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(57) Abstract: A CSP system is disclosed which couples a thermal and a
chemical energy pathway. The thermal pathway utilizes a heat transter fluid
to collect concentrated sunlight as thermal energy at medium temperature and
transfer this energy to a thermal-to-clectric power cycle. In parallel, the
chemical pathway uses a redox material which undergoes direct photoreduc-
tion in the receiver to store the solar energy as chemical potential. This redox
material is then oxidized at very high temperatures in the power cycle in
series with the thermal pathway heat exchanger. This coupling allows the re-
ceiver to perform at the high efficiencies typical of state of the art thermal
power towers while simultaneously achieving the power cycle efficiencies
typical of natural gas combustion plants and achieving a very high overall
solar-to-electric conversion efficiency.
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COUPLED CHEMICAL-THERMAL
SOLAR POWER SYSTEM AND METHOD

TECHNICAL FIELD

[0001] The embodiments disclosed herein include systems and methods in the field of
concentrating solar power (“CSP”) generation, also known as solar thermal power generation.
The disclosed systems and methods generally utilize two coupled parallel energy pathways,
one thermal and one chemical, to convert solar energy to electrical energy at high efficiency.
Specifically, the disclosed embodiments include a solar receiver in communication with
separate chemical energy storage material and heat transfer fluid flowing or transported in
separate pathways. The chemical energy storage material undergoes low temperature
photoreduction at the receiver. In addition, heat transfer fluid (“HTF”) is heated to an
operational temperature at the solar receiver. The chemical energy storage material and HTF
are used to drive a power cycle which operates at relatively high temperatures because the
chemical energy storage material is exothermically oxidized as, or in sequence with, the HTF

being cooled.

BACKGROUND

[0002] Concentrating solar technologies may generally be divided into thermal systems
for electric power generation and chemical systems for fuels production and chemical
processing. Variations on thermal CSP plants are known in the art which utilize different
types of reflector configurations such as troughs, dishes, and heliostat fields. Known CSP
systems utilize many alternative heat transfer fluids such as oils, molten salts, and steam and
can be used to drive various power cycles such as steam Rankine, supercritical steam
Rankine, and supercritical carbon dioxide Brayton cycles.

[0003] The current state of the art in high-temperature CSP towers is represented by
direct steam generation towers such as shown in US Patent Application 2008/0302314 and
molten nitrate salt towers such as shown in US Patent Application 2008/0000231. These
types of towers typically operate at temperatures up to about 600°C. Greater power
generation efficiency could be achieved with operational temperatures in excess of 600°C. It
is difficult to achieve operational temperatures above 600°C with conventional CSP

strategies.
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[0004] Concentrating solar towers for driving chemical reactions have been suggested
in several forms. One known concept uses concentrated sunlight to generate heat to
decompose biomass, such as described in US Patent Application 2010/0249468. Another
known method features the use of concentrated sunlight to cause water to undergo photolysis
through interaction with catalysts, such as described in US Patent 4,045,315. Other
technologies use concentrated sunlight and a reduction/oxidation cycle to create hydrogen gas
from water or carbon monoxide gas from carbon dioxide, such as described in US Patent
Application 2009/0107044. The foregoing chemical methods are not particularly well suited
for the generation of ¢lectrical power using known power turbine based power cycles.

[0005] Maximizing the efficiency of a power plant for a concentrating solar power
system is of great importance because it causes a reduction in overall system capital cost by
requiring a smaller solar field and receiver for the same net energy production. In a
concentrated solar power tower, the overall solar-to-electric efficiency is the product of the
solar field efficiency, the receiver (solar-to-thermal) efficiency, the storage efficiency, and the
power cycle (thermal-to-electric) efficiency. The thermal-to-electric conversion system is
very similar to fossil fuel systems at comparable temperatures, however, the conversion
efficiency of a solar power cycle is typically much less than that of a combined cycle gas
plant due to the lower operational temperatures.

[0006] The embodiments disclosed herein are directed toward overcoming one or more

of the problems discussed above.

