[19]

INTELLECTUAL PROPERTY PHILIPPINES

[12]

INVENTION PUBLICATION

[11]] Publication Number: 12014502044 Document Code: B1
[22] | Publication Date: 24/11/2014
[21] | Application Number: 12014502044 Document Code: A
[22] | Date Filed: 15/9/2014
[54] | Title: DERIVING CONTEXT FOR LAST POSITION CODING FOR VIDEO CODING
[71] | Applicant(s): QUALCOMM INC
[72] | Inventor(s): LIWEI GUO
MARTA KARCZEWICZ
WEI-JUNG CHIEN
[30] | Priority Data: 22/3/2012 US201261614178P
[51] | International Class 8:
In one example, a device includes a video coder configured to determine a context
for entropy coding a bin of a value indicative of a last significant coefficient of a
block of video data using a function of an index of the bin, and code the bin using
[57] | Abstract: the determined context. The video coder may encode or decode the bin using

context-adaptive binary arithmetic coding (CABAC). The function may also depend
on a size of the block. In this manner, a table indicating context indexes for the

contexts need not be stored by the device.

10

15

20

25

30

destination device 14 may interface with an external display device, rather than
including an integrated display device.

The illustrated system 10 of FIG. 1 is merely one example. Techniques for
determining a context to use to code a value representing a last significant coefficient of
a block of video data may be performed by any digital video encoding and/or decoding
device. Although generally the techniques of this disclosure are performed by a video
encoding device, the techniques may also be performed by a video encoder/decoder,
typically referred to as a “CODEC.” Moreover, the techniques of this disclosure may
also be performed by a video preprocessor. Source device 12 and destination device 14
are merely examples of such coding devices in which source device 12 generates coded
video data for transmission to destination device 14. In some examples, devices 12, 14
may operate in a substantially symmetrical manner such that each of devices 12, 14
include video encoding and decoding components. Hence, system 10 may support one-
way or two-way video transmission between video devices 12, 14, e.g., for video
streaming, video playback, video broadcasting, or video telephony.

. Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, if video source 18 is a video camera, source device 12 and destination device 14
may form so-called camera phones or video phones. As mentioned above, however, the
techniques described in this disclosure may be applicable to video coding in general,
and may be applied to wireless and/or wired applications. In each case, the captured,
pre-captured, or computer-generated video may be encoded by video encoder 20. The
encoded video information may then be output by output interface 22 onto a computer-
readable medium 16.

Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media (that is, non-transitory
storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a

computing device of a medium production facility, such as a disc stamping facility, may

10

15

20

25

30

receive encoded video data from source device 12 and produce a disc containing the

encoded video data. Therefore, computer-readable medium 16 may be understood to

include one or more computer-readable media of various forms, in various examples.
Input interface 28 of destination device 14 receives information from computer-

readable medium 16. The information of computer-readable medium 16 may include

- ‘syntax information defined by video encoder 20, which is also used by video decoder

30, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units, e.g., GOPs. Display device 32 displays the decoded video
data to a user, and may comprise any of a variety of display devices such as a cathode
ray tube (CRT), a liquid crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display device.

Video encoder 20 and video decoder 30 may operate according to a video
coding standard, such as the High Efficiency Video Coding (HEVC) standard presently
under development, and may conform to the HEVC Test Model (HM). Alternatively,
video encoder 20 and video decoder 30 may operate according to other proprietary or
industry standards, such as the ITU-T H.264 standard, alternatively referred to as
MPEG-4, Part 10, Advanced Video Coding (AVC), or extensions of such standards.
The techniques of this disclosure, however, are not limited to any particular coding
standard. Other examples of video coding standards include MPEG-2 and ITU-T
H.263. Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, MUX-DEMUX units may conform to the ITU H.223 multiplexer protocol,
or other protocols such as the user datagram protocol (UDP).

The ITU-T H.264/MPEG-4 (AVC) standard was formulated by the ITU-T Video
Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts
Group (MPEG) as the product of a collective partnership known as the Joint Video
Team (JVT). In some aspects, the techniques described in this disclosure may be
applied to devices that generally conform to the H.264 standard. The H.264 standard is
described in ITU-T Recommendation H.264, Advanced Video Coding for generic
audiovisual services, by the ITU-T Study Group, and dated March, 2005, which may be
referred to herein as the H.264 standard or H.264 specification, or the H.264/AVC

10

15

20

25

30

10

standard or specification. The Joint Video Team (JVT) continues to work on extensions
to H.264/MPEG-4 AVC.

"7 Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAS), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium
and execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

- The JCT-VC is working on development of the HEVC standard. The HEVC
standardization efforts are based on an evolving model of a video coding device referred
to as the HEVC Test Model (HM). The HM presumes several additional capabilities of
video coding devices relative to existing devices according to, e.g., ITU-T H.264/AVC.
For example, whereas H.264 provides nine intra-prediction encoding modes, the HM
may provide as many as thirty-three intra-prediction encoding modes.

In general, the working model of the HM describes that a video frame or picture
may be divided into a sequence of treeblocks or largest coding units (LCU) that include
both luma and chroma samples. Syntax data within a bitstream may define a size for
the LCU, which is a largest coding unit in terms of the number of pixels. A slice
includes a number of consecutive treeblocks in coding order. A video frame or picture
may be partitioned into one or more slices. Each treeblock may be split into coding
units (CUs) according to a quadtree. In general, a quadtree data structure includes one
node per CU, with a root node corresponding to the treeblock. If a CU is split into four
sub-CUs, the node corresponding to the CU includes four leaf nodes, each of which
corresponds to one of the sub-CUs.

Each node of the quadtree data structure may provide syntax data for the
corresponding CU. For example, a node in the quadtree may include a split flag,
indicating whether the CU corresponding to the node is split into sub-CUs. Syntax
elements for a CU may be defined recursively, and may depend on whether the CU is
split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this

disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if there

10

15

20

25

30

11

is no explicit splitting of the original leaf-CU. For example, if a CU at 16x16 size is not
split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the
16x16 CU was never split.

A CU has a similar purpose as a macroblock of the H.264 standard, except that a
CU does not have a size distinction. For example, a treeblock may be split into four
child nodes (also referred to as sub-CUs), and each child node may in turn be a parent
node and be split into another four child nodes. A final, unsplit child node, referred to
as a leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.
Syntax data associated with a coded bitstream may define a maximum number of times
a treeblock may be split, referred to as a maximum CU depth, and may also define a
minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest
coding unit (SCU). This disclosure uses the term “block” to refer to any of a CU, PU,
or TU, in the context of HEVC, or similar data structures in the context of other
standards (e.g., macroblocks and sub-blocks thereof in H.264/AVC).

A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and must be square in shape. The size of the CU may range from 8x8
pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each
CU may contain one or more PUs and one or more TUs. Syntax data associated with a
CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square (e.g., rectangular) in shape.

The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the

TUs may be transformed to produce transform coefficients, which may be quantized.

10

15

20

25

30

12

A leaf-CU may include one or more prediction units (PUs). In general, a PU
represents a spatial area corresponding to all or a portion of the corresponding CU, and
may include data for retrieving a reference sample for the PU. Moreover, a PU includes
data related to prediction. For example, when the PU is intra-mode encoded, data for
the PU may be included in a residual quadtree (RQT), which may include data
describing an intra-prediction mode for a TU corresponding to the PU. As another
example, when the PU is inter-mode encoded, the PU may include data defining one or
more motion vectors for the PU. The data defining the motion vector for a PU may
describe, for example, a horizontal component of the motion vector, a vertical
component of the motion vector, a resolution for the motion vector (e.g., one-quarter
pixel precision or one-eighth pixel precision), a reference picture to which the motion
vector points, and/or a reference picture list (e.g., List 0, List 1, or List C) for the motion
vector.

A leaf-CU having one or more PUs may also include one or more transform
units (TUs). The transform units may be specified using an RQT (also referred to as a
TU quadtree structure), as discussed above. For example, a split flag may indicate
whether a leaf-CU is split into four transform units. Then, each transform unit may be
split further into further sub-TUs. When a TU is not split further, it may be referred to
as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leaf-CU share
the same intra prediction mode. That is, the same intra-prediction mode is generally
applied to calculate predicted values for all TUs of a leaf-CU. For intra coding, a video
encoder may calculate a residual value for each leaf-TU using the intra prediction mode,
as a difference between the portion of the CU corresponding to the TU and the original
block. A TU is not necessarily limited to the size of a PU. Thus, TUs may be larger or
smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf-
TU for the same CU. In some examples, the maximum size of a leaf-TU may
correspond to the size of the corresponding leaf-CU.

