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(57) Abstract

A method for the estimation of the state variables of nonlinear systems with exogenous inputs is based on improved extended Kalman
filtering (EKF) type techniques. The method uses a discrete~time model (602) describing the system, that is linearized about the current
operating point. The time update for the state estimates (603) is performed using integration methods. Integration, which is accomplished
through the use of matrix exponential techniques, avoids the inaccuracies of approximate numerical integration techniques. The updated
state estimate and corresponding covariance estimates use a common time varying system model for ensuring stability of both estimates.
Other improvements include the use of QR factorization for both time and measurement updating of square root covariance and Kalman
gain matrices and the use of simulated annealing for ensuring that globally optimal estimates are produced.
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WO 99/10783 PCT/US98/17439

A METHOD FOR REAL-TIME NONLINEAR SYSTEM STATE ESTIMATION AND
CONTROL

Field of Invention

The invention pertains to the field of nonlinear system state estimation and
control in which the nonlinear system is describable by a set of nonlinear
differential equations. More specifically the invention relates to the use of
extended Kalman filtering (EKF) type techniques for state estimation and system

control.

Background to the Invention

Observation ot a physical system for understanding its behavior requires
obtaining access to key parameters (state variables) within the system. Often, these
state variables are not directly available for observation so that they must be
inferred from indirect and noisy measurements. Optimal linear estimation theory
has been developed for estimating these state variables by producing a minimal
error estimate from their contaminated images. The need for optimal estimation
technology is widespread and includes such diverse applications as monitoring
system behavior in hostile environments, estimating system parameters for system
modeling, estimating (detecting) messages in communication systems, remote

measuring systems, and controlling of physical systems.

Optimal estimation techniques are based on statistical signal processing
(filtering) techniques for extracting a statistical estimate of the desired state
variables from inaccurate and distorted measurements by minimizing a prescribed
error function. The form of the error function determines the nature of the

estimator optimality.

Kalman filtering (Kalman, R.E., “A New Approach to Linear Filtering and
Prediction Problems™, Trans. ASME, J. Basic Eng., Vol. 82D, pp. 34-45, March

1960) is an optimal filtering technique commonly used for estimating state

1
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variables of a linear system. Kalman filtering is a time domain operation that is
suitable for use in estimating the state variables of linear time-varying systems that
can be described by a set of linear differential equations with time-varying
coefficients (linear differential equations with constant coefficients being a special
case). Although Kalman filtering has found application in state estimation in many
systems thal may be approximately described as linear, the basic Kalman filter
technique can not adequately accommodate general nonlinear systems. Because
nonlinear systems are common, attempts have been made to adapt the Kalman filter
to estimation of states in nonlinear systems by quasi-linearization techniques. These
adaptations, when restricted to computationally feasible methods, result in sub-

optimal estimators which do not yield a minimal (optimal) error estimation.

Because it is desirable to use digital computers for applying Kalman filter
techniques, discrete-time (time- sampled) adaptations have been developed.
Discrete Kalman filtering is ideally suited for estimation of states in discrete-time
systems that can be properly described by a set of finite difference equations with
discrete time-varying coefficients. However, because of the strong incentives for
incorporating digital signal processing techniques for continuous-time Kalman
filter estimation, extensive use has been made of discrete Kaiman filters in

continuous-time system state estimation.

Because Kalman filters (and other state variable estimators, such as the
Luenberger observer (Luenberger, D.G., “Observing the State of a Linear System™,
IEEE Trans. On Military Electronics, pp. 74-80, April 1964)) are based on a model
of a system whose states are to be estimated, the use of a discrete Kalman filter for
estimating the states of a continuous system implies modeling the continuous
system as a discrete time-sampled system in which integrators are replaced by
accumulators and continuous time-varying coefficients are replaced by discrete
time-varying coefficients. In addition to propagating the state estimates, estimators
may propagate state estimate error covariance using a model that may be a different

approximation to the original continuous system model. As the time interval
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between sampled data points is increased, the approximation error for each model
increases and may result in model behaviors that departs drastically from the actual

system behavior.

When the effects of modeling continuous time systems by using discrete-
time models are combined with the inaccuracies of quasi-linear model
approximations to nonlinear systems, estimator error stability can be severely
impaired. Loss of stability means severe departure between the actual state values
and the estimates. Increasing the sampling rate of the model produces smaller
finite difference intervals with improved performance but often at an unacceptable

cost for the increased computational burden.

Optimal state estimators for linear systems form the basis for optimal
control in the so-called Linear Quadratic Gaussian (LQG) control problem
(Reference: Applied Optimal Control, A. E. Bryson and Y. C. Ho, John Wiley &
Sons, 1975). System state variables are estimated using optimal estimation
techniques and then a quadratic objective performance criterion is applied to
establish a control design strategy. Kalman filtering is commonly used as a means
for estimating the state variables of a system. When the estimated state variables
are combined, using the control law based on the objective performance criterion

(or performance index), optimal LQG control system results.

The objective performance criterion summarizes the objectives of
the system by the performance index, J, which is a mathematical expression that
must be minimized in order to meet the objectives of the system. For example, the
performance index can represent the final error, total time, or the energy consumed
in meeting the system objective. The various possible performance indices may be

used individually or in combination so that more than one objective is satisfied.

Figure 1 1s a block diagram of'a basic state variable control system

10 1n which the physical plant 11 that is to be controlled has a vector
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(multichannel) input, u(t), and a state vector, x(t), with vector elements
corresponding to the set of state variables representing the attributes of plant 11 that
are to be controlled. State vector x(t) is generally not directly accessible but
through the measurement vector, z(t), which are available from a set of appropriate
sensors in sensor unit 12. The measurement vector may have more or less elements
than the state vector. These measurements can also be contaminated by
measurement noise due to the system environment and/or due to sensor noise.
Typically, the sensors are transducers that convert the various physical elements of
the state vector representing diverse physical activity (e.g. heat, light, mass,
velocity, etc.) into electrical signal representations suitable for additional signal
processing. State observer 13 accepts vector z(t) as a noisy and distorted
representation of the state vector x(t) from which an estimated state vector, X (t), of
the state vector is made. The estimated state vector, X(t), is a statistical estimate of
necessity because of the stochastic nature of the random noise introduced into the
measurement process and into the dynamics. The estimated state vector, & (t), 1s
then used by controller (-C(t)) 14 to form a suitable input vector, u(t), to drive plant
I'1. Because of the stochastic nature of real control systems, the performance
index, J, must be expressed as an average value, J=E{J}, where E {.'} is the
expectation operator. In order to accommodate time-varying plants, i.e. plants that
change physical attributes as a function of time, controller 14 may also be a time-
varying controller based upon a time-varying performance index, J (1), and a time

varying state observer 13.

Fig. 2 is a signal flow block diagram representing a plant such as
plant 11 of Fig. 1. Summing junction 111 provides at its output vector X (t), the
time derivative of state vector x(t) that is the sum of three inputs to summing
junction 111: the output vector F(t)x(t) of feedback gain unit 112, an input signal
['(Y)u(t) from gain unit 116 and an input noise signal G(t)w(t) from gain unit 114.
The input noise, w(t), is generally assumed to be white gaussian noise of zero
mean. The state vector time-derivative, % (t), applied to vector integrator 110 for

producing the state vector, x(t), which is applied to vector feedback gain unit 112
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and to vector gain unit 113 of measurement system 120. The output of gain unit
113, y(t), is combined with a white noise vector, v(t), by vector summing junction
115 for producing output measurement vector z(t). The system satisfies the
following differential equations:
X(t) = F(t)x(t) + (1) u(t) + G(t)w(t)
y(t) = H(t)x(t) (M
z(t) = y(t) + v(t)
where w(t) and v(t) are normal zero mean vectors with covariance matrices Q)
and R(t), respectively, i.e.
w(t) = N(0,Q(1)8(t))
v(t) ~ N(O,R(1)5(t)),
5(t) 1s the Dirac delta function, and u(t) is a vet to be defined input control vector.

