发明名称
抗感染功能化的表面及其制备方法

摘要
本发明提供了被功能化以使其包含具有抗感染剂的表面区域的装置。提供了将不同材料表面功能化以使其包含用于结合抗感染剂的活性表面区域的方法。提供了将抗感染部分或试剂结合至功能化表面的方法。
1. 提供具有季铵抗感感染剂的表面的方法，所述方法包括用官能团功能化所述表面，其中所述官能团是有机膦酸盐，所述官能团将所述季铵抗感染剂有效结合至其上，并且所述方法包括使官能团与季铵抗感染剂结合。

2. 权利要求1的方法，其中所述表面选自金属、合金、聚合物、塑料，陶瓷，硅、玻璃、织物和具有至少一个酸性质子的材料。

3. 权利要求1的方法，其中所述抗感染剂是酸功能化的抗感染剂。

4. 权利要求3的方法，其中所述酸是有机膦酸。

5. 权利要求3的方法，其中所述酸选自羧酸、磺酸、亚硫酸，次膦酸、磷酸和异羟肟酸。

6. 权利要求1的方法，其中所述抗感染剂通过共价键合、蒸发沉积、溅射沉积或浸入沉积引入功能化表面。

7. 权利要求1的方法，其中所述表面包括金属或聚合物，并且所述功能化步骤还包括使用醇盐前体使其结合至氧化物、醇盐或混合的氧化物/醇盐层，其中所述功能化聚合物表面可被操作用于将季铵抗感染剂以其共价键合至其上。

8. 权利要求1的方法，其中所述表面是金属或聚合物，并且所述功能化步骤还包括a) 使金属醇盐与所述表面接触；以及b) 使所述金属醇盐经受足以在所述表面上形成氧化物、醇盐或混合的氧化物/醇盐附层的条件，所述条件选自加热、微波，完全水解和部分水解中的一种或多种；并且使所述官能团与抗感染剂的反应基团结合的步骤包括使季铵抗感染剂与所述氧化物附层接触。

9. 权利要求8的方法，其中步骤a) 包括气相沉积或浸入沉积。

10. 权利要求8的方法，其中步骤b) 包括将所述金属醇盐加热至大约50℃至所述聚合物工作温度上限。

11. 权利要求8的方法，其中所述金属醇盐是四叔丁醇锆、四叔丁醇硅、四叔丁醇钛和二（2-甲氧基-乙醇）锆。

12. 权利要求8的方法，其中所述金属醇盐中的所述金属为3-6族或13-14族过渡金属。

13. 权利要求8的方法，其中所述醇盐选自乙醇盐、丙醇盐、异丙醇盐、丁醇盐、异丁醇盐、叔丁醇盐和氯化醇盐。

14. 权利要求8的方法，其中季铵抗感染剂通过共价键合、蒸发、溅射、浸入或提取沉积被引入氧化物附层。

15. 权利要求8的方法，其中所述氧化物附层在其上所述氧化物附层执行地经受完全或部分水解。

16. 权利要求8的方法，其中所述附层是连续的。

17. 权利要求8的方法，其中所述聚合物表面含有能够与所述金属醇盐的金属原子配位的表面配位基团。

18. 权利要求8的方法，其中所述聚合物选自聚酰胺、聚氨基甲酸酯、聚脲、聚酯、聚酰胺、聚酰胺、聚硫酸化物、聚亚砜、聚砜、聚噻吩、聚吡啶、聚吡咯、聚醚、聚硅酮、聚硅氧烷、多糖、氟聚合物、酰胺、二酰胺、多肽、聚乙烯、聚苯乙烯、聚丙烯，玻璃增强环氧树脂、液态晶体聚合物、热塑塑料、二马来酰亚胺—三嗪（BT）树脂、苯并环丁烯聚合物、其之素除增膜（ABF）、玻璃和环氧树脂的低热膨胀系数（CTE）膜，和包含这些聚合物的复合材料。
19. 权利要求 8 的方法，其中所述聚合物选自聚对苯二甲酸乙二醇酯（PET）、聚醚醚酮（PEEK）、聚醚酮酮（PEKK）和尼龙。

20. 权利要求 8 的方法，其包括将金属氧化物、醇盐或混合的氧化物 / 醇盐储层配置至所述表面上，用磷酸处理所述储层以提供在其上的磷酸盐单层，衍生化所述磷酸盐单层并且使所述单层与季铵盐抗感染剂接触。

21. 权利要求 1 的方法，其中所述表面包含硅，并且所述功能化步骤还包括形成键合至天然或合成氧化物涂覆的硅表面的作为相应磷酸盐膜的有机磷酸自组装膜。

22. 权利要求 1 的方法，其中所述功能化步骤还包括在其上形成湿修饰的表面结合的磷酸盐膜。

23. 权利要求 1 的方法，其中所述功能化步骤还包括在表面上形成磷酸盐单层，将所述表面浸入 3-（马来酰亚氨基）丙酸 N- 羧基琥珀酰胺酯溶液中，然后浸入活性肽水溶液中以使所述磷酸盐单层衍生化。

24. 权利要求 1 的方法，其包括将自组装磷酸盐单层键合至金属、合金、类金属或陶瓷的天然氧化物表面，处理所述自组装磷酸盐单层以提供与所述氧化物键合的远端氨基官能团，以及将所述远端氨基季铵化来提供通过所述磷酸盐界面共价键合至所述金属表面的季铵基胺部分。

25. 权利要求 1 的方法，其包括将自组装磷酸盐单层键合至金属、合金、类金属或陶瓷的天然氧化物表面，处理所述自组装磷酸盐单层以提供与所述氧化物键合的季铵抗感染剂。

26. 权利要求 24 的方法，其中所述金属选自钛、不锈钢、钴铬合金、镍、钼、钽、锆、镁、锰、铌；及其合金。

27. 具有抗感染表面的装置，所述表面包含配置于其上的功能化层和配置于所述功能化层上的季铵抗感染剂，其中所述功能化层包括有机磷酸盐，所述功能化层包含能够结合季铵抗感染剂至其上的至少一个部分或官能团，以及能够结合所述功能化层至所述表面的至少一个部分或官能团。

28. 权利要求 27 的装置，其中所述表面选自金属、合金、聚合物、塑料、陶瓷、硅、玻璃、织物和具有至少一个酸性基团的材料。

29. 权利要求 27 的装置，其中所述表面包括聚合物，以及所述功能化层还包括磷酸盐单层，其中所述功能化聚合物表面与所述季铵抗感染剂共价键合。

30. 权利要求 29 的装置，其中所述磷酸盐单层储层至氧化物、醇盐或混合的氧化物 / 醇盐层，所述氧化物、醇盐或混合的氧化物 / 醇盐层沉积于所述聚合物上和衍生自金属醇盐。

31. 权利要求 30 的装置，其中所述氧化物、醇盐或混合的氧化物 / 醇盐层包括选自四价钛、四价钛硅、四价钛硅和二（2- 甲氧基乙醇）钙中的金属醇盐。

32. 权利要求 31 的装置，其中在所述金属醇盐中的所述金属选自 3-6 族或 13-14 族过渡金属。

33. 权利要求 30 的装置，其中所述醇盐选自乙醇盐、丙醇盐、异丙醇盐、丁醇盐、异丁醇盐、叔丁醇盐和氯化醇盐。

34. 权利要求 27 的装置，其中所述季铵抗感染剂是酸功能化的抗感染剂。

35. 权利要求 34 的装置，其中所述酸是有机磷酸。
36. 权利要求 34 的装置，其中所述酸选自羧酸、磺酸、亚磺酸、次膦酸、磷酸和异羟肟酸。

37. 权利要求 29 的装置，其中所述粘附层是连续的。

38. 权利要求 29 的装置，其中所述聚合物含有能够与金属氧化物的金属原子配位的表面配位基团。

39. 权利要求 29 的装置，其中所述聚合物选自聚酰胺、聚氨甲酸酯、聚醚、聚酯、聚酯酰胺、聚硫化物、聚亚砜、聚砜、聚噻吩、聚吡啶、聚吡咯、聚醚、聚硅酮、聚硅氧烷、多糖、氟聚合物、酰胺、二酰亚胺、多肽、聚乙烯、聚苯乙烯、聚丙烯、玻璃增强环氧树脂、液态晶体聚合物、热塑塑料、二马来酰亚胺—三嗪 (BT) 树脂、苯并环丁烯聚合物、味之素增强膜 (ABF)、玻璃和环氧树脂的低热膨胀系数 (CTE) 膜，和包含这些聚合物的复合材料。