Moreover, TUs of leaf-CUs may also be associated with respective quadtree data
structures, referred to as residual quadtrees (RQTs). That is, a leaf-CU may include a
quadtree indicating how the leaf-CU is partitioned into TUs. The root node of a TU
quadtree generally corresponds to a leaf-CU, while the root node of a CU quadtree
generally corresponds to a treeblock (or LCU). TUs of the RQT that are not split are
referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to

leaf-CU and leaf-TU, respectively, unless noted otherwise.

1212-181WO01

10

15

20

25

30

13

A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of
2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
1s not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
€.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixelsin a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise syntax data describing a method or mode of generating predictive pixel data in
the spatial domain (also referred to as the pixel domain) and the TUs may comprise
cocfficients in the transform domain following application of a transform, e.g., a

discrete cosine transform (DCT), an integer transform, a wavelet transform, or a

10

15

20

25

30

14

conceptually similar transform to residual video data. The residual data may correspond
to pixel differences between pixels of the unencoded picture and prediction values
corresponding to the PUs. Video encoder 20 may form the TUs including the residual
data for the CU, and then transform the TUs to produce transform coefficients for the
Cu. ,
. Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an n-bit value may be rounded down to an m-bit value during quantization,
where n is greater than m.

Following quantization, the video encoder may scan the transform coefficients,
producing a one-dimensional vector from the two-dimensional matrix including the
quahtized transform coefficients. The scan may be designed to place higher energy (and
therefore lower frequency) coefficients at the front of the array and to place lower
energy (and therefore higher frequency) coefficients at the back of the array. In some
examples, video encoder 20 may utilize a predefined scan order to scan the quantized
transform coefficients to produce a serialized vector that can be entropy encoded. In
other examples, video encoder 20 may perform an adaptive scan. After scanning the
quantized transform coefficients to form a one-dimensional vector, video encoder 20
may entropy encode the one-dimensional vector, e.g., according to context-adaptive
variable length coding (CAVLC), context-adaptive binary arithmetic coding (CABAC),
syntax-based context-adaptive binary arithmetic coding (SBAC), Probability Interval
Partitioning Entropy (PIPE) coding or another entropy encoding methodology. Video
encoder 20 may also entropy encode syntax elements associated with the encoded video
data for use by video decoder 30 in decoding the video data.

. To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.
Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In

this way, the use of VLC may achieve a bit savings over, for example, using equal-

10

15

20

25

30

15

length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

In accordance with the techniques of this disclosure, video encoder 20 may
encode a value representing a position of a last significant coefficient of a block of
video data using contexts determined using one or more functions of bins of the value.
Likewise, video decoder 30 may decode a value representing a last significant
coefficient of a block of video data using contexts determined using one or more
functions of bins of the value. Video encoder 20 and/or video decoder 30 may be
configured to perform any of functions (1)—(12), described in greater detail below, or
conceptually similar functions, to perform the techniques of this disclosure. In this
manner, video encoder 20 and video decoder 30 represent examples of video coders
configured to determine a context for entropy coding a bin of a value indicative of a last
significant coefficient of a block of video data using a function of an index of the bin,
and code the bin using the determined context.

As an example, “Ctx_i” may denote the index of the context used by video
encoder 20 to encode the i bin in the “last position” binary string. Video encoder 20
may derive Ctx_i using the following equation:

Ctx_i = f(i).

The function denoted by f(i) may be linear or non-linear. Additionally, f(i) may
be a predefined function that is accessible to both video encoder 20 and video decoder
30. Alternatively, f(i) may be selected by a user or by video encoder 20, and
transmitted to video decoder 30 using one or more types of high-level syntax signaling,
such as a sequence parameter set (SPS), a picture parameter set (PPS), an adaptation
parameter set (APS), a frame header, a slice header, a sequence header, or other such
syntax signaling. An example of one such function that video encoder 20 may execute
is:

Q) = (>>1), ¢))
where “>>" denotes the binary right-shift operator. In turn, the result of f{i) may
correspond to Ctx_i. That is, video encoder 20 may execute (i) to generate an output
equal to the value of Ctx_i. More specifically, video encoder 20 may execute f(i) to
generate the context index of a context to be used to entropy code the i bin.

Table 3 below illustrates an example of the context indexes that video encoder
20 may use to code bins at various bin indexes for various block (e.g., TU) sizes using

the example function (1) described above. Although Table 3 is provided for purposes of

10

15

20

25

30

16

explanation of the results of example function (1), it will be appreciated that a table such
as Table 3 need not be stored in a video coding device such as source device 12 and/or
destination device 14. Instead, one or both of video encoder 20 and video decoder 30
may execute function (1) above to produce the results indicated in Table 3, based on

various bin indexes.

TABLE 3
Bin index | 0 1 2 3 4 S 6 7 8 9
TU 4x4 0 0 - |1
TU 8x8 0 0 1 1 2
TU 16x16 | 0 0 1 1 2 2 3
TU 32x32 | 0 0 1 1 2 2 3 3 4

As another example, video encoder 20 may execute a function that is dependent
on both the bin index (i) and a size of a corresponding block (e.g., a TU). The
corresponding block may be the block that includes the coefficients described by the
last significant coefficient value. As an example, the context index may be produced by
a function, such as:

Ctx_i = f(i, TUBIkSize), where “TUBIkSize” is a value indicative of the block

size. For purposes of this disclosure, the terms “TUBIkSize” and “block_size”

may be used interchangeably to indicate the block size.
As one example, the function may be:

f(i, TUBLkSize) = i>>(logy(TUBIkSize)-2). 2)

Table 4 below illustrates an example of the context indexes that video encoder
20 would use to code bins at various bin indexes for various block (e.g., TU) sizes using
the example function (2). Although Table 4 is provided for purposes of explanation of
the results of example function(2), it will be appreciated that a table such as Table 4
need not be stored in a video coding device such as source device 12 and/or destination
device 14. Instead, one or both of video encoder 20 and video decoder 30 may execute

example function (2) described above to produce the results indicated in Table 4.

10

15

20

25

30

17

TABLE 4
Bin index | 0 1 2 3 4 5 6 7 8 9
TU 4x4 0 1 2
TU 8x8 0 0 1 1 2
TU 16x16 | 0 0 0 0 1 1 1
TU 32x32 | 0 0 0 0 0 0 0 0 1

As another example, video encoder 20 may execute the following function to
derive Ctx_i:

f(i, TUBIkSize) = i>>1 + TUSIZEoffset, where

TUSIZEoffset = (log,(TUBIkSize)-2) *(log,(TUBIkSize)+1)/2. 3)

Table 5 below illustrates an example of the context indexes that video encoder
20 may use to code bins at various bin indexes for various block (e.g., TU) sizes using
the example function (3). Although Table 5 is provided for purposes of explanation of
the results of example function (3), it will be appreciated that a table such as Table 5
need not be stored source device 12 and/or destination device 14. Instead, one or both
of video encoder 20 and video decoder 30 may execute example function (3) described

above to produce the results indicated in Table 5.

TABLE 5§
Bin index | 0 1 2 3 4 5 6 7 8 9
TU 4x4 0 0 1
TU 8x8 2 2 3 3 4
TU 16x16 | 5 5 6 6 7 7 8
TU 32x32 | 9 9 10 10 11 11 12 12 13

As still another example, video encoder 20 may execute the following function
to derive Ctx_i:

Ctx_idx = (i+1)>>1 + TUSIZEoffset, where

TUSIZEoffset = (log,(TUBIkSize)-2) *(log,(TUBLkSize)+1)/2.)

Table 6 below illustrates an example of the context indexes that video encoder
20 may use to code bins at various bin indexes for various block (e.g., TU) sizes using

the example function (4). Although Table 6 is provided for purposes of explanation of

10

15

20

25

30

18

the results of the function, it will be appreciated that a table such as Table 6 need not be
stored in a video coding device such as source device 12 and/or destination device 14.
Instead, one or both of video encoder 20 and video decoder 30 may execute example

function (4) described above to produce the results indicated in Table 6.

TABLE 6
Bin index | 0 1 2 3 4 5 6 7 8 |9
TU 434 |0 1 1
TUSxS |2 3 3 4 4
TU 16316 | 5 6 6 7 7 8 8
TU 32x32 | 9 10 |10 |11 |11 |12 |12 |13 |13

As another example, the function may be:

Ctx_idx = offset + (i>>k), &)
where:
offset = 3*n +((nt+1)>>2), (6)
k= (n+3)>>2, and (7
n = (log;(TUBIkSize)-2). (®)

Alternatively, example function (8) may be expressed as: n = (loga(block_size)-2) for

purposes of this disclosure.

. Table 7 below illustrates an example of the context indexes that video encoder
20 may use to code bins at various bin indexes for various block (e.g., TU) sizes using
the example functions (5)—(8). Although Table 7 is provided for purposes of
explanation of the results of the functions, it will be appreciated that a table such as
Table 7 need not be stored in a video coding device such as source device 12 and/or
destination device 14. Instead, one or both of video encoder 20 and video decoder 30
may execute example functions (5)~(8) above to produce the results indicated in Table
7.

