(51) Internationale Patentklassifikation:	C09K 19/42, G02F 1/137
(11) Internationale Veröffentlichungsnummer:	WO 89/ 08692
(21) Internationales Aktenzeichen:	PCT/EP89/00189
(22) Internationales Anmeldedatum:	28. Februar 1989 (28.02.89)
(31) Prioritätsaktenzeichen:	P 38 07 958.5
(32) Prioritätsdatum:	10. März 1988 (10.03.88)
(33) Prioritätsland:	DE

(54) Title: SUPERTWIST LIQUID CRYSTAL DISPLAY

(54) Bezeichnung: SUPERTWIST-FLÜSSIGKRISTALLANZEIGE

(57) Abstract

Supertwist liquid crystal displays having a characteristic curve with a particularly advantageous slope are obtained when the nematic liquid crystal mixture obeys the following conditions: a nematic phase range of at least 60°C, a viscosity less than or equal to 30 mPas, $\Delta \varepsilon/\varepsilon_0 < 1.5$, where $\Delta \varepsilon$ is the dielectric anisotropy and ε_0 the dielectric constant in the direction of the shorter axis of the liquid crystal molecule, and $\Delta \varepsilon$ is greater than or equal to +5, and contains the following components: a) markedly dielectrically positive compounds with high ε_0, b) relatively nonpolar compounds with high ε_0 and, if necessary, compounds with high birefringence.

(57) Zusammenfassung

Supertwist-Flüssigkristallanzeigen mit vorzüglicher Kennliniensteilheit werden erhalten, falls die nematiche Flüssigkristallmischung folgenden Bedingungen genügt: nematicer Phasenbereich von mindestens 60°C, Viskosität von 30 mPas oder darunter, $\Delta \varepsilon/\varepsilon_0 < 1.5$, wobei $\Delta \varepsilon$ die dielektrische Anisotropie und ε_0 die Dielektrizitätsgenstante in Richtung der kurzen Achse der Flüssigkristallmoleküle bedeutet, und $\Delta \varepsilon$ größer oder gleich +5, und auf folgenden Komponenten basiert: a) deutlich dielektrisch positiven Verbindungen mit hohem ε_0, b) relativ unpolaren Verbindungen mit großem ε_0, und gegebenenfalls Verbindungen mit hoher Doppelbrechung.
<table>
<thead>
<tr>
<th>Code</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland, Bundesrepublik</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabun</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritanien</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
</tbody>
</table>
Supertwist-Flüssigkristallanzeige

Die Erfindung betrifft eine Supertwist-Flüssigkristallanzeige mit

- zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden,

- einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie und mit mindestens einem chiralen Dotierstoff,

- Elektrodenschichten mit darüberliegenden Orientierungsschichten auf den Innenseiten der Trägerplatten,

- einem Anstellwinkel zwischen der Längsachse der Moleküle an der Oberfläche der Trägerplatten und den Trägerplatten von etwa 1 Grad bis 30 Grad, und

- einem Verdrillungswinkel der Flüssigkristallmischung in der Zelle von Orientierungsschicht zu Orientierungsschicht dem Betrag nach zwischen 160 und 360°, dadurch gekennzeichnet, daß die nematische Flüssigkristallmischung folgenden Bedingungen genügt:
nematischer Phasenbereich von mindestens 60 °C,
Viskosität von 30 mPa·s oder darunter,
$\Delta \varepsilon / \varepsilon_\perp < 1.5$, wobei $\Delta \varepsilon$ die dielektrische Anisotropie und ε_\perp die Dielektrizitätskonstante in Richtung der kurzen Achse der Flüssigkristallmoleküle bedeutet, und
$\Delta \varepsilon$ größer oder gleich +5,

und auf folgenden Komponenten basiert:

a) deutlich dielektrisch positiven Verbindungen mit hohem ε_\perp ausgewählt aus der Gruppe bestehend aus den Formeln 1-8:

1.
\[
\begin{array}{c}
\overset{O}{R} - \overset{O}{O} - \overset{CN}{O} \\
\end{array}
\]

2.
\[
\begin{array}{c}
\overset{N}{R} - \overset{O}{O} - \overset{X}{O} - \overset{CN}{O} \\
\end{array}
\]

3.
\[
\begin{array}{c}
\overset{O}{R} - \overset{O}{O} - \overset{CN}{O} \\
\end{array}
\]

4.
\[
\begin{array}{c}
\overset{N}{R} - \overset{O}{O} - \overset{X}{O} - \overset{CN}{O} \\
\end{array}
\]

5.
\[
\begin{array}{c}
\overset{O}{R} - \overset{COO}{O} - \overset{X}{O} - \overset{CN}{O} \\
\end{array}
\]

6.
\[
\begin{array}{c}
\overset{H}{R} - \overset{H}{O} - \overset{COO}{O} - \overset{CN}{O} \\
\end{array}
\]
und/oder Verbindungen der Formel A und/oder B

A

B

und gegebenenfalls Verbindungen ausgewählt aus der Gruppe bestehend aus den Formeln 9 bis 11

9

10

11

und

b) relativ unpolaren Verbindungen mit großem ε ausgewählt aus der Gruppe bestehend aus den Formeln 12 bis 18:
und/oder Verbindungen aus der Gruppe bestehend aus den Formeln C und D
und gegebenenfalls Verbindungen mit hoher Doppelbrechung aus der Gruppe bestehend aus den Formeln 19 und 20:

![Chemical Structures](image)

wobei X H oder F, m 1 oder 2, n 0 oder 1, und R in jedem Fall jeweils geradkettiges Alkyl, Oxalkyl oder Alkenyl mit 2 bis 7 C-Atomen und R' jeweils geradkettiges Alkyl oder Alkoxy mit jeweils 1 bis 7 C-Atomen bedeutet.

Es besteht somit immer noch ein großer Bedarf nach SFK-Anzeigen mit sehr hohen Kennliniensteilheiten bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten und niedriger Schwellenspannung.