40. 权利要求 29 的装置，其中所述聚合物选自聚对苯二甲酸乙二醇酯 (PET)、聚醚醚酮 (PEEK)、聚醚醚酮 (PEEK) 和尼龙。

41. 权利要求 29 的装置，其中所述表面是聚醚醚酮 (PEEK)，并且所述功能化层还包括配置在所述 PEEK 或 PEKK 表面上的衍生化硅酸盐单层。

42. 权利要求 27 的装置，其包括键合至金属、合金、类金属或陶瓷的天然氧化物表面的自组装聚醚硅酸盐单层，其中所述自组装聚醚酸盐单层可被操作来键合多聚季胺抗感染剂。

43. 权利要求 27 的装置，其中所述功能化层还包括键合至金属的天然氧化物表面的聚醚酸盐单层，所述聚醚酸盐单层包含键合至所述金属的至少一个原子频率的金属，以及通过所述聚醚酸盐界面共价键合至所述金属表面的季铵基铵部分。

44. 权利要求 42 的装置，其中所述金属选自钛、不锈钢、钴铬合金、镍、钼、钽、锆、镁、锰、铌及其合金。

45. 权利要求 27 的装置，其包括医疗装置。

46. 权利要求 45 的装置，其包括可移植的或经皮的医疗装置。

47. 权利要求 45 的装置，其包括内窥镜的、关节镜的或腹腔镜的医疗装置。

48. 权利要求 45 的装置，其包括心脏的、心血管的或血管的医疗装置。

49. 权利要求 27 的装置，其选自非编织网、编织网、泡沫、布和织物。

50. 权利要求 45 的装置，其包括矫形外科的、矫形外科断裂或脊柱的医疗装置。

51. 权利要求 45 的装置选自普通外科装置和移植物，所述普通外科装置和移植装置选自导管、分流器、带、网、绳、索、丝、缝线、皮肤和组织缝合器、烧伤片、外固定装置以及临时/非永久的移植物。

52. 权利要求 27 的装置，其中所述功能化层以图样或微型图样的形式配置在所述表面上。

53. 权利要求 27 的装置，其中所述季铵抗感染剂以图样或微型图样的形式配置在所述功能化层上。

54. 权利要求 27 的装置，其中所述功能化层包含至少两个不同的功能化区域。

55. 权利要求 27 的装置，其中所述季铵抗感染剂是连续的。

56. 权利要求 27 的装置，其中所述表面是聚合物，并且所述聚合物选自：聚酰胺、聚氨基甲酸酯、聚醚、聚酯、聚氨酯、聚酰亚胺、聚硫化物、聚亚砜、聚砜、聚噻吩、聚吡啶、聚吡咯、聚醚、聚醚醚酮、聚醚酮酮、聚硅酮、聚硅氧烷、多糖、氟聚合物、酰胺、二酰亚胺、多肽和聚乙
烯、聚苯乙烯、聚丙烯、玻璃增强环氧树脂、液态晶体聚合物、热塑塑料、二马来酰亚胺－三嗪（BT）树脂、苯并环丁烯聚合物、味之素增强膜（ABF）、玻璃和环氧树脂的低热膨胀系数（CTE）膜，和包含这些聚合物的复合材料。
抗感染功能化的表面及其制备方法

【0001】本分案申请是基于申请号为201080014789.6，申请日为2010年2月24日，发明名称为“抗感染功能化的表面及其制备方法”的原始中国专利申请的分案申请。

技术领域

【0002】本发明涉及具有抗感染表面的基材。尤其是，提供将不同材料表面功能化以使其包含用于结合抗感染剂的活性表面区域的方法。

背景技术

【0003】将键合或以其他方式沉积在基材表面上的活化或功能化的层用作基材和其他材料（例如有机材料或金属材料）之间的界面。这种功能化的层使得基材与有机材料或金属材料反应并结合至其上。

【0004】对于许多人（从公共卫生官员、医院和学校管理人员到个人公民）来说，控制感染的需要是一个至关重要的问题。典型地，可通过局部施用消毒剂、防腐剂、抗菌剂等至有可能接触的污染源的表面来实现对感染的控制。常见的消毒剂包括：活性氯例如次氯酸盐、氯胺、二氧化氯和三氯异氰尿酸盐、次氯化氢（wet chlorine）、二氧化氯等，活性氯，包括过氧化物，例如过乙酸、过磷酸钾、过硼酸钠、过硫酸钠以及过氧化氢酸盐（urea perhydrate），碘化合物例如聚维酮碘（iodpovidone）、碘酯、磺化的非离子型表面活性剂，浓缩氯例如乙醇、正丙醇和异丙醇及其混合物，2-苯氧基乙醇以及1-和2-苯氧基丙醇；酚类化合物，甲酚、卤代酚例如六氯酚、三氯生、三氯苯酚、三溴苯酚、五氯苯酚、3,5-二溴-4-羟基苯磺酸钠（dibromomol）及其盐，阳离子型表面活性剂，包括季铵阳离子化合物如苯扎氯铵、溴化三甲基溴化铵或氯化铵（cetyltrimethylammoniumbromideorchloride）、二甲基二甲基氯化铵、西药氯铵、亚氯化氢和其它，以及非季铵盐化合物，例如氯己定、糖皮质蛋白（glucoprotamine）、奥替尼喹二盐酸盐等；强氧化剂，例如氢氧化钾和高锰酸盐溶液；重金属及其盐，例如胶体银、硝酸银、氯化汞、苯汞盐（phenylmercury salts）、铜、硫酸铜、氧化铜（copper oxide-chloride）等，以及强酸（磷酸、硝酸、硫酸、氨基硫酸钠、甲苯磺酸）以及碱（氢氧化钠、氢氧化钾、氢氧化钙）。但是，许多这些化合物对哺乳动物的组织是有害的。此外，这些化合物仅具有短期效果，并且需要不断地再施用。

