device depicted in FIGS. 1
and 2:

FIG. 4 is a flow diagram illustrating an exemplary process
for establishing a TCP flow:

FIG. 5 is a flow diagram illustrating an exemplary process
for regulating bandwidth; and

FIG. 6 is a flow diagram illustrating an exemplary process
for congestion control.

DETAILED DESCRIPTION

The following detailed description refers to the accompa
nying drawings. The same reference numbers in different

US 8,949,444 B1
3

drawings may identify the same or similar elements. Also, the
following description does not limit the invention. Instead,
the scope of the invention is defined by the appended claims
and equivalents.
The term “meta-packet' or “metadata unit,” as used herein,

is intended to be broadly interpreted to include, for example,
a segment, a packet, a non-packet, or some other type of data
packaging or data arrangement.

Embodiments described herein provide for methods,
devices, and systems that establish and manage traffic flows
Such that overhead, processing, and memory utilization is
minimized, bandwidth efficiency is improved, and applica
tion visibility is maintained. As will be described, pre-estab
lished flows between proxy devices may avoid individual
setup and tear down of multiple flows. For example, in one
implementation, a pre-established flow may correspond to a
TCP flow. A single window control may be utilized to manage
the multiple pre-established flows.

Additionally, application visibility may be maintained
based on a meta-packet that may include information related
to utilizing a pre-established flow. For example, the meta
packet may include a source port number, as well as other
types of information (e.g., Source address, destination port,
destination address, etc.). The meta-packet may be transmit
ted from one proxy device to another proxy device over a
pre-established flow. The receiving proxy device may utilize
the meta-packet information to establish a flow from a source
device to a destination device. In one implementation, proxy
devices may maintain pre-established flows with other proxy
devices by transmitting a time-to-live packet or some other
form of transmission to keep the pre-established flows alive or
active. In instances when a proxy device does not have a
pre-established flow with another proxy device that connects
to a destination device requested by a source device, the proxy
device may establish a new flow with the other proxy device.
The proxy devices may measure the available bandwidth

associated with established flows based on, for example, a
monitoring of round trip times (RTTs) associated with
acknowledgements (ACKs) and/or some other form of
packet-pair based probes. Based on this measurement, the
bandwidth associated with the established flows may be
dynamically regulated. Typically, in network environments, a
slow start process in which the network is probed to deter
mine the available capacity is utilized. However, the embodi
ments described herein may eliminate the slow start process
by determining the sending rate for each flow based on the
measured available bandwidth and the number of active
flows.

Congestion avoidance may be based on a single retrans
mission timer. The single retransmission timer may be uti
lized to determine loss packets for all of the multiple flows.
When a loss is detected by the retransmission timer, the
aggregate sending rate for all of the multiple flows may be
reduced. For example, the available bandwidth may be
dynamically adjusted and the sending rate for each flow may
be fractionally reduced.

Since application visibility is maintained, different appli
cations may be managed according to different traffic char
acteristics, such as, bandwidth, queuing, or quality of service
(QOS).

Embodiments described herein will be described in rela
tion to Transport Control Protocol (TCP) flows. Under the
TCP standard, a three-way handshake is typically required to
provide reliable end-to-end communication. The overhead
associated with TCP connection setups may be substantial,
particularly when many TCP flows are short-lived. Further, as
mentioned above, resource utilization may become less effi

10

15

25

30

35

40

45

50

55

60

65

4
cient. It will be appreciated, however, that the embodiments
described herein have applicability to protocol standards,
other than TCP, as well as network architectures other than
those examples described herein.

FIG. 1 is a diagram illustrating an overview of exemplary
embodiments described herein. By way of example, an exem
plary environment 100 may include users 105-1 and 105-2
(referred to generally as users 105), user devices 110-1 and
110-2 (referred to generally as user device 110), a network
115 that may include proxy devices 120-1 through 120-X
(referred to generally as proxy device 120), and a resource
130. A pre-established flow 125 between proxy devices 120-1
and 120-2 may exist and/or is active. Pre-established flow 125
may correspond to one or multiple TCP flows. In other
instances, a new flow 150 may need to be established when,
for example, pre-established flow 125 may not exist and/or is
inactive.
The number of devices and configuration in environment

100 is exemplary and provided for simplicity. In practice,
environment 100 may include additional, fewer, and/or dif
ferent devices, and/or differently arranged devices than those
illustrated in FIG. 1. Additionally, or alternatively, the con
nections between devices are provided for simplicity.

Also, some functions described as being performed by a
particular device may be performed by a different device or a
combination of devices. For example, in other embodiments,
the functions associated with proxy device 120-1 and/or
proxy device 120-2 may be incorporated into user device 110
and/or resource 130. Additionally, in other embodiments, the
functions associated with proxy device 120-1 and/or proxy
device 120-2 may be distributed between more than two
proxy devices 120 (i.e., proxy device 120-1 and proxy device
120-2) illustrated and described herein. Environment 100
may include wired and/or wireless connections among the
devices.

User device 110 may include a device having the capability
to communicate with other devices, systems, networks, and/
or the like. For example, user device 110 may correspond to a
computer (e.g., a laptop, a desktop, a handheld computer), a
personal digital assistant (PDA), a wireless telephone, an
Internet-browsing device, or another type of communication
device.
Network 115 may include one or multiple networks of any

type. For example, network 115 may include a private net
work, a public network, a local area network (LAN), a met
ropolitan area network (MAN), a wide area network (WAN).
the Internet, an intranet, a telephone network (e.g., the Public
Switched Telephone Network (PSTN) or a cellular network),
a satellite network, a computer network, and/or a combina
tion of networks.

Proxy device 120 may include a network device having the
capability to communicate with other devices, systems, net
works, and/or the like. For example, proxy device 120 may
correspond to a network computer, a router, a gateway, an
access point, or some other type of communication device
that may process and/or forward network traffic. As will be
described, proxy device 120 may manage TCP flows as well
as other communication-related issues (e.g., congestion,
bandwidth, etc.).