Der Erfindung liegt die Aufgabe zugrunde, SFK-Anzeigen bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße und gleichzeitig sehr hohe Kennliniensteilheiten aufweisen.
Es wurde nun gefunden, daß diese Aufgabe gelöst werden kann, wenn man in diesen Anzeigen nematische Flüssigkristallmischungen verwendet, die folgenden Bedingungen genügen:

- nematischer Phasenbereich von mindestens 60 °C,
- Viskosität von 30 mPa.s oder darunter, und
- \(\Delta \varepsilon / \varepsilon < 1.5 \), wobei \(\Delta \varepsilon \) die dielektrische Anisotropie und \(\varepsilon \) die Dielektrizitätskonstante in Richtung der kurzen Achse der Flüssigkristallmoleküle bedeutet,
- \(\Delta \varepsilon \) größer oder gleich +5,

und auf folgenden Komponenten basieren:

a) deutlich dielektrisch positiven Verbindungen mit hohem \(\varepsilon \) ausgewählt aus der Gruppe bestehend aus den Formeln 1-8:

\[
\begin{align*}
\text{1} & \quad \begin{array}{c}
\begin{array}{c}
\text{R} \quad \text{O} \quad \text{O} \quad \text{CN}
\end{array}
\end{array} \\
\text{2} & \quad \begin{array}{c}
\begin{array}{c}
\text{R} \quad \text{N} \quad \text{O} \quad \text{X}
\end{array}
\end{array} \\
\text{3} & \quad \begin{array}{c}
\begin{array}{c}
\text{R} \quad \text{O} \quad \text{O} \quad \text{CN}
\end{array}
\end{array} \\
\text{4} & \quad \begin{array}{c}
\begin{array}{c}
\text{R} \quad \text{N} \quad \text{O} \quad \text{X}
\end{array}
\end{array}
\end{align*}
\]
und/oder Verbindungen der Formel A und/oder B

und gegebenenfalls Verbindungen ausgewählt aus der Gruppe bestehend aus den Formeln 9 bis 11

und
b) relativ unpolaren Verbindungen mit großem ϵ ausgewählt aus der Gruppe bestehend aus den Formeln 12 bis 18:

\[R - H \quad \text{COO} - O - R' \quad 12 \]
\[R - H \quad \text{COO} - H - R' \quad 13 \]
\[R' - O \quad \text{COO} - O - R \quad 14 \]
\[R - H \quad H \quad \text{COO} - O - R' \quad 15 \]
\[R - H \quad \text{COO} - O - H - R \quad 16 \]
\[R - H \quad H \quad \text{COO} - H - R' \quad 17 \]
\[R - H \quad \text{COO} - H \quad H \quad R' \quad 18 \]

und/oder Verbindungen aus der Gruppe bestehend aus den Formeln C und D:

\[R - H \quad \text{COO} - O - R' \quad C \]
\[R - H \quad H \quad \text{COO} - O - R' \quad D \]
und gegebenenfalls Verbindungen mit hoher Doppelbrechung aus der Gruppe bestehend aus den Formeln 19 und 20:

\[
\begin{align*}
R & \quad \text{O} \quad \text{C} \equiv \text{C} \quad \text{O} \quad R' \\
5 & \quad \text{R} \quad \text{H} \quad (\text{CH}_2\text{CH}_2)_n \quad \text{O} \quad \text{C} \equiv \text{C} \quad \text{O} \quad R'
\end{align*}
\]

wobei \(X\) \(H\) oder \(F\), \(m\) \(1\) oder \(2\), \(n\) \(0\) oder \(1\), und \(R\) in jedem Fall jeweils geradkettiges Alkyl, Oxaalkyl oder Alkenyl mit 2 bis 7 C-Atomen und \(R'\) jeweils geradkettiges Alkyl oder Alkoxy mit jeweils 1 bis 7 C-Atomen bedeutet.

Gegenstand der Erfindung ist somit eine entsprechende Supertwist-Flüssigkristallanzeige.

Gegenstand der Erfindung sind ferner entsprechende Anzeigeelemente, die folgenden Bedingungen genügen:

- Produkt von Doppelbrechung \(\Delta n\) und der Schichtdicke der Flüssigkristallmischung zwischen 0,1 \(\mu\)m und 2,5 \(\mu\)m.

- Dielektrizitätskonstante \(\varepsilon\) größer oder gleich 4.

Gegenstand der Erfindung ist ferner die Verwendung entsprechender Flüssigkristallmischungen als Dielektrika entsprechender Anzeigen.
Gegenstand der Erfindung sind schließlich auch entsprechende Flüssigkristallmischungen zur Verwendung in SKF-Anzeigen.

Nematische Flüssigkristallmischungen, die zwei der drei angegebenen Bedingungen genügen sind bekannt und werden in vielfältigen Ausführungsformen kommerziell genutzt. Es ist weiterhin bekannt, daß durch Verwendung hoher Anteile von Phenylbenzoaten entsprechend DE-PS 21 67 252 oder von stark dielektrisch negativen Flüssigkristallen (z.B. entsprechend DE-OS 32 31 707) Werte von \(\Delta \varepsilon / \varepsilon \perp \) < 1,5 realisiert werden können. Diese Flüssigkristallmischungen zeichnen sich jedoch durch hohe Viskositäten aus, wobei die Werte bei 20° oft zwischen 40 und 50 mPa.s oder höher liegen. Entsprechende SKF-Anzeigen haben für eine kommerzielle Anwendung somit deutlich zu lange Schaltzeiten.

Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen es jedoch bei niedrigen Viskositäten gleichzeitig einen niedrigen Wert für \(\Delta \varepsilon / \varepsilon \perp \) zu erreichen, wodurch in SKF-Anzeigen hervorragende Steilheiten der elektrooptischen Kennlinie erzielt werden können. Die erfindungsgemäßen Flüssigkristallmischungen haben vorzugsweise ein \(\varepsilon \perp \geq 4 \), insbesondere \(\varepsilon \perp \geq 6 \). \(\Delta \varepsilon / \varepsilon \perp \) ist vorzugsweise \(\leq 1,3 \), insbesondere \(\leq 1,1 \). Die Viskosität bei 20 °C ist vorzugsweise \(\leq 25 \) mPa.s. Der nematische Phasenbereich ist vorzugsweise mindestens 70, insbesondere mindestens 80°. Vorzugsweise erstreckt sich dieser Bereich mindestens von -20° bis +70°.
Die einzelnen Verbindungen der Formeln 1 bis 20, bzw. A bis D oder auch andere Verbindungen, die in den erfindungsgemäßen SFK-Anzeigen verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.