Also, both noise vectors are usually assumed to be independent, i.e. E{w(t)v(t)}=0.

As shown in Fig. 3, the state observer 13 of Fig. 1 can be implemented as a
Kalman filter that has identical elements with those identified as integrator
110,input gain unit 116, measurement gain unit 113, and state vector feedback gain
unit 112, respectively corresponding to elements 130, 136, 133, and 132 in Fig. 3.
The output, z(t), from sensor unit 12 of Fig. 1 is applied together with z(t), the
output of feedback gain unit 133, to the input of vector adder 139 for forming the
difference, (z(t)- Z(1)), representing error in the Kalman filter estimate of the vector
z(t). The difference is applied to Kalman gain unit 137 (for applying the Kalman
gain matrix to the difference) and supplying its output to one input of vector adder
[38. A second input to vector adder138 is the output of vector gain unit 132 that

forms the product F(t) X (t), so that the vector adder output represents an estimate,

§( t). of the time derivative of the state vector. The Kalman filter signal flow block

diagram of Fig. 3 supports the following vector differential equation:

X (1) =F(OX (1) + T(1) u(t) + K(O)[z(t)-H(t) % ()] (2)

and X(0)=x,.
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Equation (2) requires the solution of the following continuous Ricatti
equation for P(t), the covariance matrix of the state vector, x(t), in order to solve for
the Kalman gain matrix, K(t) in equation (2).

P () = F(P(H)+ POF ' (1) + GHQING ' (1) - K(HR(K ' (1) (3)
where [.] ' indicates the matrix transpose operation, P(0) =P, and P(t) = E{(x(t)-
RO)x()-%(1))' }. Thus, the covariance matrix P(t) is based on the difference
between the actual state represented by vector x(t) and the estimated state
represented by vector X (t).

The Kalman gain matrix, K(t), is

Kt =PMOH" (R (1) (4)

Equations (2)-(4) specify the Kalman filter observer that is the optimal
linear filter for estimating the minimum variance, conditional mean state vector of

plant 11 of Fig. 1. Equations (1) describe the signal model used in constructing the

Filter equations (2)-(4).

The control vector, u(t), may be considered to be an exogenous variable
whose functional form can be prescribed for altering the dynamic properties of the

plant. An optimal control vector obtains when u(t) is chosen to minimize a

prescribed performance index, J, as previously discussed.

A quadratic performance index is commonly used that minimizes the
weighted integrated quadratic error and the quadratic value (energy) of the control
vector and the weighted quadratic error of the state vector at a designated final time,

t;, as follows:

T=E{X(t)" Vex(t,)+ j [XT(OV(OX() +u" (U 1t (5)

to

where V,, V(t), and U(t) are weighting matrices for establishing the relative

importance of the three quadratic terms. Minimization of J is performed subject to

the conditions implied by the plant differential equations (1) and a solution for u(t)
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is obtained in terms of the estimated state vector, & (t) as

u(t) =-C(t) X (1) (6)
where C(t) is computed using the matrix Riccati equation for control and the
certainty-equivalence principle .(Reference: Applied Optimal Control, A. E. Bryson
and Y. C. Ho, John Wiley & Sons, 1975

Figure 4 is a block diagram of an optimal Kalman controlier 15 controlling
plant 11 by using measurements obtained by sensor unit 12. The Kalman controller
comprises a Kalman filter 13, for operating on the output of sensor unit 12 and
producing an estimated state vector, and a Kalman gain matrix unit 14 that operates

on the estimated state vector to produce the control vector for controlling the plant.

Fig. 5 is a signal flow block diagram of a discrete time sampled model 20
for a physical plant that is to be controlled. The most obvious difference between
the continuous signal model of Fig. 2 is that integrator 110 has been replaced by
time delay unit 200 that introduces a vector delay of T seconds. Attimet= kT, the

discrete state vector, x,, appears at the output of delay unit 200. Vector adder 201
accepts the output, F, x, , of matrix gain unit 203, control vector [, u, from matrix
gain unit 206, and the output, G, w, , of matrix gain unit 202 and presents as the
vector sum, x,,;, corresponding to the state vector for t = (k+1)T. The

measurement portion of the plant is represented by vector gain matrix unit 204, that

operates on state vector x, to produce y,, and vector adder 205 that adds white
noise vector v, to y, for producing output measurement vector z,. Noise vectors

w, and v, are assumed to be independent discrete processes.

As a result the following set of finite difference equations, that are

comparable to equations (1), apply to Fig. 5
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Xpa=Fx +Tu, +G,w,

Yo =Hx,

Zy =Yy Yy 0
Efvivii=R 6,

E{w,w}=Q,d,

Fig. 6 is a block diagram of the discrete Kalman filter, analogous to the

continuous Kalman filter of Fig. 3, that accepts the output measurement vector, z,,

of the discrete time sampled plant model of Fi g. 5 and produces a conditional

estimated state vector, X,,, _, , at the output of vector time delay unit 200. The

vector, X, , is fedback through vector gain unit 303 (F, — K, H!) to vector adder

301 to be added to the output of Kalman matrix gain unit 302 and added to input

control vector I', u, from gain unit 206.

The following finite difference equations apply to the discrete

Kalman filter of’ Fig. 6.

Npw =(F, - K, H/ ).\‘*kl‘,_, +INu, +K,z,,

wherex, , = F{x,} = X,

Ky =12 HJH[Z W H, + R

Do =S S H HZ  H L+ R H S 1

-1k kik-1 . (8)
+G, 06y

where L, | = P(0) = £,,and
Lk T j’k:m + Ekik-lHk(HZZk;k~lHk + R, )-l(st - H/\I'.'{.A-ik—l )
Zk,‘k = Zk.‘k—! + zk:k—!Hk (HZZHI;—!H& + R, )~| HZ.ZH&'—I

b

In the above expressions involve conditional vectors, Xi_, » and covariance

matrices, X, forn=0or I, which should be interpreted to mean that they

represent predicted values conditioned on the measured observations [zoz,...2,_,]

as follows:

xk-k-n =
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The Kalman filter controlier shown in Fig. 4 would apply to the discrete
case described above if the following changes were implemented: replace Kalman
filter 13 with the discrete Kalman filter of Fig. 6; provide sensor unit 12 with ADC
means for periodically sampling and quantizing z(t). and provide controller 14 with
a digital-to-analog converter (DAC) output with first order hold output means it an
analog input to plant 11 is required. In this manner, the input would be held
constant during the interval between successive samples of z(t). The control 14
gain matrix would be calculated by minimizing an appropriate discrete

performance index . J(k).

Because the computation of the state vector covariance, £ . can lead to
numerical instability. 1t is advantageous to deal with the square-root. S, of the
covariance. T =SS', because the product SS' can not lead to a matrix that fails to
be nonnegative definite as a result of computational errors. Also. the numerical
conditioning of S is generally much better than that of £ and only requires half as
many significant digits for computation. The covariance square root matrix, S ,

can be update using a matrix transformation as follows:

- "o T
etk | _ /1 tl\z k‘r (10)
0 Q.G

where S| | isa nxn upper triangular matrix and 7' is anv orthogonal matrix that

k-lk

_ |
makes S, |,

upper triangular. Simtlarly, the both time and covanance updates may
be obtained by the following operations:

%0, = X TKUR+HIZ HO (2, —H{x, )

(1)
(R, +H1‘zk:k-ll_ll: )T"z Kk T RIQ 0
0 Swn]
where 7 is an orthogonal matrix that causes the transformed matrix on the left to

be upper triangular (Anderson et al. op. cit. pp. 148-149),
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The discrete model described above replaces differential equations
needed to describe most practical physical systems that operate in the continuous
domain by finite difference equations that may not adequately describe the physical
system that is to be controlled. The discrete model is only a first order
approximation to the integration process of the continuous model that may require
high sampling rates (and consequently more processing) in order to provide a
acceptable approximation to the continuous model. This problem becomes more
acute when these techniques are applied to nonlinear time varying system models
that more accurately describe practical processing systems. Prior art has attempted
to extend the discrete Kalman filter control technique from the linear time-varying
type of system to nonlinear time-varying systems by a method known as extended
Kalman filtering (EKF).

