发明名称
具轴流风向的离心风扇

摘要
一种具轴流风向的离心风扇, 其包含一离心风扇轮及一罩壳, 离心风扇轮具有一转芯结构及环绕其排列设置的多个离心扇叶, 罩壳的内侧具有一环状导风面, 环状导风面环绕转芯结构且屏蔽离心扇叶, 通过环状导风面将离心扇叶外围的离心气流转换为轴流气流。
1. 一种具轴流风向的离心风扇，其特征在于，包含：

一离心扇轮，具有一转芯结构及环绕该转芯结构排列设置的多个离心扇叶，各所述离心扇叶包含一根部及一末端，所述根部呈弯曲状，所述末端则自所述根部向外远离所述离心风扇的转轴延伸，各所述离心扇叶的末端扭转朝向该离心扇轮的正转方向弯折；及

一罩壳，其中该罩壳呈锥形或圆筒形并设于该离心扇轮之外，所述壳的内侧具有一环状导风面，该环状导风面环绕该转芯结构且屏蔽所述离心扇叶，该罩壳于顶端开设有一进气口，所述离心扇叶的根部露出于所述进气口；

一固定座，该离心扇轮连接于该固定座。

2. 如权利要求1所述的具轴流风向的离心风扇，其特征在于，该转芯结构包含一扇毂及一底板，该底板自该扇毂径向延伸，所述离心扇叶设置于该底板之上。

3. 如权利要求1所述的具轴流风向的离心风扇，其特征在于，所述罩壳上设置有一静叶结构，所述静叶结构由所述罩壳的外缘向内凸出设置于罩壳的内侧，所述静叶结构用于增加所述罩壳内部流场的静压。

4. 如权利要求1所述的具轴流风向的离心风扇，其特征在于，该罩壳与该固定座之间构成一出风口，且该出风口与该进气口开口方向平行。

5. 如权利要求1所述的具轴流风向的离心风扇，其特征在于，该固定座上垂直设置有一轴套以套接该转芯结构，而该离心扇轮通过该转芯结构而连接于该固定座。

6. 如权利要求1所述的具轴流风向的离心风扇，其特征在于，所述离心扇叶的末端对应环状风面的外形渐缩。

7. 一种具轴流风向的离心风扇，其特征在于，包含：

一离心扇轮，具有一扇毂、一底板及环绕转芯结构排列设置的多个离心扇叶；及

一罩壳，罩设于该离心扇轮之外，该罩壳的内侧具有一环状导风面，该环状导风面环绕该转芯结构且屏蔽所述离心扇叶，该罩壳于顶端开设有一进气口；

其中各所述离心扇叶的末端延伸超出该底板，且各所述离心扇叶的末端扭转朝该离心扇轮的正转方向弯折。

8. 如权利要求7所述的具轴流风向的离心风扇，其特征在于，还包含一固定座，该离心扇轮连接于该固定座。

9. 如权利要求8所述的具轴流风向的离心风扇，其特征在于，该固定座上垂直设置有一轴套以套接该扇毂，而该离心扇轮通过该扇毂而连接于该固定座。

10. 如权利要求8所述的具轴流风向的离心风扇，其特征在于，该罩壳呈锥形或圆筒形，且该罩壳底缘与该固定座之间构成一出风口。

11. 如权利要求10所述的具轴流风向的离心风扇，其特征在于，该出风口与该进气口开口方向平行。

12. 如权利要求7所述的具轴流风向的离心风扇，其特征在于，所述罩壳上设置有一静叶结构，所述静叶结构由所述罩壳的外缘向内凸出设置于罩壳的内侧，所述静叶结构用于增加所述罩壳内部流场的静压。