10

15

20

25

30

19

TABLE 7
Bin index | 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2
TU 8x8 3 3 4 4 5
TU 16x16 | 6 6 7 7 8 8 9
TU 32x32 | 10 10 1 11 12 12 13 13 14

Tables 8 and 9 below illustrate another example in which video encoder 20

and/or video decoder 30 may apply one or more formula-based context derivation

techniques of this disclosure for bins in “last position” coding to luma and chroma
components in a unified manner. In particular, Table 8 illustrates bin indexes for luma

TUs of various sizes, while Table 9 provides bin indexes for chroma TUs of various

sizes.

TABLE 8—Luma
Bin index { 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2
TU 8x8 3 3 4 4 5
TU 16x16 | 6 6 7 7 8 8 9
TU 32x32 | 10 10 1 11 12 12 13 13 14
TABLE 9—Chroma
Bin index | 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2
TU 8x8 0 0 1 1
TU 16x16 | 0 0 1 1 2 2 3

One example of a function that video encoder 20 and/or video decoder 30 may
use for deriving contexts for bins in last position coding of luma TUs, per table 8, and

chroma TUs, per table 9, is:

Ctx_idx = offset + (i>>k),

10

15

20

25

30

20

where Luma and Chroma share the same value of k, k = (n+3)>>2 with n =
(logx(TUBIkSize)-2)

Video encoder 20 and/or video decoder 30 may determine the values for the
variable “offset” of function (9), based on whether the TU is a luma TU or a chroma TU
using various functions. Examples of such functions include the following:

Luma: offset = 3*n +((n+1)>>2) (10)

Chroma: offset = 0 (11)

In this manner, function (9) represents an example of a function that video
encoder 20 and/or video decoder 30 may execute to produce a context index. In turn,
the context index may be indicative of a context for coding a bin of a value indicative of
a last significant coefficient of a block of video data as a function of an index of the bin
(1) and a value indicative of a size of the block (k, which is calcuiated based on n, which
18 log>(TUBIkSize)-2). In this example, video encoder 20 and/or video decoder 30 may
also execute example function (9) to produce the context index based on an offset value
that is determined based on whether the block is a chroma block or a luma block, e.g.,
as shown in functions (10) and (11).

As another example, video encoder 20 may implement a step function to derive
the context index of the context to be used to entropy code the i™ bin. More
specifically, the step function may represent a function that has two or more parts
depending on, e.g., the value of the bin index i. Thus, video encoder 20 and/or video
decoder 30 may divide the bins in the last position value into different subsets, e.g.,
Subset0, Subsetl, etc.. Additionally, video encoder 20 and/or video decoder 30 may
apply different functions for different subsets, e.g., FO() for Subset0, F1() for Subsetl,
and so on. For instance, such a function may be as follows:
i =last _bin, 10

, where
else (i >> 1) + TUSIZEOffset

£, TUBIKSize) = {

TUSIZEoffset = (log2(TUBIkSize)-2) *(log2(TUBIkSize)-1)/2. (12)

In some implementations, the subsets may be pre-defined, and the definition of
the subsets may be accessible to both video encoder 20 and video decoder 30.
Alternatively, video encoder 20 (or a user of source device 12) may select the subsets,
and output interface 22 may transmit the selected subsets to the video decoder 30 of
destination device 14 using one or more high-level syntax signaling techniques, such as
an SPS, a PPS, an APS, a frame header, a slice header, a sequence header, or other such

syntax signaling. The definition of the subsets may also depend on various other types

10

15

20

25

30

21

of information, such as the block size (e.g., the TU size), the residual quadtree depth
(RQT) depth corresponding to the block, whether the block corresponds to a luminance
component or a chrominance component, the frame size for the frame including the
block (e.g., in pixel resolution), the motion compensation block size for a motion
compensation block (e.g., a prediction unit (PU)) corresponding to the block, the frame-
type (I/P/B) for the frame including the block, the inter-prediction direction for the
corresponding motion compensation block, the motion vector amplitude for the
corresponding motion compensation block, and/or a motion vector difference amplitude
for the motion vector of the corresponding motion compensation block.

_ Table 10 below illustrates an example of the context indexes that video encoder
20 may use to code bins at various bin indexes for various block (e.g., TU) sizes using
the example function (12). Although Table 10 is provided for purposes of explanation
of the results of the function, it will be appreciated that a table such as Table 10 need
not be stored in a video coding device such as source device 12 and/or destination
device 14. Instead, one or both of video encoder 20 and video decoder 30 may execute

example function (12) described above to produce the results indicated in Table 10.

TABLE 10
Bin index | 0 1 2 3 4 5 6 7 8 9
TU 4x4 0 0 10
TU 8x8 1 1 2 2 10
TU 16x16 | 3 3 4 4 5 5 10
TU32x32 | 6 6 7 7 8 8 9 9 10

Example functions (1) - (12) described above may depend, at least in part, on

~ one or more elements of side information. As one example, the functions may accept

the side information as arguments. In other examples, video encoder 20 and/or video
decoder 30 may select different functions based on the corresponding side information.
The side information may include any or all of the block size (e.g., the TU size), the
residual quadtree depth (RQT) depth corresponding to the block, whether the block
corresponds to a luminance component or a chrominance component, the frame size for
the frame including the block (e.g., in pixel resolution), the motion compensation block
size for a motion compensation block (e.g., a prediction unit (PU)) corresponding to the

block, the frame-type (I/P/B) for the frame including the block, the inter-prediction

10

15

20

25

30

22

direction for the corresponding motion compensation block, the motion vector
amplitude for the corresponding motion compensation block, and/or a motion vector
difference amplitude for the motion vector of the corresponding motion compensation
block. As one example, video encoder 20 and/or video decoder 30 may select different
functions to derive contexts to apply when coding bins of a value indicating a last
significant coefficient position of a luminance block, vis-a-vis a chrominance block.

Video encoder 20 may further send syntax data, such as block-based syntax data,
frame-based syntax data, and GOP-based syntax data, to video decoder 30, e.g.,ina
frame header, a block header, a slice header, or a GOP header. The GOP syntax data
may describe a number of frames in the respective GOP, and the frame syntax data may
indicate an encoding/prediction mode used to encode the corresponding frame.

Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder or decoder circuitry, as applicable, such as one or more
microprocessors, digital signal processors (DSPs), application specific integrated
circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic circuitry,
software, hardware, firmware or any combinations thereof. Each of video encoder 20
and video decoder 30 may be included in one or more encoders or decoders, either of
which may be integrated as part of a combined video encoder/decoder (CODEC). A
device including video encoder 20 and/or video decoder 30 may comprise an integrated
circuit, a microprocessor, and/or a wireless communication device, such as a cellular
telephone.

In this manner, video encoder 20 and video decoder 30 represent examples of a
video coder configured to determine a context for entropy coding a bin of a value
indicative of a last significant coefficient of a block of video data using a function of an
index of the bin, and code the bin using the determined context.

FIG. 2 is a block diagram illustrating an example of video encoder 20 that may
implement techniques for determining a context to use to code a value representing a
last significant coefficient of a block of video data. Video encoder 20 may perform
intra- and inter-coding of video blocks within video slices. Intra-coding relies on spatial
prediction to reduce or remove spatial redundancy in video within a given video frame
or picture. Inter-coding relies on temporal prediction to reduce or remove temporal
redundancy in video within adjacent frames or pictures of a video sequence. Intra-mode

(I mode) may refer to any of several spatial based coding modes. Inter-modes, such as

10

15

20

25

30

23

uni-directional prediction (P mode) or bi-prediction (B mode), may refer to any of
several temporal-based coding modes.

As shown in FIG. 2, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 2, video encoder 20 includes mode
select unit 40, reference frame memory 64, summer 50, transform processing unit 52,
quantization unit 54, and entropy encoding unit 56. Mode select unit 40, in turn,
includes motion compensation unit 44, motion estimation unit 42, intra-prediction unit
46, and partition unit 48. For video block reconstruction, video encoder 20 also
includes inverse quantization unit 58, inverse transform unit 60, and summer 62. A
deblocking filter (not shown in FIG. 2) may also be included to filter block boundaries
to remove blockiness artifacts from reconstructed video. If desired, the deblocking filter
would typically filter the output of summer 62. Additional filters (in loop or post loop)
may also be used in addition to the deblocking filter. Such filters are not shown for
brevity, but if desired, may filter the output of summer 50 (as an in-loop filter).

During the encoding process, video encoder 20 receives a video frame or slice to
be coded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of
the received video block relative to one or more blocks in one or more reference frames
to provide temporal prediction. Intra-prediction unit 46 may alternatively perform intra-
predictive coding of the received video block relative to one or more neighboring blocks
in the same frame or slice as the block to be coded to provide spatial prediction. Video
encoder 20 may perform multiple coding passes, e.g., to select an appropriate coding
mode for each block of video data.