A rather general nonlinear model for a nonlinear plant is given by the
following nonlinear differential equations:

X=f(x,u)+w

(12)

z=g(x)+v
where u,v,w.x, and z represent the same variables as previously defined but with the
dependent time variable, t, suppressed, f(.) is a nonlinear function of both the state
vector, x, and the input vector, u, and g(.) is a nonlinear function of the state vector,
X. The corresponding nonlinear plant biock diagram model, 40, is shown in Fig. 7
where input unit 401 accepts input vector u and state variable feedback x and
produces the nonlinear output vector f{x,u) to which vector summer 402 adds noise
vector w to form the differentiated state variable vector, x. Vector integrator 403
operates on X to produce state vector x at the output. State vector x is fedback to
input unit 401 and to measurement nonlinear transformation unit 404 that
transforms vector x by forming the output vector g(x) to which noise vector v is

added for producing the measurement observation vector z.

Because the optimal nonlinear system state vector estimation is generally
computationally intractable, common practical approaches approximate equations
(12) by using finite difference equations and by adapting the linear methods

10
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discussed above after linearizing the above nonlinear plant differential equations
(23) along a nominal trajectory, so that the equations take on the following form:
Xeg =A X +Bu, +w,
z, =C,x, +v, Jfork=1.2,... (13)

These equations represent a time-varying linear model with index k, and
discrete time state vectors. The nominal trajectory for the non-linear equations

(12) must be available for computation of the linearized model.

Anderson et al. (op. cit., p. 195) apply Kalman filter methods to obtain a
suboptimal estimator for the discrete model given by the following equations:

Xoa = RxO)+g,(x0)w,

(14)
z, =h (x ) +v,

where the trajectory index and the time sampling index are both k,f,(.)and h, ()
are nonlinear time dependent operators, g, is a time-dependent gain, v, and w,
are mutually independent zero-mean white gaussian processes with covariances R,

and Q, respectively and x, = N(X,,P,).

The nonlinear model is linearized by use of a Taylor series expansion about

~

X =X, . so that

fx) = (R + F(xy = %)
(%) =g, (X, ) =G, (15)

hy (x,) = hk(;(klk—l)-kH:(Xk = Ry

where Fi = A, (x,)/ &

andH| = &, (x)/ &

x=% gk R TR

Assuming that X, and %, , | are known, the resulting quasi-linear signal

model equations may be written so that they are similar in form to the linear
equations used previously, as follows:
X =Ex +Gowy + py

(16)

z, =H[x, +v, +7,
11
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where 7, and 7, are available from estimates as

A =fk(£k!k)_Fk§(klk

. (17)
Me=ho (X, ) - HyXy,
The corresponding EKF equations are as follows:
X = Xy + Ly (2, - hy (R)]
Ry = fi(Ryg)
Ly =S, H QY
W, =Hkr-zm-|Hk+Rk A (18)

o = Loy “zk!k—lHk[H:szﬁHk +Rx—]—|HIZ
Lk = szk{ka'_r + GkaGI

< ¥ \! > .
where £, , =P, = E{(x, - X, )(x, - Xo) ', and X, = X,.

klk-1

Fig. 8 is a block diagram that shows the EKF equations (18). Fig. 8 is

labeled so as to correspond to the variables and matrices of equations (18).

The prior art EKF technology must be selectively and judiciously applied.
Otherwise, poor performance can result due to stability of numerical integration,
stability of the filtering equations and numerical error build-up. The finite time
increments used in difference equation approximations can require fine increments
that begin to approach infinitesimal increments. Consequently, the additional
computation resulting from these fine-increment difference equations can impose

an unacceptable computational burden on the control system processor.

Jazwinski, (A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic
Press, 1970) describe an Extended Kalman Filter for continuos-time system without
exogenous inputs u(t). Equations (14) above are replaced by

X = f(x,t) + G(t)w

z=h(x,t)+v

(14a)

The filtering equations are identical to (18) except that the state estimate

time propagation is performed by direct numerical integration given by

12
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R(a [0)= R0, |1,) + jf(ﬁ(zm ), 0)dt (18a)

I
The use of direct numerical integration of the continuos-time nonlinear
system presents several problems. Stability of the numerical integration, stability
of the filtering equations and the computational load for real-time use are the main

problems.

Instability of numerical integration arises from selection of step size in
numerical integration to achieve feasible computational loads. Instability of the
filter equations arise from mismatch between the linearized signal model used in
the filter update and the implicit signal model in numerical integration. Typical
physical models have widely different time scales leading to stiff differential
equations (Reference: G. Golub and J. Ortega, Scientific Computing and
Differential Equations, Academic Press, 1992). Prior methods using variable step
solvers such as Gear’s stiff method are used for such systems. Such variable step
solvers impose highly variable data-dependent computational load. Highly variable
computation load makes these methods inappropriate for real-time use. Fixed step
methods such as Runge-Kutta or Euler require very small step size to ensure
stability of numerical integration itself. Lack of numerical stability of integration
leads to large errors. Numerical stability of the integration is not sufficient to
provide stability of the real-time filter.

The present invention, by contrast, imposes fixed computation burden,
permits time propagation in a single step that ensures numerical stability of
integration as well as that of the fiiter. Stability of the filter in the present invention
is arises from ensuring that

1) the time update for the state estimates and the covariance updates for the
filtering equations use the same time-varying linear system signal model:
and

2) the time-varying linear signal model satisfies conditions for observability,
controllability through disturbances and positivity of initial state error

covariance matrix P, .
13
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In the present invention, these conditions are easily satisfied regardless of
accuracy of the non-linear system equation (18a), (19) with respect to the real
system that generates signals used by the filter so that stability is preserved under
large model errors. This property is useful in applications of CTEKF for adaptive
processing, real-time system identification, hypothesis testing, fault detection and
diagnosis where large model errors must be tolerated in real-time. Consequently,
the resulting state estimates are stable and avoid the unstable consequences of

prior-art EKF state estimation methods.

Prior-art formulation (14) and (14a) does not explicitly account for
exogenous inputs u(t). In digitally controlled systems, exogenous inputs are
typically outputs of zero-order-hold circuits. Exogenous inputs play a critical role
in behavior of the controlled systems and have to be accurately represented in the
model used in the filtering equations. Present invention addresses exogenous
inputs explicitly. It also handles the digitally controlled exogenous inputs

ettectively.