Resource 130 may include a device that provides a service,
data, and/or some other type of asset. For example, resource
130 may correspond to a Web server, a mail server, a data
repository, or the like.

In an exemplary operation, user 105, via user device 110,
may establish a TCP connection with resource 130. For
example, assume resource 130 may correspond to a web
server. In Such an instance, from the perspective of network

US 8,949,444 B1
5

115, three TCP flows may need to be established. The first
TCP flow is between user device 110 and proxy device 120-1.
The second TCP flow is between proxy device 120-1 and
proxy device 120-2 (i.e., pre-established flow 125 or new flow
150). The third TCP flow is between proxy device 120-2 and
resource 130.
When proxy device 120-1 receives a request 135 to estab

lish a connection with resource 130, proxy device 120-1 may
generate a meta-packet 140. Meta-packet 140 may include a
port number of user device 110 (i.e., a source port number) as
well as other information (e.g., source address, destination
port number, destination address) to establish a TCP flow to
resource 130. Meta-packet 140 may also include a tag to
indicate that the TCP flow is being proxied.

In one implementation, as previously described, proxy
device 120-1 may maintain a pool of pre-established flows
with other proxy devices 120. Proxy device 120-1 may select
the appropriate proxy device 120 to establish a flow from user
device 110-1 to resource 130. When proxy device 120-1
selects the appropriate proxy device 120 (e.g., proxy device
120-2), proxy device 120-1 may refer to the pool of pre
established flows to determine whether a pre-established flow
exists between proxy device 120-1, and in this example,
proxy device 120-2. When a pre-established flow exists,
proxy device 120-1 may utilize the pre-established flow to
forward meta-packet 140. For example, proxy device 120-1
may forward meta-packet 140 over pre-established flow 125
to proxy device 120-2. Alternatively, when a pre-established
flow does not exist, proxy device 120-1 may set-up a new flow
150 (e.g., a TCP flow) with proxy device 120-2. In either
instance, proxy device 120-1 may forward meta-packet 140
to proxy device 120-2 so that a flow may be established
between user device 105 and resource 130.

In one embodiment, referred to hereinas transparent mode,
for each TCP connection between user device 110 and proxy
device 120-1, a new TCP connection (i.e., pre-established
flow 125 or new flow 150 between proxy device 120-1 and
proxy device 120-2) may include the same source address
(e.g., source Internet Protocol (IP) address), the same desti
nation address (e.g., destination IP address), the same source
port and/or the same destination port, as the end-to-end con
nection between user device 110 and resource 130.

In another embodiment, referred to hereinas opaque mode,
for each TCP connection between user device 110 and proxy
device 120-1, a new TCP connection (i.e., pre-established
flow 125 or new flow 150 between proxy device 120-1 and
proxy device 120-2) may include the source address (e.g.,
source IP address) of proxy device 120-1 and the destination
address (e.g., destination IP address) of proxy device 120-2. If
the source port numbers (i.e., Source port numbers of user
devices 110-1 and 110-2) are available (e.g. not the same),
then proxy device 120-1 may utilize those port numbers.
However, if the source port numbers are the same (i.e., Source
port numbers of user devices 110-1 and 110-2 are the same),
proxy device 120-1 may increase the source port number
associated with one of user devices 110, by some increment
(e.g., by one), until an unused source port number is found.
Proxy device 120-1 may perform operations analogous to
those described with respect to destination port numbers.
When proxy device 120-2 receives meta-packet 140, proxy

device 120-2 may inspect meta-packet 140 and establish a
flow 145 with the destination device (e.g., resource 130)
based on meta-packet 140.

Additionally, as previously described, proxies 120-1 and
120-1 may manage the available bandwidth associated with
pre-established flow 125, provide for single window control,

5

10

15

25

30

35

40

45

50

55

60

65

6
provide for a single retransmission timer for all flows associ
ated with pre-established 125, and/or provide for different
bandwidth sharing policies.

Since the embodiments have been broadly described,
variations exist. Accordingly, a detailed description of the
embodiments is provided below.

Exemplary Device Architecture

FIG. 2 is a diagram illustrating exemplary components of a
device 200 that may correspond to one or more of the devices
in FIG. 1. For example, device 200 may correspond to user
device 110, proxy device 120, and/or resource 130. As illus
trated, device 200 may include, for example, a bus 210, a
processor 220, a memory 230, storage 240, an input/output
250, and a communication interface 260.
Bus 210 may permit communication among the other com

ponents of security device 125. For example, bus 210 may
include a system bus, an address bus, a data bus, and/or a
control bus. Bus 210 may also include bus drivers, bus arbi
ters, bus interfaces, and/or clocks.

Processor 220 may interpret and/or execute instructions
and/or data. For example, processor 220 may include a pro
cessor, a microprocessor, a data processor, a co-processor, a
network processor, an application specific integrated circuit
(ASIC), a controller, a programmable logic device, a field
programmable gate array (FPGA), or some other processing
logic that may interpret and/or execute instructions.
Memory 230 may store data and/or instructions. For

example, memory 230 may include a random access memory
(RAM), a dynamic random access memory (DRAM), a static
random access memory (SRAM), a synchronous dynamic
random access memory (SDRAM), a read only memory
(ROM), a programmable read only memory (PROM), an
erasable programmable read only memory (EPROM), an
electrically erasable programmable read only memory (EE
PROM), another type of dynamic or static memory, a cache,
and/or a flash memory.

Storage 240 may store data, instructions, and/or applica
tions. For example, storage 240 may include a hard disk (e.g.,
a magnetic disk, an optical disk, a magneto-optic disk, etc.), a
compact disc (CD), a digital versatile disc (DVD), a floppy
disk, a cartridge, a magnetic tape, a flash drive, or another type
of computer-readable medium, along with a corresponding
drive. The term “computer-readable medium' is intended to
be broadly interpreted to include, for example, memory, Stor
age, or the like. The computer-readable medium may be
implemented in a single device or in multiple devices. The
storing space of the computer-readable medium may be cen
tralized or distributed. A computer-readable medium may
correspond to, for example, a physical memory device or a
logical memory device. A logical memory device may
include memory space within a single physical memory
device or spread across multiple physical memory devices.