【0006】外固定装置提供了临时的但必需的刚性约束来促进骨愈合。但是，患者在皮
肤-针的接口延伸至骨组织内的部位有针道(pin-tract)感染的危险。这类并发症可以导致败血症和骨髓炎,其可能需要死骨切除术来修正。甚至,最为严格的针处理和操作后方
案也仅仅具有有限的效果。研究已显示,这类方案并没有降低感染的机率。Davies, R.,等
[0007] 在微创脊柱融合术中,首先将椎弓根螺钉植入椎骨中,然后将杆固定到螺帽里来
固定并稳固受累段。螺钉和杆经管状槽穿过患者皮肤进入脊柱腔(spine space)。如在外部
固定中,螺钉和杆也易于针道感染;由于通过皮肤的移植途径,大大地增加了接触和/或
传递有害细菌的机率。
[0008] 将导管和分流器放置在各种体腔和血管中以便于注射、引流或交换液体。在导管
放置中感染是常见的,并且主要取决于患者插入导管有多久。例如, Kass 报道了具有引流
至开放体系长于 4 天的留置尿导管患者的实际感染率为 100%。Kass, E. H., Trans. Assoc.
Am. Physicians, 1956, 69, 56-63。
[0009] 因此,可以在特别易受寄生感染源影响的场所(如公共场所、建筑物的公共区域、
固定装置等)使用的抗感染表面。此外,需要具有抗感染表面的基材和材料,如医疗装置
(medical device),包括移植物、螺钉、杆、针、导管、支架、手术器械等,其可以通过前期地
杀死在术前和术后试图定殖至装置表面的细菌来预防感染。
[0010] 发明概述
[0011] 依照一个或更多的实施方案,提供了将不同材料表面功能化以使其包含抗感染剂
结合的活性表面区域的方法。
[0012] 根据应用,依照适合的功能化方法将感兴趣的表面功能化,并且将抗感染剂沉积
于功能化表面上。
[0013] 实际上任何可以功能化的表面都适于包含依照所公开的实施方案的抗感染剂。这
类表面的实例包括金属、合金、聚合物、塑料、陶瓷和玻璃。因此,如本文所描述的抗感染表
面可以经任何环境普遍地施用,例如,在手术操作或整间手术室或医院的环境中,由此同时
地并且持续地消除很多(可能不是全部)感染源。
[0014] 可以以多种方式实现依照本发明的基材功能化。例如,有可能用衍生自醇盐前体
的氧化物、醇盐或混合的氧化物-醇盐层功能化聚合物基材(例如但不限于聚酰胺、聚氨基
甲酸酯、聚酰、聚醚、聚醚、聚酯、聚酰胺胶,芳族聚酰胺胶)。聚酰胺链,环氧树脂,聚硅
酮或含有这些聚合物的复合材料)的表面。可以使用这类功能化的聚合物表面以在表面上
共价键合随后的材料或其层,在本发明中该材料或其层包含抗感染部分。例如,含有酸性质
子(例如-OH 或-NH 基团)的基材通过它们与 IV 族醇盐反应而功能化。该方法获得了
结合至本体聚合物表面的分子黏附物,但仅限于其表面含有酸性基团的材料。
[0015] 还有可能形成黏附涂层层,该层可以用黏附物通过加热功能化磷酸的自组装层来
进一步功能化,所述功能化磷酸在基材的天然氧化物表面上,或在衍生自醇盐前体的沉积
氧化物上。可以把多个一种或多种抗感染涂层的部分键合至至少一个功能化的有机磷酸部
分的官能团上。在金属(包括但不限于铁及其合金;不锈钢;钴铬合金;和镍、钼、钽、锆、镁
及包含它们的合金)上发现了这类天然氧化物。
[0016] 在将所述酸连接至天然氧化物或衍生自醇盐前体的氧化物之前,仍然还有可能将
抗感染物键合至磷酸的官能团上。在金属(包括但不限于铁及其合金;不锈钢;钴铬合金;
和镍、钼、钽、锆及包含它们的合金）上发现了该类天然氧化物。
[0017] 在另一个实施方案中，可以通过其中将作为相应的膦酸膜的有机膦酸自组装膜键
合至天然的或合成的氧化物涂覆的 Si 表面的方法来实现硅表面的功能化。将膦酸膜功能
化，使其能够将从小到大的多亚基蛋白质尺寸的生物分子共价偶联到 Si 表面上。
[0018] 在另一个实施方案中，可以将抗感染的肽 - 修饰的表面 - 结合膦酸膜键合至用醇
盐衍生氧化物功能化的金属表面和聚合物表面。
[0019] 预计，根据本发明的抗感染表面修饰方法可以取消在处理金属移植物中通
常必要步骤 - 碳化的需要。如本文所公开的方法提供了将键合至金属表面的层以及转变表
面氧化物为化学上和物理上稳固的物质，因此消除了装置（例如金属移植物）中的腐蚀源。
[0020] 如本文所述的抗感染剂可以包括杀菌剂和抑菌剂，其包括消毒剂、防腐剂和抗生
素。并不是所有的杀菌剂和抑菌剂都可以作为防腐剂用于哺乳动物组织上，因为它们可能
对其具有不良反应。本发明的某些实施方案可以用于不涉及抗感染表面与哺乳动物组织接
触的应用，例如水暖装置（plumbing fixtures）的内表面、建筑材料、系统、洁净室等。在
这类应用中，可以使用某些抗感染剂，例如消毒剂，其并不适合于将要或可能与哺乳动物组
织接触的应用中使用。
[0021] 在某些实施方案中的化合物可以用作在人体中使用的防腐剂，其包括适当稀释的
氯制剂，如氯拉扎尼溶液、pH 调节至 pH7-8 的 0.5%次氯酸钠或次氯酸钾溶液、0.5-1%苯
磺酸氯胺合 (sodium benzencesulphochloramide) 溶液、某些碘制剂，例如聚维酮碘，过氧化
物如过氧化氢溶液和 pH 缓冲的 0.1-0.25%过乙酸溶液，主要用皮肤防腐的有或
无防腐添加剂的酯，弱有机酸，例如山梨酸、苯甲酸、乳酸和水杨酸，某些酚类化合物，例如
水杨酸、酚酸和双水杨酸，以及阳离子活性化合物，例如 0.05-0.5%苯甲烃铵、0.5-4%氯
己定、0.1-2%奥替尼啶溶液。
[0022] 在另一个实施方案中，涉及可能与哺乳动物组织接触的应用中使用的抗感染剂
可以包括季铵化合物，例如氢酸和氢酸衍生物、季铵树状聚合物、银、铜，以及阳离子类物质
(cationic species)；银和铜。
[0023] 同样对本领域技术人员显而易见的是，用来键合或其他方式连接照本发明的具
体的抗感染剂的功能化方法取决于所述抗感染剂的化学性质。
[0024] 依照本发明制备的装置带来了许多临床益处。例如，在局部外部装置中，其抗感染
表面可以杀死在装置 - 皮肤接触处的细菌物种，因此预防针部位感染。包含抗感染表面的
装置可以预防移植表面感染性物种的定殖，潜在地减少深部感染的发生率，特别是在高危
人群中。在具有抗感染表面的导管和分流器中，通过杀死由潜血途径进入患者体内的细菌
使感染的潜在性最小化。另一个实施例是在全髋关节成形术中，抗感染的髋柄 (hip stems)
可以在装置 - 组织接触处杀死细菌物种并且抑制生物膜形成，预防髋关节置换的细菌定
殖，而这种细菌的定殖会因感染而导致松动并且可能需要花费费用以及疼痛的髋关节修正
手术。所述抗感染剂在生理条件下是高度稳定的。所述抗感染剂并没有从其材料主体中浸
出，所以没有不期望的继发后果。由于抗感染剂的纳米标度，所以它不会对所需的机械性能
表面特征造成干扰，而这种特征对于装置（例如移植物）的功能来说可能是至关重要的。所
述抗感染剂不为肉眼所见，并且不干扰鉴别特征，其包括有色的阳极化或产物标记。
[0025] 依照本发明的装置不限于医疗装置。例如，具体表达本发明公开内容的装置可以
说明书