A sensor processing method for the implementation of extended Kalman
filter techniques for continuos-time nonlinear systems should provide the following
features:

1) the use of numerical integration and digital sensor data in the solution of

continuous time nonlinear differential system equations in the state
estimate time update that imposes low fixed, deterministic computation
load;

2) covariance update and gain calculations that ensure stability of the
combined state estimate update and the filter update in spite of mismatch
between the system generating the signals and its assumed signal model in
the filter;

3) the square-root method for computation of the state vector covariance

matrix should be used in conjunction with numerical method for computing
14
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covariance matrices that are not dependent on the normal Kalman filter
equations which, when used, may cause unstable results because the
covariance matrices may fail to be non-negative definite: and

reduced probability that minimization of the estimation error metric

results in a local minimization rather than the desired global minimum.
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Summary of the Invention

A method for real-time nonlinear system state estimation in which the system
is represented by a set of continuous-time nonlinear differential state equations that
include a state vector representing the system states that are to be estimated, and a
nonlinear system matrix that defines the functional relationship between the input
vector, the state vector, and the time-derivative of the state vector. The state vector is
estimated from a set of accessible measurements that are dependent on the state
variables. The set of measurements, labeled as a measurement vector, are taken at
prescribed times and represented by a measurement vector. Both the state vector and
the measurement vector are respectively contaminated by a state noise vector and a
measurement noise vector. The method includes the following steps:

(a) constructing a set of state equations representing the nonlinear system;

(b) establishing a set of state variable values for a current time state vector, and

a set of matrix element values for one each covariance matrix for a current
time state vector, for a current time state noise vector, and for a current time
output measurement noise vector;

(c) acquiring a current time measurement vector:

(d) updating the covariance matrices using the current time state vector,

(e) estimating an updated current time state vector from the current time
measurement vector by use of a state vector estimating filter that operates
on the current time state vector using the current time measurement vector,’
the covariance matrices for the current time state vector, for the current time
state, and for the current time measurement noise vector, the estimated
updated state vector representing the state vector at the current
measurement time;

(f) projecting the estimated updated state vector forward in time by integrating
the system state equations over the prescribed time interval between the
current prescribed measurement time and the next prescribed measurement
time for obtaining a current state vector:

() projecting the updated state vector covariance matrix forward in time by

using the results of the system equation integration of step (f),
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(h) acquiring a measurement vector at the next prescribed measurement time
that becomes the current state vector; and
(1) iterating steps (d)-(h).
Integration is performed by using matrix exponential in a single time step in a manner
so that the signal models used by the filter state updates and the filter covariance

updates are consistent.

Another embodiment includes the use of simulated in the filter equations for
reducing the probability of getting trapped in a local minimum of state estimation error

metric rather than the global minimum.

Another embodiment includes the use of the above estimation techniques in

closed-loop (feedback) control systems.
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Brief Description of the Drawings

The present invention will be more fully understood from the detailed
preferred embodiments of the invention, which, however, should not be taken to
limit the invention to the specific embodiment but are for explanation and better
understanding only.

Fig. 1 shows a basic state variable control system using an observer for state
variable estimation.

Fig. 2 is a state variable signal model for a physical plant

Fig. 3 is a Kalman filter implementation for estimating the state variables of
the physical plant model shown in Fig.2.

Fig. 4 is a block diagram of a state variable control system using a Kalman
filter as a state observer.

Fig. 5 is a discrete-time plant signal model.

Fig. 6 1s a block diagram of a discrete-time Kalman filter suitable for
estimating the state variables of the plant model shown in Fig. 5.

Fig. 7 is a block diagram of a state variable nonlinear continuous-time
physical plant model.

Fig. 8 is a discrete-time extended Kalman filter for use in estimating state
variables in a nonlinear continuous-time physical plant as in Fig. 7.

Fig. 9 shows an example of a nonlinear thermal kinetic process plant.

Fig. 10 shows a highly nonlinear heat transfer characteristic of a thermal
kinetic system.

Fig. 11 is an example of a biochemical nonlinear batch processing system.

Fig. 12 is a block circuit diagram for a nonlinear system.

Fig. 13 shows the waveforms and timing of the CTEKF.

Fig. 14 is a block diagram of a CTEKF continuous-time linearized model.

Fig. 15 is a block diagram of a CTEKF discretized-time and linearized
model.

Fig. 16 is a block diagram of a CTEKF.

Fig. 17 is a flow diagram of the CTEKF method.

Fig. 18 shows an example of a local and global minimum.
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Fig. 19 1s a flow diagram for using simulated annealing with the CTEKF
method.

19
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Detailed Description of the Present Invention

Computer models of complex physical processes, such as those involving
heat, mass, and reacting flows, form the basis for controlling these processes.
Traditionally, every effort is made to greatly simplify the model by decoupling and
dissociating various aspects of the physical process in order to reduce the number
of interacting factors which may complicate estimation of the desired properties.
As a result, estimates of system model parameters and states are made using quasi-
static tests with the hope of isolating and measuring individual properties of
interest, free from unknown effects ot other processes and confounding due to
memory effects of dynamic transients. The primary deficiency of this approach is

that many individual and isolated experiments are needed.

High complexity and lack of predictive accuracy are often cited as problems
in using realistic physical models in real-time control and process optimization.
However, a controller based on an inaccurate model generally leads to a significant
performance penalty. Simultaneous estimation of unknown constant parameters and
unknown endogenous variables from measurements is required to improve the
models. This problem, known as the system identification problem (Reference
Ljung, System Identification, Theory for the User, Prentice Hall, 1987), is a special

case of the estimation problem addressed by this invention.

Most methods and software tools based on modern coutrol theory are
limited to linear time-invariant models. Simulation models are used for obtaining
local linear models for system synthesis and for closed-loop testing and verification
of the controller design. The reliability and the complexity of the simulation model
refinement and verification task is a major bottleneck in such efforts. Efficient
refinement and verification of the system model in the presence of noisy sensor
data, which involves nonlinear state estimation and system identification, can

greatly reduce these efforts and permit better designs.
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The method to be described for estimating nonlinear system states
provides an accurate and stable method both in the desi gn, test and diagnostic, and

control phases of these nonlinear systems.

As an example, consider the thermal kinetic system 80 shown in Fig. 9in
which a porous part 81, a carbon preform, is placed in a reactor filled with a
reactant bearing carbon species 83 for deposition of carbon in the porous spaces of
the preform. Preform 81 is heated resistively by current passing through the
preform on conductive leads 84 (or by inductive radio frequency current passing
through inductive heating coil 85). The surface temperature is sensed by a set of
pyrometers 86. The density of the deposits are measured indirectly by means of
Eddy current probes 87 that induce a high frequency electrical current in the
preform which is monitored by the readout sensors of the Eddy current probes. The
determination of the thermal behavior of a preform during the deposition process is
critical because poor thermal control leads to uneven densification and poor part
strength. In this regard, it is important to determine the nonlinear botling curve that
represents the heat transfer rate between the reactant and the preform. Typically, as
the preform surface temperature increases the mechanism of heat transfer from the
preform to the liquid reactant varies with the surface temperature as shown in the
boiling curve of Fig. 10. Over the range of surface temperature shown, the boiling
curve passes through three distinct modes known as the nucleate regime (A), the
unstable transition regime (B), and the stable film regime (C). This is a highly
nonlinear function of temperature in which an increase in temperature can cause a
decrease in heat transfer rate due to the vapor film caused by boiling between the
preform and the liquid reactant. The separation caused by the film requires a
substantial increase in temperature in order to maintain a constant heat flux. The
transition region is unstable because the associated eigenvalues are positive
(stability is normally associated with the negative real part of the eigenvalue that

imply exponentially damped response).
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in this example, the state vector could include hundreds of surface and
internal temperature points, the corresponding densities of the preform, reactant
concentrations, and species concentration. Each state would therefore have an
associated nonlinear boiling heat transfer with parameters that would vary with
location and the physical configuration of the process shown in Fig. 9. Based on a
given physical implementation and available empirical model data, a set of
nonlinear continuous-time differential equations can be generated that describe the
thermal kinetic system of Fig. 9. These equations are then used to form the model

for the system as a basis for making refined estimates of the system state variables.