SUMMARY OF THE EMBODIMENTS

[0007] The embodiments disclosed herein include concentrating solar power (CSP)
systems and methods which couple a thermal and a chemical energy pathway. The thermal
pathway utilizes a heat transfer fluid to collect concentrated sunlight as thermal energy at
medium temperature and transfer this energy to a thermal-to-electric power cycle. In parallel,
the chemical pathway uses a redox material which undergoes direct photoreduction in the
receiver to store the solar energy as chemical potential. This redox material is then oxidized
at very high temperatures in the power cycle in series with the thermal pathway heat
exchanger. This coupling allows the receiver to perform at the high efficiencies typical of
state of the art thermal power towers while simultaneously achieving the power cycle
efficiencies typical of natural gas combustion plants and achieving a very high overall solar-

to-electric conversion efficiency.
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[0008] One disclosed embodiment is a CSP system comprising a solar receiver
configured to receive concentrated solar flux and a quantity of heat transfer fluid (HTF) in
thermal communication with the solar receiver such that concentrated solar flux heats the
HTF. The system also includes a heat exchanger in thermal communication with the HTF
providing for heat exchange between the HTF and the working fluid of a power generation
cycle. In addition, the system also includes a chemical energy storage material flowing in a
chemical pathway coupled to the thermal pathway. The chemical energy storage material is
also in communication with the solar receiver such that concentrated solar flux reduces a
quantity of the chemical energy storage material in the reduction portion of an oxidation-
reduction reaction. Thus, the chemical energy storage material can be alternatively referred
to as a redox material.

[0009] The system further includes an oxidizer in communication with the chemical
energy storage material, the oxidizer providing for the exothermic oxidation of the chemical
energy storage material and further providing for heat exchange between the chemical energy
storage material and the working fluid of the power cycle. Thus, the system utilizes parallel
energy pathways, one thermal and one chemical. The use of two pathways coupled at the
solar receiver results in a high-efficiency CSP plant.

[0010] The system may further include thermal energy storage operatively associated
with a HTF conduit. In addition, the system may include separate chemical energy storage
including a reduced chemical storage system operatively receiving reduced chemical energy
storage material from the solar receiver; and/or an oxidized chemical storage system
receiving oxidized chemical energy storage material from the oxidizer.

[0011] An alternative embodiment disclosed herein comprises a power generation
method having certain steps which may be performed in any suitable order and which
typically will be performed in a cyclical fashion. The method embodiments are initiated by
providing a solar receiver configured to receive concentrated solar flux. HTF of any suitable
type is flowed, transported or otherwise brought into thermal communication with the solar
receiver where the HTF is heated with the concentrated solar flux. The heated HTF is then
flowed or transported from the solar receiver to a heat exchanger in a heat transfer fluid
conduit. In the heat exchanger heat is exchanged between the heated heat transfer fluid and
the working fluid of a power cycle.

[0012] In a parallel cycle, a chemical energy storage (redox) material in communication
with the solar receiver is irradiated by the concentrated solar flux thereby causing a quantity

of the chemical energy storage material to be reduced. The reduced chemical energy storage
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material is then flowed or transported between the solar receiver and an oxidizer element. In
the oxidizer, the chemical energy storage material is oxidized causing the release of heat
energy. The released heat energy is exchanged with the working fluid of the power cycle.
Power may then be generated with the heated working fluid of the power cycle,

[0013] The disclosed embodiments all feature dual thermal and chemical energy
pathways. The embodiments may be implemented in any type of concentrating solar power

apparatus and with any type of power generation cycle or cycles.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is a simplified system schematic diagram illustrating a prior art CSP
system.
[0015] FIG. 2 is a simplified system schematic diagram illustrating one embodiment of

a system having thermal and chemical energy pathways as described herein.

[0016] FIG. 3 is a schematic diagram illustrating a redox cycle.

[0017] FIG. 4 is a simplified power cycle schematic illustrating a representative power
cycle suitable for implementation with the systems disclosed herein.

[0018] FIG. 5 is simplified receiver schematics illustrating how the coupled pathways
disclosed herein reduce radiative losses.

[0019] FIG. 6 is a simplified system schematic diagram illustrating an alternative

received design.

[0020] FIG. 7 is a flow chart representation of a representative method as disclosed
herein.

DETAILED DESCRIPTION

[0021] Unless otherwise indicated, all numbers expressing quantities of ingredients,

dimensions reaction conditions and so forth used in the specification and claims are to be
understood as being modified in all instances by the term “about”.

[0022] In this application and the claims, the use of the singular includes the plural
unless specifically stated otherwise. In addition, use of “or” means “and/or” unless stated
otherwise. Moreover, the use of the term “including”, as well as other forms, such as

“includes” and “included”, is not limiting. Also, terms such as “element” or “component”
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encompass both elements and components comprising one unit and elements and components
that comprise more than one unit unless specifically stated otherwise.