13. 如权利要求7所述的具轴流风向的离心风扇，其特征在于，所述离心扇叶的末端对应环状导风面的外形渐缩。
具轴流风向的离心风扇

技术领域
【0001】 本发明有关于离心风扇，特别是一种具有轴流风向的离心风扇。

背景技术
【0002】 风扇为散热工程上常见的元件，一般常见的风扇种类有离心式风扇及轴流式风扇。二者的通道结构为：离心式风扇沿着扇轮的轴向进风，并且沿其旋转的切线方向出风；轴流式风扇则沿着扇轮的轴向进风及出风。二者之流场特性为：离心式风扇流场的静压较大，但其流量较小；轴流式风扇流场的静压较小，但其流量较大。
【0003】 对应不同的装置空间需设置不同形式的风扇，例如便携电子装置等窄小的扁形空间适合配置离心式风扇，而一般计算机主机的箱形空间较宽阔，发热量也较便携电子装置大，则适合轴流式风扇。
【0004】 参阅图1及图2，一般的车用电子装置的机壳10较适合轴进轴出的轴流通道配置，故适合设置轴流风扇。轴流风扇20的扇叶21旋转的面积等于其通道截面积，若在此范围内设置元件，将会阻碍其流场，因此机壳10内较佳的电子元件设置位置为轴流风扇20中心的扇毂22位置，但一般轴流风扇20的扇毂22体积不大，机壳10内的电子元件设置空间亦受到限制。若要达到通道最佳化，便需要配置较大的轴流风扇20以得到较大的扇毂22面积；若配置一般尺寸的轴流风扇20，其通道则会被电子元件所阻。

发明内容
【0005】 本发明的目的在于提供一种具轴流风向的离心风扇，其通过罩壳导引气流而使其气流由离心风扇的中心轴向进气并且自离心扇轮的外围沿其轴向出风。
【0006】 为达成上述之目的，本发明提供一种具轴流风向的离心风扇，其包含一离心扇轮、一罩壳及一固定座。离心扇轮具有一转芯结构及环绕转芯结构排列设置的多个离心扇叶。罩壳大致呈锥形或圆筒形并罩设于离心扇轮之外，罩壳的内侧具有一环状导风面，环状导风面环绕转芯结构而且屏蔽离心扇叶，罩壳于顶端开设有一进气口。离心扇轮连接于固定座。
【0007】 较佳地，前述的具轴流风向的离心风扇，其转芯结构包含一扇毂及一底板，底板自扇毂径向延伸，离心扇叶设置于底板之上。
【0008】 较佳地，前述的具轴流风向的离心风扇，其各离心扇叶的末端朝向离心扇轮的正转方向弯折。
【0009】 较佳地，前述的具轴流风向的离心风扇，其罩壳与固定座之间构成一出风口，且出风口与进气口开口方向大致成平行。
【0010】 较佳地，前述的具轴流风向的离心风扇，其中该固定座上垂直设置有一轴套以套接该转芯结构，而该离心扇轮通过该转芯结构而连接于该固定座。
【0011】 为达成上述之目的，本发明另提供一种具轴流风向的离心风扇，其包含一离心扇轮及一罩壳。离心扇轮具有一扇毂、自扇毂延伸的一底板及环绕扇毂排列设置于底板的多
个离心扇叶。罩壳设于离心扇轮之外，罩壳的内侧具有一环状导风面，环状导风面环绕扇
毂而且屏蔽离心扇叶，且罩壳于顶端开设有一进气口。其中各离心扇叶的末端延伸超出底
板，且各离心扇叶的末端向离心扇轮的正转方向弯折。

[0012] 较佳地，前述的具轴流风向的离心风扇还包含一循环座，离心扇轮连接于固定座。
[0013] 较佳地，前述的具轴流风向的离心风扇，其固定座上垂直设置有一轴套以套接扇
毂，而该离心扇轮通过扇毂而连接于固定座。
[0014] 较佳地，前述的具轴流风向的离心风扇，其罩壳大致呈锥形或圆筒形，且罩壳底缘
与该固定座之间构成一出风口。
[0015] 较佳地，前述的具轴流风向的离心风扇，其出风口与进气口开口方向大致成平行。
[0016] 本发明的具轴流风向的离心风扇通过环状导风面及扭转的离心扇叶末端将离心
扇轮外围的气流由离心方向导引至轴流方向，其装置于机壳时使得机壳内有更多空间可
用以设置电子元件。