Bevorzugte erfindungsgemäß verwendbare Flüssigkristallmischungen enthalten insgesamt vorzugsweise 40-100 %, insbesondere 75-100 % an Verbindungen der Formel 1 bis 20 und A bis D. Sie enthalten insgesamt vorzugsweise 10-30, insbesondere 12-20 Komponenten. Besonders bevorzugt sind Flüssigkristallmischungen, die mindestens eine Komponente der Formeln 7, 8, 9, 10 und/oder 11 enthalten. Ferner sind diejenigen Mischungen bevorzugt, die mindestens eine Tolanverbindung der Formel 19 und/oder 20 enthalten.

Die erfindungsgemäßen Mischungen enthalten vorzugsweise 10-30 %, insbesondere 15-25 % an Verbindungen ausgewählt aus der Gruppe der Formeln 1-6. X ist vorzugsweise Fluor. Verbindungen der Formeln 1, 2, 3 und 5 sind besonders bevorzugt. In einer besonders bevorzugten Ausführungsform sind gleichzeitig Verbindungen der Formeln 1 und 2, 1 und 3, 1 und 5, 2 und 3, 2 und 5 oder 1 und 4 anwesend.

Die Verbindungen der Formel A umfassen diejenigen der folgenden Teilformeln

![Chemical structure](image1)

| A1 |
| A2 |
Das Vorliegende ist eine Patentanmeldung, die eine spezifische Substanzklasse beschreibt. Die Substanzen sind in chemischen Formeln dargestellt, die am oberen Rand der Seite abgebildet sind. Die Beschreibung der Substanzen ist in deutscher Sprache und beinhaltet folgende Punkte:

- Falls die Gruppe der deutlich dielektrisch positiven Verbindungen in den erfindungsgemäßen Mischungen überwiegend auf Verbindungen der Formeln A und/oder B basiert, enthalten die Mischungen vorzugsweise eine oder mehrere Verbindungen der Formeln 1-6 und/oder 5-25 % an einer oder mehreren Fluorverbindungen der Formeln 7, 8, 9, 10 oder 11. Dies gilt insbesondere dann, wenn überwiegend Verbindungen der Formel A1 (X = H) benutzt werden.

- Den Gesamtanteil der Verbindungen der Formeln 1 bis 11 sowie A und B kann der Fachmann in einfacher Weise so einstellen, daß $\Delta \varepsilon$ größer oder gleich +5 ist. Vorzugsweise enthalten die Mischungen eine oder mehrere Verbindungen der Formeln 7 bis 11.

- Der Anteil der unpolaren Komponenten der Formeln 12-20 sowie C und D ist vorzugsweise 50 bis 85 %, insbesondere 55 bis 75 %, wobei der Anteil der Ester der Formeln 12-18 sowie C und D 50 bis 70 %, insbesondere 55 bis 65 % ausmacht. Vorzugsweise wurden mindestens 5 Ester verwendet. Vorzugsweise enthalten die Mischungen eine oder mehrere Verbindungen der Formel C und/oder D.

Ein wesentlicher Unterschied der erfindungsgemäßen Anzeigen zu den bisher üblichen auf der Basis der verdrillten nematischen Zelle besteht jedoch in der Wahl der Flüssigkristallparameter der Flüssigkristallschicht.

In den erfindungsgemäßen Anzeigen werden flüssigkristalline Phasen eingesetzt, bei denen die Flüssigkristallparameter $\Delta \varepsilon$ und $\Delta \varepsilon/\varepsilon$ so gewählt werden, daß eine möglichst steile elektrooptische Kennlinie gewährleistet ist, zusammen mit einem maximalen Kontrast und einer minimalen Blickwinkelabhängigkeit bei gleichzeitigem nematischen Phasenbereich von mindestens 60° und einer Viskosität von 30 mPa.s oder darunter.

Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen.

Es bedeutet:

S-N Phasenübergangs-Temperatur smektisch-nematisch, Klp. Klärpunkt,
Visk. Viskosität bei 20° (m Pa.s),
V_{50}/V_{10} Steilheit der Kennlinie einer SFK-Anzeige bei 20°, d/P (Schichtdicke/Ganghöhe) ~ 0,35, d.An = 1,06, Verdrillungswinkel 180°, Anstellwinkel ~ 1°.

Vor und nachstehend sind alle Temperaturen in °C angegeben. Die Prozentzahlen sind Gewichtsprozente.
Beispiel 1

Eine SFK-Anzeige mit folgenden Parametern:

Verdrillungswinkel 180°
Anstellwinkel 1°
d/p (Schichtdicke/Ganghöhe) 0,35
d.Δn 1,06

enthält eine Flüssigkristallmischung mit folgenden Parametern:

Klärpunkt 94,7°
Δn 0,1285 (589 nm)

0,1264 (633 nm)
Viskosität 20,9 mPa.s
Δε +5,5

und bestehend aus

10 % p-trans-4-Propylcyclohexyl-benzonitril,
8 % 2-p-Cyanphenyl-5-propyl-1,3-dioxan,
7 % 2-p-Cyanphenyl-5-butyl-1,3-dioxan,
6 % trans-4-Propylcyclohexancarbonsäure-(p-methoxyphenyl-
ester),
6 % trans-4-Propylcyclohexancarbonsäure-(p-ethoxyphenyl-
ester),
6 % trans-4-Butylcyclohexancarbonsäure-(p-methoxyphenyl-
ester),
25 6 % trans-4-Butylcyclohexancarbonsäure-(p-ethoxyphenyl-
ester),
6 % trans-4-Pentylcyclohexancarbonsäure-(p-methoxyphenyl-
ester),
6 % trans-4-Pentylcyclohexancarbonsäure-(p-ethoxyphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-propyllphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),
6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),
6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-propyllphenylester),
3 % 4-Methyl-4'-ethoxytolan,
4 % 4-Ethyl-4'-methoxytolan,
4 % 4-(trans-4-Propylcyclohexyl)-4'-methoxytolan und
4 % 4-(trans-4-Propylcyclohexyl)-4'-ethoxytolan

zeigt ein Kennliniensteilheit V_{50}/V_{10} von 3,8 % bei $V_{10} = 2,1$ Volt.