[0023] As noted above, known CSP systems generally operate at significantly less
overall efficiency when compared to a combined cycle gas power generation plant. The
reduced efficiency of a CSP system is primarily due to lower operational temperatures. To
maximize overall solar plant efficiency, it would be advantageous to use the high-efficiency
power cycles available to combined cycle gas systems with a CSP plant, assuming this could
be accomplished without compromising the balance of the CSP plant. This goal cannot be
accomplished in state-of-the-art solar power towers, such as nitrate salt towers or superheated
steam towers. In these towers, the energy pathway is strictly thermal, meaning that all the
energy transferred from the receiver to the power cycle is transferred as thermal energy. A
representative energy flow in a conventional CSP system is illustrated in Fig. 1. Solar
radiation is concentrated by the solar field. The concentrated solar radiation is transferred as
thermal energy to the receiver and captured with an intermediate heat transfer fluid. Thermal
energy is then stored as hot stock heat transfer fluid in large tanks. When needed, the hot
heat transfer fluid is sent to the power cycle via a heat exchanger. Finally, thermal energy is
converted into electricity in a thermodynamic power cycle.

[0024] In known CSP plant configurations, the factors driving the receiver and power
cycle efficiencies are fundamentally counteracting one another. The efficiency of the power
cycle increases with the inlet temperature of the heat transfer fluid. However, the efficiency
of the solar receiver goes down with increasing temperature due to higher convective and
radiative heat losses. In addition, the receiver has absolute temperature limits because of salt
decomposition and receiver material constraints. Because the power cycle and receiver
temperatures are fundamentally coupled in a plant with only a thermal energy pathway, very
high overall system efficiencies cannot be achieved.

[0025] The system and method embodiments disclosed herein utilize parallel energy
pathways, one thermal and one chemical in a high-efficiency concentrated solar power (CSP)
plant. As shown in Fig. 2, a representative system 100 includes one or more thermal
pathways 102 consisting of a heat transfer fluid (HTF) such as steam/water, molten or solid
salt, molten or solid metal, oil a phase change material or other suitable HTF in thermal
communication with a solar receiver 104. The solar receiver 104 is typically associated with
a central receiver tower and receives concentrated solar flux reflected by a field of heliostats.
The methods disclosed herein could be implemented with other CSP designs however,

including but not limited to parabolic trough, linear Fresnel, and dish/engine systems.
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[0026] HTF heated at the solar receiver 104 is flowed or transported to a heat
exchanger 106 in a heat transfer fluid conduit 108. It is important to note that although the
conventional terminology of heat transfer fluid (HTF) is used herein, the system and methods
may be implemented with a liquid, solid, gaseous or phase-changing HTF. Thus, the heat
transfer fluid conduit 108 may be a system of pipes or ducts and valves suitable for the
control of fluid flow, or the heat transfer fluid conduit 108 may be any type of system suitable
for transporting solids. The heat transfer fluid conduit 108 may include some fluid flow
sections and some solid transport sections.

[0027] In the heat exchanger 106, thermal energy is exchanged between the HTF and
the working fluid of a power cycle. The heat exchanger(s) may be of any type or any level of
sophistication needed to provide for heat exchange between the HTF and a power generation
cycle working fluid. The heat exchanger 106 and other subsystems are, for technical
convenience, described and shown in the figures as simple schematic elements. All elements
of a commercial system would be implemented with more complex apparatus. As generally
shown in Fig. 2, the heated working fluid drives a power generation cycle 110. Accordingly,
the working fluid is, either directly or through an intermediate power cycle fluid, converted to
mechanical energy and then electrical energy.

[0028] The system 100 and methods disclosed herein also include a parallel chemical
energy pathway which includes a chemical energy storage material which undergoes
reversible reduction and oxidation reactions (alternatively referred to herein as a “redox
material”). In particular, the redox material is reduced in the receiver 104 and oxidized in an
oxidizer 112. The oxidizer or an associated apparatus also provides for heat exchange with
the working fluid of the power cycle 110. The redox material is flowed or transported
between the receiver and oxidizer in a chemical energy storage material conduit 114 which
may be configured for fluid flow or solid transport as described above with respect to the
HTF conduit 108.