包括具有抗感染表面的固定装置、结构、配件（fitting）、护栏（barriers）等。

附图说明
[0026] 图1描述了结合至依照本发明公开内容的至少一个实施方案的表面的抗感染剂的简图。
[0027] 图2描述了结合至依照本发明公开内容的至少一个实施方案的表面的抗感染剂。
[0028] 图3描述了依照本发明公开内容的至少一个实施方案的抗感染剂的作用方式。
[0029] 优选实施方式的详述
[0030] 在下列为了说明的描述中，具体的数量、材料和构型都是为了透彻理解本发明而设。但是，对于本领域的普通技术人员显而易见的是，即使没有这些具体的细节也可以实施本发明。在某些情况下，省略或简化了熟知的特征以免干扰本发明。此外，在说明书的引用短语“一个实施方案”或“实施方案”的提及意指在本发明的至少一个实施方案中包括了所描述的与所述实施方案有关的具体特征、结构或特性。在本说明书中多个位置出现的引用短语“在一个实施方案中”不必都指的是相同的实施方案。
[0031] 通常，依照一个或多个实施方案，为将不同材料表面功能化以使其包含抗感染剂结合的活性表面区域提供了方法。根据应用，可以将感兴趣表面功能化并且将抗感染剂沉积于功能化表面上来提供具有抗感染表面的装置。
[0032] 现参见图1，通常依照本发明公开内容的表面10包含功能化层20和抗感染剂30。
[0033] 表面10实际上可以是适用于接受功能化层20的任何材料。这类材料的实例包括金属、合金、聚合物、塑料、陶瓷、硅、玻璃和有酸性质子例如-OH或-NH基团的表面。
[0034] 功能化层20可以是适合具体应用的任何层。功能化层20的性质和组成取决于意图包含抗感染剂30的表面10和将结合至功能化层20的抗感染剂30。例如，如文中更详细的描述，有可能用衍生自硅烷偶合的氧化物-醇盐或混合的氧化物-醇盐层功能化聚合物基材表面10。可以使用这类功能化的复合物表面以共价键合在所述表面上的随后的材料或抗感染剂30的层。
[0035] 其他功能化层20可以包括：沉积于基材表面天然氧化物上的功能化的膦酸；沉积于氧化物层的功能化膦酸（直接沉积于底部基材或衍生自硅烷偶合物）；对于酸性质子（例如-OH或-NH基团）的表面，将表面包含与1V族醇盐发生反应；对于具有硅表面的表面，结合至天然或合成的氧化物涂覆Si表面的作为相应的膦酸膜的膦酸自组装膜；等。
[0036] 可以采用的金属表面积包括钛及其合金；不锈钢；钴铬合金；镍、钼、钽、锆、镁、铝、铬以及包含它们的合金；等。
[0037] 可以采用的与本实施方案有关的抗感染剂30包括杀菌剂和抑菌剂，其包括消毒剂、防腐剂和抗生素。消毒剂包括：活性氯例如次氯酸盐、氯胺、二氧化氯、氯气以及氯化氢化合物如聚氯乙烯、碘酊、碘化的非离子型表面活性剂，浓缩液例如乙醇、正丙醇和异丙醇及其混合物，2-氯苯氧乙醇以及1-和2-氯苯氧基丙醇，酚类化合物，甲酚、卤代酚例如六氯酚、三氯苯、二氯苯酚、五氯苯酚，3-和5-二溴-4-羟基苯磺酸钠及其盐，阳离子型表面活性剂，包括季铵阳离子例如苯扎氯铵、醇胺基三甲基溴化铵或氯化铵、二乙基二甲基氯化铵、西必氯铵、苄索氯铵和其它，以及非季铵盐
化合物，例如氯已定、糖精蛋白、奥替尼啶二盐酸盐等）；强氧化剂，例如臭氧和高锰酸钾溶液，重金属及其盐，例如胺氧银、硝酸银、氯化汞、苯汞盐、铜、硫酸铜、氧化铝等，以及强酸（磷酸、硝酸、硫酸、氨基硫酸、甲苯磺酸）以及碱（氢氧化钠、氢氧化钾、氢氧化钙）。

[0038] 并不是所有的杀菌剂和抑菌剂都可以作为防腐剂用在哺乳动物组织上，因为他们可能对其具有不良反应。对于本领域技术人员显而易见的是，本发明的某些实施方案可以用于不涉及抗感染表面与哺乳动物组织接触的应用，例如用于外科防护的织物和水暖装置的内表面。建筑材料、管道系统、洁净室等。在这种应用中，可以使用某些抗感染剂，例如消毒剂，其并不适合在将要或可能与哺乳动物组织接触的应用中使用。

[0039] 下列是可以用作在人体中使用的防腐剂的某些化合物。适当稀释的氯制剂，如氯拉扎尼溶液，pH调节至pH7-8的0.5%次氯酸钠或次氯酸钾溶液，或0.5-1%苯磺酰氯胺钠溶液，某些碘制剂，如聚维酮碘，过氧化物如过氧化氢尿素溶液和pH缓冲的0.1-0.25%过乙酸溶液，主要用于皮肤防腐的有或无防腐添加剂的醇，如有机酸，如山梨酸、苯甲酸、乳酸和水杨酸，某些酚类化合物，如六氯酚、三氯生和双三氯酚，以及阳离子活性化合物，如0.05-0.5%苯甲烷铵、0.5-4%氯已定、0.1-2%奥替尼啶溶液。

[0040] 在优选的实施方案中，涉及可能与哺乳动物组织接触的应用中使用的抗感染剂包括但不限于季铵化合物例如胆碱和胆碱衍生物、季铵盐聚合物、银、铜、以及阳离子类物质。具有长链基团的季铵类化合物“quats”显示出由破环细胞壁证实的杀生物性。Nakagawa,Y.,等人，Appl.Environ.Microbiol.,1984,47:3,513-518,其全部内容通过引用并入本文。所述季铵类阳离子官能团进入到破坏细菌的细胞膜。季铵盐聚合物显示出类似的天然抗生物性，并且当其与抗生性官能团或分子组合时，能够通过增加荷载进一步地增强抗微生物活性。已观察到银和铜对微生物有抑动力作用。研究提示银和铜离子通过与反应基团结合而使靶组织中的蛋白质变性，这种结合导致沉淀和失活。银还显示干抗酶和代谢过程。阳离子类物质被静电吸附至带负电荷的细菌细胞壁。阳离子抗微生物多肽已显示出对靶生物的调节机制具有抑制作用。

[0041] 功能化抗感染剂在某些应用中可能是有用的，在该情况下抗感染剂可能包含酸功能化的基团，其中的酸是例如有机膦酸、羧酸、磺酸、4亚磺酸、次膦酸、膦酸、磷酸或亚羟肟酸。

[0043] 如图3所示，季铵阳离子官能团进入并且破坏细菌细胞膜。

[0044] 功能化方法

[0045] 许多方法适合于功能化表面。同样对本领域技术人员显而易见的是，用来键合或以其他方式连接依照本发明的具体抗感染剂的功能化方法取决于所述抗感染剂和感兴趣
的表面的化学性质。

[0046] 有可能用衍生自醇盐前体的氧化物、醇盐或混合的氧化物 - 醇盐层来功能化聚合
物基材（例如但不限于聚酰胺、聚氨基甲酸酯、聚酯、聚醚、聚醚）和其他的、芳族聚酰胺、聚
氟代烯烃、聚醚醚酮、聚醚酮醚、环氧树脂、聚硅酮或包含这些聚合物的复合材料）的表面。
可以使用这类功能化的聚合物表面以共价键合在表面上随后的抗感染剂材料或层。可以用
金属氧化物层（氧化物黏附层）涂覆所述聚合物表面。

[0047] 在一个实施方案中，可以用连续氧化物黏附层（即由彼此化学键合和连接的单个
分子的基质形成的层）涂覆所述聚合物表面，而不是单独的分子涂覆表面。在该实施方案中，
将金属醇盐分子与在聚合物表面的至少一部分上键合到一起以形成连续层，然后转化为
氧化物功能化层。

