TOLERGENIC SYNTHETIC NANOCARRIERS TO REDUCE ANTIBODY RESPONSES

Inventors: Christopher Fraser, Arlington, MA (US); Takashi Kei Kishimoto, Lexington, MA (US); Roberto A. Maldonado, Jamaica Plain, MA (US)

Assignee: Selecta Biosciences, Inc., Watertown, MA (US)

Appl. No.: 13/457,994

Filed: Apr. 27, 2012

Provisional application No. 61/480,946, filed on Apr. 29, 2011, provisional application No. 61/513,514, filed on Jul. 29, 2011, provisional application No. 61/531,147, filed on Sep. 6, 2011, provisional application No. 61/531,153, filed on Sep. 6, 2011, provisional application No. 61/531,164, filed on Sep. 6, 2011, provisional application No. 61/531,168, filed on Sep. 6, 2011, provisional application No. 61/531,175, filed on Sep. 6, 2011, provisional application No. 61/531,180, filed on Sep. 6, 2011, provisional application No. 61/531,194, filed on Sep. 6, 2011, provisional application No. 61/531,204, filed on Sep. 6, 2011, provisional application No. 61/531,209, filed on Sep. 6, 2011, provisional application No. 61/531,215, filed on Sep. 6, 2011.

Abstract

Disclosed are synthetic nanocarrier compositions, and related methods, comprising MHC Class II-restricted epitopes and immunosuppressants that provide tolerogenic immune responses, such as a reduction in CD4+ T cell help specific to an antigen.
In vivo effects of t2SVP after a single injection
Fig. 3
Fig. 4
OVA Vaccination
Antibody Titers Day 77
Prime + 5 injections (d14, d28, d42, d56, d70)
Fig. 6
Fig. 7
Fig. 8
Fig. 9
TOLERGENIC SYNTHETIC NANOCARRIERS TO REDUCE ANTIBODY RESPONSES

RELATED APPLICATIONS

FIELD OF THE INVENTION

[0002] This invention relates to synthetic nanocarrier compositions that comprise immunosuppressants and MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response (e.g., in a subject), and related methods. The compositions and methods provided can reduce undesired humoral immune responses. The compositions and methods allow for efficient uptake by APCs to shift the immune response in favor of reducing undesired humoral immune response development specific to the antigens. The compositions and methods allow for the stimulation of tolerogenic immune responses, such as through the reduction of antigen-specific CD4+ T cell help.

BACKGROUND OF THE INVENTION

[0003] Antibody responses typically require CD4+ T helper cells to establish a germinal center response and induce isotype switching. Reducing CD4+ T helper cell number and/or function can ameliorate undesired antibody responses. Doing so, however, with conventional immunosuppressant drugs, which are broad-acting, may not be desirable. Additionally, in order to maintain immunosuppression, immunosuppressant drug therapy is generally a life-long proposition. Unfortunately, the use of broad-acting immunosuppressants are associated with a risk of severe side effects, such as tumors, infections, nephrotoxicity and metabolic disorders. Accordingly, new immunosuppressant therapies would be beneficial.

SUMMARY OF THE INVENTION

[0004] In one aspect, a composition comprising (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response is provided. In one embodiment, the first population and the second population are the same population. In another embodiment, the first population and the second population are different populations.

[0005] In one embodiment, the antigen is one that generates, or is expected to generate, an undesired humoral immune response in one or more subjects.

[0006] In another embodiment, the first population and/or second population of synthetic nanocarriers are also coupled to MHC Class I-restricted epitopes and/or B cell epitopes of the antigen. In another embodiment, the composition comprises substantially no B cell epitopes of the antigen that generates an undesired humoral immune response (e.g., in a subject). In one embodiment, the first population and/or second population of synthetic nanocarriers are coupled to MHC Class II-restricted epitopes, and in some embodiments, MHC Class I-restricted epitopes, but comprise substantially no B cell epitopes that generate an undesired humoral immune response (e.g., in a subject).

[0007] In another embodiment, the undesired humoral immune response is the generation of antigen-specific CD4+ T cell proliferation and/or activity or antigen-specific antibodies. In another embodiment, the undesired humoral immune response is the generation of antigen-specific B cell proliferation and/or activity. In embodiments, the undesired humoral immune response is in a subject.

[0008] In another embodiment, the immunosuppressants comprise a statin, an mTOR inhibitor, a TGF-β signaling agent, a corticosteroid, an inhibitor of mitochondrial function, a PI38 inhibitor, an NF-κB inhibitor, an adenosine receptor agonist, a prostaglandin E2 agonist, a phosphodiesterase 4 inhibitor, an HDAC inhibitor or a proteasome inhibitor. In another embodiment, the mTOR inhibitor is rapamycin or a rapamycin analog.

[0009] In another embodiment, an antigen that comprises the aforementioned epitopes is coupled to the synthetic nanocarriers. In another embodiment, a portion of the antigen that comprises the aforementioned epitopes is coupled to the synthetic nanocarriers. In still another embodiment, the portion of the antigen coupled to the synthetic nanocarriers can be the epitope alone. In another embodiment, the antigen is an allergen, autoantigen or therapeutic protein, or is associated with an inflammatory disease, an autoimmune disease, organ or tissue rejection or graft versus host disease.

[0010] In another embodiment, the composition is in an amount effective to reduce an undesired humoral immune response to the antigen when administered to a subject.

[0011] In another embodiment, the load of the immunosuppressants and/or epitopes on average across the first and/or second population of synthetic nanocarriers is between 0.0001% and 50% (weight/weight). In another embodiment, the load of the immunosuppressants and/or epitopes on average across the first and/or second population of synthetic nanocarriers is between 0.1% and 10% (weight/weight).

[0012] In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise lipid nanoparticles, polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles or peptide or protein particles. In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise lipid nanoparticles. In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise liposomes. In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise metallic nanoparticles. In another embodiment, the metallic nanoparticles comprise gold nanoparticles. In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise polymeric nanoparticles. In another embodiment, the polymeric nanoparticles comprise non-methoxy-terminated, pluronic polymeric nanoparticles. In another embodiment, the polymeric nanoparticles comprise a polyester, a polyester coupled to a polyether, polyamino acid, polycarbonate, polyacetal, polyketal, polysaccharide, polyethyleneoxide or polyethyleneimine. In another embodiment, the polyester comprises a poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid) or...
polycaprolactone. In another embodiment, the polymeric nanoparticles comprise a polyester and a polyester coupled to a polyether. In another embodiment, the polyether comprises polyethylene glycol or polypropylene glycol.

[0013] In another embodiment, the mean of a particle size distribution obtained using dynamic light scattering of the synthetic nanocarriers of the first and/or second population is a diameter greater than 100 nm. In another embodiment, the diameter is greater than 150 nm. In another embodiment, the diameter is greater than 200 nm. In another embodiment, the diameter is greater than 250 nm. In another embodiment, the diameter is greater than 300 nm.

[0014] In another embodiment, the aspect ratio of the synthetic nanocarriers of the first population and/or second population is greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5, 1:7 or 1:10.

[0015] In another embodiment, the composition further comprises a pharmaceutically acceptable excipient.

[0016] In another aspect, a dosage form comprising any of the compositions provided herein is provided.

[0017] In another aspect, a method comprising administering any of the compositions or dosage forms provided herein is provided. In one embodiment, an undesired humoral immune response to the antigen is reduced in the subject. In another embodiment, the undesired humoral immune response is antigen-specific antibody production. In another embodiment, the undesired humoral immune response is antigen-specific CD4+ T cell proliferation and/or activity. In another embodiment, the undesired humoral immune response is B cell proliferation and/or activity.

[0018] In another aspect, a method comprising administering to a subject a composition comprising (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response (e.g., in a subject), wherein the composition is in an amount effective to reduce an undesired humoral immune response to the antigen in the subject is provided. In another aspect, a method comprising reducing an undesired humoral immune response to an antigen in a subject by administering a composition comprising (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of the antigen is provided.