As another example, consider the cylindrical water-cooled batch bio-
chemucal reactor system 90 of Fig. 11 that is used in the manufacture of enzymes
and drugs. Reactor 90 includes the reaction cylinder 91 wherein the batch reaction
takes place, input ports 92 and output ports 93, agitator mechanism 94, cooling
manifold 95, and reaction chamber 96. The state variable vector x has elements
{x;} that may typically include: cell concentration Xi, the substrate concentration x,,
final product concentration x;, dissolved oxygen concentration x4, temperature of
the medium x;, and the pH value of the medium Xe. These state vector elements
may be prescribed for various radial and axial locations in the reactor. The real-
time measurement vector z has elements {z;} that typically may include
measurements at various locations in the reactor chamber of dissolved oxygen
concentration z;, temperature of the medium z,, and pH of the medium z;. Input
vector u has elements {u;} that may include measured inputs such as: cell
concentration u,, feed stream flow rate u,, effluent stream flow rate u;, and cooling
flow rate u,. The rates of the nonlinear bio-chemical process can be described by
the so-called Michaelis-Menfen kinetics or by more detailed structured nonlinear
kinetics equations. The heat transfer and mass transfer is described using standard
chemical engineering calculations (e.g. Bailey and Ollis, Biochemical Engineering

Fundamentals, 2" edition, McGraw Hill, 1987),

[°]
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While it is possible to draw samples from the batch reactor during progress
of the reaction for measuring of cell-mass concentration, substrate concentration,
and the final product concentration, it is not practical or cost-effective to do SO on-
line in real-time. By using a continuous-time extended Kalman filter (CTEKF) to
estimate all state variables in real-time, CTEKF can provide a cost-effective means
for monitoring and controlling the reaction. All input vector elements (e.g. flow
rates of feed streams and effluents, and the cooling flow can be controlled based on
the real-time estimates of the state variables. The CTEKF method can provide real-
time state variable estimates that are comparable to those obtained by expensive

off-line (non-real-time) analytical instruments.

The present invention is designed to overcome the prior-art deficiencies and
problems in estimating states of nonlinear systems. The method, a continuous-time
extended Kalman filter (CTEKF) for state estimation, is an extended Kalman filter

(EKF) for continuous-time nonlinear systems using discrete time measurements and

integration.

The present invention, by contrast, imposes fixed computation burden,
permits time propagation in a single step that ensures numerical stability of
integration as well as that of the filter. Stability of the filter in the present invention
i1s arises from ensuring that

I} the time update for the state estimates and the covariance updates for the

filtering equations use the same time-varying linear system signal
model; and

2) the time-varying linear signal model satisfies conditions for

observability, controllability through disturbances and positivity of

initial state error covariance matrix P, .

In the present invention, these conditions are easily satisfied regardless of accuracy
of the non-finear system equation (19), given below, with respect to the real system

that generates signals used by the filter so that stability is preserved under large
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model errors. Consequently, the resulting state estimates are stable and avoid the

unstable consequences of prior-art EKF state estimation methods.

Fig. 12 is a general model for a nonlinear system representative of the type
of system to which the CTEKF method can be applied. The equations describing
the nonlinear system model are

x=f(x,u)+w

z=h(x,u)+v
(19)

where X is the state vector, u the input vector, z the measurement vector,f(x,u) and
h(x,u) are nonlinear function of x and u, and w and v are mutually independent

white noise vectors with respective covariances R and Q.

A common approach, as previously described with reference to Fi g 7,isto
linearize and discretize the nonlinear model of egs. (19) and Fig. 12 along a
nominal trajectory resulting in sequence of linear signal models characterized by
egs. (13) «(17). The linearized EKF filter is given by egs. (18). This approach can
lead to degraded, unstable, performance due to deviations from the nominal

trajectory.

To overcome the degraded and unstable performance of the prior-art EKF
filter methods, in the CTEKF method, the EKF method is combined with numerical
integration in order to overcome the problems experienced with the prior-art EKF
methods when applied to continuous-time nonlinear system estimation. The

CTEKF method may be summarized as follows:

[) the CTEKF gain and the covariances are computed using the discrete-
time system model matrices and the recent measurement:

2) the state vector estimate is updated using the measurement vector,

3) the continuous-time signal model equations are linearized at the current

estimated state vector element values;
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4) the coetficient matrices obtained from step (3) are used to obtain a
discrete-time system model using a matrix exponential;

5) the nonlinear differential system equations are integrated to obtain the
next state vector using the matrix exponential;

6) the covariance matrix is updated for time update using results from (4).

For added numerical reliability, the “square-root” approach to implementing
the Kalman filter is used. The square-root implementation guaranties non-

negativity of the propagated covariance matrices.

Referring back to Fig. 12, vector integrator 502 integrates vector x and
produces state vector x at the output. The state vector x in combination with input
vector u is operated-on by nonlinear vector input network 501 and produces a
nonlinear output vector function, f(x,u) to which white noise vector is added for
producing the noisy state vector time derivative. The output, X, of integrator 502,
and the input vector, u, are supplied to nonlinear vector network 503 to provide a
noise free measurement vector, y, that 1s added to noise vector v to produce the

available measurement vector z.

The procedure for linearizing the signal model of Fig. 12 and egs. (19) may

be best understood by referring to the signal-time model of Fig. 13 in which

waveform (a) represents a series |, { u;’ }, of constant values of T duration each of
them™ elementu™ (t), at the k" sampling time. Waveform (b) represents the
x™ (1), of the state vector x. Waveform (c) represents the z™ (t), of measurement

vector z (not necessarily corresponding to x™ ). Waveform (d) indicates the time-
interval within each sample- interval, T, during which a conditional estimated state

vector update, X, ., , is made during the k" step.

At the beginning of the k" step, the valuesx , ,u,,and z, , and matrices
g g kik-1> “k K

Seivas Qi Ry,andC,, are known. Syt Qy.and R, are, respectively, the
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square-root state vector covariance matrix (2 =SS"), the input noise (w)
covariance vector, and the measurement noise (v) covariance vector, as previously

defined. C,_, is the linearized output matrix from the previous step.

Using saved values of matrices, a measurement update is made by use of the
following QR factorization (Golub, G.H., Van Loan, C .F., “Matrix Computations”,
Johns Hopkins Univ. Press, Baltimore, MD, 1983, 147-153):

RI KT v RT?2 0} 20)
0 S{(k Sllx‘k—lC{I S(Ik-l

where () is the QR transformation matrix that is applied to the partitioned matrix
shown on the right for producing the upper triangular matrix on the left that

contains the required Kalman filter gain, K, , and the updated square-root
conditional covariance S,, , and 7'is a matrix transpose operator. State vector

Xy is updated using the following relationship:
Xt zik‘k—l+KkR;1[(Zk—h(ikfk—l’uk)) (21)

In an alternative embodiment, the output equation for z in egs. (19) is linearized at
Xy 1> U, toobtain C, for use in the place of C, ineq. (20). It should be noted
that only the transformed matrix of €q. (20) needs to be saved; the transformation
matrix () does not have to be explicitly created or stored. This results in significant
savings of storage space and computational burden. Also, the solution of the
system of linear equations (eq. (27)) involving R, is simplified because R is in
upper triangular form as a result of the QR transformation and R;! can be obtained
by the well known “back-solve” method. The Householder method for QR

factorization is a preferred method because it can be applied in place to the R

matrix (Golub and Van Loan, op. cit, 40-41).
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Also, because the measurement update (egs. (20, 21)) and the time update
are separate and distinct steps, it is possible to accommodate the omission of a
measurement update if the measurement vector data is not available, or if the
measurement vector data is grossly unreliable. Consequently, this provides a
method for state vector estimation that accommodates measurement sensors with
different rates of vbservation and also provides a robust state vector estimation
method that would provide for a graceful (incrementally) degraded performance
due to failures causing a lack of measurement observations. In other words, upon

lack of measurement data, simply set

(22)
Sy = Spioi
and proceed to the next step.
The linearized signal model equations take on the following form:
X =A.x+B,u
(23)

7, =C x+Du, fork=172,. .
where k is the time index, as previously defined. Fig. 14 is a block diagram

representation of the linearized signal mode!.