Input/output 250 may permit input to and output from
device 200. For example, input/output 250 may include a
keyboard, a keypad, a mouse, a button, a Switch, a micro
phone, Voice recognition logic, a pen, a display, a port, or the
like to permit input. Additionally, or alternatively, input/out
put 250 may include a display, a speaker, one or more light
emitting diodes (LEDs), a port, or the like, to permit output.

Communication interface 260 may enable device 200 to
communicate with another device, a network, another sys
tem, and/or the like. For example, communication interface
260 may include a wireless interface and/or a wired interface,
Such as, an Ethernet interface, an optical interface, etc. Com
munication interface 260 may include a transceiver.

US 8,949,444 B1
7

With respect to proxy device 120, device 200 may perform
operations and/or processes related to managing TCP flows.
According to an exemplary implementation, device 200 may
perform these operations and/or processes in response to
processor 220 executing sequences of instructions contained
in a computer-readable medium. For example, Software
instructions may be read into memory 230 from another com
puter-readable medium, Such as storage 240, or from another
device via communication interface 260. The software
instructions contained in memory 230 may cause processor
220 to perform processes that will be described later. Alter
natively, hardwired circuitry may be used in place of or in
combination with Software instructions to implement pro
cesses described herein. Thus, implementations described
hereinare not limited to any specific combination of hardware
circuitry and Software.

Although, FIG. 2 illustrates exemplary components of
device 200, in other implementations, device 200 may
include additional, fewer, different, or differently arranged
components than those illustrated in FIG. 2 and described
herein. Additionally, or alternatively, one or more operations
described as being performed by a particular component of
device 200 may be performed by one or more other compo
nents, in addition to or instead of the particular component.

FIGS. 3A and 3B are diagrams illustrating exemplary func
tional components of proxy device 120. FIG. 3A illustrates
exemplary functional components related to establishing a
TCP flow. FIG. 3B illustrates exemplary functional compo
nents related to maintaining TCP flows. Proxy device 120-1
and proxy device 120-2 may include, respectively, one or
more of the functional components, described herein.
As illustrated in FIG.3A, proxy device 120 may include a

meta-packet generator 305, a destination flow establisher
310, and a pre-established flow pool 315. The functional
components illustrated in FIG. 3A may be implemented by
hardware (e.g., processor 220, memory 230, storage 240,
and/or other components described in FIG. 2) or a combina
tion of hardware and software. While a particular number and
arrangement of functional components are illustrated in FIG.
3A, in other implementations, proxy device 120 may include
fewer, additional, and/or different functional components,
and/or differently arranged functional components than those
illustrated in FIG.3A. Further, it will be appreciated that these
functional components may be implemented in other devices
(e.g., user device 110, resource 140) in environment 100.

Meta-packet generator 305 may generate meta-packet 140.
For example, as previously described, when proxy device
120-1 receives request 135 to establish a TCP flow to a par
ticular destination (e.g., resource 130), meta-packet generator
305 may generate meta-packet 140. Meta-packet 140 may
include information for establishing the TCP flow to the des
tination. For example, meta-packet 140 may include a source
port number, a source address, a destination port number, a
destination address, and a tag that indicates that this TCP flow
is being proxied. Meta-packet 140 may include other types of
TCP flow information, such as, for example, QOS, type of
service (TOS), etc.

Flow establisher 310 may select a TCP flow to the particu
lar proxy device 120. For example, as previously described,
when proxy device 120-1 receives meta-packet 140, flow
establisher 310 may determine whether a pre-established
TCP flow exists to a proxy device 120 leading towards a
destination (e.g., a destination address) indicated in meta
packet 140. In one implementation, flow establisher 310 may
access 320 pre-established flow pool 315 to determine
whether a pre-established TCP flow exists with respect to
another proxy device 120 leading towards the destination. For

10

15

25

30

35

40

45

50

55

60

65

8
example, flow establisher 310 may consult a forwarding table
or some other type of routing-based arrangement, to identify
or select the appropriate proxy device 120 in which to forward
meta-packet 140 and/or establisha flow from source device to
destination device (e.g., user device 110 and resource 130).
When flow establisher 310 identifies or selects the appropri
ate proxy device 120, flow establisher 310 may determine
whether a pre-established flow exists between proxy devices
120 (i.e., proxy device 120 of flow establisher 310 and the
identified proxy device 120). In one implementation, flow
establisher 310 may consult pre-established flow pool 315. As
described herein, pre-established flow pool 315 may corre
spond to one or multiple active TCP flows that exist between
proxy device 120 and other proxy devices 120. Flow estab
lisher 310 may determine whether a pre-established flow
exists and/or is active between proxy device 120 and the
selected other proxy device 120. When flow establisher 310
determines that a pre-established flow exists and/or is active,
flow establisher 310 may send meta-packet 140 to the
selected proxy device 120 utilizing the pre-established flow.
Alternatively, when flow establisher 310 determines that a
pre-established flow does not exist and/or is inactive, pre
established flow pool 315 may establish a new TCP flow (e.g.,
new flow 150). Flow establisher 310 may send meta-packet
140 to the selected proxy device 120 utilizing the new TCP
flow.

Pre-established flow pool 315 may establish and maintain
TCP flows with other proxy devices 120. For example, pre
established flow pool 315 may transmit a TTL packet or some
other form of transmission to maintain an established TCP
flow as active. Proxy devices 120 with which pre-established
flow pool 315 establishes and maintains the TCP flows, may
be network configured. For example, a network administrator
may have pre-established flow pool 315 establish and main
tain TCP flows with proxy devices 120 that are actively uti
lized by users or meet Some other type of network-configured
threshold. In one embodiment, pre-established flow pool 315
may dynamically change the selection of proxy devices 120
to which pre-established flows are established and main
tained based on network activity. In another embodiment, the
selection of proxy devices 120 to which pre-established flows
are established and maintained may be relatively static. For
example, the selection of proxy devices 120 may be based on
a measure of popularity (e.g., by the number of requests to the
proxy device 120).