[0019] In one embodiment, the first population and second population are the same population. In another embodiment, the first population and second population are different populations.

[0020] In another embodiment, the method further comprises providing or identifying the subject.

[0021] In another embodiment, the first population and/or second population of synthetic nanocarriers are also coupled to MHC Class I-restricted epitopes and/or B cell epitopes of the antigen. In another embodiment, the composition comprises substantially no B cell epitopes of the antigen that generate an undesired humoral immune response (e.g., in a subject). In one embodiment, the first population and/or second population of synthetic nanocarriers are coupled to MHC Class II-restricted epitopes, and in some embodiments, MHC Class I-restricted epitopes, but comprise substantially no B cell epitopes of the antigen that generate an undesired humoral immune response (e.g., in a subject).

[0022] In another embodiment, the undesired humoral immune response is the generation of antigen-specific CD4+ T cell proliferation and/or activity and/or antigen-specific antibodies. In another embodiment, the undesired humoral immune response is the generation of antigen-specific B cell proliferation and/or activity. In embodiments, the undesired humoral immune response is in a subject.

[0023] In another embodiment, the immunosuppressants comprise a statin, an mTOR inhibitor, a TGF-β signaling agent, a corticosteroid, an inhibitor of mitochondrial function, a P38 inhibitor, an NF-κβ inhibitor, an adenosine receptor agonist, a prostaglandin E2 agonist, a phosphodiesterase 4 inhibitor, an HDAC inhibitor or a proteasome inhibitor. In another embodiment, the mTOR inhibitor is rapamycin or a rapamycin analog.

[0024] In another embodiment, an antigen that comprises the aforementioned epitopes is coupled to the synthetic nanocarriers. In another embodiment, a portion of the antigen that comprises the aforementioned epitopes is coupled to the synthetic nanocarriers. In still another embodiment, the portion of the antigen coupled to the synthetic nanocarriers can be the epitope alone. In another embodiment, the antigen is an allergen, autoantigen or therapeutic protein, or is associated with an inflammatory disease, an autoimmune disease, organ or tissue rejection or graft versus host disease.

[0025] In another embodiment, the load of the immunosuppressants and/or epitopes on average across the first and/or second population of synthetic nanocarriers is between 0.0001% and 50% (weight/weight). In another embodiment, the load of the immunosuppressants and/or epitopes on average across the first and/or second population of synthetic nanocarriers is between 0.1% and 10% (weight/weight).

[0026] In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise lipid nanoparticles, polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles or peptide or protein particles. In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise lipid nanoparticles. In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise metallic nanoparticles. In another embodiment, the metallic nanoparticles comprise gold nanoparticles. In another embodiment, the synthetic nanocarriers of the first population and/or second population comprise polymeric nanoparticles. In another embodiment, the polymeric nanoparticles comprise non-methoxy-terminated, pluronic polymers. In another embodiment, the polymeric nanoparticles comprise a polyester, a polyester coupled to a polyether, polyamino acid, polycarbonate, polyacetal, polyketol, polysaccharide, polyethyleneoxide or polyethyleneimine. In another embodiment, the polyester comprises a poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid) or polycaprolactone. In another embodiment, the polymeric
nanoparticles comprise a polyester and a polyester coupled to a polyether. In another embodiment, the polyester comprises polyethylene glycol or polypropylene glycol.

[0027] In another embodiment, the mean of a particle size distribution obtained using dynamic light scattering of the synthetic nanocarriers of the first and/or second population is a diameter greater than 100 nm. In another embodiment, the diameter is greater than 150 nm. In another embodiment, the diameter is greater than 200 nm. In another embodiment, the diameter is greater than 250 nm. In another embodiment, the diameter is greater than 300 nm.

[0028] In another embodiment, the aspect ratio of the synthetic nanocarriers of the first population and/or second population is greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5, 1:7 or 1:10.

[0029] In another embodiment, one or more maintenance doses of the composition comprising the first population and second population of synthetic nanocarriers is administered to the subject. In another embodiment, the method further comprises assessing the undesired humoral immune response in the subject prior to and/or after the administration of the composition comprising the first population and second population of synthetic nanocarriers. In another embodiment, the assessing comprises determining the level of antigen-specific CD4+ T cell proliferation and/or activity and/or the level of antigen-specific antibody production and/or the level of antigen-specific B cell proliferation and/or activity.

[0030] In another embodiment, the subject has or is at risk of having an inflammatory disease, an autoimmune disease, an allergy or graft versus host disease. In another embodiment, subject has undergone or will undergo transplantation. In another embodiment, the subject has received, is receiving or will receive a therapeutic protein.

[0031] In another embodiment, the administering is by intravenous, intraperitoneal, transmucosal, oral, subcutaneous, pulmonary, intranasal, intradermal or intramuscular administration. In another embodiment, the administering is by inhalation or intravenous, subcutaneous or transmucosal administration.

[0032] In another aspect, a method comprising (i) producing a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) producing a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response, or is expected to so generate, in a subject is provided.

[0033] In one embodiment, the first population and second population are the same population. In another embodiment, the first population and second population are different populations.

[0034] In another embodiment, the method further comprises ensuring that the second population of synthetic nanocarriers comprises substantially no B cell epitopes of the antigen that generate an undesired humoral immune response. In another embodiment, the method further comprises making a dosage form comprising the first population and second population of synthetic nanocarriers. In another embodiment, the method further comprises making a composition comprising the first population and second population of synthetic nanocarriers or the dosage form available to a subject for administration. In another embodiment, the method further comprises assessing the level of an undesired humoral immune response (e.g., in a subject) with a composition comprising the first population and second population of synthetic nanocarriers or a dosage form thereof. In another embodiment, the assessing comprises determining the level of CD4+ T cell proliferation and/or activity and/or the level of antigen-specific antibody production and/or the level of antigen-specific B cell proliferation and/or activity.

[0035] In another embodiment, the first population and second population of synthetic nanocarriers that are produced are as defined in any of the composition or methods provided herein.

[0036] In another aspect, a process for producing a composition or dosage form comprising the steps of (i) coupling a first population of synthetic nanocarriers to immunosuppressants, and (ii) coupling a second population of synthetic nanocarriers to MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response is provided. In one embodiment, the process comprises the steps as defined in any of the methods provided herein.

[0037] In another aspect, a composition or dosage form obtainable by any of the methods or processes provided herein is provided.

[0038] In another aspect, any of the compositions or dosage forms provided herein may be for use in therapy or prophylaxis.

[0039] In another aspect, any of the compositions or dosage forms provided herein may be for use in a method of reducing an undesired humoral immune response to an antigen in a subject, the treatment or prophylaxis of allergy, autoimmune disease, inflammatory disease, organ or tissue rejection or graft versus host disease or any of the methods provided herein.

[0040] In another aspect, use of any of the combinations or dosage forms provided herein is for the manufacture of a medicament for use in a method of reducing an undesired humoral immune response to an antigen in a subject, the treatment or prophylaxis of allergy, autoimmune disease, inflammatory disease, organ or tissue rejection or graft versus host disease or any of the methods provided herein is provided.

[0041] In another aspect, a composition or dosage form comprising any of the compositions provided herein is provided.

[0042] In an embodiment of any of the compositions and methods provided herein, antigens that are proteins that comprise the aforementioned epitopes can be coupled to the synthetic nanocarriers. In another embodiment, polypeptides or peptides that comprise the aforementioned epitopes but additional amino acids that flank one or both ends of the epitope(s) can be coupled to the synthetic nanocarriers. In another embodiment, the epitopes themselves are coupled to the synthetic nanocarriers.

BRIEF DESCRIPTION OF FIGURES

[0043] FIG. 1 shows results from a flow cytometric analysis of Treg.