. Moreover, partition unit 48 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
example, partition unit 48 may initially partition a frame or slice into LCUs, and
partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate-
distortion optimization). Mode select unit 40 may further produce a quadtree data
structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the
quadtree may include one or more PUs and one or more TUs.

Mode select unit 40 may select one of the coding modes, intra or inter, e.g.,
based on error results, and provides the resulting intra- or inter-coded block to summer
50 to generate residual block data and to summer 62 to reconstruct the encoded block

for use as a reference frame. Mode select unit 40 also provides syntax elements, such as

10

15

20

25

30

24

motion vectors, intra-mode indicators, partition information, and other such syntax
information, to entropy encoding unit 56.

Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference frame (or other coded unit) relative to
the current block being coded within the current frame (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in terms
of pixel difference, which may be determined by sum of absolute difference (SAD),
sum of square difference (SSD), or other difference metrics. In some examples, video
encoder 20 may calculate values for sub-integer pixel positions of reference pictures
stored in reference frame memory 64. For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-eighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion estimation unit 42 may
perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

' Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
ﬁrsf reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference frame memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

. Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42 and motion compensation
unit 44 may be functionally integrated, in some examples. Upon receiving the motion
vector for the PU of the current video block, motion compensation unit 44 may locate
the predictive block to which the motion vector points in one of the reference picture
lists. Summer 50 forms a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video block being coded, forming

pixel difference values, as discussed below. In general, motion estimation unit 42

10

15

20

25

30

25

performs motion estimation relative to luma components, and motion compensation unit
44 uses motion vectors calculated based on the luma components for both chroma
components and luma components. Mode select unit 40 may also generate syntax
elements associated with the video blocks and the video slice for use by video decoder
30 in decoding the video blocks of the video slice.

Intra-prediction unit 46 may intra-predict a current block, as an alternative to
the inter-prediction performed by motion estimation unit 42 and motion compensation
unit 44, as described above. In particular, intra-prediction unit 46 may determine an
intra-prediction mode to use to encode a current block. In some examples, intra-
prediction unit 46 may encode a current block using various intra-prediction modes,
€.g., during separate encoding passes, and intra-prediction unit 46 (or mode select unit
40, in some examples) may select an appropriate intra-prediction mode to use from the
tested modes.

For example, intra-prediction unit 46 may calculate rate-distortion values using a
rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bitrate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

After selecting an intra-prediction mode for a block, intra-prediction unit 46 may
provide information indicative of the selected intra-prediction mode for the block to
entropy encoding unit 56. Entropy encoding unit 56 may encode the information
indicating the selected intra-prediction mode. Video encoder 20 may include in the
transmitted bitstream configuration data, which may include a plurality of intra-
prediction mode index tables and a plurality of modified intra-prediction mode index
tables (also referred to as codeword mapping tables), definitions of encoding contexts
for various blocks, and indications of a most probable intra-prediction mode, an intra- '
prediction mode index table, and a modified intra-prediction mode index table to use for
each of the contexts.

Video encoder 20 forms a residual video block by subtracting the prediction data

from mode select unit 40 from the original video block being coded. Summer 50

10

15

20

25

30

) 26

represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising residual transform coefficient values. Transform processing unit 52
may perform other transforms which are conceptually similar to DCT. Wavelet
transforms, integer transforms, sub-band transforms or other types of transforms could
also be used. In any case, transform processing unit 52 applies the transform to the
residual block, producing a block of residual transform coefficients. The transform may
convert the residual information from a pixel value domain to a transform domain, such
as a frequency domain. Transform processing unit 52 may send the resulting transform
coefficients to quantization unit 54. Quantization unit 54 quantizes the transform
coefficients to further reduce bit rate. The quantization process may reduce the bit
depth associated with some or all of the coefficients. The degree of quantization may be
modified by adjusting a quantization parameter. In some examples, quantization unit 54
may then perform a scan of the matrix including the quantized transform coefficients.
Alternatively, entropy encoding unit 56 may perform the scan.

Following quantization, entropy encoding unit 56 entropy codes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy coding technique. In the
case of context-based entropy coding, context may be based on neighboring blocks.
Following the entropy coding by entropy encoding unit 56, the encoded bitstream may
be transmitted to another device (e.g., video decoder 30) or archived for later
transmission or retrieval.

_ In particular, entropy encoding unit 56 may receive, from quantization unit 54, a
set of quantized transform coefficients associated with a TU. In turn, entropy encoding
unit 56 may scan the set of quantized transform coefficients, and determine whether
each scanned coefficient includes a significant coefficient, i.e., whether the coefficient
has a zero or non-zero value. A non-zero value may indicate that a particular quantized
transform coefficient is a “significant” coefficient. In instances where entropy encoding
unit 56 detects a significant coefficient, entropy encoding unit 56 may code data
representative of the particular value associated with the coefficient (e.g., one, two, and

so on). Such data may include, for example, an indication of the sign of the coefficient,

10

15

20

25

30

27

whether the absolute value of the coefficient is greater than one, and when the absolute
value of the coefficient is greater than one, whether the absolute value of the coefficient
is greater than two. Additionally, in instances where a significant coefficient has an
absolute value greater than two, entropy encoding unit 56 may subtract two from the
absolute value of the coefficient, thereby obtaining a value by which the coefficient
exceeds two, and code this value.

. By scanning the entire set of quantized transform coefficients received from
quantization unit 54, entropy encoding unit 56 may also detect and identify the last
significant coefficient associated with a particular TU (i.e., in scan order). Additionally,
entropy encoding unit 56 may determine the position of the last significant coefficient
within the corresponding TU. For instance, entropy encoding unit 56 may identify
horizontal and vertical (x- and y-) coordinates of the last significant coefficient within
the TU.

. Moreover, entropy encoding unit 56 may be configured to binarize syntax
elements that do not already have a binary value. That is, entropy encoding unit 56 may
determine a binary string representative of the value of a syntax element when the
syntax element is not already represented by a binary string. A binary string, or
binarized value, generally corresponds to an array of bits, each of which may have a
value of “0” or “1.” The array may be zero-indexed, such that the ordinal first bit of the
array occurs at position 0, the ordinal second bit of the array occurs at position 1, and so
on. Thus, entropy encoding unit 56 may form a binarized value B[N] having a length of
N bits, each bit occurring at a respective position Bfi}, where 0 <i <N-1.

In turn, entropy encoding unit 56 may entropy encode data representing the x-

“and y- coordinates of the last significant coefficient. For example, entropy encoding

unit 56 may be configured to entropy encode the syntax elements
last_significant_coeff_x_prefix, last_significant coeff y_prefix,
last_significant coeff x_suffix, and/or last_significant_coeff y_suffix, which together,
in HEVC, represent the x- and y-coordinates of the last significant coefficient in scan
order. Entropy encoding unit 56 may implement one or more techniques of this
disclosure to entropy encode data representing the coordinates of the last significant
coefficient using a function, denoted by f(i). For example, entropy encoding unit 56
may entropy encode various syntax elements, such as syntax elements for the quantized
transform coefficients received from quantization unit 54 and/or values representing a

last significant coefficient of a TU (e.g., the syntax elements described above), using

DERIVING CONTEXT FOR LAST POSITION CODING

TECHNICAL FIELD
5 This disclosure relates to video coding.
BACKGROUND
10 Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio

15 telephones, so-called "smart phones," video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard presently under development, and extensions of such

20 standards. The video devices may transmit, receive, encode, decode, and/or store
digital video information more efficiently by implementing such video coding techniques.

Video coding techniques include spatial (intra-picture) prediction and/or temporal
(inter-picture) prediction to reduce or remove redundancy inherent in video sequences.
25 For block-based video coding, a video slice (e.g., a video frame or a portion of a video
frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (1)
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
30 of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in

| B

10

15

20

25

30

28

contexts determined using one or more functions of bins of a value representative of the
corresponding syntax element.

' For instance, “Ctx_i” may denote the index of the context used by entropy
encoding unit 56 to encode the ™ bin in a binarized value representing the position of
the last significant coefficient, as described above with respect to Tables 1-2 and 8-9.
The context indexed by ctx_i generally indicates a most probable symbol (e.g., “1” or
“0,”) as well as the probability of the most probable symbol. Entropy encoding unit 56
may derive the value of Ctx_i using the equation Ctx_i = (i), where f(i) may be a
predefined function accessible to entropy encoding unit 56, or a function selected by a
user. Additionally, entropy encoding unit 56 may encode data representative of (i), so
that video decoder 30 may decode the data for the function f(i) and use f(i) to obtain the
value of Ctx_i. In this manner, entropy encoding unit 56 can determine the context for a
particular bin of a binarized syntax element using a function of the bin index, that is, the
position of the bin in a binarized value (i.e., a binary string) representing the syntax
element. '

In some examples, entropy encoding unit 56 is configured to determine contexts
for coding bins of data representing the last significant coefficient position using
formulas (5)—(8) described above. That is, entropy encoding unit 56 may calculate f(i)
as follows: Ctx_idx = offset + (i>>k). Moreover, entropy encoding unit 56 may derive
the values of the offset value and k used in f(i) using the following equations:

offset = 3*n +((n+1)>>2),
k =(+3)>>2, and
n = (loga(block_size)-2).

