发明名称
微电铸金属模具的制作方法

摘要
一种微电铸金属模具的制作方法属于微制造技术微电铸金属模具领域，微电铸金属模具的制作方法包括模具基底前处理、微电铸模具的制作、微电铸、微电铸后处理、模具的检测工序。采用“无背板生长法”，无背板生长法就是通过紫外线照射光刻掩模板得到图案，然后进行在镍基板上直接电铸。在微电铸模具的制作工序中，在 SU－8 光刻胶与基板间加入了种子层；在微电铸后处理工序中，采用真空退火。按照该方法制作的微电铸金属模具具有侧壁垂直度、表面光洁度好的优点，解决了基于模塑法、热压法的大规模、低成本生产的聚合物、塑料产品质量低下的问题。适用于有机聚合物、塑料的微细加工。

（1）模具基底前处理包括高纯度锡基板的机械加工前处理和表面清洗，表面清洗采用有机溶剂除油法，有机溶剂采用丙酮和乙醇；

（3）在微电铸工序中，将电铸镍金属[6]填充于自由空间[5]中，微电铸电铸液的配方为氨基磺酸镍：360～380g/L，氯化镍：5～10g/L，硼酸：50～60g/L；微电铸工艺条件为：pH 值：3.5～4.0，温度：50℃～55℃，电流密度 1～2A/dm²；

（4）在微电铸后处理工序中，先进行真空退火处理，其温度为 200～800℃，时间为 60～200 分钟；再进行精磨加工。
微电铸金属模具的制作方法

技术领域

本发明属于微制造技术微电铸金属模具领域。

背景技术

微电铸金属模具因其具有较高的精度和技术指标要求，并以其较长的使用寿命和突出的经济性适应大批量生产制造的需要，而得到发展。目前微电铸金属模具已成为模具法、热压法的核心器件，广泛地用于有机聚合物、塑料的微细加工。现有的微电铸金属模具的制作方法是基于硅基板的“背板生长法”，如杂志《高等学校化学学报》2003年第11期第1962~1966页和杂志《微细加工技术》2002年第4期第61~65页，提供了“背板生长法”。背板生长法的工艺流程为：先在硅基板上生长氧化硅，将氧化硅做为掩模，通过硅的湿法腐蚀或硅的干法腐蚀获得所需图形的硅模具。然后将硅模具作为微电铸的母模进行镍的微电铸。电铸后将硅模具腐蚀掉便得到了镍金属模具。由于湿法腐蚀时腐蚀侧面与表面成54.74°的夹角，所以对于文献1微电铸后高30微米的通道，通道基底宽120微米，顶部宽90微米。侧壁垂直度不好。文献2通过采用硅的干法刻蚀（ICP刻蚀）技术，解决了电铸后通道侧壁垂直度不好的问题。但是一方面由于电铸时电流过大；另一方面电铸过程中应力的存在，导致电铸过程中硅片变形，造成镍模具表面高低不平，使得最终得到的镍模具表面较为粗糙。

目前聚合物、塑料的微细加工急需侧壁垂直度好、表面光洁度高的微电铸金属模具。

发明内容

本发明的目的是克服传统的基于背板生长法的微电铸金属模具的制作方法缺陷，提出一种适用于模塑法、热压法的无背板生长的微电铸金属模具的制作方法。基于该方法的微电铸金属模具具有侧壁垂直度、表面光洁度好、的优点，解决基于模塑法、热压法的大规模、低成本生产的聚合物、塑料产品重量低下的问题。

本发明采用的技术方案是一种微电铸金属模具的制作方法，包括模具基底前处理、微电铸母模的制作、电铸、电铸后处理、模具的检测工序，其特征是：采用“无背板生长法”，无背板生长法就是通过紫外线UV照射光刻掩模板4得到图案，然后进行在镍基板1上直接电铸，在微电铸母模的制作工序中，在SU-8光刻胶3与基板1间加入了光刻胶的种子层2，在微电铸后处理工序中，采用真空退火，其制作方法的具体步骤如下：

（1）模具基底前处理包括高纯度镍基板的机械加工前处理和表面清洗，表面清洗采用有机溶剂除油法，有机溶剂采用丙酮和乙醇；

（2）在微电铸母模的制作工序中，SU-8光刻胶3与种子层2采用光刻技术中的套刻工艺，通过光刻胶的显影得到自由空间5；
(3) 在微电铸工序中，将电铸镍金属填充于自由空间中，微电铸电铸液的配方为氨基磺酸镍：360～380g/L，氯化镍：5～10g/L，硼酸：50～60g/L；微电铸工艺条件为：
 pH 值：3.5～4.0，温度：50℃～55℃，电流密度 1～2A/dm²；
(4) 在微电铸后处理工序中，先进行真空退火处理，其温度为 200～800℃，时间为 60～200 分钟；再进行精磨加工。