[0044] FIG. 2 shows an effect of the number of antigen-specific effector T cells with synthetic nanocarriers of the invention comprising immunosuppressants (rapamycin or simvastatin) (after a single injection).

[0045] FIG. 3 shows a decrease in the number of popliteal lymph node cells with synthetic nanocarriers of the invention comprising immunosuppressants (rapamycin or simvastatin) (after multiple injections).

[0046] FIG. 4 demonstrates the reduction of anti-OVA IgG antibodies with synthetic nanocarriers that comprise the immunosuppressant rapamycin and ova antigen.
FIG. 5 demonstrates in the control and passive groups the reduction of anti-OVA IgG antibodies with synthetic nanocarriers that comprise the immunosuppressant rapamycin and OVA antigen.

FIG. 6 shows a reduction in antigen-specific IgG levels with the administration of synthetic nanocarriers comprising ova peptide and the immunosuppressant rapamycin.

FIG. 7 demonstrates a reduction in the number of antigen-specific B cells with synthetic nanocarriers comprising ova peptide and the immunosuppressant rapamycin.

FIG. 8 demonstrates a reduction in the number of CD4+ T cells in lavage samples from asthma model animal subjects treated with synthetic nanocarriers comprising ova peptide and immunosuppressant.

FIG. 9 demonstrates a reduction in the percentage of dividing CD4+ T cells as a result of treatment with synthetic nanocarriers comprising ova peptide and the immunosuppressant rapamycin in asthma model animal subjects.

DETAILED DESCRIPTION OF THE INVENTION

Before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified materials or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting of the use of alternative terminology to describe the present invention.

All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety for all purposes.

As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural references unless the content clearly dictates otherwise. For example, reference to “a polymer” includes a mixture of two or more such molecules or a mixture of differing molecular weights of a single polymer species, reference to “a synthetic nanocarrier” includes a mixture of two or more such synthetic nanocarriers or a plurality of such synthetic nanocarriers, reference to “a DNA molecule” includes a mixture of two or more such DNA molecules or a plurality of such DNA molecules, reference to “an immunosuppressant” includes a mixture of two or more such materials or a plurality of immunosuppressant molecules, and the like.

As used herein, the term “comprise” or variations thereof such as “comprises” or “comprising” are to be read to indicate the inclusion of any recited integer (e.g., a feature, element, characteristic, property, method/process step or limitation) or group of integers (e.g., features, element, characteristics, properties, method/process steps or limitations) but not the exclusion of any other integer or group of integers. Thus, as used herein, the term “comprising” is inclusive and does not exclude additional, unrecited integers or method/process steps.

In embodiments of any of the compositions and methods provided herein, “comprising” may be replaced with “consisting essentially of” or “consisting of.” The phrase “consisting essentially of” is used herein to require the specified integer(s) or steps as well as those which do not materially affect the character or function of the claimed invention. As used herein, the term “consisting” is used to indicate the presence of the recited integer (e.g., a feature, element, characteristic, property, method/process step or limitation) or group of integers (e.g., features, element, characteristics, properties, method/process steps or limitations) alone.

A. INTRODUCTION

As previously mentioned, current conventional immunosuppressants are broad acting and generally result in an overall systemic down regulation of the immune system. The compositions and methods provided herein allow for more targeted immune effects by, for example, allowing for the targeted delivery to immune cells of interest. Thus, the compositions and methods can achieve immune suppression in a more directed manner. It has been found that delivering immunosuppressants and MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response more directly at the sites of action in cells of interest, in particular APCs, can reduce the amount of CD4+ T cell help available and result in beneficial tolerogenic immune responses specific to the antigens. Such delivery is generally also expected to reduce off-target effects and toxicity. This invention is useful, for example, to promote tolerogenic immune responses in subjects who have or are at risk of having an allergy, autoimmune disease, or an inflammatory disease. This invention may also be used to promote tolerogenic immune responses in subjects who have or are at risk of having organ or tissue rejection or graft versus host disease. This invention is also useful for promoting tolerogenic immune responses in subjects who have undergone or will undergo transplantation. This invention is also useful for promoting tolerogenic immune responses in subjects that have received, are receiving or will receive a therapeutic protein against which undesired humoral immune responses are generated or are expected to be generated. The present invention, in some embodiments, prevents or suppresses undesired humoral immune responses that may neutralize the beneficial effect of certain therapeutic treatments.

The inventors have unexpectedly and surprisingly discovered that the problems and limitations noted above can be overcome by practicing the invention disclosed herein. In particular, the inventors have unexpectedly discovered that it is possible to provide synthetic nanocarrier compositions, and related methods, that induce a tolerogenic immune response. The compositions described herein include compositions that comprise (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an antigen that generates, or is expected to generate, an undesired humoral immune response (e.g., in a subject).

In another aspect, dosage forms of any of the compositions herein are provided. In another aspect, any of the compositions, including dosage forms, provided herein is administered to a subject. Such compositions can be administered to a subject, such as a subject in need thereof (e.g., in need of antigen-specific tolerogenic immune responses). The compositions may be administered in an amount effective to generate a tolerogenic immune response in the subject against an antigen (e.g., a reduction in the generation of antigen-specific CD4+ T cell proliferation and/or activity and/or antigen-specific antibody production and/or antigen-specific B cell proliferation and/or activity, etc.). In one embodiment, a composition is administered to a subject according to a protocol that was previously shown to reduce the generation of an undesired humoral immune response to the antigen in one or more subjects. In other embodiments, any of the methods
can further comprise a step of assessing the presence or absence or level of an undesired humoral immune response (e.g., the generation of antigen-specific CD4+ T cell proliferation and/or activity and/or antigen-specific antibody production and/or antigen-specific B cell proliferation and/or activity, etc.) to the antigen in one or more subjects.

[0060] In embodiments, the compositions provided may also be administered as one or more maintenance doses to a subject. In such embodiments, the compositions provided are administered such that the generation of an undesired humoral immune response is reduced for a certain length of time. Examples of such lengths of time are provided elsewhere.

[0061] In yet another aspect, a method of (i) producing a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) producing a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response (e.g., in a subject) is provided. In one embodiment, the method further comprises producing a dosage form comprising the first and second populations of synthetic nanocarriers.

[0062] The invention will now be described in more detail below.

B. DEFINITIONS

[0063] “Administering” or “administration” means providing a material to a subject in a manner that is pharmacologically useful.

[0064] “Allergens” are any substances that can cause an undesired (e.g., a Type 1 hypersensitive) immune response (i.e., an allergic response or reaction) in a subject. Allergens include, but are not limited to, plant allergens (e.g., pollen, ragweed allergens), insect allergens, insect sting allergens (e.g., bee sting allergens), animal allergens (e.g., pet allergens, such as animal dander or cat Fel d 1 antigen), latex allergens, mold allergens, fungal allergens, cosmetic allergens, drug allergens, food allergens, dust, insect venoms, viruses, bacteria, etc. Food allergens include, but are not limited to milk allergens, egg allergens, nut allergens (e.g., peanut or tree nut allergens, etc.), fish allergens, shellfish allergens, soy allergens, legume allergens, seed allergens and wheat allergens. Insect sting allergens include allergens that are or are associated with bee stings, wasp stings, hornet stings, yellow jacket stings, etc. Insect allergens also include house dust mite allergens (e.g., Der P1 antigen) and cockroach allergens. Drug allergens include allergens that are or are associated with antibotics, NSAIDs, anaesthetics, etc. Pollen allergens include grass allergens, tree allergens, weed allergens, flower allergens, etc. Subjects that develop or are at risk of developing an undesired immune response to any of the allergens provided herein may be treated with any of the compositions and methods provided herein. Subjects that may be treated with any of the compositions and methods provided also include those who have or are at risk of having an allergy to any of the allergens provided.