In other implementations, entropy encoding unit 56 may use one or more of
example functions (1)~(4) and (9)~(12), in addition or in the alternative to formulas (5)-
(8), when determining a context for entropy encoding a bin of data representing the
position of the last significant coefficient of a TU. In this manner, video encoder 20 and
components thereof, such as entropy encoding unit 56, may implement the techniques of
this disclosure to encode data representative of the last significant coefficient using one
or more functions. Such functions can be stored more efficiently in memory of video
encoder 20 and video decoder 30 than tables. Therefore, the techniques of this
disclosure may provide for video encoders and video decoders that utilize memory more

efficiently, e.g., by allocating memory that would otherwise be devoted to a table to

10

15

20

25

30

T 29

other data, or by decreasing the required amount of memory for a video encoder or
video decoder.

Inverse quantization unit 58 and inverse transform unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain, e.g., for later use as a reference block. Motion compensation unit
44 may calculate a reference block by adding the residual block to a predictive block of
one of the frames of reference frame memory 64. Motion compensation unit 44 may
also apply one or more interpolation filters to the reconstructed residual block to
calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated prediction block produced by
motion compensation unit 44 to produce a reconstructed video block for storage in
reference frame memory 64. The reconstructed video block may be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a
block in a subsequent video frame.

In this manner, video encoder 20 of FIG. 2 represents an example of a video
encoder configured to determine a context for entropy coding a bin of a value indicative
of a last significant coefficient of a block of video data using a function of an index of
the bin, and code the bin using the determined context. Moreover, video encoder 20
also represents an example of a video encoder in which the function produces a context
index for the context by right-shifting the index of the bin by a value k and adding the
right-shifted value to an offset value, wherein the offset value is determined according
to the formula offset = 3*n +((n+1)>>2), wherein the value k is determined according to
the formula k = (n+3)>>2, and wherein the value n is determined according to the
formula n = (logy(block_size)-2).

. FIG. 3 is a block diagram illustrating an example of video decoder 30 that may
implement techniques for determining a context to use to code a value representing a
last significant coefficient of a block of video data. In the example of FIG. 3, video
decoder 30 includes an entropy decoding unit 70, motion compensation unit 72, intra
prediction unit 74, inverse quantization unit 76, inverse transformation unit 78,
reference frame memory 82 and summer 80. Video decoder 30 may, in some examples,
perform a decoding pass generally reciprocal to the encoding pass described with
respect to video encoder 20 (FIG. 2). Motion compensation unit 72 may generate

prediction data based on motion vectors received from entropy decoding unit 70, while

10

15

20

25

30

30

intra-prediction unit 74 may generate prediction data based on intra-prediction mode
indicators received from entropy decoding unit 70.

During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors or intra-
prediction mode indicators, and other syntax elements. Entropy decoding unit 70
forwards the motion vectors to and other syntax elements to motion compensation unit
72. Video decoder 30 may receive the syntax elements at the video slice level and/or
the video block level.

Entropy decoding unit 70 may generate a block (e.g., a TU) of quantized
coefficients by entropy decoding the encoded video bitstream, and populating entropy
decoded quantized coefficients in the block in scan order. For instance, entropy
decoding unit 70 may entropy decode syntax elements of the encoded video bitstream to
determine locations of significant coefficients in the block to be generated. If a location
of the block corresponds to a coefficient that is not a significant coefficient, entropy
decoding unit 70 may set the value of the coefficient at that location in the block to zero.
On the other hand, if entropy decoding unit 70 determines that a particular quantized
coefficient is a significant coefficient, entropy decoding unit 70 may set the value of the
significant coefficient based on data provided in the encoded video bitstream by video
encoder 20.

. Moreover, as explained below, entropy decoding unit 70 may determine the
position of a last significant coefficient in the block based on syntax elements indicating
the x- and y-coordinates of the last significant coefficient. In accordance with the
techniques of this disclosure, as explained in greater detail below, entropy decoding unit
70 may use a function to determine context for entropy decoding bins of values
representing the x- and y-coordinates of the last significant coefficient. Video decoder

30 may use the indication of the position of the last significant coefficient to determine

‘when data of the bitstream represents subsequent syntax elements, that is, syntax

elements that do not represent data of the block being regenerated.

Entropy decoding unit 70 may determine, based on data provided in the encoded
video bitstream, a sign for each significant coefficient, and data representing the level
value of each significant coefficient. For example, entropy decoding unit 70 may

determine a sign for a significant coefficient through entropy decoding a syntax element

10

15

20

25

30

31

representing the sign, e.g., coeff_sign flag. In addition, entropy decoding unit 70 may
decode one or more syntax elements representative of the level value of each significant
coefficient, e.g., coeff_abs_level_greater]_flag, coeff abs level greater2_ flag, and
coeff_abs_level_remaining. In general, coeff_abs level greater]l flag indicates
whether the absolute value of a significant coefficient is greater than 1,
coeff_abs_level_greater2_flag indicates whether the absolute value of a significant
coefficient is greater than 2, and coeff abs_level remaining indicates the absolute value
of a significant coefficient minus 2.

_ Entropy decoding unit 70 may also determine the position of the last significant
coefficient of the block (e.g., the TU) being regenerated. More specifically, entropy
decoding unit 70 may identify the position (e.g., based on coded syntax elements
representative of x- and y- coordinates) of the last significant cocfﬁcient within the TU
associated with the encoded video bitstream. Based on identifying the position of the
last significant coefficient, entropy decoding unit 70 may set the values of remaining
coefficients in the TU in scan order to zero. That is, video decoder 30 need not receive
any syntax elements for coefficients beyond the last significant coefficient, and further,
may infer values of 0 for these coefficients.

Additionally, entropy decoding unit 70 may implement one or more techmques
of this disclosure to decode bins of a binarized value representing the x- and y-
coordinates of the position of the last significant coefficient using a function, generally
denoted by £(i), where i corresponds to the position of the bin in the binarized value. In
some examples, entropy decoding unit 70 may decode encoded data using a determined
context to reproduce a value for the bin, e.g., “0” or “1.” Although described as
corresponding to the last significant coefficient position, the techniques of this
disclosure can be applied to entropy decoding other syntax elements as well. For
example, entropy decoding unit 70 may entropy decode various syntax elements, such
as syntax elements for the quantized coefficients sent to one or both of motion
compensation unit 72 and intra prediction unit 74, syntax elements representative of
quantized transform coefficients, and/or values representing a last significant coefficient
of the TU associated with the encoded video bitstream, using contexts determined using
one or more functions of bin indexes of a value representative of the corresponding
syntax element.

For instance, “Ctx_i” may denote the index of the context used by entropy

decoding unit 70 to decode the i® bin in a binarized value representing the position of

10

15

20

25

30

32

the last significant coefficient, as described above with respect to Tables 1-2 and 8-9.
In this example, entropy decoding unit 70 may derive the value of Ctx_i using the
equation Ctx_i = f(i), where f(i) may be a predefined function accessible to entropy
decoding unit 70 (e.g., communicated by source device 12), or a function selected by a
user. Additionally, entropy decoding unit 70 may decode data representative of (i), so
as to use the data representative of f(i) to obtain the value of Ctx_i.

In some examples, entropy decoding unit 70 is configured to determine contexts
for decoding bins of data representing the last significant coefficient position using
formulas (5)—(8) described above. That is, entropy decoding unit 70 may calculate f{i)
as follows: Ctx_idx = offset + (i>>k). Moreover, entropy decoding unit 70 may derive
the values of the offset value and k used in f{i) using the following equations:

offset = 3*n +((n+1)>>2),
k =(n+3)>>2, and
n = (logz(block_size)-2).

In other implementations, entropy decoding unit 70 may set f{i) to one or more
of example equations (1)—(4) and (9)—(12) in decoding the last significant coefficient of
a TU represented by the encoded video bitstream. In this manner, video decoder 30 and
components thereof, such as entropy decoding unit 70, may implement the techniques of
this disclosure to decode the last significant coefficient using one or more functions.
Such functions can be stored more efficiently in memory of video encoder 20 and video
decoder 30 than tables. Therefore, the techniques of this disclosure may provide for
video encoders and video decoders that utilize memory more efficiently, e.g., by
allocating memory that would otherwise be devoted to a table to other data, or by
decreasing the required amount of memory for a video encoder or video decoder.