[0048] 还有可能形成黏附涂层层，所述黏附涂层层可用黏附物通过加热基材天然氧化
物表面上的功能化的磷酸的自组装层来进一步功能化。在美国专利申请公开文本
2004/0023048（其全部内容通过引用并入本文）中详细描述的这种方法，提供了在材料的
天然氧化物表面上的一种多段（segment）的、基于磷的涂层层，该涂层层具有键合至材料
的天然氧化物表面的双功能基团有机磷酸的段和键合至基于有机磷酸的段的连接段。依照
这种方法，可以提供具有多个功能化的有机磷酸部分（其通过膦酸键合至基材的天然氧
化物表面）和多个一种或多种形式抗感染涂层部分（每种涂层部分被键合至少一个功能化的
有机膦酸部分的官能团）的基于磷的涂层层。当以金属络合物的方式键合时，金属络合物
还表征为衍生自金属试剂，优选金属醇盐试剂。

[0049] 根据将要功能化的基材和所需的抗感染部分，可以采用其他功能化方法。例如，包
含酸性基团（例如, -OH 或 -NH 基团）的基材有可能通过它们与 IV 族醇盐的反应而功能
化。该方法得到了分子黏附物，所述分子黏附物结合至本体聚合物表面的，但限于它们表
面上有酸性基团的材料。在 Dennes, T. J. 等人., High – Yield Activation of Scaffold Polymers for

[0050] 可以将有机 SAM 共价键合至金属氧化物或硅氧化物基材的表面。在金属氧化物或
氧化硅基材表面上形成自组装有机单层，可能需要提供金属氧化物或聚合氧化硅基材保护层，
所述保护层具有过渡金属（选自周期表的 IVB 族、VB 族或 VIB 族）共价键合至其上的醇盐
表面层，其中所述醇盐以过渡金属原子键合至基材保护层的表面氧；以及使过渡金属醇盐
表面层与有机化合物反应（该有机化合物能够与过渡金属醇盐反应，形成共价键合至过渡
金属的有机配体），由此在基材表面上形成以过渡金属原子共价键合至基材的表面氧的机
自组装单层。在美国专利 No. 6, 146, 767（参见例如第 3 节，第 1–22 行和实施例）（其全
部内容通过引用并入本文）中，详细地描述了该方法。可与金属醇盐反应的适合的酸官能
团包括例如羧酸、磺酸、亚磺酸、次膦酸、膦酸、磷酸和异羟肟酸。

[0051] 例如，在美国专利 No. 6, 645, 644（参见例如第 4 节，第 15–33 行和实施例）（其全
部内容以引用的方式并入本文）中详细地描述的方法包括形成共价键合至具有氢氧化物
的基材表面的磷酸或膦酸配体层，其包括用磷酸或有机膦酸涂覆具有氢氧化物的基材并加
热该涂层的基材，直至磷酸或有机磷酸盐共价键合至基材。当基材是金属或金属合金时，所述磷酸形成富含游离羟基的无机磷酸涂层。

【0052】与过渡金属单磷酸和聚磷酸的涂层相似，羟基也可用于添加抗感染剂。

【0053】在另一个实施方案中，硅表面的功能化可以通过如下方法来实现，其中将作为相应磷酸膜的有机磷酸的自组装膜键合至天然或合成的氧化物层涂覆的 Si 表面。将所述磷酸膜功能化，使其能够将从小鼠到大的多亚基蛋白质尺寸的生物分子共价偶联至 Si 表面。连接到这类表面的抗体能够选择性识别各种各种的分子，包括在细菌性病原体和寄生虫表面上的抗原。在 Midwood 等人，《Easy and Efficient Bonding of Biomolecules to an Oxide Surface of Silicon, Langmuir, 2004, 20, 5501-5505》中详细地描述了该方法，其全部内容通过引用并入本文。实验细节显示在第 5501 页，第 2 栏 - 第 5502 页，第 2 栏；还参见在第 5502-5504 页的讨论和附图。

【0054】在另一个实施方案中，表面结合的磷酸膜可以用于将铁及其合金（例如 Ti-6Al-4V）功能化以连接抗感染肽。如本领域所熟知的，铁及其合金机械强度高并且可以抵抗化学侵蚀，因此是可以接触骨的外科移植物的首选材料。在 Gawalt 等人，《Bonding Organics to Ti Alloys: Facilitating Human Osteoblast Attachment and Spreading on Surgical Implant Materials》, Langmuir, 2003, 19, 200-204 中详细地描述了该方法，其全部内容通过引用并入本文。实验细节显示在第 200 页，第 2 栏 - 第 201 页，第 2 栏；还参见在第 201-204 页的讨论和附图。

【0055】金属氧化物粘附

【0056】金属氧化物粘附技术涉及经由配位基团结合至表面的氧化物粘附层，其中氧化物粘附层是金属醇盐，通常是 M-O-R 其中 M 是金属原子。该氧化物粘附层是经受例如但不局限于热解、蒸发、完全水解和/或部分水解的过程的层。该技术很适合聚合物或金属的实施例。可以使用功能化的表面（例如功能化的金属或聚合物）在在所述表面上共价键合随后的抗感染剂材料或层。

【0057】适合的聚合物基材包括能被功能化的任何聚合物，并且可以包括含有合成的和/或天然聚合物分子的任何不同物质。适合的聚合物基材的实例包括但不限于聚酰胺、聚氨酯、聚酯、聚酰亚胺、聚砜、聚酰胺、聚醚酮、聚醚醚酮、聚碳酸酯、聚甲基丙烯酸酯、纤维素酯、聚乙烯醇、聚丙烯酸酯、聚乙烯基醚、聚二甲基硅氧烷、聚乙醇酸等。氧化物粘附层通过在聚合物的表面上的配位基团与金属醇盐的金属之间的共价键来黏附至聚合物表面。

【0058】过渡金属的醇盐特别适用于本发明。周期表 3-6 族和 13-14 族的金属是用于本发明组合物所期望的金属。优选的金属是 Zr、Al、Ti、Hf、Ta、Nb、V 和 Sn，最优选的金属是 Zr、Ti 和 Ta。根据过渡金属在周期表上的位置，过渡金属醇盐将具有 3 至 6 个醇盐基团或氧化和醇盐基团的混合物。优选的醇盐基团具有 2 到 4 个碳原子，例如乙醇、丙醇、异丙醇、丁醇、辛醇，以及醇和醇酯。最优选的金属醇盐是四叔丁醇锆、四叔丁醇钛和五乙醇钻。

【0059】依照该实施方案制备组合物和装置的方法包括活化聚合物表面，所述活化包括步
骤 a) 使金属醇盐与表面接触；和 b) 使金属醇盐经受足以在所述表面上形成黏附层的条件，所述黏附层由氧化物、醇盐或混合的氧化物/醇盐形成。可以通过本领域那些技术人员已知的任何适合的技术（例如但不限于气相沉积（vapor deposition）或浸入沉积）来实现所述接触的步骤。可以通过金属醇盐经受热解、微波、完全水解或部分水解的条件来实现形成氧化物黏附层的所述步骤。当采用加热条件下时，优选的是将金属醇盐加热至至少 50°C 和聚合物工作温度上限之间。