[0065] An “allergy” also referred to herein as an “allergic condition,” is any condition where there is an undesired (e.g., a Type 1 hypersensitive) immune response (i.e., allergic response or reaction) to a substance. Such substances are referred to herein as allergens. Allergies or allergic conditions include, but are not limited to, allergic asthma, hay fever, hives, eczema, plant allergies, bee sting allergies, pet allergies, latex allergies, mold allergies, cosmetic allergies, food allergies, allergic rhinitis or coryza, topic allergic reactions, anaphylaxis, atopic dermatitis, hypersensitivity reactions and other allergic conditions. The allergic reaction may be the result of an immune reaction to any allergen. In some embodiments, the allergy is a food allergy. Food allergies include, but are not limited to, milk allergies, egg allergies, nut allergies, fish allergies, shellfish allergies, soy allergies or wheat allergies.

[0066] “Amount effective” in the context of a composition or dosage form for administration to a subject refers to an amount of the composition or dosage form that produces one or more desired immune responses in the subject, for example, the generation of a tolerogenic immune response (e.g., a reduction in the proliferation, activation, induction, recruitment of antigen-specific CD4+ T cells or antigen-specific B cells or a reduction in the production of antigen-specific antibodies). Therefore, in some embodiments, an amount effective is any amount of a composition provided herein that produces one or more of these desired immune responses. This amount can be for in vitro or in vivo purposes. For in vivo purposes, the amount can be one that a clinician would believe may have a clinical benefit for a subject in need of antigen-specific tolerization.

[0067] Amounts effective can involve only reducing the level of an undesired immune response, although in some embodiments, it involves preventing an undesired immune response altogether. Amounts effective can also involve delaying the occurrence of an undesired immune response. An amount that is effective can also be an amount of a composition provided herein that produces a desired therapeutic endpoint or a desired therapeutic result. Amounts effective, preferably, result in a tolerogenic immune response in a subject to an antigen. The achievement of any of the foregoing can be monitored by routine methods.

[0068] In some embodiments of any of the compositions and methods provided, the amount effective is one in which the desired immune response persists in the subject for at least 1 week, at least 2 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 9 months, at least 1 year, at least 2 years, at least 5 years, or longer. In other embodiments of any of the compositions and methods provided, the amount effective is one which produces a measurable desired immune response, for example, a measurable decrease in an immune response (e.g., to a specific antigen), for at least 1 week, at least 2 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 9 months, at least 1 year, at least 2 years, at least 5 years, or longer.

[0069] Amounts effective will depend, of course, on the particular subject being treated; the severity of a condition, disease or disorder; the individual patient parameters including age, physical condition, size and weight; the duration of the treatment; the nature of concurrent therapy (if any); the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, how-
ever, that a patient may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reason.

[0070] In general, doses of the immunosuppressants and/or antigen in the compositions of the invention can range from about 10 μg/kg to about 100,000 μg/kg. In some embodiments, the doses can range from about 0.1 mg/kg to about 100 mg/kg. In still other embodiments, the doses can range from about 0.1 mg/kg to about 25 mg/kg, about 25 mg/kg to about 50 mg/kg, about 50 mg/kg to about 75 mg/kg or about 75 mg/kg to about 100 mg/kg. Alternatively, the dose can be administered based on the number of synthetic nanocarriers that provide the desired amount of immunosuppressants and/or or antigens. For example, useful doses include greater than 10^6, 10^7, 10^8, 10^9 or 10^10 synthetic nanocarriers per dose. Other examples of useful doses include from about 1×10^6 to about 1×10^10, about 1×10^6 to about 1×10^9 or about 1×10^7 to about 1×10^8 synthetic nanocarriers per dose.

[0071] “Antigen” means a B cell antigen or T cell antigen. “Type(s) of antigens” means molecules that share the same, or substantially the same, antigenic characteristics. In some embodiments, antigens may be proteins, polypeptides, peptides, lipoproteins, glycoproteins, polynucleotides, polysaccharides or are contained or expressed in cells. In some embodiments, such as when the antigens are not well defined or characterized, the antigens may be contained within a cell or tissue preparation, cell debris, cell exosomes, conditioned media, etc. An antigen can be combined with the synthetic nanocarriers in the same form as what a subject is exposed to that causes an undesired immune response but may also be a fragment or derivative thereof. When a fragment or derivative, however, a desired immune response to the form encountered by such a subject is the preferable result with the compositions and methods provided.

[0072] “Antigen-specific” refers to any immune response that results from the presence of the antigen, or portion thereof, or that generates molecules that specifically recognize or bind the antigen. For example, where the immune response is antigen-specific antibody production, antibodies are produced that specifically bind the antigen. As another example, where the immune response is antigen-specific B cell or CD4+ T cell proliferation and/or activity, the proliferation and/or activity result from recognition of the antigen, or portion thereof, alone or in complex with MHC molecules, by B cells, etc.

[0073] “Antigens associated” with a disease, disorder or condition provided herein are antigens that can generate an undesired immune response against, as a result of, or in conjunction with the disease, disorder or condition; the cause of the disease, disorder or condition (or a symptom or effect thereof); and/or can generate an undesired immune response that is a symptom, result or effect of the disease, disorder or condition. Preferably, in some embodiments, the use of an antigen associated with a disease, disorder or condition, etc. in the compositions and methods provided herein will lead to a tolerogenic immune response against the antigen and/or the cells, by, on or in which the antigen is expressed. The antigens can be in the same form as expressed in a subject with the disease, disorder or condition but may also be a fragment or derivative thereof. When a fragment or derivative, however, a desired immune response to the form expressed in such a subject is the preferable result with the compositions and methods provided.

[0074] In one embodiment, the antigen is an antigen associated with an inflammatory disease, autoimmune disease, organ or tissue rejection or graft versus host disease. Such antigens include autoantigens, such as myelin basic protein, collagen (e.g., collagen type 11), human cartilage gp 39, chromogranin A, gp130-RAPs, proteolipid protein, fibril- lin, nuclear proteins, nucleolar proteins (e.g., small nuclear protein), thyroid stimulating factor receptor, histones, glycoprotein gp 70, ribosomal proteins, pyruvate dehydrogenase dehydrolypoamide acetyltransferase, hair follicle anti- gens, human troponyosin isoform 5, mitochondrial proteins, pancreatic β-cell proteins, myelin oligodendrocyte glycoprotein, insulin, glutamic acid decarboxylase (GAD), gluten, and fragments or derivatives thereof. Other autoantigens are provided in Table 1 below.

[0075] Antigens also include those associated with organ or tissue rejection. Examples of such antigens include, but are not limited to, antigens from allogeneic cells, e.g., antigens from an allogeneic cell extract and antigens from other cells, such as endothelial cell antigens.

[0076] Antigens also include those associated with an allergy. Such antigens include the allergens described elsewhere herein.

[0077] Antigens also include those associated with a transplantable graft. Such antigens are associated with a transplantable graft, or an undesired immune response in a recipient of a transplantable graft that is generated as a result of the introduction of the transplantable graft in the recipient, that can be presented for recognition by cells of the immune system and that can generate an undesired immune response. Transplant antigens include those associated with organ or tissue rejection or graft versus host disease. Transplant antigens may be obtained or derived from cells of a biological material or from information related to a transplantable graft. Transplant antigens generally include proteins, polypeptides, peptides, lipoproteins, glycoproteins, polynucleotides or are contained or expressed in cells. Information related to a transplantable graft is any information about a transplantable graft that can be used to obtain or derive transplant antigens. Such information includes information about antigens that would be expected to be present in or on cells of a transplantable graft such as, for example, sequence information, types or classes of antigens and/or their MHC Class I, MHC Class II or B cell presentation restrictions. Such information may also include information about the type of transplantable graft (e.g., autograft, allograft, xenograft), the molecular and cellular composition of the graft, the bodily location from which the graft is derived or to which the graft is to be transplanted (e.g., whole or partial organ, skin, bone, nerves, tendon, neurons, blood vessels, fat, cornea, etc.).