When the video slice is coded as an intra-coded (I) slice, intré prediction unit 74
may generate prediction data for a video block of the current video slice based on a
signaled intra prediction mode and data from previously decoded blocks of the current
frame or picture. When the video frame is coded as an inter-coded (i.e., B, P or GPB)
slice, motion compensation unit 72 produces predictive blocks for a video block of the
current video slice based on the motion vectors and other syntax elements received from
entropy decoding unit 70. The predictive blocks may be produced from one of the
reference pictures within one of the reference picture lists. Video decoder 30 may
construct the reference frame lists, List 0 and List 1, using default construction

techniques based on reference pictures stored in reference frame memory 82.

10

15

20

25

30

33

| Motion compensation unit 72 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax
clements, and uses the prediction information to produce the predictive blocks for the
current video block being decoded. For example, motion compensation unit 72 uses
some of the receive& syntax elements to determine a prediction mode (e.g., intra- or
inter-prediction) used to code the video blocks of the video slice, an inter-prediction
slice type (e.g., B slice, P slice, or GPB slice), construction information for one or more
of the reference picture lists for the slice, motion vectors for each inter-encoded video
block of the slice, inter-prediction status for each inter-coded video block of the slice,
and other information to decode the video blocks in the current video slice.

Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated
values for sub-integer pixels of reference blocks. In this case, motion compensation
unit 72 may determine the interpolation filters used by video encoder 20 from the
received syntax elements and use the interpolation filters to produce predictive blocks.

Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
70. The inverse quantization process may include use of a quantization parameter QPy
calculated by video decoder 30 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied.

Inverse transform unit 78 applies an inverse transform, e.g., an inverse DCT, an
inverse integer transform, or a conceptually similar inverse transform process, to the
transform coefficients in order to produce residual blocks in the pixel domain.

After motion compensation unit 72 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
unit 78 with the corresponding predictive blocks generated by motion compensation
unit 72. Summer 80 represents the component or components that perform this
summation operation. If desired, a deblocking filter may also be applied to filter the
decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the
coding loop or after the coding loop) may also be used to smooth pixel transitions, or

otherwise improve the video quality. The decoded video blocks in a given frame or

10

15

20

25

30

picture are then stored in reference picture memory 82, which stores reference pictures
used for subsequent motion compensation. Reference frame memory 82 also stores
decoded video for later presentation on a display device, such as display device 32 of
FIG 1.

In this manner, video decoder 30 of FIG. 3 represents an example of a video
decoder configured to determine a context for entropy coding a bin of a value indicative
of a last significant coefficient of a block of video data using a function of an index of
the bin, and code the bin using the determined context. Moreover, video decoder 30
also represents an example of a video decoder in which the function produces a context
index for the context by right-shifting the index of the bin by a value k and adding the
right-shifted value to an offset value, wherein the offset value is determined according
to the formula offset = 3*n +((n+1)>>2), wherein the value k is determined according to
the formula k = (n+3)>>2, and wherein the value n is determined according to the
formula n = (log2(block_size)-2).

FIG. 4 is a flowchart illustrating an example method for encoding a current
block. The current block may comprise a current CU or a portion of the current CU.
Although described with respect to video encoder 20 (FIGS. 1 and 2), it should be
understood that other devices may be configured to perform a method similar to that of
FIG. 4. Moreover, although the example method of FIG. 4 specifically describes coding
syntax elements relating to the position of the last significant coefficient of a video
block using these techniques, it should be understood that these techniques may be
applied to coding other syntax elements as well.

In this example, video encoder 20 initially predicts the current block (150). For
example, video encoder 20 may calculate one or more prediction units (PUs) for the
current block. Video encoder 20 may then calculate a residual block for the current
block, €.g., to produce a transform unit (TU) (152). To calculate the residual block,
video encoder 20 may calculate a difference between the original, uncoded block and
the predicted block for the current block. Video encoder 20 may then transform and
quantize coefficients of the residual block (154). Next, video encoder 20 may scan the
quantized transform coefficients of the residual block (156). During the scan, or
following the scan, video encoder 20 may entropy encode the coefficients (158). For
example, video encoder 20 may encode the coefficients using CAVLC or CABAC.

Video encoder 20 may also determine a value for a position of a last significant

coefficient in the TU (160). The value may comprise, for example, a binarized value

10

15

20

25

30

35

representative of the position of the last significant coefficient, e.g., as described with
respect to Table 1 above. A maximum number of bins of the value may be coded using
CABAC, while other bins exceeding the maximum number may be bypass coded, again
as described with respect to Table 1. In particular, in accordance with the techniques of
this disclosure, video encoder 20 may determine contexts for bins of the value using a
function (162). As explained above, the contexts may describe probabilities of the bins
having a particular value, e.g., “0” or “1.” The function may correspond to one of
functions (1)—(12) described above, or a conceptually similar function.

With respect to the examples of functions (5)—(8), video encoder 20 may
determine a context, ctx_idx, for a bin at position i of a binarized value representative of
a position of a last significant coefficient, using the formula offset + (i>>k), where
offset = 3*n +((n+1)>>2), k = (n+3)>>2, and n = (logy(block_size)-2). That is, video
encoder 20 may iterate through each bin to be entropy encoded and execute the
functions shown above to determine a context for coding a bin of the current iteration.
Video encoder 20 may then encode the bins of the value (e.g., the bins not in excess of
the maximum number of bins) using the determined contexts (164). Likewise, video
encoder 20 may bypass code any remaining bins of the value (166).

In this manner, the method of FIG. 4 represents an example of a method
including determining a context for entropy coding a bin of a value indicative of a last
significant coefficient of a block of video data using a function of an index of the bin,
and coding the bin using the determined context. Moreover, the function may produce a
context index for the context by right-shifting the index of the bin by a value k and
adding the right-shifted value to an offset value, wherein the offset value is determined
according to the formula offset = 3*n +((n+1)>>2), wherein the value k is determined
according to the formula k = (n+3)>>2, and wherein the value n is determined according
to the formula n = (logz(block_size)-2).

FIG. 5 is a flowchart illustrating an example method for decoding a current block
of video data. The current block may comprise a current CU or a portion of the current
CU. Although described with respect to video decoder 30 (FIGS. 1 and 3), it should be
understood that other devices may be configured to perform a method similar to that of
FIG. 5. Moreover, although the example method of FIG. 4 specifically describes coding
syntax elements relating to the position of the last significant coefficient of a video
block using these techniques, it should be understood that these techniques may be
applied to coding other syntax elements as well.

- ewvA1

10

15

20

25

30

36

| Video decoder 30 may predict the current block (200), e.g., using an intra- or
inter-prediction mode to calculate a predicted block for the current block. Video
decoder 30 may also receive entropy coded data for the current block, such as entropy
coded data for coefficients of a residual block corresponding to the current block (202).
Video decoder 30 may entropy decode the entropy coded data to reproduce coefficients
of the residual block (204).

In accordance with the techniques of this disclosure, video decoder 30 may
receive an encoded value indicative of a position of a last significant coefficient in the
TU (206). A maximum number of bins of the value may be decoded using CABAC,
while other bins exceeding the maximum number may be bypass decoded, as described
with respect to Table 1. In particular, in accordance with the techniques of this
disclosure, video decoder 30 may determine contexts for bins of the value using a
function (208). As explained above, the contexts may describe probabilities of the bins
having a particular value, e.g., “0” or “1.” The function may correspond to one of
functions (1)—(12) described above, or a conceptually similar function.

With respect to the examples of functions (5)~(8), video decoder 30 may
determine a context, ctx_idx, for a bin at position i of a binarized value being decoded,
where the binarized value is representative of a position of a last significant coefficient,
using the formula offset + (i>>k), where offset = 3*n +((n+1)>>2), k = (n+3)>>2, and n
= (loga(block_size)-2). That is, video decoder 30 may iteratively decode each bin to be
entropy decoded and execute the functions shown above to determine a context for
coding a bin of the current iteration. Video decoder 30 may then decode the bins of the
value (e.g., the bins not in excess of the maximum number of bins) using the determined
contexts (210). For instance, video decoder 30 may decode encoded data received from
video encoder 20 using the determined contexts to reproduce or otherwise obtain the
bins of the value. Likewise, video decoder 30 may bypass decode any remaining bins
of the value (212).

Video decoder 30 may then inverse scan the reproduced coefficients based on
the position of the last significant coefficient (214), to create a block of quantized
transform coefficients. That is, video decoder 30 may place the decoded coefficients in
the TU, starting at the position of the last significant coefficient, and proceeding in a
scan order that generally corresponds to the scan order used by the encoder. Video

decoder 30 may then inverse quantize and inverse transform the coefficients to produce

10

15

20

25

30

37

a residual block (216). Video decoder 30 may ultimately decode the current block by
combining the predicted block and the residual block (218).