[0029] As noted above, the redox material is directly photoreduced by the high
concentration of incident photons in the receiver 104, thus, the redox material stores the
absorbed electromagnetic energy as a chemical potential. In the oxidizer 112, the redox
material is oxidized, thereby releasing high temperature thermal energy. A representative
diagram of this type of chemical process is shown in Fig. 3 and described below. It is
important to note that the oxidizer element 112 will typically be implemented with apparatus

of significantly more complexity than is shown on Fig. 2. For example, the oxidizer 112 may
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include separate oxidation chambers, air or gas supplies, fluidized bed, heat exchanger and
other elements.

[0030] Typically, CSP systems achieve a certain level of efficiency when implemented,
for example, with current state of the art steam or molten salt receivers. In addition, power
plants implemented with combustive power cycles have very good performance (for example,
combined cycle natural gas plants). The coupled thermal-chemical architecture described
herein allows a CSP system to take advantage of both power generation technologies without
any fossil fuel consumption or environmentally harmful emissions. Thus, the disclosed
systems and methods have an advantage over known state-of-the-art CSP plants in increased
thermal-to-electric conversion efficiency due in part to the high temperature of the oxidation
process. For example, typical steam or molten salt CSP based power generation plants
achieve thermal-to-¢lectric efficiencies of 40-44%. As shown in Fig. 2 and detailed below,
the disclosed systems and methods can achieve temperatures suitable to drive a power
generation system having overall efficiencies of approximately 60% which are much closer to
the efficiencies exhibited by combined cycle natural gas plants

[0031] The chemical energy pathway described above represents new system
architecture in the CSP industry. Whereas a thermal pathway transfers energy by heating and
cooling a heat transfer fluid, a chemical pathway transfers energy by storing energy in a
material via an endothermic reaction and releasing it in an exothermic reaction. As noted
above, the chemical pathway will consist of a material undergoing reversible reduction and
oxidation reactions. For illustration purposes, one potential set of reactions is shown in Fig.
3, although the embodiments disclosed herein can be implemented with many alternative
redox materials.

[0032] As schematically illustrated in Fig. 3, a representative redox cycle features a
reduction step (top box) which takes place in the solar receiver. A photon hits the oxidized
material and breaks it into a reduced material and free oxygen. This step depends only on the
photon directly supplying energy to break the bond between the metal and oxygen atoms.
The reduced material (MnO in this example) is transferred to a storage tank. When it is
needed, it is transferred to the power cycle where it is burned in oxygen releasing heat and
closing the loop by recreating the original oxidized material.

[0033] The foregoing representative redox process is governed by the balance between
the energy of the chemical bonds and the energy of the photon. The bond energies are
typically described in terms of Gibbs free energy, AG, and the energy required to drive an
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endothermic reaction or the energy released by an exothermic reaction can be calculated with

Equation 1.
X
Sl gz ol
Equation 1
[0034] Reference AG values can be obtained from chemistry texts, NIST databases, or

other sources. The coefficients come from the balanced chemical equation. For direct
photoreduction to occur, the energy of the photon causing the reaction must be higher than
the free energy required to drive the reaction. To compare the energies, the photon energy

can be calculated from Equation 2.

Equation 2

where h is Planck’s constant, ¢ is the speed of light, and A is the photon’s wavelength.
Photons available for solar collection are generally in the visible range, 380-750nm.

[0035] Several potential redox materials have been examined for suitability in the
described systems using Equations 1 and 2. A sample of the results is presented in Table 1.

All calculations presented assume a reaction temperature of 500°C.

a G: SR I i
Balanced chemical equation reastisn Requlref1 ph(ﬁOn
[kJ/ mOlrea/ctant] Ak engt
3 ?’3:‘33 + A= 2afag s j' 3 \}: . o
2ALO Ry = 34 3G, 717 o
176 <678 nm
167 <718 nm

Table 1: Sample of calculations for redox material direct photoreduction

[0036] From this table, it can be seen that aluminum is not a good redox material option
because its oxide cannot be reduced by visible light. Cobalt and nickel oxides cannot absorb

from the entire red end of the spectrum but could capture most of the available energy.
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Manganese oxide, alternatively, does not absorb the full energy of visible light for the
reaction so some of the photon energy will be converted to kinetic or thermal energy instead.
[0037] An ideal chemical energy storage (redox) material for the described system will

have four characteristics:

e A high absorptivity in the UV and visible spectrum so the maximum amount of light
is absorbed.

e An energy difference between the oxidized and reduced states slightly smaller than
the energy of visible spectrum photons so the greatest amount of energy will be
converted from electromagnetic to chemical potential.

e A low oxidation rate at lower temperatures and in the absence of an ignition
mechanism to minimize re-oxidation before the desired time.

e A high oxidation rate at the conditions of the power cycle to maximize efficiency.