[0078] Antigens also include antigens associated with a therapeutic protein that can be presented for recognition by cells of the immune system and that can generate an undesired immune response against the therapeutic protein. Therapeutic protein antigens generally include proteins, polypeptides, peptides, lipoproteins, or are contained or expressed in, by or on cells.

[0079] Antigens can be antigens that are fully defined or characterized. However, in some embodiments, an antigen is not fully defined or characterized. Antigens, therefore, also include those that are contained within a cell or tissue preparation, cell debris, cell exosome or conditioned media and can be delivered in such form in some embodiments.
Assessing an immune response refers to any measurement or determination of the level, presence or absence, reduction, increase in, etc. of an immune response in vitro or in vivo. Such measurements or determinations may be performed on one or more samples obtained from a subject. Such assessing can be performed with any of the methods provided herein or otherwise known in the art.

An “at risk” subject is one in which a health practitioner believes has a chance of having a disease, disorder or condition as provided herein or is one a health practitioner believes has a chance of experiencing an undesired immune response as provided herein.

An “autoimmune disease” is any disease where the immune system mounts an undesired immune response against self (e.g., one or more autoantigens). In some embodiments, an autoimmune disease comprises an aberrant destruction of cells of the body as part of the self-targeted immune response. In some embodiments, the destruction of self manifests in the malfunction of an organ, for example, the colon or pancreas. Examples of autoimmune diseases are described elsewhere herein. Additional autoimmune diseases will be known to those of skill in the art and the invention is not limited in this respect.

“Average”, as used herein, refers to the arithmetic mean unless otherwise noted.

“BI cell antigen” means any antigen that triggers an immune response in a B cell (e.g., an antigen that is specifically recognized by a B cell or a receptor thereon). In some embodiments, an antigen that is a T cell antigen is also a B cell antigen. In other embodiments, the T cell antigen is not also a B cell antigen. B cell antigens include, but are not limited to proteins, peptides, small molecules, and carbohydrates. In some embodiments, the B cell antigen comprises a non-protein antigen (i.e., not a protein or peptide antigen). In some embodiments, the B cell antigen comprises a counterpart antigen. In other embodiments, the B cell antigen is obtained or derived from an allergen, autoantigen, therapeutic protein, or transplantable graft.

“Concomitantly” means administering two or more substances to a subject in a manner that is correlated in time, preferably sufficiently correlated in time so as to provide a modulation in an immune response. In embodiments, concomitant administration may occur through administration of two or more substances in the same dosage form. In other embodiments, concomitant administration may encompass administration of two or more substances in different dosage forms, but within a specified period of time, preferably within 1 month, more preferably within 1 week, still more preferably within 1 day, and even more preferably within 1 hour.

“Couple” or “Coupé” or “Couples” (and the like) means to chemically associate one entity (for example a moiety) with another. In some embodiments, the coupling is covalent, meaning that the coupling occurs in the context of the presence of a covalent bond between the two entities. In non-covalent embodiments, the non-covalent coupling is mediated by non-covalent interactions including but not limited to charge interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof. In embodiments, encapsulation is a form of coupling.

“Derived” means prepared from a material or information related to a material but is not “obtained from” the material. Such materials may be substantially modified or processed forms of materials taken directly from a biological material. Such materials also include materials produced from information related to a biological material.

“Dosage form” means a pharmaceutically and/or immunologically active material in a medium, carrier, vehicle, or device suitable for administration to a subject.

“Encapsulate” means to enclose at least a portion of a substance within a synthetic nanocarrier. In some embodiments, a substance is enclosed completely within a synthetic nanocarrier. In other embodiments, most or all of a substance that is encapsulated is not exposed to the local environment external to the synthetic nanocarrier. In other embodiments, no more than 50%, 40%, 30%, 20%, 10% or 5% (weight/weight) is exposed to the local environment. Encapsulation is distinct from absorption, which places most or all of a substance on a surface of a synthetic nanocarrier, and leaves the substance exposed to the local environment external to the synthetic nanocarrier.

“Epitope”, also known as an antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by, for example, antibodies, B cells, or T cells. As used herein, MHC Class I-restricted epitopes are epitopes that are presented to immune cells by MHC class I molecules found on nucleated cells. MHC Class II-restricted epitopes are epitopes that are presented to immune cells by MHC class II molecules found on antigen-presenting cells (APCs), for example, on professional antigen-presenting immune cells, such as on macrophages, B cells, and dendritic cells, or on non-hematopoietic cells, such as hepatocytes. “B cell epitopes” are molecular structures that are recognized by antibodies or B cells. In some embodiments, the epitope itself is an antigen.

[0092] Other examples of epitopes that can be coupled to synthetic nanocarriers provided herein include any of the MHC Class I-restricted, MHC Class II-restricted and B cell epitopes as provided as SEQ ID NOs: 1-943. Without wishing to be bound by any particular theory, MHC Class I-restricted epitopes include those set forth in SEQ ID NOs: 1-186, MHC Class II-restricted epitopes include those set forth in SEQ ID NOs: 187-537, and B cell epitopes include those set forth in SEQ ID NOs: 538-943. These epitopes include MHC Class I-restricted autoantigens, MHC Class II-restricted epitopes of allergens and B cell epitopes of autoantigens and allergens.

[0093] “Generating” means causing an action, such as an immune response (e.g., a tolerogenic immune response) to occur, either directly oneself or indirectly, such as, but not limited to, an unrelated third party that takes an action through reliance on one’s words or deeds.

[0094] “Humoral immune response” means any immune response that results in the production or stimulation of B cells and/or the production of antibodies. Methods for assessing whether a humoral response is induced are known to those of ordinary skill in the art and include assessing antibody response by measuring antibody titers and/or assessing the number and/or activity of CD4+ T and/or B cells. Any humoral immune response against an antigen as provided herein, such as where tolerance against the antigen would be beneficial to a subject, may be undesired. An antigen associated with such humoral immune responses means an antigen that when administered to a subject can result in one or more of the undesired humoral immune responses (e.g., results in undesired antibody production against the antigen or undesired CD4+ T cell or B cell proliferation or activity specific to the antigen). The production of antibodies is referred to herein as an “antibody response.” “Antibody titer” means a measurable level of antibodies. In some embodiments, the antibodies are antibodies of a certain isotype, such as IgG or a subclass thereof. Methods for measuring antibody titers are known in the art and are described elsewhere herein. Methods for measuring CD4+ T or B cell proliferation or activity are also known in the art or described elsewhere herein.

[0095] “Identifying” is any action or set of actions that allows a clinician to recognize a subject as one who may benefit from the methods and compositions provided herein. Preferably, the identified subject is one who is in need of a tolerogenic immune response as provided herein. The action or set of actions may be either directly oneself or indirectly, such as, but not limited to, an unrelated third party that takes an action through reliance on one’s words or deeds.

[0096] “Immunosuppressant” means a compound that causes an APC to have an immunosuppressive effect (e.g., tolerogenic effect). An immunosuppressive effect generally refers to the production or expression of cytokines or other factors by the APC that reduces, inhibits or prevents an undesired immune response or that promotes a desired immune response. When the APC results in an immunosuppressive effect on immune cells that recognize an antigen presented by the APC, the immunosuppressive effect is said to be specific to the presented antigen. Such effect is also referred to herein as a tolerogenic effect. Without being bound by any particular theory, it is thought that the immunosuppressive or tolerogenic effect is a result of the immunosuppressant being delivered to the APC, preferably in the presence of an antigen (e.g., an administered antigen or one that is already present in vivo). Accordingly, the immunosuppressant includes compounds that provide a tolerogenic immune response to an antigen that may or may not be provided in the same composition or a different composition. In one embodiment, the immunosuppressant is one that causes an APC to produce a regulatory phenotype in one or more immune effector cells. For example, the regulatory phenotype may be characterized by the inhibition of the production, induction, stimulation or recruitment of antigen-specific CD4+ T cells or B cells, the inhibition of the production of antigen-specific antibodies, the production, induction, stimulation or recruitment of Treg cells (e.g., CD4+CD25highFoxP3+ Treg cells), etc. This may be the result of the conversion of CD4+ T cells or B cells to a regulatory phenotype. This may also be the result of induction of FoxP3 in other immune cells, such as CD8+ T cells, macrophages and NK T cells. In one embodiment, the immunosuppressant is one that affects the response of the APC after it processes an antigen. In another embodiment, the immunosuppressant is one that affects the production of the APC after it processes an antigen.
imunosuppressant is not one that interferes with the processing of the antigen. In a further embodiment, the immunosuppressant is not an apoptotic-signaling molecule. In another embodiment, the immunosuppressant is not a phospholipid.