Beispiel 2

Eine SKF-Anzeige mit folgenden Parametern:

Verdrillungswinkel 180°
Anstellwinkel 1°
d/p (Schichtdicke/Ganghöhe) 0,35
d.Δn 1,05

enthaltend eine Flüssigkristallmischung mit folgenden Parametern:

Klärpunkt 96,3°
Δn 0,1196 (589 nm)
0,1177 (633 nm)
Viskosität 22,9 mPa.s
$\Delta \varepsilon$ 5,5
und bestehend aus

15 % p-trans-4-Propylcyclohexyl-benzonitril,
10 % p-trans-4-Ethylcyclohexyl-benzonitril,
 8 % 4-Ethyl-4'-cyanbiphenyl,
 9 % 4-Propyl-4'-cyanbiphenyl,
 4 % trans-4-Propylcyclohexancarbonsäure-(p-methoxyphenylester),
 4 % trans-4-Propylcyclohexancarbonsäure-(p-ethoxyphenylester),
10 4 % trans-4-Butylcyclohexancarbonsäure-(p-methoxyphenylester),
 4 % trans-4-Butylcyclohexancarbonsäure-(p-ethoxyphenylester),
 6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbonsäure-(p-propyphenylester),
15 6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbonsäure-(p-pentylphenylester),
 6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbonsäure-(p-pentylphenylester),
20 6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbonsäure-(p-propyphenylester),
10 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propylcyclohexylphenylester) und
10 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propylcyclohexylphenylester)

zeigt eine Kennliniensteilheit V_{50}/V_{10} von 4,8 % bei $V_{10} = 1,8$ Volt.
Beispiel 3

Eine Flüssigkristallmischung bestehend aus

15 % p-trans-4-Propylcyclohexyl-benzonitril,
8 % 4-Ethyl-4'-cyanbiphenyl,
7 % 4-Propyl-4'-cyanbiphenyl,
8 % 4-Butyl-4'-cyanbiphenyl,
5 % trans-4-Propylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Propylcyclohexancarbonsäure-(p-ethoxyphenylester),
5 % trans-4-Butylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Butylcyclohexancarbonsäure-(p-ethoxyphenylester),
15 % trans-4-Pentylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Pentylcyclohexancarbonsäure-(p-ethoxyphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-propylphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),
6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),
25 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-propylphenylester),
6 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylphenylester) und
6 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylphenylester)
zeichnet sich durch folgende Parameter aus:

Klärpunkt: 96°
Viskosität: 21,7 mPa.s
Δn: 0,126
5
Δε: 5,0
ε⊥: 4,8

Die Mischung ergibt vorzügliche Kennliniensteilheiten in SPK-Anzeigen.

Beispiel 4

Eine Flüssigkristallmischung bestehend aus

5 % 2-p-Cyanphenyl-5-ethyl-1,3-dioxan,
7 % 2-p-Cyanphenyl-5-propyl-1,3-dioxan,
8 % 2-p-Cyanphenyl-5-butyl-1,3-dioxan,
5 % trans-1-p-Methoxyphenyl-4-propylcyclohexan,
20 % trans-4-Propylcyclohexancarbonsäure-(trans-4-propyl-cyclohexylester),
10 % trans-4-Propylcyclohexancarbonsäure-(trans-4-pentyl-cyclohexylester),
5 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propyl-cyclohexylester),
5 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propyl-cyclohexylester),
5 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbonsäure-(p-propylphenylester),
5 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbonsäure-(p-pentylphenylester),
5 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbonsäure-(p-propylphenylester),

5 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon säure-(p-pentylphenylester),
3 % 4-Methyl-4'-ethoxytolan,
3 % 4-Ethyl-4'-methoxytolan,
5 3 % 4-(trans-4-Propylcyclohexyl)-4'-methoxytolan,
3 % 4-(trans-4-Propylcyclohexyl)-4'-ethoxytolan und
3 % 4-(trans-4-Propylcyclohexyl)-4'-propoxytolan

zeichnet sich durch folgende Parameter aus:

\[
\begin{align*}
\text{Klärpunkt:} & \quad 87,9^\circ \\
\text{Viskosität:} & \quad 23,4 \text{ mPa.s (20}\degree) \\
& \quad 1097 \text{ mPa.s (-30}\degree) \\
\Delta n: & \quad 0,1093 (589 \text{ nm}) \\
\Delta \varepsilon: & \quad 4,9 \\
\varepsilon_\perp: & \quad 4,8 \\
K_3/K_1: & \quad 1,15
\end{align*}
\]

Diese Mischung ergibt vorzügliche Kennliniensteilheiten in SFK-Anzeigen vom OMI-Typ:

\[
\begin{align*}
\text{Verdrillungswinkel:} & \quad 180^\circ \\
\text{d.Δn:} & \quad 0,5 \\
\text{d/p:} & \quad 0,35 \\
V_{50/10}: & \quad 5,4 \%
\end{align*}
\]

Beispiel 5

Eine Flüssigkristallmischung bestehend aus

15 % 1-(p-Cyanphenyl)-2-(trans-4-propylcyclohexyl)-ethan,
25 8 % 4-Ethyl-4'-cyanbiphenyl,
7 % 4-Propyl-4'-cyanbiphenyl,
8 % 2-(p-Cyanphenyl)-5-pentylpyridin,
5 % trans-4-Propylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Propylcyclohexancarbonsäure-(p-ethoxyphenylester),
5 % trans-4-Butylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Butylcyclohexancarbonsäure-(p-ethoxyphenylester),
4 % trans-4-Pentylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Pentylcyclohexancarbonsäure-(p-ethoxyphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbonsäure-(p-proplyphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbonsäure-(p-pentlyphenylester),
6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbonsäure-(p-pentlyphenylester),
6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbonsäure-(p-proplyphenylester),
6 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propyl-cyclohexylphenylester) und
6 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propyl-cyclohexylphenylester)

zeichnet sich durch vorzügliche Kennliniensteilheiten in SFK-Anzeigen aus.