【0060】在一个实施方案中，可以将金属醇盐分子在聚合物表面的至少一部分上键合到一起以形成连续层，然后再转化为氧化物功能化层。连续层的一个主要优势在于整个由连续金属氧化物黏附层覆盖的表面都被活化了。在 2009 年 4 月 23 日公布的美国专利申请公开文本 2009/0104474（其全部内容以引用的方式并入本文）中详细地描述了该方法更全面的讨论。该方法提供了可以用于在表面上共价键合随后的材料或其层的功能化的聚合物表面。通常，该方法涉及将金属醇盐沉积于聚合物上，以及将所述基材加热，无论有无（完全或部分）水解，以使金属醇盐分子形成共价连接至聚合物表面的连续金属氧化物黏附层。例如，首先将金属醇盐的分子通过本领域已知的方法（例如但不限于气相沉积、刷上（brush-on）或浸入沉积）引入聚合物分子反应性近似处。如果需要的是超薄层，气相沉积为优选的方法。然后将沉积的金属醇盐分子加热至大约 50°C 和聚合物的工作温度上限之间（不应在聚合物的玻璃转变温度或在高于聚合物的玻璃转变温度下加热）来热解金属醇盐。在热解或水解期间，单独的金属醇盐分子被共价键合到一起形成连续的金属氧化物黏附层。所述金属氧化物层可以是薄膜的，大约 1nm-1μm，优选大约 2nm，这使得它是柔韧的。所述薄膜使得氧化物黏附层在基底材料弯曲不会破裂、剥落或破坏。在一个实施方案中，使用该功能化方法，聚合物表面可以包含酸性功能性区域和金属醇盐功能化层涂覆的区域。在这些实施方案中金属醇盐功能化层可以被视为填充了酸性功能性区域间的间隙。依照另一个实施方案金属醇盐功能化层可适用于具有酸性功能性的聚合物的区域。

【0061】依照该实施方案的组合物包含经氧化物黏附层结合至聚合物基材的抗感染剂。这类附加的抗感染材料可以包括但不限于季铵化合物、季铵树状聚合物、银、铜和阳离子类物质。下文详述了更完全但并不详尽的抗感染剂清单。对本领域技术人员来说附加的抗感染材料的有效性是显而易见的。例如，包含抗感染表面功能性的化学和载体材料也使感染最小化。同样地，可以将抗感染材料纳入洁净室应用、供水用品（例如井泵、水净化和导管）中。

【0062】如上所述更详细的描述，将铜和银作为抗感染材料进行举例说明。

【0063】可以通过本领域技术人员已知的技术将抗感染材料引入氧化物黏附层，这些技术包括但不限于共价键合、蒸发沉积、溅射（sputter）沉积或浸入沉积。在某些实施方案中，可能期望在附加材料沉积前使氧化物黏附层受完全或部分水解。在某些实施方案中，可能期望使所述的沉积附加材料经受加热或微波处理。

【0064】依照另一个实施方案，可以将黏附层以图样或微型图样的形式沉积在基材上。

【0065】依照另一个实施方案，可以将抗感染材料以如上文更详细描述的图样或微型图样的形式沉积在黏附层上。

【0066】将所述氧化物黏附层与上述描述的抗感染材料反应，从而将所述抗感染材料经氧化物黏附层结合至聚合物表面。可以通过本领域可利用的不同方法（例如但不限于共价
键合、蒸发沉积、溅射沉积，或浸入沉积）将所述附加材料与氧化物粘附层反应而添加。在
本发明的一个实施方案中，可以使用平板印刷、印刷或冲压技术（stamp technique），添加
所述材料以将材料图样置于所显露（lay）的氧化物粘附层上。可以使用抗蚀剂完全地涂覆
所述聚合物表面，并通过掩模（mask）将其暴露于紫外光下。暴露于紫外光下的区域可以显
影并移除，在致抗蚀剂内留下开口，由此产生在小片区域内至聚合物表面的通路。用金属氧
化物粘附层将这些区域功能化。然后将其抗蚀剂溶解掉，在包含所述粘附层的聚合物表面
上留下小片成图区域。所述成图区域优先与选择的抗感染剂反应。
[0067] 依照一个实施方案，抗感染材料的沉积前，可以使所述氧化物粘附层经受完全
或部分水解以得到在金属原子上保留有一个或多个醇盐基团的氧化物粘附层。吸收银盐或
铜盐溶液，接着还原，使金属表面能够分别涂覆上银或铜微粒。氧化锆粘附层的形成还能够
通过吸收银盐（例如硝酸银）或铜盐（例如硫酸铜）溶液接着用还原剂还原，使例如 PEEK
表面金属化。例如，二乙基二碘烷或硼氢化钠将包含在氧化锆粘附层基质中的前述盐分别
还原为金属银或金属铜。
[0068] 在一个预示性的实施方案中，氧化锆粘附层还可以在金属（例如钛）的天然氧化
物表面生长。
[0069] 使用金属氧化物功能化的抗感染剂的实施例
[0070] 应该时，本领域的普通技术人员可以利用前述说明和下列示例性的实施例来制备
和使用本发明所述的化合物和物品，并且实践所要求保护的方法。为说明本发明给出了下
列实施例。应当理解本发明并不限于在这些实施例中所描述的具体的条件或细节。

实施例
[0071] 实施例 1. 活化聚合物的金属化
[0072] 聚酰亚胺、芳族聚酰胺和 Gore-Tex 复合物的活化聚合物制备如下：
[0073] 在聚合物基材上形成氧化锆薄膜；
[0074] 除非另外指明，所有试剂都得自 Aldrich 并且都按原样使用。PET、PEEK 和尼龙 6/6
得自 Goodfellow 公司。乙醚用 Calde 干燥；并且四氢呋喃（THF）用 KOH 干燥过夜。在使用
之前将两者蒸馏。使用配备表面光学 SOC4000SH 镜反射头附件的 Midac M2510C 干涉仪分
析表面修饰的样品。使用光子技术国际荧光光光度计进行荧光测定试验。
[0075] 将聚合物基材（尼龙 6/6、PET 或 PEEK）置于沉积室中，该沉积室配备两个用于
暴于真空或四氯丁醇蒸汽的开关。将所述室在 10^{-3} 托下排气 1 小时，并且将聚合物片
暴于四氯丁醇蒸汽中（伴外部排气）1 分钟，接着无外部排气暴露 5 分钟。该循环重复
2 次，之后将加热线用于所述室，并且使所述室的内部温度升至 60°C 并保持在此温度 5 分
钟（无外部排气）。然后使所述室冷却，并随后在 10^{-3} 托下排气 1 小时以确保移除过量的四氯
丁醇，并且得到表面活化的聚合物。AFM 表面形貌显示氧化锆膜是薄的。IR 分析显示某
些尼龙基团在沉积和热解的膜中。
[0076] 进行采用下述聚合物和树脂的使用四氯丁醇的试验，收到了良好的效果：聚酰
亚胺 Kapton®、聚乳酸交酯－乙醇酸酯共聚物（PLGA）、聚 3－羟基丁酸－戊酸酯共聚物
（PHBCV）、Gore-Tex 和芳族聚酰胺。预计，其他聚合物的类似处理将会得到类似的结果。
[0077] 用铜盐的水溶液处理所制备的活化的聚合物，将其吸附至氧化锆粘附层上。用
硼化钠或胺硼烷处理得到了铜涂覆的聚合物。基于电子散射 X-射线的分析 (Electron dispersive X-ray based analysis) 显示铜和锆都存在。

【0078】类似地，硝酸盐用于将金金属沉积至活化的 PET 上。预计，其他聚合物的类似处理将会得到类似的结果，同样使用其他金属盐要使用类似的还原剂。

【0079】实施例 2 化学镀铜

【0080】首先使用基于锆的黏附层处理 Kapton 样品，然后使用硫酸铜处理，然后将如实施例 1 所描述的乙二胺硼烷放置在 60 ℃氮气下的镀铜槽液中。所述槽液由 0.1M 氢氧化钠水合物、1.2M 乙二胺、0.1M 硫酸铜水合物、0.03M 硫酸亚铁水合物、6.4 × 10^-4M2,2-二吡啶、1.2MNaCl 和足够的硫酸酸组成以得到 pH = 6。将少量的 PEG200 (2.5mg) 加入到 50ml 的槽液中。