Immunosuppressants include, but are not limited to, statins, mTOR inhibitors, such as rapamycin or a rapamycin analog; TGF-β signaling agents; TGF-β receptor agonists; histone deacetylase inhibitors, such as Trichostatin A; corticosteroids; inhibitors of mitochondrial function, such as rotenone; P38 inhibitors; NF-κB inhibitors, such as 6Bio, Dexamethasone, TPCA-1, IKK VI; adenosine receptor agonists; prostaglandin E2 agonists (PGE2), such as Misoprostol; phosphodiesterase 4 inhibitor (PDE4), such as Rolipram; proteasome inhibitors; kinase inhibitors; G-protein coupled receptor agonists; G-protein coupled receptor antagonists; glucocorticoids; retinoids; cytokine inhibitors; cytokine receptor inhibitors; cytokine receptor activators; peroxisome proliferator-activated receptor antagonists; peroxisome proliferator-activated receptor agonists; histone deacetylase inhibitors; calcineurin inhibitors; phosphatase inhibitors; PI3 KB inhibitors, such as TUG-221; autophagy inhibitors, such as 3-Methyladenine; aryl hydrocarbon receptor inhibitors; proteasome inhibitor I (PSI); and oxidized ATPs, such as P2X receptor blockers. Immunosuppressants also include IDO, vitamin D3, cyclosporins, such as cyclosporine A, aryl hydrocarbon receptor inhibitors, resveratrol, azathioprine (Aza), 6-mercaptopurine (6-MP), 6-thioguanine (6-TG), FK506, salsiglehrin A, salmeterol, mycophenolate mofetil (MMF), aspirin and other COX inhibitors, niflumic acid, estriol and triptolide. In embodiments, the immunosuppressant may comprise any of the agents provided herein.

The immunosuppressant can be a compound that directly provides the immunosuppressive (e.g., tolerogenic) effect on APCs or it can be a compound that provides the immunosuppressive (e.g., tolerogenic) effect indirectly (i.e., after being processed in some way after administration). Immunosuppressants, therefore, include produg forms of any of the compounds provided herein.

Immunosuppressants also include nucleic acids that encode the peptides, polypeptides or proteins provided herein that result in an immunosuppressive (e.g., tolerogenic) immune response. In embodiments, therefore, the immunosuppressant is a nucleic acid that encodes a peptide, polypeptide or protein that results in an immunosuppressive (e.g., tolerogenic) immune response, and it is the nucleic acid that is coupled to the synthetic nanocarrier.

The nucleic acid may be DNA or RNA, such as mRNA. In embodiments, the inventive compositions comprise complement, such as a full-length complement, or a degenerate (due to degeneracy of the genetic code) of any of the nucleic acids provided herein. In embodiments, the nucleic acid is an expression vector that can be transcribed when transfected into a cell line. In embodiments, the expression vector may comprise a plasmid, retrovirus, or an adenovirus amongst others. Nucleic acids can be isolated or synthesized using standard molecular biology approaches, for example by using a polymerase chain reaction to produce a nucleic acid fragment, which is then purified and cloned into an expression vector. Additional techniques useful in the practice of this invention may be found in Current Protocols in Molecular Biology 2007 by John Wiley and Sons, Inc.; Molecular Cloning: A Laboratory Manual (Third Edition) Joseph Sambrook, Peter MacCallum Cancer Institute, Melbourne, Australia; David Russell, University of Texas Southwestern Medical Center, Dallas, Cold Spring Harbor.
In embodiments of any of the compositions and methods provided, the load is calculated as follows: Approximately 3 mg of synthetic nanocarriers are collected and centrifuged to separate supernatant from synthetic nanocarrier pellet. Acetone is added to the pellet, and the sample is sonicated and centrifuged to remove any insoluble material. The supernatant and pellet are injected on RP-HPLC and absorbance is read at 278 nm. The µg found in the pellet is used to calculate % entrapped (load), µg in supernatant and pellet are used to calculate total µg recovered.

“Maintenance dose” refers to a dose that is administered to a subject, after an initial dose has resulted in an immunosuppressive (e.g., tolerogenic) response in a subject, to sustain a desired immunosuppressive (e.g., tolerogenic) response. A maintenance dose, for example, maintains the tolerogenic effect achieved after the initial dose, prevents an undesired immune response in the subject, or prevents the subject becoming a subject at risk of experiencing an undesired immune response, including an undesired level of an immune response. In some embodiments, the maintenance dose is one that is sufficient to sustain an appropriate level of a desired immune response.

“Maximum dimension of a synthetic nanocarrier” means the largest dimension of a nanocarrier measured along any axis of the synthetic nanocarrier. “Minimum dimension of a synthetic nanocarrier” means the smallest dimension of a synthetic nanocarrier measured along any axis of the synthetic nanocarrier. For example, for a spherical synthetic nanocarrier, the maximum and minimum dimension of a synthetic nanocarrier would be substantially identical, and would be the size of its diameter. Similarly, for a cuboidal synthetic nanocarrier, the minimum dimension of a synthetic nanocarrier would be the smallest of its height, width or length, while the maximum dimension of a synthetic nanocarrier would be the largest of its height, width or length. In an embodiment, a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample, is equal to or greater than 100 nm. In an embodiment, a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample, is equal to or less than 5 µm. Preferably, a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample, is greater than 110 nm, more preferably greater than 120 nm, more preferably greater than 130 nm, and more preferably still greater than 150 nm. Aspects ratios of the maximum and minimum dimensions of inventive synthetic nanocarriers may vary depending on the embodiment. For instance, aspect ratios of the maximum to minimum dimensions of the synthetic nanocarriers may vary from 1:1 to 1,000,000:1, preferably from 1:1 to 100,000:1, more preferably from 1:1 to 10,000:1, more preferably from 1:1 to 1000:1, still more preferably from 1:1 to 100:1, and yet more preferably from 1:1 to 10:1. Preferably, a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 3 µm, more preferably equal to or less than 2 µm, more preferably equal to or less than 1 µm, more preferably equal to or less than 800 nm, more preferably equal to or less than 600 nm, and more preferably still equal to or less than 500 nm. In preferred embodiments, a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample, is equal to or greater than 100 nm, more preferably equal to or greater than 120 nm, more preferably equal to or greater than 130 nm, more preferably equal to or greater than 140 nm, and more preferably still equal to or greater than 150 nm. Measurement of synthetic nanocarrier dimensions (e.g., diameter) is obtained by suspending the synthetic nanocarriers in a liquid (usually aqueous) media and using dynamic light scattering (DLS) (e.g., using a Brookhaven ZetaPALS instrument). For example, a suspension of synthetic nanocarriers can be diluted from an aqueous buffer into purified water to achieve a final synthetic nanocarrier suspension concentration of approximately 0.01 to 0.1 mg/mL. The diluted suspension may be prepared directly inside, or transferred to, a suitable cuvette for DLS analysis. The cuvette may then be placed in the DLS, allowed to equilibrate to the controlled temperature, and then scanned for sufficient time to acquire a stable and reproducible distribution based on appropriate inputs for viscosity of the medium and refractive indices of the sample. The effective diameter, or mean of the distribution, is then reported. “Dimension” or “size” or “diameter” of synthetic nanocarriers means the mean of a particle size distribution obtained using dynamic light scattering.