[0038] Several materials exhibiting these characteristics to varying degrees have been
previously identified. Generally, the best known materials are transition metal oxides. For
example, manganese oxides and cobalt oxides with additions of iron oxide and aluminum
oxide have previously been identified as prime candidates for direct photoreduction
technologies. See, for example, General Atomics. “Thermochemical heat storage for
concentrated solar power based on multivalent metal oxides.” DOE Program Review, May
2011. http://www].eere.energy.gov/solar/csp pr2011.html accessed on Dec 19, 2011, which
disclosure is incorporated herein in its entirety. However, heat loss management was
identified as a problem in the above rotary kiln reactor study. Additionally, the fraction of
material undergoing reduction was low, on the order of 3%, leading to high capital costs.
[0039] The systems and methods disclosed herein use solar photons to directly
photoreduce the redox material. The energy does not go through a thermal state in between
the electromagnetic (solar photon) and the chemical potential state. In fact, the disclosed
technology works best with materials that do not thermochemically dissociate below 1400°C,
the desired power cycle hot temperature, which is much hotter than achievable with known
CSP technologies.

[0040] The system and methods disclosed herein can be utilized to drive any type of
power generation cycles. The known power cycle most suited to operation at efficiencies

near or above 60% is however, an air-Brayton cycle or a variation thereof. A highly
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simplified diagram of one possible representative and non-limiting power cycle layout 400 is
illustrated in Fig. 4. The Fig. 4 example layout illustrates how the thermal and chemical heat
sources described above could be integrated into an air-Brayton power cycle 402 in
conjunction with a steam Rankine bottoming cycle 404. As noted above, other power cycles
could also be used. Certain advantages can be realized if the working fluid contains an
oxidizing agent. For example, an open-loop supercritical carbon dioxide or steam cycle
could be used where the CO; or HO would be reduced to CO or Ha, respectively, which
could then be used for liquid fuel generation or as fuel for fuel cells.

[0041] In the Fig. 4 embodiment, the upper open air Brayton cycle utilizes air as a
working fluid and oxidizing agent. The air is initially compressed in compressor 406 which
is driven by a mechanical connection to a downstream turbine 408. The compressed air from
the compressor 406 is heated through heat exchange with the HTF in heat exchanger 106.
The heated and compressed air oxidizes the chemical energy storage material in the oxidizer
112 and thus is further heated by direct contact or indirect heat exchange with the chemical
energy storage material as it releases heat during the exothermic oxidation reaction. The now
high temperature air drives one or more turbines 408 which in turn drive the compressor 406
and one or more generators (not shown on Fig. 4) to generate electrical energy.

[0042] The Fig. 4 embodiment also includes a lower steam Rankine bottoming cycle
404 receiving somewhat cooled air from the outlet of the turbine 408. Heat is exchanged
between the air and a secondary working fluid, for example steam, in a recuperator/heat
exchanger 410. The heated steam then drives a second turbine 412 or a second series of
turbines which in turn drive one or more generators to generate electrical energy. Steam
exiting the turbine 412 is condensed in a condenser 414 and pumped as water back to the
recuperator/heat exchanger 410 by pump 416.

[0043] One source of inefficiency for thermochemical and direct photoreduction
chemical receivers is heat loss during the reduction stages. In a coupled thermal-chemical
receiver as described herein, some or most of the heat losses from the redox material can be
recaptured by the thermal receiver and any residual heat stored in the redox material at the
outlet of the receiver can be transferred back to pre-heat the cool HTF entering the receiver.
[0044] A diagram illustrating a receiver design with improved heat loss management is
shown in Fig. 5. Incident solar radiation (shown as arrows 502) is concentrated on the
receiver 104 where some of the photons are absorbed by the redox material (dots 504). A
large part of the remaining incident photons are absorbed by the thermal receiver (illustrated

as panel 506). HTF is flowing within the panel 506 absorbing heat. Of the photons absorbed

10
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by the redox material, some cause photoreduction while others directly heat the redox
material. Some of this absorbed heat is radiated and lost to the environment but some is
reabsorbed by the thermal receiver (illustrated by the dashed arrows 508). Similarly, some of
the radiation losses from the thermal receiver will be reabsorbed by the redox material.
Because the redox material will be at a lower temperature than the thermal receiver, the
average surface temperature seen by the environment will be lower than the thermal receiver
surface temperature, thereby reducing total radiative thermal losses. Therefore, despite the
relatively lower efficiency of the photoreduction step, the receiver will still maintain high
total efficiency.