Beispiel 6

Eine Flüssigkristallmischung bestehend aus
5 % p-Pentylbenzoesäure-(3-fluor-4-cyanphenylester),
7 % 2-p-Cyanphenyl-5-propyl-1,3-dioxan,
8 % 2-p-Cyanphenyl-5-butyl-1,3-dioxan,
5 % trans-1-p-Fluorphenyl-4-propylcyclohexan,
5 % 20 trans-4-Propylcyclohexancarbonsäure-(trans-4-propyl-cyclohexylester),
10 % trans-4-Propylcyclohexancarbonsäure-(2-methylpyridin-5-yl-ester),
5 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propyl-cyclohexylphenylester),
5 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propyl-cyclohexylphenylester),
5 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-säure-(p-fluorphenylester),
5 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-säure-(p-pentylphenylester),
5 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-säure-(p-propylphenylester),
5 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-säure-(p-pentylphenylester),
3 % 4-Methyl-4'-ethoxytolan,
3 % 4-Ethyl-4'-methoxytolan,
3 % 4-(trans-4-Propylcyclohexyl)-4'-methoxytolan,
3 % 4-(trans-4-Propylcyclohexyl)-4'-ethoxytolan und
3 % 4-(trans-4-Propylcyclohexyl)-4'-propoxytolan

ergibt vorzügliche Kennliniensteilheiten in SFK-Anzeigen.

Beispiel 7

Eine Flüssigkristallmischung bestehend aus

15 % p-trans-4-Propylcyclohexyl-benzonitril,
30 % 8-(3-Fluor-4-cyanphenyl)-5-pentylpyrimidin,
7 % 4-Propyl-4'-cyanbiphenyl,
8 % 4-Butyl-4'-cyanbiphenyl,
5 % trans-4-Propylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Propylcyclohexancarbonsäure-(p-ethoxyphenylester),
5 % trans-4-Butylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Butylcyclohexancarbonsäure-(p-ethoxyphenylester),
10 4 % trans-4-Pentylcyclohexancarbonsäure-(p-methoxyphenylester),
4 % trans-4-Pentylcyclohexancarbonsäure-(p-ethoxyphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-propylphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),
6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),
20 6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-propylphenylester),
6 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylphenylester) und
6 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylphenylester)

zeichnet sich durch vorzügliche Kennliniensteilheiten in
SFK-Anzeigen aus.

Beispiel 8

Eine Flüssigkristallmischung bestehend aus

30 5 % 1-[trans-4-(p-Cyanphenyl)-cyclohexyl]-2-(trans-4-
pentylcyclohexyl)-ethan,
5 % 2-p-Cyanphenyl-5-propyl-1,3-dioxan,
5 % 2-p-Cyanphenyl-5-butyl-1,3-dioxan,
5 % 1-(3,4-Difluorphenyl)-2-[trans-4-(trans-4-propyl-
cyclohexyl)-cyclohexyl]-ethan,
5 % trans-1-p-Methoxyphenyl-4-propylcyclohexan,
5 % trans-4-Propylcyclohexancarbonsäure-(trans-4-propyl-
cyclohexylester),
10 % trans-4-Propylcyclohexancarbonsäure-(trans-4-pentyl-
cyclohexylester),
5 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylester),
5 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylester),
5 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-propylenylester),
15 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),
5 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-propylenylester),
5 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),
20 % 4-Methyl-4'-ethoxytolan,
3 % 4-Ethyl-4'-methoxytolan,
3 % 4-(trans-4-Propylcyclohexyl)-4'-methoxytolan,
3 % 4-(trans-4-Propylcyclohexyl)-4'-ethoxytolan und
25 % 4-(trans-4-Propylcyclohexyl)-4'-propoxytolan

zeichnet sich durch vorzügliche Kennliniensteilheiten
in SFK-Anzeigen aus.

Beispiel 9

Eine Flüssigkristallmischung bestehend aus

30 % 7-Fluor-4-(trans-4-(trans-4-propylcyclohexyl)-
cyclohexyl)-benzonitril,
8 % p-trans-4-Propylcyclohexyl-benzonitril,
8 % 4-Ethyl-4'-cyanbiphenyl,
7 % 4-Propyl-4'-cyanbiphenyl,
8 % 1,2-Difluor-4-[(trans-4-(trans-4-propylcyclohexyl)-
cyclohexyl]-benzol,
5 % trans-4-Propylcyclohexancarbonsäure-(p-methoxy-
phenylester),
4 % trans-4-Propylcyclohexancarbonsäure-(p-ethoxy-
phenylester),
5 % trans-4-Butylcyclohexancarbonsäure-(p-methoxy-
phenylester),
10 % trans-4-Butylcyclohexancarbonsäure-(p-ethoxy-
phenylester),
4 % trans-4-Pentylcyclohexancarbonsäure-(p-methoxy-
phenylester),
4 % trans-4-Pentylcyclohexancarbonsäure-(p-ethoxy-
phenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-proplyphenylester),
6 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-pentlyphenylester),
20 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-pentlyphenylester),
6 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-proplyphenylester),
25 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylphenylester) und
6 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylphenylester)

zeichnet sich durch vorzügliche Kennliniensteilheiten
in SFK-Anzeigen aus.
Beispiel 10

Eine Flüssigkristallmischung bestehend aus

5 % 1-(3,4-Difluorphenyl)-2-[p-(trans-4-propylcyclohexyl)-phenyl]-ethan,

7 % 2-p-Cyanphenyl-5-propyl-1,3-dioxan,
8 % 2-p-Cyanphenyl-5-butyl-1,3-dioxan,
5 % trans-1-p-Methoxyphenyl-4-propylcyclohexan,
20 % trans-4-Propylcyclohexan carbonsäure-(trans-4-propyl-
cyclohexylester),

10 % trans-4-Propylcyclohexancarbonsäure-(trans-4-pentyl-
cyclohexylester),

5 % trans-4-Butylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylester),
5 % trans-4-Pentylcyclohexancarbonsäure-(p-trans-4-propyl-
cyclohexylester),

15 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-propylphenylester),
5 % trans-4-(trans-4-Propylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),

20 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-propylphenylester),
5 % trans-4-(trans-4-Butylcyclohexyl)-cyclohexancarbon-
säure-(p-pentylphenylester),