附图说明
[0017] 图1是现有轴流式风扇的示意图。
[0018] 图2是现有轴流式风扇的工作状态示意图。
[0019] 图3是本发明第一实施例的离心风扇的外侧分解示意图。
[0020] 图4是本发明第一实施例的离心风扇的内侧分解示意图。
[0021] 图5是本发明第一实施例中离心扇轮的示意图。
[0022] 图6是本发明第一实施例的离心风扇的外侧示意图。
[0023] 图7是本发明第一实施例的离心风扇的外侧正视图。
[0024] 图8是本发明第一实施例的离心风扇的内侧示意图。
[0025] 图9是本发明第一实施例的离心风扇的内侧正视图。
[0026] 图10是图8中本发明第一实施例的离心风扇的沿A-A剖视图。
[0027] 图11是本发明第二实施例的离心风扇的分解示意图。
[0028] 其中，附图标记说明如下：
[0029] 10机壳
[0030] 20轴流风扇
[0031] 21扇叶
[0032] 22现有的扇毂
[0033] 100离心扇轮
[0034] 110转芯结构
[0035] 111扇毂
[0036] 112轴芯
[0037] 113底板
[0038] 114端孔
[0039] 120离心扇叶
[0040] 121根部
[0041] 122末端
具体实施方式

【0051】参阅图3及图4，本发明的第一实施例提供一种具轴流风向的离心风扇，其包含一离心风扇100、一罩壳200及一固定座300。

【0052】参阅图3至图5，离心风扇100包含一转芯结构110及多个离心扇叶120。转芯结构110包含一扇毂111、一底板113，扇毂111较佳地为圆筒状的壳体（但本发明不限定于此，例如扇毂111也可以是锥状壳体），扇毂111的内侧具有一转轴112，转轴112较佳地沿扇毂111的轴向设置；离心风扇100沿转轴112朝向一正转方向D1旋转；底板113呈圆板状，其自扇毂111沿著扇毂111(或转轴112)的径向延伸，沿着扇毂111与底板113的连接处贯穿开设有多个破孔114，这些破孔114环绕扇毂111排列。离心扇叶120绕转轴112排列设置于底板113之上，各离心扇叶120较佳地与底板113垂直连接设置，各离心扇叶120包含一根部121及一末端122，根部121呈弯曲状，各离心扇叶120较佳地通过根部121连接于底板113，末端122则自根部121向外远离转轴112延伸，且较佳地各离心扇叶120的末端122扭转朝向离心风扇100的正转方向D1弯折并且延伸超出底板113的外缘。

【0053】前述为离心扇叶120较佳的结构配置方式，但本发明不限定于此，离心风扇100也可以仅包含一扇毂111及多个离心扇叶120，各离心扇叶120的根部121连接于扇毂111，其末端122自根部121向外远离转轴112延伸。

【0054】参阅图6至图8，罩壳200较佳地呈锥形，其罩设于离心风扇100之外，其内侧具有一环状导风面210，且罩壳200的顶端开设有一进气口220。环状导风面210呈环状锥面且其环绕转轴112设置，扇毂111对齐进气口220设置，各离心扇叶120的根部121露出于进气口220，环状导风面210屏蔽于离心扇叶120之末端122的外侧，较佳地，离心扇叶120的末端122对应环状导风面210的外形渐缩。罩壳200上设置有一静叶230，静叶230自罩壳200的外缘向内凸出设置于罩壳200的内侧，其用于增加罩壳200内部流场的静压。

【0055】参阅图8及图9，较佳地，固定座300为平板状，其用于固定离心风扇100的转轴112，且固定座300连接于罩壳200。固定座300的外缘延伸出多个固接部301，固定座300通过这些固接部301而固定连接于罩壳200（例如以螺丝锁接，但本发明不限定于此）。固定座300上垂直设置有一轴套310，离心风扇100通过将转轴112套接轴套310而连接于固定座300。且本发明的离心风扇100位于罩壳200与固定座300之间。较佳地，固定座300的外缘所包围范围小于罩壳200底部的外缘所包围的范围，罩壳200的底缘与固定座300的外缘之间具有间隙而构成一出风口240，而且出风口240与进气口的开口方向大致成平行。
说明