[0045] The receiver embodiment of Fig. 5 couples a gravity fed curtain of redox
material with a traditional cavity receiver tube sheet having HTF cooling. Alternatively, as
shown in Fig. 6, the receiver element may be implemented as a rotating cavity receiver 104 in
which the walls are cooled by HTF and baffles are used to continuously drop the redox
material 600 through the cavity space. In the Fig. 6 configuration, the redox material
particles are contained in one or more rotating cavity receivers 602. As the receiver 602
rotates, the particles 600 are agitated and fall through the space, absorbing solar radiation.
Some of the photons will be absorbed by the reactor walls instead of the particles and will be
converted to heat. The reactor walls will be cooled by the thermal pathway’s heat transfer
fluid 604. This configuration provides for minimized radiative and convective heat losses
and maximizes the conversion of solar energy to thermal energy and chemical potential.
[0046] A further advantage of the coupled thermal-chemical pathway system is that the
parallel thermal and chemical systems can be used to store energy over different time scales.
Thermal CSP systems, such as molten salt towers, provide for relatively low cost short term
(day scale) thermal energy storage. For example, referring to Fig. 2, heated HTF may be
stored directly in a hot thermal storage system 116 operatively associated with the HTF
conduit 108 receiving flow from the receiver 104 before the heat exchanger 106.
Alternatively, heated HTF could be used to heat a separate thermal storage medium through
heat exchange at the hot thermal storage system. Heat may then be provided to the HTF from
the hot thermal storage system 116 during periods of low solar flux, in the evening or during
periods of cloud cover for example. Similarly, cooled HTF may be stored, or used to heat a
separate heat storage medium in a cold thermal energy storage system 118. The cold thermal
energy storage system 118 could be operatively associated with the HTF conduit 108 to
receive flow from the heat exchanger 106 to the receiver 104 and used as above during

periods of lower solar radiation.

11
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[0047] The disclosed parallel chemical system enables longer term (seasonal) storage
because the redox material is not stored at a high temperature and therefore does not suffer
from heat losses during storage. For example, as also shown in Fig. 2, oxidized or reduced
redox material can be stored for an extended period of time in an oxidized chemical storage
material storage system 120 and reduced chemical storage material storage system 122
respectively. Both chemical storage systems 120 and 122 could be operatively associated
with the chemical energy storage material conduit with the oxidized material storage system
being downstream from the oxidizer 112 and the reduced material storage system being
downstream from the receiver 104.

[0048] One representative embodiment of the system 100 uses an aluminum silicon
(AISi) phase change material (PCM) as the HTF or in this example, the heat transfer material.
AlSi PCM can reach higher temperatures than steam or nitrate salts thereby providing
improved receiver performance. Higher temperatures are advantageous because the system
will perform best when the majority of the system heat requirement is supplied by a high
efficiency thermal receiver.

[0049] As noted above, the disclosed system and methods may advantageously be
implemented in a power tower configuration consisting of a heliostat field focused on a
receiver on top of a tower structure. The AlSi PCM (or other suitable HTF) and the redox
material will be transferred from the receiver to storage vessels or storage systems at the base
of the tower. The PCM or other suitable HTF and redox materials may then be transferred to
the power cycle as needed for electricity generation.