Equations (19) are linearized at the values of the vector elements

corresponding to the conditional estimated state vector ;(klk and input vector u, as

shown in Fig. i4. The matrix A, is constructed by perturbing the elements of the
state vector x, by a smalii amount, d(x, ), that correspond to each coiumn 1, for
obtaining a coiumn of coefficients approximating the partiai derivative of the
i" column (vector), A%, with respect to the i element, x{", of state vector x, .
Thus, from egs. (19),

AV =I0x,uy )~ fix_,u, )8(x )

wherex, =% +3(x{")2

(24)

Similarly, the columns of vectors B, ,C,, and D, are obtained as follows:
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BY =[fix.u, )~ fix.u )}/8(u{)
Cl =Thix,,w) = h(x_,w)l/8(x{")
D = [h(x,u, )~ h(x,u_)]/8(ul)

where u, = u, +5(ul")/2

The perturbation §(.) is a sufficiently small deviation so that the local gain is well
approximated by the approximate partial derivatives A" BY’,C\". and D\". When
this procedure is applied to each column of matrices A, ,B,,C,, and D, the gain

matrices of Fig. 14 are defined for the interval corresponding to step k.

The next step in the time update procedure involves integrating the
nonlinear equations (23) to obtain Xy by using X, as the initial condition and
uy as the constant input signal over the duration of the k™ step as shown in
wavetorm (a) of Fig. 13.

The simplest method for implementing numerical integration of

x = f{x, u)

(26)
over thek™ step interval is by the use of Euler’s integration algorithm. i.e.

X(t, + it = mftx(t, 11, L, Y+ X(t, 1,0

Xt ft) =Xy and X(t, + Tt ) = Rtk

(27)

where /1 is the selected integration step size and Xy 18 the initial value.

Unfortunately, for stiff systems, very small step sizes (/2 <<T) may be needed in
order to have the finite difference equation (30) acceptably approximate

integration. This could result in an unacceptable computational burden.
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A further consideration is that a mismatch between F, used in the filter
covariance propagation and the effective F, used in the simulation time update can

cause stability problems in the resulting time-varying Kaiman filter. This is
because the Euler’s approximate integration in eq. (27) is not the same as the

matrix exponential used in computing F, covariance update in eq. (33) shown

below.

Because it is highly desirabie to avoid the mismatch in the transition matrix,

Fy . used in the covariance propagation and the effective transition matrix used in

the state variable time update, and to also avoid the computational burden imposed
by the use of Euler’s approximate integration method, the following development

shows how the matrix exponential can be used for both operations,

To propagate state estimates in time, i.e. X(t)= f{X(1), u(t)), and X(t,)=%,,,a

locally linear model is used as follows:

d . .
Z(é§<(r))= AR+ (R, u,)

(28)
i l, =A L
ox M
Exact integration of (28) leads to equation (29) below.
AT +7) = RT)+ [e™Pf(Ry,,u, ) (29)
L=
By letting f, = f(x,,,u,), eq. (29) becomes
T
A((k+1D)T) = X(kT) + [e™Tf, ds (30)

s=0

The integral expression may be readily evaluated by using the following matrix

relationship:
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T
A Tos) g >
e{o o}' et !eA‘('_s’tkds =,:rk Gk} 31)

0 1

where 1 is the identity matrix. Equation (31) allows the integral of equation (30) to
be evaluated by exponential of the zero-augmented matrix on the left that contains

state feedback matrix A, and vector f, . It should be noted that the matrix

exponential in accordance with eq. (31) not only evaluates the integral but also

provides the exponentiation of A, as well.

Also note that the same matrix, A, , appears in the evaluation of the

integral. Therefore, the time propagation egs. (31), (32) use linear discrete-time
time-varying signal models consistent with the ones used in the covariance update
eq. (20) and below ineq. (33). For example, if the expression for z in egs. (19) 1s
linear, the signal models are identical. Consequently, stability of the Kalman filter
procedure is readily ensured even if the linear discrete-time time-varying signal
model is totally inaccurate with respect to the original continuous-time nonlinear
system as long as the linear signal model satisfies observability, controllability
through disturbances and positivity of the initial covariance. The conditions of
observability, controllability through disturbances and positivity is easy to satisfy
through proper choice of noise covariances and selection of sensor signals. Also,
unlike the Euler or other integration methods (explicit Runge-Kutta) the matrix

exponential update method safely “residualizes™ fast-states in a stiff system.

Care must be taken in the computation of the matrix exponentiale*”. The
blind use of series expansion can lead to estimation instabilities. In one preferred
embodiment, the method involves squaring and scaling 1s used to ensure
numerically reliable results (Petkov, Christov and Konstantinov, Computational

Methods for Linear Control Systems, Prentice Hall, 1991 ).
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The updated conditional state vector, Xy.i » €an now be obtained by
X ok = ;(k!k +G, (32)
where x,, is defined by eq. (21).

The square-root of the state covariance vector, Sy » Is now updated by

using another QR factorization:

ST . S F,
wixEd
k

Again, the transformation can be performed in place because only the transformed

matrix on the left needs to be retained.

Fig. 16 is a block diagram representation of the CTEKF. The block
elements have indicia that are identical to the indicia used in F ig. 15 for those items
that are the same. Block element 608 is vector Gy computed in equation (34).
Block element 611 is the nonlinear vector function h(x, u) that maps states and
exogenous Inputs to output as in equation (19). Block elements 607-6 10 difter
from those of Fig. 15. Element 610 is a unit for taking the difference between the
estimated measured output and the actual measured output, (z, - Z, ) as implied in
eq. (21), which is fed to element 607, a matrix gain unit based on values generated
by means of eq. (20). The output of element 607 is applied to vector adder 609.
The second input to 609 is provided by the output of delay unit 602" for providing
X,y at the output of adder 609. The output of adder 609 is combined with G, by

adder 605 to produce xy., as the input to delay unit 602°.
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F1g. 17 is a flow diagram of method CTEKF 700 that summarizes the method
for implementing a CTEKF for estimating the state variables of a nonlinear system of
the type shown in Fig. 9. The method begins at step 700 with a set of initial values:

Xgo15Ug»Zo,C .S, and R, that have been defined previously. The iteration index k

issetatk =0. Atstep 701, a determination is made if a measurement update is to be
made, and, if so, the process goes to step 702 where a measurement update 1s made
using QR factorization in accordance with egs. (20) and (21). Otherwise step 703 is

invoked in which the previous values Xy, and S, are used as the new measurement
updated values. At step 704, a model is created that is iinearized about (X > Uy ) and

matrices A ,B,,C,, and D, are computed in accordance with eqs. (23)-(25). At Step

705 time update using matrix exponential is carried out in accordance with egs. (31)
and (32). Steps 704 and 705 are followed by a time update in step 706 in which the
state error covariance update is carried out using a square-root state vector covariance
matrix as in eq. (33). index k is incremented in step 707 and the process returns to step
701.

One difficult problem often encountered in nonlinear recursive state and
parameter estimation or parameter tracking is getting stuck in a local minimum that
may be far away from the desired optimum global minimum. One method for handling
this problem is to make muitiple estimates with each estimate initiated with a random
perturbation. Simulated annealing is a related method that uses sequences of random
perturbations with programmed gain (temperature) schedule that allows estimates to
escabe locai minima. For example, see Rutenbar, R.A.. “Simulated Annealing

Algorithms: An Overview”, IEEE Circuits and Devices Mag., pp. 19-26, Jan. 1989.

Fig. 18 is a one dimensional example of the principle involved in simulated
annealing in which the estimation error cost function is plotted as function of the value

of the single state variable x. In seeking the global minimum at x = x,, there is a
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chance that the local minimum at x = x, will be selected by the Kalman filter. Because
the estimated solution is “dithered” by system and measurement noise about the
minimum selected, there is a chance that a noise perturbation will cause an estimate to
“Jjump” out of a local minimum at x = x, into the valley of the global minimum at x =

- xif the noise perturbation is sufficiently large. Simulations of nonlinear systems with
local minimums have shown increased covariance Qx of the system noise w and/or
increased covariance of the initial state vector, P, permit convergence to the global
minimum when the Kalman filter is started at a local minimum even when the assumed

system signal model does not accurately represent the true system signal model.