Pre-established flow pool 315 may include a repository of
pre-established TCP flows. Pre-established flow pool 315
may include information associated with the pre-established
TCP flows, such as, for example, proxy device 120 identifiers
(e.g., network address), QOS, TOS, etc. In this way, proxy
device 120 may determine whether a suitable pre-established
flow exists and/or is active that corresponds to the selected
other proxy device 120.
FIG.3B illustrates exemplary functional components relat

ing to the management of TCP flows. As illustrated in FIG.
3B, proxy device 120 may include a bandwidth regulator 325,
bandwidth sharing policies 330, a window flow controller
335, and a congestion controller 340. The functional compo
nents illustrated in FIG.3B may be implemented by hardware
(e.g., processor 220, memory 230, storage 240, and/or other
components illustrated in FIG. 2) or a combination of hard
ware and Software. While a particular number and arrange
ment of functional components are illustrated in FIG. 3B, in
other implementations, proxy device 120 may include fewer,
additional, and/or different functional components, or differ
ently arranged functional components than those illustrated
in FIG.3B. Further, it will be appreciated that these functional

US 8,949,444 B1

components may be implemented in other devices (e.g., user
device 110, resource 140) in environment 100.

Bandwidth regulator 325 may dynamically regulate the
available bandwidth between proxy devices 120. In one
implementation, bandwidth regulator 325 may monitor the
RTTs associated with ACKs occurring in the TCP flows of
pre-established flow 125. In another implementation, band
width regulator 325 may monitor some other form of packet
pair probing occurring in the TCP flows of pre-established
flow 125. In one implementation, bandwidth regulator 325
may select a particular bandwidth, based on the RTTs asso
ciated with ACKs and/or some other form of packet probing,
by utilizing a TCPVegas-like algorithm or some other type of
similar algorithm. Bandwidth regulator 325 may determine a
sending rate for each TCP flow based on the measured avail
able bandwidth and the number of active TCP flows. Addi
tionally, bandwidth regulator 325 may allocate more or less
bandwidth, allot different sending rates, or other traffic char
acteristics (e.g., QOS, TOS, queuing) based on bandwidth
sharing policies 330, as described herein. Bandwidth regula
tor 325 may implement fair-sharing algorithms (e.g., for
equal distribution of bandwidth to TCP flows) or weighted
fair queuing algorithm (e.g., to Support different bandwidth
policies for different applications).

Bandwidth sharing policies 330 may correspond to a
repository of bandwidth sharing policies. Bandwidth sharing
policies 330 may include policies that interrelate bandwidth
with other traffic characteristics, such as, for example, QOS,
TOS, and/or type of application (TOA). Bandwidth sharing
policies 330 may include policies that interrelate bandwidth
with, for example, network addresses, port numbers, or other
forms of criteria. In one implementation, bandwidth sharing
policies 330 may include policies in which all TCP flows
equally share the available bandwidth equally. In another
implementation, bandwidth sharing policies 330 may include
policies in which all TCP flows unequally share the available
bandwidth. For example, bandwidth sharing policies 330
may include policies that correspond to a traffic hierarchy to
allow different bandwidth sharing policies to be applied to
different portions of the traffic hierarchy.
Window flow controller 335 may provide a single window

control for all TCP flows. Window flow controller 335 may
implement a single sending window for all TCP flows and
correspondingly a single receiving window for all TCP flows.
Window flow controller 335 may separate data buffers for
different TCP flows. In one implementation, window flow
controller 335 may assign a global sequence number to each
TCP segment. The receiving window may determine the
sequence of the TCP segments for each TCP flow based on a
global sequence number.

Congestion controller 340 may provide a single retrans
mission timer for all of TCP flows. The retransmission timer
may be utilized to determine loss of TCP segments for all of
the multiple flows. When a loss of TCP segments is detected
by the retransmission timer, the aggregate sending rate for all
of the multiple TCP flows may be reduced. For example, the
available bandwidth may be dynamically adjusted and the
sending rate for each TCP flow may befractionally reduced to
respond to the network congestion.

Exemplary Process

As described herein, proxy devices 120 may establish and
manage TCP flows Such that overhead, processing, and
memory utilization is minimized, bandwidth efficiency is
improved, and application visibility is maintained. Proxy
devices 120 may utilize pre-established TCP flows to reduce

5

10

15

25

30

35

40

45

50

55

60

65

10
connection setup overhead. Proxy devices 120 may utilize a
single flow congestion control to reduce the number of state
variables associated with individual TCP flows. Proxy
devices 120 may dynamically measure the available band
width to regulate existing TCP flows and to establish new
TCP flows. For TCP flows destined to the same proxy device
120, only one TCP state variable (e.g., slow start threshold
(ssthresh)) may be utilized for all TCP flows, which may be
based on the measured available bandwidth. Proxy devices
120 may provide granularity (e.g., varying levels of QOS,
TOS, bandwidth availability, sending rate, etc.) for TCP
flows. Additionally, proxy devices 120 may maintain appli
cation visibility.

FIG. 4 is a flow diagram illustrating an exemplary process
400 for establishing TCP flows. Process 400 may be per
formed by hardware (e.g., processor 220 and/or some other
type of logic, memory 230, etc.), or a combination of hard
ware and software in proxy devices 120. In another imple
mentation, one or more operations associated with process
400 may be performed by another device in conjunction with
proxy devices 120. Process 400 will be described in conjunc
tion with other figures.

Process 400 may begin with receiving a request to establish
a TCP flow to a destination (block 405). For example, user
device 110 may transmit a request to establish a TCP flow
with a destination (e.g., resource 130). The request may be
received by proxy device 120-1.
A meta-packet based on the request may be generated

(block 410). Meta-packet generator 305 may generate meta
packet 140. For example, as previously described, when
proxy device 120-1 receives request 135 to establish a TCP
flow to a particular destination (e.g., resource 130), meta
packet generator 305 may generate meta-packet 140. Meta
packet 140 may include information for establishing the TCP
flow to the destination. For example, meta-packet 140 may
include a source port number, a source address, a destination
port number, a destination address, and a tag that indicates
that this TCP flow is being proxied. Meta-packet 140 may
include other types of TCP flow information, such as, for
example, QOS, type of service (TOS), etc.