参阅图10, 本发明的离心风扇设置于一机壳10。离心扇轮100沿着转轴112朝其正转方向D1旋转而将空气由进气口220吸入, 空气沿着各离心扇叶120的根部121自扇毂111离心流向各离心扇叶120的末端122, 通过离心扇叶120弯折的末端122及环状导风面210引导离心方向的气流转换至轴流方向而通过出风口240流入机壳10。但是本发明的离心风扇也可以仅通过环状导风面210引导气流转换而不弯折离心扇叶120的末端122。

参阅图11, 本发明的第二实施例提供一种具轴流风向的离心风扇, 其包含一离心扇轮100、一罩壳200及一固定座300。

离心扇轮100包含一转轴结构110及多个离心扇叶120。转轴结构110包含一扇毂111、一底板113，扇毂111较佳地为圆筒状的壳体（但本发明不限定于此，例如扇毂111也可以是锥状壳体），扇毂111的侧具有一转轴112，转轴112较佳地沿扇毂111的轴向设置；离心扇轮100沿转轴112朝向一正转方向D1旋转；底板113自扇毂111沿着扇毂111（或转轴112）的径向延伸，沿著扇毂111与底板113的连接处贯穿开设有多个破孔114, 这些破孔114环绕扇毂111排列。离心扇叶120环绕转轴112排列设置于底板113之上，各离心扇叶120较佳地与底板113垂直连接设置，各离心扇叶120包含一根部121及一末端122, 根部121呈弯曲状，各离心扇叶120较佳地通过根部121连接于底板113, 末端122则自根部121向外远离转轴112延伸, 且较佳地各离心扇叶120的末端122扭转朝离心扇轮100的正转方向D1弯折并且延伸超出底板113的外缘。

前引为离心扇轮100较佳的结构配置方式，但本发明不限定于此，离心扇轮100也可以仅包含一扇毂111及多个离心扇叶120, 各离心扇叶120的根部121连接于扇毂111, 其末端122自根部121向外远离转轴112延伸。

罩壳200呈圆筒状的壳体，其罩设于离心扇轮100之外，其内侧具有一环状导风面210, 且罩壳200的顶端开设有一进气口220, 环状导风面210环状平面且其环绕转轴112设置, 扇毂111对齐进气口220设置, 各离心扇叶120的根部121露出于进气口220, 环状导风面210屏蔽于离心扇叶120末端122的外侧。

固定座300用于固定离心扇轮100的转轴112, 且固定座300连接于罩壳200。固定座300的外缘延伸出多个支脚状的固接部301, 固定座300通过这些固接部301而固定连接于罩壳200（例如以螺丝锁接，但本发明不限定于此），且固定座300上垂直设置有一轴套310, 离心扇轮100通过将转轴112套轴套310而连接于固定座300, 且本发明的离心扇轮100位于罩壳200与固定座300之间。较佳地，固定座300的外缘所包围范围小于罩壳200底缘的外缘所包围的范围，罩壳200的底缘与固定座300的外缘之间具有间隙而构成一出风口240，且出风口240与进气口220的开口方向大致成平行。

本发明的离心风扇其主要出风通道在其离心扇轮100的外侧，通过设置环状导风面210及弯折离心扇叶120的末端122而将离心扇轮100外围的气流由离心方向引导至轴流方向，因此可以机壳10内部空间的外围作为散热通道，在固定座300外缘以内的空间皆可用于设置电子元件而不会阻碍通道。相较于现有技术的传统轴流风扇20, 本发明的离心风扇使得机壳10内部可具有更大的运用空间，而能够适用于窄小的设置空间，而且气流通道也更顺畅，再有，离心风扇也可以提供较现有轴流风扇20更大的风压。

以上所述仅为本发明的较佳实施例，非用以限定本发明的专利范围，其它运用本发明的专利精神的等效变化，均应具属本发明的专利范围。
图2
图3
图5
图6
图9