3 % 4-Methyl-4'-ethoxytolan,

25 % 4-Ethyl-4'-methoxytolan,
3 % 4-(trans-4-Propylcyclohexyl)-4'-methoxytolan,
3 % 4-(trans-4-Propylcyclohexyl)-4'-ethoxytolan und
3 % 4-(trans-4-Propylcyclohexyl)-4'-propoxytolan

zeichnet sich durch vorzügliche Kennliniensteilheiten

in SFK-Anzeigen aus.
Als chiraler Dotierstoff in den vorstehenden Mischungen wurde jeweils S-811 \[p-(p-n-\text{Hexylbenzoyloxyphenyl})-\text{benzoesäure-(2-octylester)} \] verwendet.
Patentansprüche

1. Supertwist-Flüssigkristallanzeige mit

- zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden,

- einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie und mit mindestens einem chiralen Dotierstoff,

- Elektrodenschichten mit darüberliegenden Orientierungsschichten auf den Innenseiten der Trägerplatten,

- einem Anstellwinkel zwischen der Längsachse der Moleküle an der Oberfläche der Trägerplatten und den Trägerplatten von etwa 1 Grad bis 30 Grad, und

- einem Verdrillationswinkel der Flüssigkristallmischung in der Zelle von Orientierungsschicht zu Orientierungsschicht dem Betrag nach zwischen 160° und 360°, dadurch gekennzeichnet, daß die nematische Flüssigkristallmischung folgenden Bedingungen genügt:
nematischer Phasenbereich von mindestens 60 °C,

Viskosität von 30 mPa.s oder darunter,

$\Delta \varepsilon / \varepsilon_\perp < 1.5$, wobei $\Delta \varepsilon$ die dielektrische Anisotropie und ε_\perp die Dielektrizitätskonstante in Richtung der kurzen Achse der Flüssigkristallmoleküle bedeutet, und

$\Delta \varepsilon$ größer oder gleich 5,

und auf folgenden Komponenten basiert:

a) deutlich dielektrisch positiven Verbindungen mit hohem ε_\perp ausgewählt aus der Gruppe bestehend aus den Formeln 1-8:

1. \[
\begin{array}{c}
R-O-O-CN
\end{array}
\]

2. \[
\begin{array}{c}
R-\stackrel{N}{O}-\stackrel{X}{O}-O-CN
\end{array}
\]

3. \[
\begin{array}{c}
R-\stackrel{O}{O}-O-CN
\end{array}
\]

4. \[
\begin{array}{c}
R-\stackrel{N}{O}-\stackrel{X}{O}-CN
\end{array}
\]

5. \[
\begin{array}{c}
R-O-COO-\stackrel{X}{O}-CN
\end{array}
\]
und/oder Verbindungen der Formel A
und/oder B

und gegebenenfalls Verbindungen ausgewählt aus der Gruppe bestehend aus den Formeln 9 bis 11

15

10

20

und
b) relativ unpolaren Verbindungen mit großem ε_I ausgewählt aus der Gruppe bestehend aus den Formeln 12 bis 18:

\[
\begin{align*}
R & \quad H \quad \text{COO} \quad O \quad R' & 12 \\
R & \quad H \quad \text{COO} \quad H \quad R' & 13 \\
R' & \quad \text{O} \quad \text{COO} \quad \text{O} \quad R & 14 \\
R & \quad H \quad H \quad \text{COO} \quad \text{O} \quad R' & 15 \\
R & \quad H \quad \text{COO} \quad \text{O} \quad H \quad R & 16 \\
R & \quad H \quad H \quad \text{COO} \quad \text{H} \quad R' & 17 \\
R & \quad H \quad \text{COO} \quad \text{H} \quad \text{H} \quad R' & 18 \\
\end{align*}
\]

und/oder Verbindungen aus der Gruppe bestehend aus den Formeln C und D:

\[
\begin{align*}
R & \quad H \quad \text{COO} \quad \text{O} \quad N \quad R' & C \\
R & \quad H \quad H \quad \text{COO} \quad \text{O} \quad R' \quad N & D \\
\end{align*}
\]
und gegebenenfalls Verbindungen mit hoher Doppelbrechung aus der Gruppe bestehend aus den Formeln 19 und 20:

\[R - O - C=O - O - R' \quad 19 \]

\[R - H - (CH_2CH_2)_n - O - C=O - O - R' \quad 20 \]

wobei \(X \) H oder F, \(m \) 1 oder 2, \(n \) 0 oder 1, und \(R \) in jedem Fall jeweils geradkettiges Alkyl, Oxaalkyl oder Alkenyl mit 2 bis 7 C-Atomen und \(R' \) jeweils geradkettiges Alkyl oder Alkoxy mit jeweils 1 bis 7 C-Atomen bedeutet.

2. Anzeige nach Anspruch 1, dadurch gekennzeichnet, daß das Produkt von Doppelbrechung \(\Delta n \) und der Schichtdicke der Flüssigkristallmischung zwischen 0,1 \(\mu \text{m} \) und 2,5 \(\mu \text{m} \) liegt.

3. Anzeige nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Dielektrizitätskonstante \(\varepsilon_\parallel \) größer oder gleich 4 ist.

4. Verwendung einer nematischen Flüssigkristallmischung, die folgenden Bedingungen genügt:

- nematischer Phasenbereich von mindestens 60 \(^\circ \text{C} \),

- Viskosität von 30 mPa.s oder darunter,
\[\Delta \varepsilon / \varepsilon < 1.5, \text{ wobei } \Delta \varepsilon \text{ die dielektrische Anisotropie und } \varepsilon \text{ die Dielektrizitätskonstante in Richtung der kurzen Achse der Flüssigkristallmoleküle bedeutet, und} \]

\[\Delta \varepsilon \text{ größer oder gleich +5,} \]

und auf folgenden Komponenten basiert:

a) deutlich dielektrisch positiven Verbindungen mit hohem \(\varepsilon \) ausgewählt aus der Gruppe bestehend aus den Formeln 1-8:

1. \[
\begin{array}{c}
R-\overset{\text{O}}{\text{O}}-\overset{\text{CN}}{\text{CN}}
\end{array}
\]

2. \[
\begin{array}{c}
R-\overset{\text{O}}{\text{O}}-\overset{\text{CN}}{\text{CN}}
\end{array}
\]