It may be determined whether a pre-established flow TCP
flow exists toward a destination included in the generated
meta-packet (block 415). For example, as previously
described, when proxy device 120-1 receives meta-packet
140, flow establisher 310 may determine whether a pre-es
tablished TCP flow exists and/or is active to a proxy device
120 leading towards a destination (e.g., a destination address)
indicated in meta-packet 140. In one implementation, flow
establisher 310 may access 320 pre-established flow pool 315
to determine whether a pre-established TCP flow exists and/
or is active with respect to another proxy device 120 leading
towards the destination. For example, flow establisher 310
may consult a forwarding table or some other type of routing
based arrangement, to identify or select the appropriate proxy
device 120 in which to forward meta-packet 140 and/or estab
lish a flow from Source device to destination device (e.g., user
device 110 and resource 130).
When flow establisher 310 identifies or selects the appro

priate proxy device 120, flow establisher 310 may determine
whether a pre-established flow exists between proxy devices
120 (i.e., proxy device 120 of flow establisher 310 and the
identified proxy device 120). In one implementation, flow
establisher 310 may consult pre-established flow pool 315.
Flow establisher 310 may determine whether a pre-estab
lished flow exists between proxy device 120 and the selected
other proxy device 120.

US 8,949,444 B1
11

When it is determined that a pre-established flow TCP flow
exists toward a destination included in the generated meta
packet (block 415 YES), the generated meta-packet may be
sent on the pre-established flow (block 420). For example, as
previously described, when flow establisher 310 determines
that the pre-established flow exists, flow establisher 310 may
send meta-packet 140 to the selected proxy device 120 utiliz
ing the pre-established flow. For example, proxy device 120-1
may transmit meta-packet 140 on pre-established flow 125 to
another proxy device 120 (e.g., proxy device 120-2).

In one embodiment, referred to hereinas transparent mode,
the TCP connection (i.e., pre-established flow 125 between
proxy device 120-1 and proxy device 120-2) may include the
same source address (e.g., Source Internet Protocol (IP)
address), the same destination address (e.g., destination IP
address), the same source port and/or the same destination
port as the end-to-end connection between user device 110
and resource 130.

In another embodiment, referred to hereinas opaque mode,
the TCP connection (i.e., pre-established flow 125 between
proxy device 120-1 and proxy device 120-2) may include the
source address (e.g., source IP address) of proxy device 120-1
and the destination address (e.g., destination IP address) of
proxy device 120-2. If the source port numbers (i.e., source
port numbers of user devices 110-1 and 110-2) are available
(e.g. not the same), then proxy device 120-1 may utilize those
port numbers. However, if the source port numbers are the
same (i.e., source port numbers of user devices 110-1 and
110-2 are the same), proxy device 120-1 may increase the
source port number associated with one of user devices 110.
by some increment (e.g., by one), until an unused source port
number is found. Proxy device 120-1 may perform operations
analogous to those described with respect to destination port
numbers.
The meta-packet may be received on the pre-established

TCP flow (block 425). For example, as previously described,
proxy device 120-2 may receive meta-packet 140 on pre
established flow 125 from proxy device 120-1.
A TCP flow may be established to the destination (block

430). For example, as previously described, proxy device
120-2 may establish a TCP flow with the destination device
based on meta-packet 140. For example, proxy device 120-2
may identify the destination address and/or destination port
number indicated in meta-packet 140 to establish a TCP
connection 145 with the destination device (e.g., resource
130).
When it is determined that a pre-established flow TCP flow

does not exist toward a destination included in the generated
meta-packet (block 415 NO), a new TCP flow may be
established toward the destination (block 435). For example,
as previously described, proxy device 120 (e.g., pre-estab
lished flow pool315) may establisha new TCP flow 150 when
a pre-established TCP does not exist and/or is inactive with
respect to the selected other proxy device 120 (e.g., proxy
device 120-2).
The meta-packet may sent on the new TCP flow (block

440). For example, as previously described, flow establisher
310 may send meta-packet 140 to the selected proxy device
120 utilizing new TCP flow 150. For example, proxy device
120-1 may transmit meta-packet 140 on new TCP flow 150 to
another proxy device 120 (e.g., proxy device 120-2).

In one embodiment, referred to hereinas transparent mode,
the new TCP connection (i.e., new TCP flow 150 between
proxy device 120-1 and proxy device 120-2) may include the
same source address (e.g., Source Internet Protocol (IP)
address), the same destination address (e.g., destination IP

10

15

25

30

35

40

45

50

55

60

65

12
address), the same source port and/or the same destination
port as the end-to-end connection between user device 110
and resource 130.

In another embodiment, referred to hereinas opaque mode,
the new TCP connection (i.e., new TCP flow 150 between
proxy device 120-1 and proxy device 120-2) may include the
source address (e.g., source IP address) of proxy device 120-1
and the destination address (e.g., destination IP address) of
proxy device 120-2. If the source port numbers (i.e., source
port numbers of user devices 110-1 and 110-2) are available
(e.g. not the same), then proxy device 120-1 may utilize those
port numbers. However, if the source port numbers are the
same (i.e., source port numbers of user devices 110-1 and
110-2 are the same), proxy device 120-1 may increase the
source port number associated with one of user devices 110.
by Some increment (e.g., by one), until an unused source port
number is found. Proxy device 120-1 may perform operations
analogous to those described with respect to destination port
numbers.
The meta-packet may be received on the new TCP flow

(block 445). For example, as previously described, proxy
device 120-2 may receive meta-packet 140 on new TCP flow
150 from proxy device 120-1.
A TCP flow may be established to the destination device

(block 450). For example, as previously described, proxy
device 120-2 may establish a TCP flow with the destination
device based on meta-packet 140. For example, proxy device
120-2 may identify the destination address and/or destination
port number indicated in meta-packet 140 to establish TCP
connection 145 with the destination device (e.g., resource
130).