In this manner, the method of FIG. 5 represents an example of a method
including determining a context for entropy coding a bin of a value indicative of a last
significant coefficient of a block of video data using a function of an index of the bin,
and coding the bin using the determined context. Moreover, the function may produce a
context index for the context by right-shifting the index of the bin by a value k and
adding the right-shifted value to an offset value, wherein the offset value is determined
according to the formula offset = 3*n +((n+1)>>2), wherein the value k is determined
according to the formula k = (n+3)>>2, and wherein the value n is determined according
to the formula n = (logx(block_size)-2).

It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

10

15

20

25

30

other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coeficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

In general, this disclosure describes techniques for coding syntax elements
associated with video data using one or more functions. For instance, a device may
implement one or more of the techniques to code a value indicating a position of a last
significant coefficient of a block of video data (such as a transform unit, or “TU”). To
code the value, the device may use a function of an index of each bit (or “bin”) in a
binarized value corresponding to the last significant coefficient, where the index
indicates a position of the bin in an array of bins representing the binarized value.

" In one example, a method includes determining a context for entropy coding a
bin of a value indicative of a last significant coefficient of a block of video data using a
function of an index of the bin, and coding the bin using the determined context.

In another example, a device for coding video data includes a video coder
configured to determine a context for entropy coding a bin of a value indicative of a last
significant coefficient of a block of video data using a function of an index of the bin,
and code the bin using the determined context.

" In another example, a device includes means for determining a context for

entropy coding a bin of a value indicative of a last significant coefficient of a block of

A\

10

15

20

25

30

38

can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable
for implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.

Various examples have been described. These and other examples are within

the scope of the following claims.

10

15

20

25

30

video data using a function of an index of the bin, and means for coding the bin using
the determined context.

In another example, a computer-readable storage medium is encoded with
instructions. When executed, the instructions cause a programmable processor of a
computing device to determine a context for entropy coding a bin of a value indicative
of a last significant coefficient of a block of video data using a function of an index of
the bin, and code the bin using the determined context.

The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize techniques for determining a context to use to code a value
representing a last significant coefficient of a block of video data.

FIG. 2 is a block diagram illustrating an example of a video encoder that may
implement techniques for determining a context to use to code a value representing a
last significant coefficient of a block of video data.

FIG. 3 is a block diagram illustrating an example of a video decoder that may
implement techniques for determining a context to use to code a value representing a
last significant coefficient of a block of video data.

FIG. 4 is a flowchart illustrating an example method for encoding a current block
of video data.

FIG. 5 is a flowchart illustrating an example method for decoding a current block
of video data.

DETAILED DESCRIPTION

In general, the techniques of this disclosure relate to video coding. In video
coding, a sequence of pictures are individually coded using either spatial prediction
(intra-prediction) or temporal prediction (inter-prediction). In particular, video coders
code individual blocks of the pictures using intra- or inter-prediction. Video coders also
code residual data for the blocks, where the residual data generally corresponds to
residual blocks, which represent pixel-by-pixel differences between the predicted data

10

15

20

25

30

and the raw, uncoded data. Video coders may transform and quantize the residual data
to produce quantized transform coefficients for the residual blocks. Video coders
further code syntax data such as whether the coefficients are significant (e.g., have
absolute values greater than zero), locations of significant coefficients, a location of a
last significant coefficient in scan order, and level values for the significant coefficients.

This disclosure describes techniques for coding a value indicative of a last
significant coefficient in a block of video data, such as a transform unit (TU). In
particular, to code syntax elements, such as the value indicative of the last significant
coefficient in the block, video coders may be configured to apply context-adaptive
binary arithmetic coding (CABAC). CABAC coding involves the use of various
contexts, indicated by context indexes, which generally indicate the likelihood that an
individual bit (or “bin”) of a binarized string will have a particular value (e.g., 0 or 1).
Specifically, the context for coding a bin of a value indicative of a last significant
coefficient in a block is determined individually for each bin of the value, that is, based
on a location of the bin in the value (e.g., an index of the bin, assuming the value is
represented as an array of bins).

Rather than using a mapping table, which provides indications of the context
indexes for contexts to use to code particular bins, the techniques of this disclosure
include using a function to determine the context index of a context to use to code a bin.
In particular, the function may be a function of an index of the bin. For example,
assuming that the bin is the i® bin of a value being coded, a function may be defined as
f(i), where (i) returns a context index value corresponding to a context to use to code
bin i of a binarized value. The context, as described above, may indicate the likelihood
that bin i will have a particular value, e.g., 0 or 1.

' In this manner, this disclosure describes techniques of CABAC coding of last
significant coefficient position (last position). For a last position bin to be encoded, the
index of its CABAC context may be derived using a function, such that a mapping table
between last position bins and CABAC contexts can be saved (e.g., not stored).
CABAC coding generally includes two parts: binarization and CABAC coding. The
binarization process is performed to convert the location of the last significant
coefficient of a block to a binary string, e.g., an array of bins. The binarization method
used in the High Efficiency Video Coding Test Model (HM) is truncated unary + fixed
length encoding. For the truncated unary code part, the bins are encoded using CABAC
contexts. For the fixed length part, the bins are encoded using bypass mode (without

10

15

20

25

30

contexts). An example of 32x32 TU (transform unit/transform block) is shown in Table

1 below:
TABLE 1
Magnitude of last Truncated unary | Fixed f _value
position component | (context model) binary
(bypass)
0 1 - 0
1 01 - 0
2 001 - 0
3 0001 - 0
4-5 00001 X 0-1
6-7 000001 X 0-1
8-11 0000001 XX 0-3
12-15 00000001 XX 0-3
16-23 000000001 XXX 0-7
24-31 000000000 XXX 0-7

Table 2 below illustrates an example context mapping table used in conventional
HM. Table 2 shows that last positions at different locations can share the same
contexts. For some bins, for example, bins 6—7 of an 8x8 block, there is no context
assigned, that is because they are encoded without context (bypass mode), as shown in
Table 1 above.

TABLE 2
Bin index | 0 1 2 3 & s 6 7 |8 |9
TU4x4 |0 1 2

TUSxS |3 4 5 5 2 B

TU 16x16 | 6 7 8 8 9]9 |2

TU32x32 |10 |11 |12 |14 |13 |13 |14 |14 |2

Although conventional HM uses a table such as Table 2 to determine contexts
for coding bins of a last position value (that is, a value indicating a last significant
coefficient position in a block of video data), the techniques of this disclosure include

the use of a function to determine the contexts for coding bins of the last position value.

10

15

20

25

30

Thus, a table similar to Table 2 need not be in a video coder configured according to the
techniques of this disclosure. In this manner, a function may be used to derive the
CABAC context index for the bins in last position coding, such that the mapping table
(Table 2) can be removed. Various examples of coding devices configured to execute
functions to determine contexts for coding bins of syntax elements are described in
greater detail below.

FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques for determining a context to use to code a value
representing a last significant coefficient of a block of video data. As shown in FIG. 1,
system 10 includes a source device 12 that provides encoded video data to be decoded
at a later time by a destination device 14. In particular, source device 12 provides the
video data to destination device 14 via a computer-readable medium 16. Source device
12 and destination device 14 may comprise any of a wide range of devices, including
desktop computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes,
telephone handsets such as so-called “smart” phones, so-called “smart” pads,
televisions, cameras, display devices, digital media players, video gaming consoles,
video streaming device, or the like. In some cases, source device 12 and destination
device 14 may be equipped for wireless communication.

Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from source device 12 to destination device 14.

" " In some examples, encoded data may be output from output interface 22 to a

storage device. Similarly, encoded data may be accessed from the storage device by

10

15

20

25

30

input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

The techniqﬁes of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on a
data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.

* In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, and output interface 22. Destination device 14 includes input interface 28,
video decoder 30, and display device 32. In accordance with this disclosure, video
encoder 20 of source device 12 may be configured to apply the techniques for
determining a context to use to code a value representing a last significant coefficient of
a block of video data. In other examples, a source device and a destination device may
include other components or arrangements. For example, source device 12 may receive

video data from an external video source 18, such as an external camera. Likewise,

10

15

20

25

30

39

Amended Claims

1. A method of coding video data, the method comprising:
determining a context for entropy coding a bin of a value indicative of a last
significant coefficient of a block of video data using a function of an index of the bin,
wherein the function produces a context index for the context by right-
shifting the index of the bin by a value k and adding the right-shifted value to an
offset value,
wherein the offset value is determined according to the formula:
offset = 3*n +((n+1)>>2),
wherein the value £ is determined according to the formula:
k= (nt3)>>2
wherein the value » is determined according to the formula:
n = (log2(block_size)-2), and
wherein the value block_size comprises a value indicative of the size of the
block; and

coding the bin using the determined context.