本发明的有益效果是：克服了传统的以硅基板为母板的“背板生长法”的不足，降低微电铸层的内应力；针对用户的具体要求，可以得到侧壁垂直度好、表面光洁度高的微电铸金属模具；能够解决基于模塑法、热压法的大规模、低成本生产的聚物体、塑料产品质量低下的问题；提高大规模生产的生产率。

附图说明：

图 1 是基于 UV-LIGA 技术的金属微模具的制作流程示意图。

图中：1. 模具基底前处理，2. 微电铸母模的制作，3. 微电铸，4. 微电铸后处理，5. 模具的检测。

图 2 是光刻工序，图 3 是显影工序，图 4 是微电铸工序，图 5 是去除光刻胶工序。其中：
1- 镍基板，2-种子层，3-SU-8 光刻胶，4-光刻掩膜板，5-自由空间，6-电铸镍金属，
UV-紫外光。

具体实施方式

以下结合附图，详细说明本发明具体的实施方式。例如：在精磨、抛光后的镍基板 1（63×63mm）上电铸“一字”形 (45mm×80um) 的金属微模具，其制作模具按流程图 1 的具体步骤如下：

1. 模具基底前处理：模具基底前处理分为机械加工前处理和表面清洗两个部分。为减少基底金属与电铸沉积金属在物理性能上，特别是伸缩变形量方面的差异，基底材料选择高纯度的镍金属。镍基底的机械加工过程依次包括：铣削、磨削、精磨、线切割和抛光。最后，达到一定的表面粗糙度、平面度和光洁度的要求。表面清洗具体流程如下：
 (1) 将镍金属基底放入丙酮溶液中，超声波清洗约 15 分钟；
 (2) 更换全新丙酮溶液，水浴煮沸约 10 分钟；
 (3) 将冷却后丙酮溶液倒出，注入乙醇溶液，水浴煮沸约 10 分钟；
 (4) 冷却后，用去离子水进行冲洗约 8 分钟；
 (5) 热风快速吹干，放入 100℃烘箱烘干约 40 分钟。

清洗操作前，最好采用手工擦拭的方法去除基底表面残留的加工残渣。

2. 微电铸母模的制作：微电铸模采用 SU-8 光刻胶 3 技术，主要由光刻工艺制作形成，见附图 2。具体工艺过程和参数如下：实验室采用 KW-4A 型匀胶机，旋转涂覆光刻胶。为了提高 SU-8 光刻胶 3 与镍基板 1 的结合力，实验中采用国产光刻胶作为 SU-8 光刻胶 3 的种子层 2。由于种子层 2 为光刻胶产品，需采用套刻工序。SU-8 光刻胶 3 的工艺参数为：前烘温度 65℃，时间 18min、95℃, 54min；中烘温度 65℃，时间 6min，95℃，45min。通过硬接触
式曝光、紫外光 UV 照射，可以实现光刻掩模板 4 上微图形的转移。显影后获得的微结构图形，可以直接作为微电铸的母膜，见附图 3。

3. 微电铸 微电铸就是在微电铸的母膜的自由空间 5 里实现镍的电沉积，见附图 4。微电铸后，将 SU-8 光刻胶 3 去除便得到了金属模具的毛胚，见附图 5。电铸液采用无应力铸镍配方，即：

<table>
<thead>
<tr>
<th>配方</th>
<th>量值范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯化镍（NiCl₂）</td>
<td>360～380g/L</td>
</tr>
<tr>
<td>氯化镍（NiCl₂）</td>
<td>5～10g/L</td>
</tr>
<tr>
<td>镍酸</td>
<td>50～60g/L</td>
</tr>
<tr>
<td>pH 值</td>
<td>3.5～4.0</td>
</tr>
<tr>
<td>温度</td>
<td>50℃～55℃</td>
</tr>
<tr>
<td>搅拌</td>
<td>机械搅拌</td>
</tr>
<tr>
<td>电流密度</td>
<td>1～2A/dm²</td>
</tr>
</tbody>
</table>

4. 微电铸后处理 微电铸后处理包括：去除 SU-8 光刻胶 3、真空退火和模具的精磨、抛光。

实验中采用 SU-8 光刻胶 3 专用去胶剂 Remove PG 去除 SU-8 光刻胶 3，具体过程如下：将电铸好的阴极器件浸入 Remove PG 中，水浴加热到 85～90℃，保温 30～40 分钟，并辅以超声波振动。以去处内应力为目的的真空退火就是将经过去胶处理的热压模具清洗干净，放入真空退火炉中，达到指定真空度后升温到 350～400℃，保持 60～90 分钟后自然冷却。退火后的微模具还要经过精磨和抛光处理。

5. 模具的检测 模具检测是微模具制作流程的最后一个工序。经检测合格的模具便可以投入使用。