Although FIG. 4 illustrates an exemplary process 400, in
other implementations, fewer, additional, or different opera
tions may be performed.

Exemplary Process

As previously described, proxy device 120 may perform
additional processes and operations for managing TCP flows,
as described herein, with respect to bandwidth regulator 325,
bandwidth sharing policies 330, window flow controller 335,
and congestion controller 340.

FIG. 5 is a flow diagram illustrating an exemplary process
500 for regulating bandwidth. Process 500 may be performed
by hardware (e.g., processor 220 and/or some other type of
logic, memory 230, etc.), or a combination of hardware and
software in proxy devices 120. In another implementation,
one or more operations associated with process 500 may be
performed by another device in conjunction with proxy
devices 120. Process 500 will be described in conjunction
with other figures.
RTTs associated with ACKs may be monitored (block

505). For example, proxy device 120 (e.g., bandwidth regu
lator 325) may monitor the RTTs associated with ACKs
occurring in the TCP flows of pre-established flow 125. As
previously described, in other implementations, packet-pair
probing and/or other types of transmissions may be moni
tored.
A bandwidth may be selected based on the monitored

RTTs (block 510). For example, bandwidth regulator 325
may select abandwidth based on the RTTs associated with the
ACKs. For example, bandwidth regulator 325 may select a
bandwidth based on a TCP Vegas-like algorithm or some
other type of similar algorithm. As previously described, in
other implementations, bandwidth regulator 325 may select a
bandwidth based on packet-pair probing and/or other types of
monitored transmissions.

US 8,949,444 B1
13

Sending rates for each active TCP flow may be determined
based on the determined bandwidth (block 515). Bandwidth
regulator 325 may determine a sending rate for each TCP flow
based on the determined bandwidth. For example, bandwidth
regulator 325 may select a sending rate for each TCP flow
based on the number of active flows and the available band
width.

Bandwidth sharing policies may be applied (block 520).
Bandwidth regulator 325 may consult bandwidth sharing
policies 330 and allot different QOS, TOS, queuing, and/or
other types of traffic characteristics to the active TCP flows.
Bandwidth regulator 325 may adapt sending rates and avail
able bandwidth to the active TCP flows based on bandwidth
sharing policies 330. As previously described, bandwidth
sharing policies 330 may include policies that interrelate
bandwidth with, for example, network addresses, port num
bers, or other forms of criteria. In one embodiment, band
width sharing policies 330 may include policies in which all
TCP flows equally share the available bandwidth equally. In
another embodiment, bandwidth sharing policies 330 may
include policies in which all TCP flows unequally share the
available bandwidth. For example, bandwidth sharing poli
cies 330 may include policies that correspond to a traffic
hierarchy to allow different bandwidth sharing policies to be
applied to different portions of the traffic hierarchy.

Although FIG. 5 illustrates an exemplary process 500, in
other implementations, fewer, additional, or different opera
tions may be performed.

Exemplary Process

FIG. 6 is a diagram illustrating an exemplary process for
congestion control. Process 600 may be performed by hard
ware (e.g., processor 220 and/or some other type of logic,
memory 230, etc.), or a combination of hardware and soft
ware in proxy devices 120. In another implementation, one or
more operations associated with process 600 may be per
formed by another device in conjunction with proxy devices
120. Process 600 will be described in conjunction with other
figures.
A single retransmission timer may be applied for all TCP

flows (block 605). For example, proxy device 120 (e.g., con
gestion controller 340) may provide for a single retransmis
sion timer for all TCP flows associated with pre-established
flow 125. The retransmission timer may be utilized to deter
mine loss of TCP segments for each active TCP flow.
TCP segment loss may be detected (block 610). Conges

tion controller 340 may detect TCP segment loss based on the
retransmission timer. For example, congestion controller 340
may detect TCP segment loss associated with one or more of
the active TCP flows.

The available bandwidth may be modified (block 615).
Congestion controller 340 may modify the available band
width based on the loss of TCP segments. For example, con
gestion controller 340 may consider the number of TCP seg
ments loss, the number of TCP flows experiencing TCP
segment loss, the setting of the retransmission timer, etc.

Sending rates for all TCP flows may be modified based on
the modified bandwidth (block 620). Congestion controller
340 may modify the sending rates for each of the TCP flows
based on the modified bandwidth. For example, congestion
controller 340 may fractionally reduce the sending rates for
each TCP flow in accordance with the modified bandwidth.

Although FIG. 6 illustrates an exemplary process 600, in
other implementations, fewer, additional, or different opera
tions may be performed.

10

15

25

30

35

40

45

50

55

60

65

14
CONCLUSION

The foregoing description of implementations provides an
illustration, but is not intended to be exhaustive or to limit the
implementations to the precise form disclosed. Modifications
and variations are possible in light of the above teachings or
may be acquired from practice of the teachings. For example,
although embodiments have been described with respect to
the TCP, other types of transport layers (e.g., user datagram
protocol (UDP), etc.) or end-to-end communication protocols
may be utilized.

In addition, while series of blocks has been described with
regard to the process illustrated in FIGS. 4-6, the order of the
blocks may be modified in other implementations. Further,
non-dependent blocks may be performed in parallel.

Also, certain aspects have been described as being imple
mented as “logic’’ or a "component” that performs one or
more functions. This logic or component may include hard
ware, Such as a processor, microprocessor, an ASIC, or a
FPGA, or a combination of hardware and software, such as a
processor/microprocessor executing instructions stored in a
computer-readable medium.