2. The method of claim 1, wherein determining the context comprises executing the
function.

3. The method of claim 1, wherein the function comprises a linear function.

4. The method of claim 1, wherein the function comprises a non-linear function.

5. The method of claim 1, wherein the function produces a context index for the

context by right-shifting the index of the bin by one.

6. The method of claim 1, further comprising receiving the function from a user.
7. The method of claim 1, further comprising receiving syntax data defining the
function.

10

15

20

25

30

40

8. The method of claim 1, wherein coding the bin comprises entropy decoding

encoded data using the determined context to reproduce a value for the bin.

9. The method of claim 1, wherein coding the bin comprises entropy encoding the bin

using the determined context.

10. A device for coding video data, the device comprising a video coder configured to:
determine a context for entropy coding a bin of a value indicative of a last
significant coefficient of a block of video data using a function of an index of the
bin,
wherein the function produces a context index for the context by right-
shifting the index of the bin by a value & and adding the right-shifted value to an

offset value,

wherein the offset value is determined according to the formula:
offset = 3*n H(n+1)>>2),

wherein the value & is determined according to the formula:
k= nt3)>>2

wherein the value » is determined according to the formula:
n = (logza(block_size)-2),

wherein the value block_size comprises a value indicative of the

size of the block, and

code the bin using the determined context.

11. The device of claim 10, wherein the one or more processors are configured to

determine the context at least in part by executing the function.

12. The device of claim 10, wherein the one or more processors are further configured

to receive syntax data defining the function.

13. The device of claim 10, wherein the one or more processors are configured to code
the bin at least in part by entropy decoding encoded data using the determined context to

reproduce a value for the bin.

10

15

20

25

30

41

14. The device of claim 10, wherein the one or more processors are configured to code

the bin at least in part by entropy encoding the bin using the determined context.

15. The device of claim 10, wherein the device comprises at least one of:
an integrated circuit;
a microprocessor; and

a wireless communication device that comprises the video coder.

16. A device for coding video data, the device comprising:
means for determining a context for entropy coding a bin of a value indicative of a
last significant coefficient of a block of video data using a function of an index of the bin,
wherein the function produces a context index for the context by right-
shifting the index of the bin by a value & and adding the right-shifted value to an
offset value,
wherein the offset value is determined according to the formula:
offset = 3*n +H(n+1)>>2),
wherein the value % is determined according to the formula:
k= (nt3)>>2,
wherein the value 7 is determined according to the formula:
n = (logz2(block_size)-2), and
wherein the value block_size comprises a value indicative of the size of the
block; and

means for coding the bin using the determined context.

'17. The device of claim 16, wherein the means for determining the context comprises

means for executing the function.

18. The device of claim 16, further comprising means for receiving syntax data
defining the function.

10

15

20

25

30

42

19. A computer-readable storage medium encoded with instructions that, when

executed, cause a programmable processor of a computing device to:

determine a context for entropy coding a bin of a value indicative of a last significant

coefficient of a block of video data using a function of an index of the bin,

20.

wherein the function produces a context index for the context by right-
shifting the index of the bin by a value & and adding the right-shifted value to an
offset value,
wherein the offset value is determined according to the formula:
offset = 3*n +((n+1)>>2),
wherein the value £ is determined according to the formula:
k= nt3)>>2
wherein the value » is determined according to the formula:
n = (logz2(block_size)-2), and
wherein the value block_size comprises a value indicative of the size of the
block; and

code the bin using the determined context.

The computer-readable storage medium of claim 19, wherein the instructions that

cause the programmable processor to determine the context further include instructions

that cause the programmable processor to execute the function.

21.

The computer-readable storage medium of claim 19, further encoded with

instructions that, when executed, cause the programmable processor to receive syntax data

defining the function.

Page1/5

/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
is 32
VIDEO VIDEO
ENCODER DECODER
20 30
OUTPUT 16 INPUT
INTERFACE |-4—-<{————-- INTERFACE
2 28

FIG. 1

QUALCOMM INCORPORATED
Applicant

ROMULO MABANTA BUENAVENTURA
SAYOC & DELOS ANGELES

Patent Lawyer

e e e e
' RESID. TRANSFORM
BLOCKS
: PROCESSING e QUANJN'Z'?T'ON | QUANTIZED
VIDEO | v UNIT e TRANSFORM
DATA | 52 COEFFICIENTS
| | MODE seLECT MOTION 50
UNIT
I ESTIMATION
I 40 UNIT
{ 42
| 1]
| MOTION
I PAI:LI‘::II_ON COMPENSATION SYNTAX ELEMENTS
' UNIT N
| 48 44
|
| INTRA
I PREDICTION
I UNIT
: 46 RECON.
RESID.
2 3 I BLOCKsl INVERSE INVERSE ENTROPY
§ Jo I n TRANSFORM | _ | QUANTIZATION | _ ¥_ | ENCODING
%5 § I REF. UNIT UNIT UNIT
3 32 [~ | FRAME 60 58 56
g2 o 2 I | MEMORY RECONSTRUCTED .
b b S {
‘i 2 g % g 5 i VIDEO BLOCKS VIDEO ENCODER
59 o> §& L. SO 4
$z »e 38 T
s 3 >m o
S 2% 38 FIG. 2
o = =
g “3 B
[
=
>

19AMDT JUa3Dg

»)

Ol

NHI S

Ag

SI1IONY SOTIA B JOAVS
VHNLINIAVNING VINVEVIA OTNINOY

Jupayddy
a31LVHOdHOINI NNODTVND

ENCODED
VIDEO
BITSTREAM

VIDEO DECODER

DECODED
VIDEO

| =TT ——— | ¥
1 MOTION |
: COMPENSATION | |
ENTROPY SYNTAX | gl :
DECODING ELEMENTS O yr}
UNIT "1 ,"_
70 " INTRA |
1| PREDICTION |
" UNIT i
QUANTIZ. |
COEFF. !
\ 4
INVERSE INVERSE REFERENCE
QUANTIZATION | _ | TRANSFORM FRAME
UNIT > UNIT MEMORY
18 8 BLOCKS 82
FIG. 3

—

6 /¢ sbed

Page 4/5

/150

PREDICT CURRENT BLOCK

152
CALCULATE RESIDUAL BLOCK /
FOR CURRENT BLOCK

A

TRANSFORM AND QUANTIZE |~ 154

RESIDUAL BLOCK

v

/153
SCAN COEFFICIENTS OF
RESIDUAL BLOCK

i

ENTROPY ENCODE 158
COEFFICIENTS

y

DETERMINE VALUE FOR |~ 160
POSITION OF LAST
SIGNIFICANT COEFFICIENT

v

DETERMINE CONTEXTS |~ 162
FOR BINS OF VALUE
USING A FUNCTION

v

ENCODE BINS OF VALUE USING |~ 164
DETERMINED CONTEXTS

BYPASS CODE ANY |~ 166
REMAINING BINS OF VALUE

FIG. 4

QUALCOMM INCORPORATED
Applicant

ROMULO MABANTA BUENAVENTURA
SAYOC & DELOS ANGELES

By é Z 2 Z
ALTAN CHRISTOPHER S. CHU

Patent Lawyer

Page5/5 R) o

/zoo

PREDICT CURRENT BLOCK

l /202
RECEIVE ENTROPY CODED
DATA FOR CURRENT BLOCK

!

204
ENTROPY DECODE DATA TO 4
REPRODUCE COEFFICIENTS

RECEIVE ENCODED VALUE FOR L —206
POSITION OF LAST
SIGNIFICANT COEFFICIENT

'

DETERMINE CONTEXTS 208
FOR BINS OF VALUE
USING A FUNCTION

v

DECODE BINS OF VALUE USING | 210
DETERMINED CONTEXTS

|

BYPASS DECODE ANY 212
REMAINING BINS OF VALUE

I N—
INVERSE SCAN REPRODUCED |214

COEFFICIENTS BASED ON
POSITION OF LAST SIG. COEF.
INVERSE QUANTIZE AND
INVERSE TRANSFORM ~216
COEFFICIENTS TO PRODUCE
RESIDUAL BLOCK
COMBINE PREDICTED BLOCK |~218
AND RESIDUAL BLOCK
FIG.5
QUALCOMM INCORPORATED
Applicant
ROMULO MABANTA BUENAVENTURA
SAYOC & DELOS ANGELES

By

ALLAN CHRISTOPHER S. CHU
Patent Lawyer

	Page 1 - BIBLIOGRAPHY
	Page 2 - DESCRIPTION
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - CLAIMS
	Page 41 - CLAIMS
	Page 42 - CLAIMS
	Page 43 - CLAIMS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - DRAWINGS
	Page 48 - DRAWINGS