“MHC” refers to major histocompatibility complex, a large genomic region or gene family found in most vertebrates that encodes MHC molecules that display fragments or epitopes of processed proteins on the cell surface. The presentation of MHC:peptide on cell surfaces allows for surveillance by immune cells, usually a T cell. There are two general classes of MHC molecules: Class I and Class II. Generally, Class I MHC molecules are found on nucleated cells and present peptides to cytotoxic T cells. Class II MHC molecules are found on certain immune cells, chiefly macrophages, B cells and dendritic cells, collectively known as professional APCs. The best-known genes in the MHC region are the subset that encodes antigen-presenting proteins on the cell surface. In humans, these genes are referred to as human leukocyte antigen (HLA) genes.

“Non-methoxy-terminated polymer” means a polymer that has at least one terminus that ends with a moiety other than methoxy. In some embodiments, the polymer has at least two termini that ends with a moiety other than methoxy. In other embodiments, the polymer has no termini that ends with methoxy. “Non-methoxy-terminated, pluronic polymer” means a polymer other than a linear pluronic polymer with methoxy at both termini. Polymeric nanoparticles as provided herein can comprise non-methoxy-terminated polymers or non-methoxy-terminated, pluronic polymers.

“Obtained” means taken directly from a material and used with substantially no modification and/or processing.

“Pharmaceutically acceptable excipient” means a pharmaceutically inactive material used together with the recited synthetic nanocarriers to formulate the inventive compositions. Pharmaceutically acceptable excipients comprise a variety of materials known in the art, including but not limited to saccharides (such as glucose, lactose, and the like), preservatives such as antimicrobial agents, reconstitution aids, colorants, saline (such as phosphate buffered saline), and buffers.
“Protocol” refers to any dosing regimen of one or more substances to a subject. A dosing regimen may include the amount, frequency and/or mode of administration. In some embodiments, such a protocol may be used to administer one or more compositions of the invention to one or more test subjects. Immune responses in these test subjects can then be assessed to determine whether or not the protocol was effective in reducing an undesired immune response or generating a desired immune response (e.g., the promotion of a tolerogenic effect). Any other therapeutic and/or prophylactic effect may also be assessed instead of or in addition to the aforementioned immune responses. Whether or not a protocol had a desired effect can be determined using any of the methods provided herein or otherwise known in the art. For example, a population of cells may be obtained from a subject to which a composition provided herein has been administered according to a specific protocol in order to determine whether or not specific immune cells, cytokines, antibodies, etc. were reduced, generated, activated, etc. Useful methods for detecting the presence and/or number of immune cells includes, but are not limited to, flow cytometric methods (e.g., FACS) and immunohistochemistry methods. Antibodies and other binding agents for specific staining of immune cell markers, are commercially available. Such kits typically include staining reagents for multiple antigens that allow for FACS-based detection, separation and/or quantitation of a desired cell population from a heterogeneous population of cells.

“Providing a subject” is any action or set of actions that causes a clinician to come in contact with a subject and administer a composition provided herein thereto or to perform a method provided herein thereupon. Preferably, the subject is one who is in need of a tolerogenic immune response as provided herein. The action or set of actions may be either directly oneself or indirectly, such as, but not limited to, an unrelated third party that takes an action through reliance on one’s words or deeds.

“Subject” means animals, including warm blooded mammals such as humans and primates; avians; domestic household or farm animals such as cats, dogs, sheep, goats, cattle, horses and pigs; laboratory animals such as mice, rats and guinea pigs; fish; reptiles; zoo and wild animals; and the like.

“Substantially no B cell epitopes” refers to the absence of B cell epitopes in an amount (by itself, within the context of the antigen, in conjunction with a carrier or in conjunction with an inventive composition) that stimulates substantial activation of a B cell response. In embodiments, a composition with substantially no B cell epitopes does not contain a measurable amount of B cell epitopes of an antigen. In other embodiments, such a composition may comprise a measurable amount of B cell epitopes of an antigen but said amount is not effective to generate a measurable B cell immune response (by itself, within the context of the antigen, in conjunction with a carrier or in conjunction with an inventive composition), such as antigen-specific antibody production or antigen-specific B cell proliferation and/or activity, or is not effective to generate a significant measurable B cell immune response (by itself, within the context of the antigen, in conjunction with a carrier or in conjunction with an inventive composition). In some embodiments, a significant measurable B cell immune response is one that produces or would be expected to produce an adverse clinical result in a subject. In other embodiments, a significant measurable B cell immune response is one that is greater than the level of the same type of immune response (e.g., antigen-specific antibody production or antigen-specific B cell proliferation and/or activity) produced by a control antigen (e.g., one known not to comprise B cell epitopes of the antigen or to stimulate B cell immune responses). In some embodiments, a significant measurable B cell immune response, such as a measurement of antibody titers (e.g., by ELISA) is 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 15-fold, 20-fold or more greater than the same type of response produced by a control (e.g., control antigen). In other embodiments, a composition with substantially no B cell epitopes is one that produces little to no antigen-specific antibody titers (by itself, within the context of the antigen, in conjunction with a carrier or in conjunction with an inventive composition). Such compositions include those that produce an antibody titer (as an EC50 value) of less than 500, 400, 300, 200, 100, 50, 40, 30, 20 or 10. In other embodiments, a significant measurable B cell immune response, is a measurement of the number or proliferation of B cells that is 10%, 25%, 50%, 100%, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 15-fold, 20-fold or more greater than the same type of response produced by a control. Other methods for measuring B cell responses are known to those of ordinary skill in the art.

In embodiments, to ensure that a composition comprises substantially no B cell epitopes, antigens are selected such that they do not comprise B cell epitopes for coupling to the synthetic nanocarriers as provided herein. In other embodiments, to ensure that a composition comprises substantially no B cell epitopes of an antigen, the synthetic nanocarriers coupled to the antigen are produced and tested for B cell immune responses (e.g., antigen-specific antibody production, B cell proliferation and/or activity). Compositions that exhibit the desired properties may then be selected.

“Synthetic nanocarrier(s)” means a discrete object that is not found in nature, and that possesses at least one dimension that is less than or equal to 5 microns in size. Albumin nanoparticles are generally included as synthetic nanocarriers, however in certain embodiments the synthetic nanocarriers do not comprise albumin nanoparticles. In embodiments, inventive synthetic nanocarriers do not comprise chitosan. In other embodiments, inventive synthetic nanocarriers are not lipid-based nanoparticles. In further embodiments, inventive synthetic nanocarriers do not comprise a phospholipid.

A synthetic nanocarrier can be, but is not limited to, one or a plurality of lipid-based nanoparticles (also referred to herein as lipid nanoparticles, i.e., nanoparticles where the majority of the material that makes up their structure are lipids), polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles (i.e., particles that are primarily made up of viral structural proteins but that are not infectious or have low infectivity), peptide or protein-based particles (also referred to herein as protein particles, i.e., particles where the majority of the material that makes up their structure are peptides or proteins) (such as albumin nanoparticles) and/or nanoparticles that are developed using a combination of nanomaterials such as lipid-polymer nanoparticles. Synthetic nanocarriers may be a variety of different shapes, including but not limited to spheroidal, cuboidal, pyramidal, oblong, cylindrical, toroidal, and the like. Synthetic nanocarriers according to the invention comprise one or more surfaces.
Exemplary synthetic nanocarriers that can be adapted for use in the practice of the present invention comprise: (1) the biodegradable nanoparticles disclosed in U.S. Pat. No. 5,543,158 to Gref et al., (2) the polymeric nanoparticles of Published US Patent Application 20060002852 to Saltzman et al., (3) the lithographically constructed nanoparticles of Published US Patent Application 20090028910 to DeSimone et al., (4) the disclosure of WO 2009/015837 to von Andrian et al., (5) the nanoparticles disclosed in Published US Patent Application 20090226525 to delos Rios et al., (7) the virus-like particles disclosed in published US Patent Application 2006022652 to Sebbel et al., (8) the nucleic acid coupled virus-like particles disclosed in published US Patent Application 20060251677 to Bachmann et al., (9) the virus-like particles disclosed in WO2010047839A1 or WO2009106999A2, (10) the nanoprecipitated nanoparticles disclosed in P. Paolicelli et al., “Surface-modified PLA-based Nanoparticles that can Efficiently Associate and Deliver Virus-Like Particles” Nano- medicine, 5(6):843-853 (2010), or (11) apoptotic cells, apoptotic bodies or the synthetic or semisynthetic mimics disclosed in U.S. Publication 2002/0086049. In embodiments, synthetic nanocarriers may possess an aspect ratio greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5, 1:7, or greater than 1:10.