It will be apparent that aspects described herein may be
implemented in many different forms of software, firmware,
and hardware in the implementations illustrated in the figures.
The actual software code or specialized control hardware
used to implement aspects does not limit the embodiments.
Thus, the operation and behavior of the aspects were
described without reference to the specific software code it
being understood that software and control hardware can be
designed to implement the aspects based on the description
herein.
The term “may” is used throughout this application and is

intended to be interpreted, for example, as “having the poten
tial to.” “configured to,” or “being able.” and not in a manda
tory sense (e.g., as “must'). The terms “a” “an.” and “the are
intended to be interpreted to include one or more items. For
example, processor 220 may include one or more processors.
Where only one item is intended, the term “one' or similar
language (e.g., “single') is used. Further, the phrase “based
on' is intended to be interpreted as “based, at least in part, on.”
unless explicitly stated otherwise. The term “and/or” is
intended to be interpreted to include any and all combinations
of one or more of the associated list items.

Even though particular combination of features are recited
in the claims and/or disclosed in the specification, these com
binations are not intended to limit the disclosure of the inven
tion. In fact, many of these features may be combined in ways
not specifically recited in the claims and/or disclosed in the
specification.
No element, block, or instruction used in the present appli

cation should be construed as critical or essential to the imple
mentations described herein unless explicitly described as
Such.
What is claimed is:
1. A method comprising:
receiving, by a first proxy device and from a first Source

device, a request to establish a flow to a destination
device;

generating, by the first proxy device and based on the
request, a meta data unit including a tag that indicates
that the flow to the destination device is to be proxied;

selecting, by the first proxy device, a second proxy device
based on the destination device;

determining, by the first proxy device, that a pre-estab
lished flow is not active between the first proxy device
and the second proxy device;

US 8,949,444 B1
15

establishing, by the first proxy device, a new flow to the
second proxy device based on determining that the pre
established flow is not active between the first proxy
device and the second proxy device;

determining, by the first proxy device, that a first source
port number, of the first source device, is a same value as
a second source port number of a second source device;

increasing, by the first proxy device, the first source port
number to create a new first source port number after
determining that the first Source port number is the same
value as the second source port number,

assigning, by the first proxy device, the new first source
port number to the new flow after increasing the first
Source port number; and

sending, by the first proxy device, the metadata unit on the
new flow after determining that the pre-established flow
is not active between the first proxy device and the
second proxy device.

2. The method of claim 1,
where the method further comprises:

assigning a source address of the first proxy device to the
new flow.

3. The method of claim 1,
where the metadata unit includes information regarding a

destination port of the destination device, and
where the method further comprises:

assigning the destination port of the destination device
to the new flow.

4. The method of claim 1, where determining that the
pre-established flow is not active between the first proxy
device and the second proxy device comprises:

determining that a pre-established flow pool includes infor
mation regarding the pre-established flow between the
first proxy device and the second proxy device,
the pre-established flow pool comprising information

regarding multiple transport protocol flows between
the first proxy device and one or more other proxy
devices, and

the multiple transport protocol flows comprising flows
that are active and flows that are inactive, and

determining, after determining that the pre-established
flow pool includes information regarding the pre-estab
lished flow, that the pre-established flow is not active
based on information associated with the pre-estab
lished flow in the pre-established flow pool.

5. The method of claim 1,
where the pre-established flow includes multiple Transport

Control Protocol (TCP) flows, and
where the method further comprises:

monitoring round-trip times associated with acknowl
edgements of the multiple TCP flows, and

selecting, by the first proxy device, a bandwidth for the
multiple TCP flows based on the round-trip times.

6. The method of claim 1,
where the pre-established flow includes multiple Transport

Control Protocol (TCP) flows, and
where the method further comprises:

providing, by the first proxy device, a single retransmis
sion timer for the multiple TCP flows,

using the retransmission timer to determine loss of TCP
segments for each active TCP flow of the multiple
TCP flows, and

modifying, based on the loss of TCP segments, an avail
able bandwidth associated with the multiple TCP
flows.

10

15

25

30

35

40

45

50

55

60

65

16
7. The method of claim 1, further comprising:
where the pre-established flow includes multiple Transport

Control Protocol (TCP) flows, and
where the method further comprises:

providing, by the first proxy device, at least one of dif
ferent bandwidth allocation, different quality of ser
vice, different type of service, different sending rate,
or different queuing, for at least one of the multiple
TCP flows compared to another one of the multiple
TCP flows.

8. The method of claim 1, further comprising:
establishing and maintaining, by the first proxy device,

pre-established flows to other proxy devices for use by
Source devices requesting flows to destination devices,
the Source devices including the first source device and

the second device, and
the destination devices including the destination device.
9. A first network device comprising:
one or more processors to:

establish and maintain pre-established flows:
receive a request, originating from a first source device,

to establish a flow to a destination device;
generate, based on the request, a meta-packet including

a tag that indicates that the flow to the destination
device is to be proxied;

identify a second network device based on the destina
tion device;

determine that none of the pre-established flows are
active between the first network device and the second
network device;

establish a new flow to the second network device based
on determining that none of the pre-established flows
are active between the first network device and the
second network device;

determine that a first source port number, of the first
Source device, is a same value as a second source port
number of a second source device;

increase the first source port number to create a new first
source port number after determining that the first
Source port number is the same value as the second
Source port number,

assign the new first source port number to the new flow
after increasing the first source port number; and

utilize the new flow after assigning the new first source
port number to the new flow.

10. The first network device of claim 9,
where the pre-established flows correspond to transport

control protocol flows,
where the request includes information to establish a trans

port control protocol flow, and
where the information includes information regarding one

or more of a source address associated with the first
Source device, a destination address associated with the
destination device, the first Source port number associ
ated with the first source device, or a destination port
associated with the destination device.