【0081】实施例 3 聚合物金属化

【0082】锆的氧化物 / 醇盐黏附层在铜金属在 PET 和 Kapton®聚酰亚胺膜表面上生长中起核作用；该方法为基于聚合物的装置基材的成图金属化提供了基础。

【0083】黏附层可以用于使聚合物表面金属化的基质。在一个典型的方法中，Kapton®聚酰亚胺膜被涂于黏附层的 5nm 厚层，然后浸入 200mM CuSO₄ 水溶液中。将样品在去离子水中洗涤，并且 EDX 分析证实存在 Cu 和 S。在随后用二甲胺硼烷（1M 水溶液、6 小时、50℃）（缓慢）还原之后，形成金属铜。也可以使用在 Kapton®聚酰亚胺膜上成型的黏附层进行金属化。将金属化表面在水中进行超声处理并且使用棉签 (Q-tip) 物理研磨，接着进行 EDX。通过这种方式显示在 Kapton® 聚酰亚胺膜表面的 Zr 和 Cu 图样如实地复制了掩膜的设计。

【0084】通过 AFM 也观察到了相应的图样。经 AFM 测量产生的铜“种子”的厚度比黏附层的起始膜厚约 20 倍。这表明黏附层在 CuSO₄ 在聚酰亚胺表面处的生长中起核作用。使用含水硼氢化钠将 CuSO₄ 处理的 Kapton® 聚酰亚胺膜快速还原，也得到了铜金属；此时，AFM 分析显示 Cu 图样被埋入聚合物表面的纹孔内，在许多情况中该纹孔的顶部在聚合物表面上大约 500nm。应相信，相对更快硼氢化物还原是充分放热的以便聚合物在还原反应的熔化。

【0086】Kapton®聚酰亚胺膜和 PET 的金属化。通过将活化的聚合物表面在 200mM CuSO₄ 水溶液中浸泡过夜，接着在 1M 含水二甲胺硼烷或硼氢化钠中还原 6 小时，实现聚合物表面成膜或未成膜的铜金属化。用能量分散 X 射线分析证实了铜金属化，该分析是使用配备 PGT-I MIX PTS EDX 系统的 FEI XL30FEG–SEM 进行的。

【0087】功能化的有机磷技术
使用功能化的有机磷技术可以功能化基材。参见，通过引用完整地加入本文的美国专利申请公开文本2004/0023048。基于有机膦酸的段可以衍生自功能化的有机膦酸例如含有大约2至大约40个碳原子的烃配体的ω-功能化的磷有机膦酸，其中烃配体是直链或支链、饱和的或不饱和的、经取代的或未经取代的、脂族的或芳族的亚烷基部分。

可以将脂肪苷在段部分适用的取代基添加到烃配体的任何碳原子上。适用的取代基是，例如，反应性的官能团（例如，羟基、羧基、氨基、巯基、膦酸基、膦酸根团、膦酸酯基）及其化学衍生物。可以理解，可以参与进一步衍生化的任何官能团都可以使用。另外，亚烷基烃配体可以包含在结构内或悬挂至结构的反应性部分（例如不饱和的部位）。在聚合反应中，该反应部分可以与反应性取代基进一步反应，所述反应性取代基在聚合到其他四羰基部分（其在脂酸衍生物反应期间被结合至天然氧化物表面）的烃配体上。用这种方式，可以在氧化物表面上形成膦酸-有机-聚合物层。这类聚合反应的实施例如膦酸的丙烯酸衍生物表面涂层的制备。电位通过丙烯酸酯和甲基丙烯酸酯取代基时，一旦暴露于光照或空气下聚合便自发进行。如果反应性涂层较少，可以通过将该涂层暴露于常规聚合试剂和条件中进行聚合。

在某些实施方案中，涂层由具有与抗感染剂进一步反应形成共价键的有机配体（其在配体的碳上被功能化）的膦酸形成。对于功能化的膦酸，将酸应用于氧化表面通常形成自组装膦酸膜，其具有非晶质材料表面和可用于共价键合或进一步化学修饰的碳。优选的官能团包括羟基、氨基、羧基、巯基、膦酸基、膦酸根和膦酸酯基。

还可以理解，在结合至氧化物表面的膦酸的有机部分上伸出的反应性取代基可以与经历水解反应的试剂进一步反应。实例包括金属醇盐，其实例是那些具有M(0-RO)结构的金属醇盐，其中M为金属，R为直链或支链、饱和的或不饱和的、脂族的或芳族的、经取代的或未经取代的烃部分，并且“n”等于金属的稳定态。金属醇盐化合物的实例是四酸醇盐、四酸醇酸和四酸醇糖，其中R是酸-丁基，M分别是Zr、Ti和Si，并且“n”是4。可以理解，还可以采用具有其他配体外，还具有两个或多多个醇氧配体的其他可水解反应的化合物。例如，可以采用用酸醇盐，如二（2-甲氧基-醇）钙。通常，在2族到14族中的醇配位的金属将在与当前发展的膦酸涂层进行的这些继发功能化反应中体现出实用性。

用于通过前述技术形成涂覆物品的方法可以包括（a）将功能化的有机磷化合物的层沉积在氧化物基材上；（b）将步骤（a）的基材加热至足够将功能化的有机磷化合物键合至氧化物基材的温度；（c）将单独的层沉积至步骤（b）产生的层上；以及（d）通过官能团将步骤（b）和（c）产生的层键合。

优选的官能团是羟基-、羧基-、氨基-、巯基-和磷酸根-官能团，或通过与金属或有机金属试剂（例如醇盐）反应进一步衍生化的这些基团。该基团通过强化学键合（例如共价键合）或通过弱键合相互作用（例如氢键合）与有机、无机或生物活性的涂层层的部分进一步键合。

优选的用于衍生官能团的金属试剂是金属醇盐，例如四酸醇酸和四酸醇酸和四酸醇锌和二（2-甲氧基-醇）钙。

将抗感染剂连接至天然氧化物表面的优选的方法包括：提供如上文所述的基于磷的涂层，其中功能化的有机膦酸部分是羟基、胺基或巯基，其已经用交叉偶联试剂（例如对-硝基苯基氯甲酸酯）衍生，并进一步与氨基或羟化的部分反应，其中氨基或羟化的部分
是分别由碳-碳键或碳-氧键合至羰基基团的二胺或氨基醇，该反应为衍生化用的合成物。自上述键是氨基甲酸乙酯、酸酸酸酯、酯、硫代羧酸酯或硫胺；然后将远端氨基季铵化。

【0096】 依照本发明的另一个实施方案，提供了将基于磷的酸部分层键合至表面（例如但不限于氧化物表面，如氧化钛、氧化锆和氧化铝）的方法，该方法包括将基于磷的酸部分自组装层涂覆所述氧化物表面并且加热所述涂覆的氧化物表面，直到将自组装层键合至其上，所述基于磷的酸部分包含选自磷酸和有机磷酸酯的自组装层。

【0097】优选的涂层是那些已经由烷基、芳基和亚芳基-有机磷酸酯，包括经取代的烷基、亚烷基和亚芳基-磷酸酯组成的涂层。更优选的是，经取代的烷基磷酸和亚烷基磷酸酯，所述磷酸具有代替磷酸官能团的反应性取代基。优选的氧化物表面是钛、锆和铝材料的天然氧化物表面。

【0098】 用有机磷酸酯的自组装膜功能化硅表面。

【0099】 可以把作为相应磷酸酯的有机磷酸酯的自组装层键合至天然或合成的氧化物涂覆的硅表面。Midwood等人，Easy and Efficient Bonding of Biomolecules to an Oxide Surface of Silicon.Langmuir2004,20,5501-5505，将其通过引用完整地并入本文。将磷酸脂功能化，以使其能够共价偶联可能是抗感染的生物分子，其价偶联抗感染剂或抗感染部分；和/或将抗感染剂或抗感染部分与生物分子共价偶联。如用本文所公开的所有功能化技术，可以根据具体应用将所述功能化表面和/或所述抗感染剂在基材上成图。