3. \[
\begin{array}{c}
R-\overset{\text{O}}{\text{O}}-\overset{\text{CN}}{\text{CN}}
\end{array}
\]

4. \[
\begin{array}{c}
R-\overset{\text{O}}{\text{O}}-\overset{\text{CN}}{\text{CN}}
\end{array}
\]

5. \[
\begin{array}{c}
R-\overset{\text{H}}{\text{COO}}-\overset{\text{CN}}{\text{CN}}
\end{array}
\]

6. \[
\begin{array}{c}
R-\overset{\text{H}}{\text{COO}}-\overset{\text{CN}}{\text{CN}}
\end{array}
\]
und/oder Verbindungen der Formel A und/oder B

und gegebenenfalls Verbindungen ausgewählt
aus der Gruppe bestehend aus den Formeln 9 bis 11

b) relativ unpolaren Verbindungen mit großem \(\varepsilon \)
ausgewählt aus der Gruppe bestehend aus den Formeln 12 bis 18:
und/oder Verbindungen aus der Gruppe bestehend aus den Formeln C und D

C

D

und gegebenenfalls Verbindungen mit hoher Doppelbrechung aus der Gruppe bestehend aus den Formeln 19 und 20:
wobei X H oder F, m 1 oder 2, n 0 oder 1, und
R in jedem Fall jeweils geradkettiges Alkyl,
Oxaalkyl oder Alkenyl mit 2 bis 7 C-Atomen
und R' jeweils geradkettiges Alkyl oder Alkoxy
mit jeweils 1 bis 7 C-Atomen bedeutet,
als Dielektrikum einer Supertwist-Flüssig-
kristallanzeige mit

- zwei planparallelen Trägerplatten, die
 mit einer Umrandung eine Zelle bilden,

- einer in der Zelle befindlichen nema-
tischen Flüssigkristallmischung mit posi-
tiver dielektrischer Anisotropie und mit
 mindestens einem chiralen Dotierstoff,

- Elektrodenschichten mit darüberliegenden
 Orientierungsschichten auf den Innensei-
ten der Trägerplatten,

- einem Anstellwinkel zwischen der Längs-
 achse der Moleküle an der Oberfläche der
 Trägerplatten und den Trägerplatten von
 etwa 1 Grad bis 30 Grad, und
einem Verdrillationswinkel der Flüssig-
kristallmischung in der Zelle von Orien-
tierungsschicht zu Orientierungsschicht
dem Betrag nach zwischen 160 und 360°.

5 5. Flüssigkristallmischung zur Verwendung in Supertwist-
Flüssigkristallanzeigen mit

- zwei planparallelen Trägerplatten, die mit
einer Umrandung eine Zelle bilden,

- einer in der Zelle befindlichen nematischen
 Flüssigkristallmischung mit positiver dielek-
 trischer Anisotropie und mit mindestens einem
 chiralen Dotierstoff,

- Elektrodenschichten mit darüberliegenden Orient-
tierungsschichten auf den Innenseiten der
 Trägerplatten,

- einem Anstellwinkel zwischen der Längsachse der
 Moleküle an der Oberfläche der Trägerplatten und
den Trägerplatten von etwa 1 Grad bis 30 Grad,
 und

- einem Verdrillationswinkel der Flüssigkristall-
mischung in der Zelle von Orientierungsschicht
 zu Orientierungsschicht dem Betrag nach zwischen
 160 und 360°, dadurch gekennzeichnet, daß die
nematische Flüssigkristallmischung folgenden Bedingungen genügt:

- nematischer Phasenbereich von mindestens 60 °C,
- Viskosität von 30 mPa.s oder darunter,
- \(\frac{\Delta \varepsilon}{\varepsilon} \) < 1.5, wobei \(\Delta \varepsilon \) die dielektrische Anisotropie und \(\varepsilon \) die Dielektrizitätskonstante in Richtung der kurzen Achse der Flüssigkristallmoleküle bedeutet, und
- \(\Delta \varepsilon \) größer oder gleich + 5,

und auf folgenden Komponenten basiert:

a) deutlich dielektrisch positiven Verbindungen mit hohem \(\varepsilon \) ausgewählt aus der Gruppe bestehend aus den Formeln 1-8:

15

\[
\begin{align*}
\text{R} & \quad \text{O} & \quad \text{O} & \quad \text{CN} \\
1
\end{align*}
\]

\[
\begin{align*}
\text{R} & \quad \text{O} & \quad \text{N} & \quad \text{X} \\
2
\end{align*}
\]

\[
\begin{align*}
\text{R} & \quad \text{O} & \quad \text{N} & \quad \text{X} \\
3
\end{align*}
\]

\[
\begin{align*}
\text{R} & \quad \text{O} & \quad \text{O} & \quad \text{CN} \\
4
\end{align*}
\]
und/oder Verbindungen der Formel A
und/oder B

und gegebenenfalls Verbindungen ausgewählt aus der Gruppe bestehend aus den Formeln 9 bis 11
und

b) relativ unpolaren Verbindungen mit großem ε ausgewählt aus der Gruppe bestehend aus den Formeln 12 bis 18:

$\begin{align*}
\text{R} & \text{H} \text{COO} \text{O} \text{R}' \\
\text{R} & \text{H} \text{COO} \text{H} \text{R}' \\
\text{R}' & \text{O} \text{COO} \text{O} \text{R} \\
\text{R} & \text{H} \text{H} \text{COO} \text{O} \text{R}' \\
\text{R} & \text{H} \text{COO} \text{O} \text{H} \text{R} \\
\text{R} & \text{H} \text{H} \text{COO} \text{H} \text{R}' \\
\text{R} & \text{H} \text{COO} \text{H} \text{H} \text{R}'
\end{align*}$

und/oder Verbindungen aus der Gruppe bestehend aus den Formeln C und D
und gegebenenfalls Verbindungen mit hoher Doppelbrechung aus der Gruppe bestehend aus den Formeln 19 und 20:

wobei \(X \) H oder F, \(m \) 1 oder 2, \(n \) 0 oder 1, und \(R \) in jedem Fall jeweils geradkettiges Alkyl, Oxaalkyl oder Alkenyl mit 2 bis 7 C-Atomen und \(R' \) jeweils geradkettiges Alkyl oder Alkoxy mit jeweils 1 bis 7 C-Atomen bedeutet.