11. The first network device of claim9, where, when estab
lishing and maintaining pre-established flows, the one or
more processors are to:

maintain multiple pre-established flows between the first
network device and a third network device,
the multiple pre-established flows including active pre

established flows, and
each one of the active pre-established flows including a

transport control protocol flow associated with the
first source device and a different destination device;

monitor at least one of round trip times associated with
acknowledgements, packet pair probes, or induced

US 8,949,444 B1
17

packet loss, between the first network device and the
third network device, on one or more of the multiple
pre-established flows:

select a bandwidth based on the at least one of the moni
tored round trip times, the monitored packet pair probes,
or the monitored induced packet loss;

determine a sending rate for each transport control protocol
flow based on the bandwidth; and

apply bandwidth sharing policies to each transport control
protocol flow,
the bandwidth sharing policies including at least one of

quality of service, type of service, or queuing.
12. The first network device of claim9, where, when estab

lishing and maintaining pre-established flows, the one or
more processors are to:

maintain multiple pre-established flows between the first
network device and a third network device,
the multiple pre-established flows including active pre

established flows, and
each one of the active pre-established flows including a

transport control protocol flow associated with the
first source device and a different destination device;

apply a single retransmission timer for multiple transport
control protocol flows associated with the multiple pre
established flows:

detect transport control protocol segment loss;
modify a bandwidth associated with the multiple pre-es

tablished flows based on the transport control protocol
segment loss; and

modify a sending rate associated with each transport con
trol protocol flow of the multiple pre-established flows
based on the bandwidth.

13. The first network device of claim9, where, when estab
lishing and maintaining pre-established flows, the one or
more processors are to:

select one or more other network devices for the pre-estab
lished flows based on a measure of popularity associated
with each of the one or more other network devices; and

establish the pre-established flows with the one or more
other network devices.

14. The first network device of claim 9, where the first
network device includes one of a router, a proxy device, a
gateway, or a network computer.

15. A non-transitory computer-readable storage medium
containing instructions, the instructions comprising:

one or more instructions, executable by a first network
device, to establish and maintain pre-established flows:

one or more instructions, executable by the first network
device, to receive a request, from a source device, to
establish a flow to a destination device;

one or more instructions, executable by the first network
device, to generate a meta-packet based on the request,
the meta-packet including a tag that indicates that the

flow to the destination device is to be proxied;
one or more instructions, executable by the first network

device, to select a second network device based on the
destination device;

one or more instructions, executable by the first network
device, to determine whether one of the pre-established
flows is active between the first network device and the
second network device;
one or more instructions, executable by the first network

device, to establish a new flow to the second network
device when none of the pre-established flows are
active between the first network device and the second
network device;

10

15

25

30

35

40

45

50

55

60

65

18
one or more instructions, executable by the first network

device, to determine that a first source port number, of
the first Source device, is a same value as a second
Source port number of a second source device;

one or more instructions, executable by the first network
device, to increase the first source port number to
create a new first source port number after determin
ing that the first source port number is the same value
as the second source port number,

one or more instructions, executable by the first network
device, to assign the new first Source port number to
the new flow after increasing the first source port
number; and

one or more instructions, executable by the first network
device, to send the meta-packet on the new flow to
second network device when none of the pre-estab
lished flows are active between the first network
device and the second network device.

16. The non-transitory computer-readable storage medium
of claim 15,
where the meta-packet includes information regarding the

first source port number of the first source device or a
Source address of the first source device, and

where the instructions further comprise:
one or more instructions to assign the Source address to

the new flow.
17. The non-transitory computer-readable storage medium

of claim 15,
where the one or more instructions to establish and main

tain pre-established flows comprise:
one or more instructions to establish and maintain mul

tiple pre-established flows between the first network
device and a third network device,
one or more of the multiple pre-established flows

corresponding to active transport control protocol
flows associated with the first source device and a
different destination device, and

where the instructions further comprise:
one or more instructions to monitor at least one of round

trip times associated with acknowledgements, packet
pair probes, or induced packet loss, between the first
network device and the third network device, on one
or more of the multiple pre-established flows:

one or more instructions to select a bandwidth based on
the at least one of the monitored round trip times, the
monitored packet pair probes, or the monitored
induced packet loss;

one or more instructions to determine a sending rate
based on the bandwidth; and

one or more instructions to apply bandwidth sharing
policies to each active transport control protocol flow,
the bandwidth sharing policies including at least one

of quality of service, type of service, or queuing.
18. The non-transitory computer-readable storage medium

of claim 15,
where the one or more instructions to establish and main

tain pre-established flows comprise:
one or more instructions to establish and maintain mul

tiple pre-established flows between the first network
device and a third network device,
one or more of the multiple pre-established flows

corresponding to active transport control protocol
flows associated with the first source device and a
different destination device, and

US 8,949,444 B1
19

where the instructions further comprise:
one or more instructions to apply a single retransmission

timer for the active transport control protocol flows
associated with the multiple pre-established flows:

one or more instructions to detect transport control pro
tocol segment loss;

one or more instructions to modify a bandwidth associ
ated with the multiple pre-established flows based on
the detected transport control protocol segment loss;
and

one or more instructions to modify a sending rate associ
ated with each active transport control protocol flow of
the multiple pre-established flows based on the modified
bandwidth.

19. A first network device, comprising:
one or more processors to:

receive a request from a first Source device to establish a
flow to a destination device;

generate a meta-packet based on the request,
the meta-packet including a tag indicating that an

intermediary flow leading towards the destination
device is to be proxied;

Select a second network device based on the destination
device;

determine whether a pre-established flow, correspond
ing to the intermediary flow leading towards the des
tination device, is active between the first network
device and the second network device;

establish a new flow, corresponding to the intermediary
flow leading towards the destination device, when the

10

15

25

20
pre-established flow is not active between the first
network device and the second network device;

determine that a first source port number, of the first
Source device, is a same value as a second source port
number of a second source device;

increase the first source port number to create a new first
Source port number based on determining that the first
Source port number is the same value as the second
Source port number,

assign the new first source port number to the new flow
after increasing the first source port number; and

send the meta-packet on the new flow when the pre
established flow is not active between the first net
work device and the second network device.

20. The method of claim 1, further comprising:
receiving, by the second proxy device, the meta data unit

via the new flow when the pre-established flow is not
active between the first proxy device and the second
proxy device; and

establishing, by the second proxy device, the flow to the
destination device based on the meta data unit.

21. The first network device of claim 19, where the one or
more processors are further to:

assign a source address of the first network device to the
new flow; and

assign a destination address of the network device to the
new flow.