[n the context of nonlinear recursive state estimation, the process noise
covariance Q may be controlled by applying a gain multiplier and a larger initial value
which is decreased as a function of time. Also, the initial state vector covariance
estimate, P, may be increased by a large factor. The increase in either initial
covariance allows a greater initial correction of the state vector estimate than the
theoretical stochastically optimal value. However, the Kalman filter Riccati equation
update ensures overall stability while permitting more diffusion noise to enter the

Kalman filtering equations.

A typical time varying “temperature schedule” gain multiplier has the following

form;

S = EkT)= 2% o e (34)

Qk =Qo(]+§k) (35)

where c is a constant (typically 0.5<c¢< 1 ), Qo is a positive definite symmetric

matrix corresponding to the initial process noise covariance matrix. Qi 1s the process

noise covariance matrix at time kT, and In(.) is the natural logarithm.
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We define an error metric as the scalar
¢, = trace(S,, Sy, ) (36)
where S, is defined in equation (33).

A multi-path simulated annealing algorithm is used that includes the following

steps:

(1) choose N, the number of parallel CTEKF paths, typically.between 4 and 10;

(11) compute a temperature schedule and the corresponding process noise

covariance matrices according to egs. (34) and (35);

(111) initialize each of the N CTEKF state estimates using random initial state

vectors in some region;
(1v) update the N CTEKF according to egs. (20)-(23), and (31)-(33);

(v) compute the scalar value ¢, = trace( S Sy ) for each CTEKF and choose

the estimate corresponding to the smallest ¢, = trace(S,,, Sy, ) as the best

estimate and output it as required; and

(vi) identify the CTEKF with the highest value of ¢, = trace(S,, S}, )and add to

its state estimate a random vector of variance equal to c, ; increment k the

iteration index.

An alternative embodiment skips addition of a random vector in step (vi) above for

every m steps (typically m=100).

Fig. 19 is a flow diagram of a simulated annealing procedure (900) adapted to
the CTEKF method. The procedure begins at step 901 in which the number of
independent simulated annealing procedures, N, using the CTEKF method is specified.
In step 902, a common a common gain schedule, {#(1) }, and process noise

covariance 1s specified as in egs. (34) and (35). In step 903, N different randomized
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imtial state vectors, one for each CTEKF path, are specified. Step 904 involves
running N CTEKFs (paths) initialized in step 903 with each CTEKF operating on the
same set of input and measurement observations for yielding N separate state variable
vector estimates and covariance matrices at each sampling interval of T. In step 905,

compute the scalar value ¢, = trace(S,, S, ) for each CTEKF and choose the estimate
corresponding to the smallest ¢, = trace(S,, S|, )as the best estimate and output it as
required. In step 906, identify the CTEKF with the highest value of

¢, = trace(S,, Sy, )and add to its state estimate a random vector of variance equal to

¢, . Increment k the iteration index. The process is iterated by returning to step 904.

A control system using CTEKF can be implemented as shown in Fig. 1 where
sensor unit 12 corresponds to the measurement system producing measurement vector
z(1), state observer 13 corresponds to the CTEKF system described above and in Figs.
13-17, and controller unit 14 is implemented by well known performance index

optimal control methods.

As will be understood by those skilied in the art, many changes in the methods
described above may be made by the skilled practitioner without departing from the
spirit and scope of the invention, which should be limited only as set forward in the

claims which follow.

35

SUBSTITUTE SHEET (RULE 26)



WO 99/10783 - PCT/US98/17439

CLAIMS

What is claimed is:

1. A method for estimation of state variables of a physical nonlinear system with

[99)

physical exogenous inputs that can be modeled by a set of continuous-time nonlinear
differential equations, including input signals representing the physical exogenous
inputs to the system, and measurement signals representing accessible measurements

that are indicative of the state variables to be estimated, the method comprising:

a) creating a nonlincar differential equation mode! of a nonlinear system using

initial estimated state variables:

b) obtaining the nonlinear svstem measurement signals in response to the

nonlinear system input signals. and

¢) creating an updated nonlinear differential equation model using the nonlinear
differential equation model, the nonlinear system input and measurement signals,
and a state variable estimation method for refining the initial estimated state
variables. the state variable estimation method for producing updated estimated
state variables using integration methods for state vaniable estimation of the

nonlinear system with exogenous inputs.

The method of claim | further using a common time-varying linear system signal
model for estimating the updated estimated state variables and the updated

covariance.

The method of claim 2 wherein the covariance 1s represented as a square-root of the

covariance.

The method of claim 1 further comprising a step for simulated annealing by running

multiple estimators and choosing the best estimate based on an error metric.
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v

The method of claim 4 wherein an increased process noise covariance in the state
variable estimation method is used. the increased process covariance generated in
accordance with a prescribed schedule that begins by amplifying the initial process

noise covariance.

-6. The method of claim | wherein the state variable estimation method is based on an

extended Kalman filter, modified for state variable time propagation by integration.

7. The method of claim 1 wherein the nonlinear differential equation model is given by
Xx=f(x.u) + w and z=h(x,u)+ v where x 1s the state x is a time derivative of the
state variable vector x, f(x,u) 1s a nonlinear tunction of x and input vector u, zis a
measurement vector which is function, h(x,u) of both x and u, and w and v are
mutually independent noise vectors and wherein a state variable estimate, x,, for
time t = kT is propagated to a state variable estimate, x,,,, fortimet=(k+1)T by

integrating the nonlinear differential equation model over a time interval of T as

follows:

.
Xpq =X, + Je"‘”"“t’kds ,

$=0

where f, =f(x,,,u, Jevaluated at ime t = (kT), and A, is a discrete state feedback

matrix. evaluated at time t = kT. from a linearized approximation to f(x.u).

8. The method of claim 7 wherein integrating is performed by evaluating a matrix

exponentiai as follows:

v B T Tog
e{/\n ()}X _ GAL, JCA"”—”fde __I:Fk Gk:l
> - n - 0 1 b
0 [

so that a time propagated state vector is obtained as follows,

Xpaik = X Gy
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10.

12.

15.

and, by QR factorization, an updated conditional square-root covariance, S, ,, , for

time (k+1) 1s obtained from

Lr-uk _ Slk.*ka
B

where S, is a conditional square-root covariance matrix for time k, Q, is the

process noise vector covariance, () 1s a QR transformation matrix, and 7/ represents a
matrix transpose operator thereby using a same computational model for updating the
estimated state variable and associated covariance.

The method of claim 8 further comprising a step for simulated annealing by running
multiple estimators and choosing a best estimate based on an error metric.

The method of claim 9 wherein each estimator is initialized by a difterent random

initial state vector.

. The method of claim 9 wherein the error metric is a scalar value, ¢y, computed as

¢, =trace(S,, S|, ).

The method of claim 9 wherein an increased process noise covariance is used in the
state variablelestimation method, the increased process noise covariance generated in
accordance with a prescribed schedule that begins by amplifying the initial process

noise covariance.

. The method of claim 12 wherein the prescribed gain schedule comprises:

a) computing a temperature schedule. £, . that decreases as a function of time index
k:

b) computing a gain multiplieras (1+%,); and

c) multiplying the initial process noise covariance, Q, , by the gain multiplier for

producing a process noise covariance at time index k as Q, =Q,(1+%,).