6. Mischung nach Anspruch 5, dadurch gekennzeichnet, daß die Dielektrizitätskonstante \(\varepsilon' \) größer oder gleich 4 ist.
III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP A, 0131216 (BEC) 16 January 1985 see claims 1-5, page 6, lines 10-27; page 7 lines 5-9, page 9, lines 16-36, page 10, lines 1-4 page 12, lines 27-31, page 13, lines 18-24</td>
<td>1,2</td>
</tr>
<tr>
<td>Y,P</td>
<td>EP A 0260450 (HOFFMANN-LA ROCHE) 23 March 1988 see page 2, lines 46-55 page 3, lines 12-46, pages 4,5,6 claim 1</td>
<td>1,2,4,5</td>
</tr>
<tr>
<td>P,Y</td>
<td>EP A, 0273443 (SHARP K.K) 6 July 1988 see page 2, lines 6,7; page 3, lines 1-44 page 4, lines 1-50, pages 5,6, example 1,2 claims 1-8</td>
<td>1,2,4,5</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP, A, 0176037 (CASIO COMPUTER CO. LTD) 2 April 1986 see page 1, lines 1-5 17-25, page 2, lines 32-37, page 3, lines 30-34 page 4, lines 1-37, pages 5,6</td>
<td>1,2,4,5</td>
</tr>
<tr>
<td>Y</td>
<td>EP, A, 0234892 (SHARP) 2 September 1987 see page 1, lines 6-8, page 6, lines 13-25 page 7, lines 14-19, page 8, lines 6-25 page 9, page 12, lines 10-26; claims 1-8</td>
<td>1,2,4,5</td>
</tr>
</tbody>
</table>
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. EP 8900189
SA 26976

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 26/05/89. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH-B- 665491</td>
<td>13-05-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1242784</td>
<td>04-10-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A, C 3423993</td>
<td>24-01-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3467044</td>
<td>03-12-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A, B 2549268</td>
<td>18-01-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A, B 2143336</td>
<td>06-02-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 8402189</td>
<td>01-02-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4634229</td>
<td>06-01-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4697884</td>
<td>06-10-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 63074030</td>
<td>04-04-88</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
INTERNATIONALER RECHERCHEN-BÜCHER

I. Klassifikation des Anmeldungsgegenstands (bei mehreren Klassifikationssymbolen sind alle anzuzeigen)

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

Int. Cl. 4 ... C 09 K 19/42; G 02 F 1/137

II. Recherchierte Sachgebiete

Rechercherer Mindestprüfstoff

Klassifikationssystem	Klassifikationssymbole
Int. Cl. 4 | C 09 K; G 02 F

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen

III. Einschlägige Veröffentlichungen

<table>
<thead>
<tr>
<th>Art</th>
<th>Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP, A, 0131216 (BBC) 16. Januar 1985, siehe Ansprüche 1-5; Seite 6, Zeilen 10-27; Seite 7, Zeilen 5-9; Seite 9, Zeilen 16-36; Seite 10, Zeilen 1-4; Seite 12, Zeilen 27-31; Seite 13, Zeilen 18-24</td>
<td>1,2</td>
</tr>
<tr>
<td>Y</td>
<td>EP, A, 0260450 (HOFFMANN-LA ROCHE) 23. März 1988, siehe Seite 2, Zeilen 46-55; Seite 3, Zeilen 12-46; Seiten 4,5,6; Anspruch 1</td>
<td>1,2,4,5</td>
</tr>
<tr>
<td>P,Y</td>
<td>EP, A, 0273443 (SHARP K.K.) 6. Juli 1988, siehe Seite 2, Zeilen 6,7; Seite 3, Zeilen 1-44; Seite 4, Zeilen 1-50; Seiten 5,6; Beispiele 1,2, Ansprüche 1-8</td>
<td>1,2,4,5</td>
</tr>
<tr>
<td>P,Y</td>
<td>EP, A, 0268226 (CASIO COMPUTER CO. LTD) 25. Mai 1988, siehe Seite 2, Zeilen 4,5; Seite 3, Zeilen 3-11, 17-24, 45-58; Seite 4, Zeilen 14-51; Seite 5, Zeilen 1-38; Seite 6</td>
<td>1,2,4,5</td>
</tr>
</tbody>
</table>

IV. BESCHEINIGUNG

Datum des Abschlusses der internationalen Recherche
28. April 1989

Absendetag des internationalen Recherchenberichts
5 JUN 1989

Unterschrift des Bevollmächtigten Bediensteten

Europäisches Patentamt

Formblatt PCT/ISA/210 (Blatt 2) (Januar 1985)
III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN (Fortsetzung von Blatt 2)

<table>
<thead>
<tr>
<th>Art</th>
<th>Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Seite 7, Zeilen 1-15; Seite 9, Zeilen 32-24</td>
<td>1, 2, 4, 5</td>
</tr>
</tbody>
</table>
| Y | EP, A, 0176039 (CASIO COMPUTER CO. LTD)
2. April 1986, siehe Seite 1, Zeilen 1-5, 17-25; Seite 2, Zeilen 32-37; Seite 3, Zeilen 38-44; Seite 4, Zeilen 1-37; Seiten 5-6 | 1, 2, 4, 5 |
| Y | EP, A, 0234892 (SHARP) 2. September 1987, siehe Seite 1, Zeilen 6-8; Seite 6, Zeilen 13-25; Seite 7, Zeilen 14-19; Seite 8, Zeilen 6-25; Seite 9; Seite 12, Zeilen 10-26; Ansprüche 1-8 | 1, 2, 4, 5 |
In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 26/05/89
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglieder der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH-B- 665491</td>
<td>13-05-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1242784</td>
<td>04-10-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A, C 3423993</td>
<td>24-01-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3467044</td>
<td>03-12-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A, B 2549268</td>
<td>18-01-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A, B 2143336</td>
<td>06-02-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 8402189</td>
<td>01-02-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4634229</td>
<td>06-01-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4697884</td>
<td>06-10-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 63074030</td>
<td>04-04-88</td>
</tr>
</tbody>
</table>

Für nähere Einzelheiten zu diesem Anhang: siehe Amtsblatt des Europäischen Patentamts, Nr.12/82