【0100】 用肽功能化钛。

【0101】 可以很容易地制备肽修饰的表面结合的磷酸酯，所述磷酸酯具有高表面覆盖率。Gawalt等人，Bonding Organics to Ti Alloys:Facilitating Human Osteoblast Attachment and Spreading on Surgical Implant Materials”Langmuir2003,19,200-204，将其通过引用完整地并入本文。依照Gawalt描述的技术，可以将抗感染肽结合至功能化的表面。

【0102】 可以添加至例如上文所述的功能化层的有机抗感染部分包括，季铵烷基胺、季铵烷醇、松萝酸、阳离子肽例如当基霉素中性粒细胞防御素、 intéressant、短杆菌肽、硫基-组蛋白-衍生的化合物、β-发夹序列（beta-hairpin）、血红蛋白、乳铁蛋白；（二，三）离子肽例如神经肽前体、芳族肽、血蓝蛋白衍生物；其它抗肽例如细菌素（bactericins）、抗菌肽、血栓素（thrombocidin）和histanins，抗体，抗生素包括四环素类、氯霉素类、青霉素类、头孢菌素类、单抗类、碳青霉烯类、磺胺类、甲氧苄啶类、大环内酯类、林可胺类、链霉素类、链霉素类、喹诺酮类、糖肽类、多粘菌素类、咪唑衍生物、硝基呋喃衍生物；甾类；氯己定；酚化合物类包括三氯生；环氧化物，具有抗感染性的聚合物和/或多肽类。

【0103】可以被结合的无机抗感染涂层包括银、铜、氧化锌、氧化钛、沸石、硅酸钙、氢氧化钙、磺、次氯酸钠、亚硫酸盐和硫酸盐。

【0104】 优选的抗感染部分是季铵化合物，例如苄基氯胺、西曲溴铵、西曲氯铵、二甲基二十八烷基季铵、季铵烷基盐酸盐聚合物、银、铜、阳离子类物质例如苯扎氯铵，Bronidox；和烷烃类碱。

【0105】依照本发明的组合物和装置包括但不限于具体为矫形外科、心脏血管、整形、皮肤、普通、上颌或神经外科医生或内科医生应用的任何装置，其包括但不限于心血管或血管的移植装置例如支架、替换的心脏瓣膜，替换心脏瓣膜的组件、小叶、缝合环(sewing
cuffs)、孔、瓣膜环、起搏器、起搏器聚合物网袋、起搏器电极导线（pacemaker leads）、起搏线（pacing wires）、心脏内衬片（patches）/ 补棉（pledgets）、血管补片、人造血管、血管内导管和除颤器（defibrillators）；组织支架；非编织网（non-woven meshes）、编织网和泡沫；矫形外科移植装置包括矫形外科创伤移植剂、关节移植剂、脊柱移植剂、板（plates）、螺钉、杆、塞子、笼、针、钉子、线、索（cables）、楔、支架、选自手关节、腕关节、肘关节、肩关节、脊柱关节（spine joints）、髋关节、膝关节和踝关节的人工关节；骨替换：骨固定环扎术和上颌面移植剂；脊柱移植装置包括椎间笼（intervertebral cages）、椎弓根螺钉、杆、连接器、交叉连接（cross-links）、索、间隔器（spacers）、小面积替换装置（facet replacement devices）、小面积撑开装置（facet augmentation devices）、椎骨间减压装置（interspinous process decompression devices）、椎骨间间隔器、椎骨撑开装置、线、板、脊柱关节成形术装置、小面积固定装置、骨植、软组织锚、钩子、间隔笼（spacing cages）和接合保护笼（cement restricting cages）；诊断性移植物、生物传感器、葡萄糖监测装置、外部固定装置、外固定移植物、牙移植物、上颌面移植物、外部骨骼固定装置和移植物；接触镜片、眼内移植物、人工角膜；选自分流器和线圈的神经外科装置和移植物；选自导液管、分流器、带、网、绳（ropes）、索、丝、缝线、皮肤和组织缝合剂、骨植、软组织锚、烧伤片（burn sheets）和血管补片，以及临时（/非永久移植物的普通外科装置和移植物。具体地，这类装置包含抗感染源的抗感染剂。

[0106] 实施例

[0107] 有机硅界面衍生化黏附基

[0108] 将锆氧化物 / 醇盐黏附层沉积至尼龙 6/6 上，然后将其与 11- 羟基十一烷基膦酸溶液反应以形成有机膦酸单层。参见 Dennes, T. J. 等人，High-Yield Activation of Scaffold Polymer Surfaces to Attach Cell Adhesion Molecules. J. Am. Chem. Soc. 2007, 129, 93-97, 将其通过引用完整地并入本文。实验的详细内容显示在 95 页第 1 栏 -97 页第 1 栏; 也可参见 94-96 页的讨论和附图。

[0109] 首先将基材浸入 3-(马来酰亚氨基) 丙酸 N- 羟基琥珀酰亚胺酯溶液中，然后浸入RGDC 水溶液中来用活性肽衍生化膦酸单层。在一个预示性的实施例中，可以将抗感染肽结合至膦酸单层以取代 RGDC。

[0110] 使用功能化的有机膦酸偶联抗体

[0111] 11- 羟基十一烷基膦酸与洁净的和所制备的硅晶片 (silicon wafer) 表面反应，在 SiO₂ 上形成自行有机化的 11- 羟基十一烷基膦酸单层。这通过 QCM 和 AFM 证实。使用二琥珀酰亚氨基戊二酸酯 (DSG) 在无水乙腈中将所述 ω- 官能团衍生化。然后通过将兔抗小鼠 IgG (Pierce) 在 PBS 中以 100g/mL 的浓度湿育 30 分钟，使其偶联至衍生化的单层。用 10g/mL 抗-R4 整联蛋白抗体 PIH4 (Chemicon) 或抗-R4 整联蛋白抗体 SAM-1 (Cymbus Technology Ltd.) 温育 2 小时实现抗体偶联。通过 CHO α4 或 CHO α5 细胞湿育证实抗体活性; 选择性细胞生长表明适当的活性。

[0112] 在一个预示性的实施例中，将 11- 羟基膦酸盐自组装单层键合至钛的天然氧化物表面，然后先用（对 - 硝基苯基）氯甲酸酯后用 1,12- 二氨基十二烷 (Aldrich) 处理而得到通过膦酸界面与铁键合的氨基酸十二烷基氨基甲酸乙酯 (aminododecyl urethane)。然后使用辛基硫 (Aldrich) 将远端氨基季铵化，以得到通过膦酸盐界面共价键合至基材的烷基
季铵部分。
【0113】类似地，在一个预示性实施例中，可以如下将烷基季铵部分与例如 PEEK 的聚合物键合，通过先在 PEEK 表面制备氧化锆酯酸层，再用 11-羟基膦酸处理，而得到与 PEEK 结合的 11-羟基膦酸单层。通过与（对-硝基苯基）氯甲酸酯、1,12-二氨基十二烷和辛基碘依次地反应，将所述 11-羟基膦酸单层衍生化。
【0114】尽管本文已具体描述了本发明目前某些优选实施方案，但对于本发明所属领域的技术人员显而易见的是，本文所显示和描述的不同实施方案的变体和修饰可以在不偏离本发明的精神和范围的前提下实施。因此，本发明意欲仅由所附权利要求书和适用的法规所要求的程度限制。
【0115】本文引述的所有文献都通过引用完全地并入本文。
图 1