. The method of claim 13 wherein £, i1s computed as £, = x/Zc/]h(Z;iT) . wherec1s

a prescribed constant, and In(.) is a natural logarithm function.
A statc vector estimation method for a real-time nonlinear system with exogenous
inputs, the system represented by a set of continuous-time nonlinear differential state

equations that include a state vector representing the system state vector that are to be
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estimated, and a nonlinear system matrix that defines the functional relationship
between the input vector, the state vector, and the time-derivative of the state vector,
the state vector being estimated from a set of accessible measurements that are
representative of the state variables, the set of measurements, labeled as a
measurement vector, taken at prescribed times and represented by a measurement
vector, both the state vector and the measurement vector respectively contaminated
by a state noise vector and a measurement noise vector, the method comprising the
following steps:

(a) constructing a set of state equations representing the nonlinear system with
€X0genous inputs, A

(b) establishing a set of state variable values for a current-time state vector, and a
set of matrix element values for one each covariance matrix for a current-time
state vector, for a current-time state noise vector, for a current-time input
noise vector, and for a current-time output measurement noise vector;

(c) acquiring a current-time measurement vector;

(d) updating the covariance matrices using the current-time state vector;

(e) estimating an updated current-time state vector from the current time
measurement vector by use of a state vector estimating filter that operates on
the current-time state vector using the current-time measurement vector, the
covariance matrices for the current time state vector, for the current time
state. and for the current-time measurement noise vector, the estimated
updated state vector representing the state vector at the measurement current-
time:

(f) projecting the estimated updated state vector by integrating the system state
equations over the prescribed time interval between the prescribed
measurement current-time and the next prescribed measurement current-time
for obtaining a current state vector,

(g) projecting the updated state vector covariance matrix using the results of the

system equation integration of step (f);
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16.

17.

18.
19.

20.

21

(h) acquiring a measurement vector at the next prescribed measurement current-
time that becomes the current state vector; and

(1) 1terating steps (d)-(h).
The method of claim 15 wherein the square-root of the state covariance matrix is
used instead of the state covariance matrix quadratic form.
'The method of claim 15 wherein the updating of the state covariance matrix is
performed by a matrix transformation that produces a triangular square-root
covariance matrix.
The method of claim 17 wherein the matrix transtormation 1s a QR factorization.
The method of claim 15 wherein the system matrix is linearized at the initial value of
the state vector, the linearization creating a locally linearized state feedback gain
matrix that defines the state vector contribution to the time derivative of the state
vector. given the current time input vector, from which a state variable transition
matrix 1s computed by integrating the locally linearized state feedback matrix , the
state variable transition matrix for projecting the state vector contribution to the time
denvative of the state vector at the next prescribed measurement time.
The method of claim 19 wherein the linearization also creates a locally linearized
input gain matrix for relating the input vector contribution to the time derivative of
the state vector, given the current state vector, from which an input vector transition
matrix is computed by integrating the locallv linearized input gain matrix over the
interval from the current prescribed measurement time to the next prescribed
measurement time.
The method of claim 19 wherein the step of updating the state vector by integrating

the locally linear state feedback gain matrix 1s performed by a matrix exponential.

. The method ot claim 15 wherein the steps updating the current-time state vector

covariance matrix and the step of estimating an updated current-time state vector is
not executed because the current-time measurement is not usable or available, and
the current-time projected estimated updated state vector, together with the current-

time projected updated state vector covariance matrix, are used as the estimated
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updated current time state vector and updated current time covariance matrix.
respectively.
23. An iterative method for real-time nonlinear system state vector estimation, the system

represented by a set of continuous-time nonlinear differential equations,

X=tx,u)+w

z=h(x,u)+v

where X is the time derivative of the system state vector x, u is the system input
vector representing physical inputs to the system, z is the system measurement vector
representing accessible measurements whose values are indicative of the system state
vector to be estimated, v and w are mutually independent white noise vectors, and
f(x.u) and h(x.u) are nonlinear functions ot x and u, wherein an estimate of a set of
system state vector is made at a current-step using, as a set of initial values, a set of
previous-step system state vector estimate obtained from a previous step, the method,

at the current step. comprising:

(a) performing a measurement update by computing a matrix using a QR

factorization,

{RT K71 [ R 0
EF o a7 7
L 0 SkrukJ [Skak~lck—l Sk;k—l

where 7'1s a matrix transpose operator, () is the QR transformation matrix that
1s applied to the matrix on the right in the above expression and wherein Ry is
the covariance matrix of w at time kT, Sy, is an estimated conditional
square-root state variable covariance matrix at time kT based on prior
measurements, and Cy., is a locally linearized output gain matrix

corresponding to h(x, ,,,.u,, ). for producing an upper triangular matrix on

the left of the above equation that contains a Kalman filter gain, K , and an

41

SUBSTITUTE SHEET (RULE 26)



WO 99/10783 - PCT/US98/17439

updated square-root conditional covariance S, for updating state vector

X i1 @s follows,

Xy =X, + KR (z, —h(X o0

(b) creating a current-step linearized model at time kT, where k is a discrete-
time current-step index and | is a discrete-time interval, by obtaining a set of gain
matrices relating the current-step set of system state vector estimate to the

current-step input signals, and to the set of current-step measurement vector

X =A Xx+B,u,

z, =C,x+Dyu,, fork=1,2,...

where x1s the current state vector, u, is the current-step input vector, z, is the

current-step measurement vector; and

(c) obtaining a time update by integration using matrix exponentiation because

T
A 1) . -
e{ 0 (:]T e Ie’\*”""fkds 3 Fo Gy
0 0o IV
0 I
so that a time propagated state vector is obtained as follows,
Xeap = Xy Gy

and, by QR factorization, obtaining an updated conditional square-root

covariance, S, ., , for time (k+1) is obtained from

Starc || SwFi
O =Q T2
k

where S, is a conditional square-root covariance matrix for time k, () is a QR

transformation matrix. and 7'is a matrix transpose operator.

24. The method of claim 23 wherein the measurement update step is not performed and

A

Xy = Xy and S, = S, whenever a current measurement vector is not available.

25. The method of claim 23 wherein Cy_; is replaced by computing Cy, a locally

linearized output gain matrix corresponding to the gain at h(x, ,,u,).
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26. A control system method for controlling a nonlinear continuous-time system in which
an iterative method for real-time nonlinear system state variable estimation is used,
the system represented by a set of continuous-time nonlinear differential equations,
input signals representing physical inputs to the system, and measurement signals

- representing accessible measurements whose values are indicative of the system state
variables to be controlled, wherein an estimate of the set of system state variables is
made at a current-step using, as a set of initial values, a set of previous-step system
state variable estimates obtained from a previous step, the method, at the current

step, comprising;

a) creating a nonlinear differential equation model of a nonlinear system using

initial estimated state variables:

b) obtaining the nonlinear system measurement signals in response to the

nonlinear system input signals; and

¢) creating an updated nonlinear differential equation model using the nonlinear
differential equation model, the nonlinear system input and measurement signals,
and a state variable estimation method for refining the initial estimated state
variables, the state variable estimation method for producing updated estimated
state variables using integration methods for state variable estimation of the

nonlinear svstem with exogenous inputs;

d) estimating an updated covariance of the updated estimated state variables
using a common state transition matrix for estimating the updated estimated state

variables and the updated covariance for improved estimation quality; and

€) computing a controller gain matrix which when applied to the set of current-
step system state variable estimates produces a set of system input control signals
for controiling the physical inputs to the system, the controller gain matrix
obtained by use of a performance index that specifies an objective performance

criterion for the system.
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27.

28.

29.

A method for estimation of state variables of a physical nonlinear system, the method
being applicable to systems that can be modeled by a set of continuous-time
nonlinear difterential equations and to systems that can be modeled by discrete-time
nonlinear difference equations, the method using measurement signals representing
accessible measurements that are indicative of the state variables to be estimated, the

method comprising:

a) creating an extended Kalman filter (EKF) for estimating system state

variables from the measurement signals; and

b) applying simulated annealing by running multiple EKFs and choosing the best
estimate based on an error metric.
The method of clatm 27 wherein an increased process noise covariance is used in the
EKF. the increased process noise covariance generated in accordance with a
prescribed schedule that begins by amplitying the initial process noise covariance.
The method of claim 27 wherein an increased state vector covariance is used in the
EKF. the increased state vector covariance generated in accordance with a prescribed

schedule that begins by amplifying the initial state vector covariance.
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