[0050] As noted above, one suitable but non-exclusive thermal-to-electric conversion
system is an open air-Brayton power cycle with a steam Rankine bottoming cycle. The inlet
air will be compressed to high pressure, passed through a heat exchanger with the AlSi PCM
or other HTF to heat it to medium temperatures, then passed through the oxidation chamber
to oxidize the redox material and heat the air the very high temperatures. The highly heated
air will be used to power a turbine and electric generator. The exhaust air will be used as the
heat source for a typical steam bottoming Rankine cycle via a heat recovery steam generator.
[0051] The disclosed embodiments also include power generation methods, for
example the power generation method 700 illustrated in Fig. 7. The Fig. 7 method includes
several steps which may be performed in any suitable order and which typically will be
performed in a cyclical fashion. The method is initiated by providing a solar receiver
configured to receive concentrated solar flux (step 702). Heat transfer fluid of any type is

flowed, transported or otherwise brought into in thermal communication with the solar

12
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receiver where the HTF is heated with the concentrated solar flux (step 704). The heated
HTF is then flowed or transported from the solar receiver to a heat exchanger in a heat
transfer fluid conduit (Step 706). In the heat exchanger heat is exchanged between the heated
heat transfer fluid and the working fluid of a power cycle (Step 708).

[0052] In a parallel cycle, a chemical energy storage (redox) material in communication
with the solar receiver is irradiated by the concentrated solar flux thereby causing a quantity
of the chemical energy storage material to be reduced (Step 710). The reduced chemical
energy storage material is then flowed or transported between the solar receiver and an
oxidizer in a chemical energy storage material conduit (Step 712). In the oxidizer, the
chemical energy storage material is oxidized causing the release of heat energy (Step 714).
The released heat energy is exchanged with the working fluid of the power cycle (Step 716).
Power may then be generated with the heated working fluid of the power cycle (Step 718).
[0053] In summary, the systems and methods described herein featuring coupled
thermal and chemical pathways will potentially achieve a higher overall solar-to-electric
conversion rate than any other known CSP technology. This will translate to direct capital
cost and LCOE savings because each component can be proportionally smaller for a selected
rate of electricity generation. A comparison of the disclosed technology to the state of the art
and developing CSP technologies can be found in Table 2. All values in this table are

estimates of target values and many have not been proven commercially to date.

Solar field  Receiver Storage Ig);:: Overall
efficiency  efficiency efficiency efficiency Efficiency
Molten salt 50-60% 80-90% 97% 40-45% 16-24%
Air 50-60% 70-80% n/a 50-55% 18-26%
turat
Sgt‘;?nfd 50-60% 85-90% n/a 30-35% 13-19%
heat
Supsetrea: od 50.60% 80-85% n/a 40-45% 16-23%
Solid particle  50-60% 60-70% 97% 45-50% 13-20%
Coupled
thermaland  50-60% 70-85% 97% 55-60% 19-30%
chemical

Table 2: Comparison of proposed technology to state of the art and developing technologies

(estimated target values)
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[0054] In addition to high system efficiency at low cost, the coupled chemical-thermal
pathway systems and methods offer two other significant benefits. First, as described in
detail above, the two energy pathways offer two means of energy storage. The thermal
pathway can utilize any existing thermal storage system for short term storage. This is an
important advantage that CSP holds over wind and photovoltaic technologies because it
allows CSP plants to match demand while reducing the LCOE. The described system can
also couple inexpensive short term storage with long term chemical storage to match seasonal
demand. Once reduced, the redox material can be stored in an inert environment for very
long periods of time and used for power production as needed. This will further allow CSP to
meet grid demands during times when very little renewable generation is available.

[0055] The second additional benefit is the ability to produce syngas. Instead of using
air as the oxidant in power cycle, the redox material could be combusted with carbon dioxide
or steam to produce carbon monoxide or hydrogen. Together, these two gases constitute
syngas which can be used to create liquid fuels. This process would possibly decrease the
electric generation capacity of the system but may be a relatively efficient way to produce
renewable carbon-neutral fuels.

[00506] Various embodiments of the disclosure could also include permutations of the
various elements recited in the claims as if each dependent claim was a multiple dependent
claim incorporating the limitations of each of the preceding dependent claims as well as the
independent claims. Such permutations are expressly within the scope of this disclosure.
[0057] While the invention has been particularly shown and described with reference to
a number of embodiments, it would be understood by those skilled in the art that changes in
the form and details may be made to the various embodiments disclosed herein without
departing from the spirit and scope of the invention and that the various embodiments
disclosed herein are not intended to act as limitations on the scope of the claims. All

references cited herein are incorporated in their entirety by reference.
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CLAIMS

What is claimed is:

1. A concentrating solar power system comprising:

a solar receiver configured to receive concentrated solar flux;

heat transfer fluid in thermal communication with the solar receiver such that
concentrated solar flux heats a quantity of the heat transfer fluid;

a heat exchanger in thermal communication with the heat transfer fluid, the
heat exchanger providing for heat exchange between the heat transfer
fluid and a working fluid of a power cycle;

a heat transfer fluid conduit providing for the flow or transport of heat transfer
fluid between the solar receiver and the heat exchanger;

chemical energy storage material in communication with the solar receiver
such that concentrated solar flux reduces a quantity of the chemical
energy storage material;

an oxidizer in communication with the chemical energy storage material, the
oxidizer providing for the oxidation of the chemical energy storage
material and further providing for heat exchange between the chemical
energy storage material and the working fluid of the power cycle; and

a chemical energy storage material conduit providing for the flow or transport
of chemical energy storage material between the solar receiver and the

oxidizer.

2. The concentrating solar power system of claim 1 further comprising a thermal
energy storage system operatively associated with the heat transfer fluid

conduit.

3. The concentrating solar power system of claim 2 further comprising:
a hot thermal energy storage system receiving heated heat transfer fluid from
the solar receiver; and
a cold thermal energy storage system receiving cooled heat transfer fluid from

the heat exchanger.

15
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4. The concentrating solar power system of claim 1 further comprising:

a reduced chemical energy storage material storage system operatively
associated with the chemical energy storage material conduit and
receiving reduced chemical energy storage material from the solar
receiver; and

an oxidized chemical energy storage material storage system operatively
associated with the chemical energy storage material conduit and

receiving oxidized chemical energy storage material from the oxidizer.

5. The concentrating solar power system of claim 1 wherein the heat transfer
fluid comprises one or more of water, a solid salt; a molten salt, a solid metal;

a molten metal and an oil.

6. The concentrating solar power system of claim 1 wherein the heat transfer

fluid comprises an aluminum silicon phase change material.

7. The concentrating solar power system of claim 1 further comprising:
a tower supporting the solar receiver; and

a heliostat field having heliostats positioned to focus sunlight on the receiver.

8. The concentrating solar power system of claim 1 wherein the power cycle
comprises:
an open air Brayton upper power cycle; and

steam Rankine bottoming cycle.

9. The concentrating solar power system of claim 1 wherein the working fluid of

the power cycle contains an oxidizing agent.

10. A power generation method comprising:
providing a solar receiver configured to receive concentrated solar flux;
heating a heat transfer fluid in thermal communication with the solar receiver

with the concentrated solar flux;
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11.

12.

13.

14.

flowing or transporting the heat transfer fluid between the solar receiver and a
heat exchanger in a heat transfer fluid conduit;

exchanging heat between the heated heat transfer fluid and a working fluid of
a power cycle within the heat exchanger;

reducing a chemical energy storage material in communication with the solar
receiver by irradiating the chemical energy storage material with
concentrated solar flux;

flowing or transporting the reduced chemical energy storage material between
the solar receiver and an oxidizer in a chemical energy storage material
conduit;

oxidizing the reduced chemical energy storage material in an oxidizer, the
oxidizer further providing for heat exchange between the chemical
energy storage material and the working fluid of the power cycle; and

generating power with the working fluid of the power cycle.

The method of claim 11 further comprising storing heat transfer fluid in a
thermal energy storage system operatively associated with the heat transfer

fluid conduit.

The method of claim 11 further comprising:

storing heated heat transfer fluid received from the solar receiver in a hot
thermal energy storage system; and

storing cooled heat transfer fluid received from the heat exchanger in a cold

thermal energy storage system.

The method of claim 11 further comprising:

storing reduced chemical energy storage material received from the receiver in
a reduced chemical energy storage material storage system; and

storing oxidized chemical energy storage material received from the oxidizer

in an oxidized chemical energy storage material storage system.

The method of claim 11 wherein the heat transfer fluid comprises one or more

of water, a solid salt; a molten salt, a solid metal; a molten metal and an oil.
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15.  The method of claim 11 wherein the heat transfer fluid comprises an

aluminum silicon phase change material.

16. The method of claim 11 further comprising:
providing a tower to support the solar receiver; and
providing a heliostat field having heliostats positioned to focus sunlight on the

receiver.

17.  The method of claim 11 further comprising generating power with a power
cycle comprising:
an open air Brayton upper power cycle; and

steam Rankine bottoming cycle.
18.  The method of claim 11 further comprising oxidizing the reduced chemical

energy storage material in the oxidizer with a oxidizing agent in the working

fluid of the power cycle.
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