A “therapeutic protein” refers to any protein or protein-based therapy that may be administered to a subject and have a therapeutic effect. Such therapies include protein replacement and protein supplementation therapies. Such therapies also include the administration of exogenous or foreign protein, antibody therapies, and cell or cell-based therapies. Therapeutic proteins include enzymes, enzyme cofactors, hormones, blood clotting factors, cytokines, growth factors, monoclonal antibodies and polyclonal antibodies. Examples of other therapeutic proteins are provided elsewhere herein. Therapeutic proteins may be produced in, or on or by cells and may be obtained from such cells or administered in the form of such cells. In embodiments, the therapeutic protein is produced in, or on or by mammalian cells, insect cells, yeast cells, bacteria cells, plant cells, transgenic animal cells, transgenic plant cells, etc. The therapeutic protein may be recombinantly produced in such cells. The therapeutic protein may be produced in, or on or by a virally transformed cell. The therapeutic protein may also be produced in, or on or by autologous cells that have been transfected, transduced or otherwise manipulated to express it. Alternatively, the therapeutic protein may be administered as a nucleic acid or by introducing a nucleic acid into a virus, VLP, liposome, etc. Alternatively, the therapeutic protein may be obtained from such forms and administered as the therapeutic protein itself. Subjects, therefore, include any subject that has received, is receiving or will receive any of the foregoing. Such subject includes subjects that have received, is receiving or will receive gene therapy, autologous cells that have been transfected, transduced or otherwise manipulated to express a therapeutic protein, polypeptide or peptide; or cells that express a therapeutic protein, polypeptide or peptide.

A “therapeutic protein antigen” means any antigen that is associated with a therapeutic protein that can be, or a portion of which can be, presented for recognition by cells of the immune system and can generate an undesired immune response (e.g., the production of therapeutic protein-specific antibodies) against the therapeutic protein. Therapeutic protein antigens generally include proteins, polypeptides, peptides, lipoproteins, or are contained or expressed in, on or by cells.

“Tolerogenic immune response” means any immune response that can lead to immune suppression specific to an antigen or a cell, tissue, organ, etc. that expresses such an antigen. Such immune responses include any reduction, delay or inhibition in an undesired immune response specific to the antigen or cell, tissue, organ, etc. that expresses such antigen. Such immune responses also include any stimulation, production, induction, promotion or recruitment in a desired immune response specific to the antigen or cell, tissue, organ, etc. that expresses such antigen. Tolerogenic immune responses, therefore, include the absence of or reduction in an undesired immune response to an antigen that can be mediated by antigen reactive cells as well as the presence or promotion of suppressive cells. Tolerogenic immune responses as provided herein include immunological tolerance. To “generate a tolerogenic immune response” refers to the generation of any of the foregoing immune responses specific to an antigen or cell, tissue, organ, etc. that expresses such antigen. The tolerogenic immune response can be the result of MHC Class I-restricted presentation and/or MHC Class II-restricted presentation and/or B cell presentation and/or presentation by CD1d, etc.
Tolerogenic immune responses include any reduction, delay or inhibition in CD4+ T cell, CD8+ T cell or B cell proliferation and/or activity. Tolerogenic immune responses also include a reduction in antigen-specific antibody production. Tolerogenic immune responses can also include any response that leads to the stimulation, induction, production or recruitment of regulatory cells, such as CD4+ Treg cells, CD8+ Treg cells, Breg cells, etc. In some embodiments, the tolerogenic immune response, is one that results in the conversion to a regulatory phenotype characterized by the production, induction, stimulation or recruitment of regulatory cells.

Tolerogenic immune responses also include any response that leads to the stimulation, production or recruitment of CD4+ Treg cells and/or CD8+ Treg cells. CD4+ Treg cells can express the transcription factor Foxp3 and inhibit inflammatory responses and auto-immune inflammatory diseases (Human regulatory T cells in autoimmune diseases. Cvutanovich G L, Hafler D A. Curr Opin Immunol. 2010 December; 22(6):753-60. Regulatory T cells and autoimmunity. Vila J, Isaacs J D, Anderson A E. Curr Opin Hematol. 2009 July; 16(4):274-9). Such cells also suppress T-cell help to B-cells and induce tolerance to both self and foreign antigens (Therapeutic approaches to allergy and autoimmunity based on Foxp3+ regulatory T-cell activation and expansion. Miyara M, Wing K, Sakaguchi S. J Allergy Clin Immunol. 2009 April; 123(4):749-55). CD4+ Treg cells recognize antigen when presented by Class II proteins on APCs. CD8+ Treg cells, which recognize antigen presented by Class I (and Qa-1), can also suppress T-cell help to B-cells and result in activation of antigen-specific suppression inducing tolerance to both self and foreign antigens. Disruption of the interaction of Qa-1 with CD8+ Treg cells has been shown to dysregulate immune responses and results in the development of autoantibody formation and an auto-immune lethal systemic-lupus-erythematosus (Kim et al., Nature. 2010 Sep. 16, 467 (7313): 328-32). CD8+ Treg cells have also been shown to inhibit models of autoimmune inflammatory diseases including rheumatoid arthritis and colitis (CD4+CD25+ regulatory T cells in autoimmune arthritis. Oh S, Rankin A, L, Caton A J. Immunol. Rev. 2010 January; 233(1):97-111. Regulatory T cells in inflammatory bowel disease. Boden F K, Snapper S B. Curr Opin Gastroenterol. 2008 November; 24(6):733-41). In some embodiments, the compositions provided can effectively result in both types of responses (CD4+ Treg and CD8+ Treg). In other embodiments, Foxp3 can be induced in other immune cells, such as macrophages, INKT cells, etc., and the compositions provided herein can result in one or more of these responses as well.

Tolerogenic immune responses also include, but are not limited to, the induction of regulatory cytokines, such as Treg cytokinones; induction of inhibitory cytokinones; the inhibition of inflammatory cytokinones (e.g., IL-4, IL-1b, IL-5, TNF-α, IL-6, GM-CSF, IFN-γ, IL-2, IL-9, IL-12, IL-17, IL-18, IL-21, IL-22, IL-23, M-CSF, C reactive protein, acute phase protein, chemokinones (e.g., MCP-1, RANTES, MIP-1α, MIP-1β, MIF, ITAC or IP-10), the production of anti-inflammatory cytokinones (e.g., IL-4, IL-13, IL-10, etc.), chemokinones (e.g., CCL-2, CXCL8), proteasenes (e.g., MMP-3, MMP-9), leukotrienes (e.g., CysLT-1, CysLT-2), prostaglandins (e.g., PGE2) or histamines; the inhibition of polarization to a Th1, Th1 or Th2 immune response; the inhibition of effector cell-specific cytokinones: Th17 (e.g., IL-17, IL-25), Th1 (IFN-γ), Th2 (e.g., IL-4, IL-13); the inhibition of Th1, Th2- or Th117-specific transcription factors; the inhibition of proliferation of effector T cells; the induction of apoptosis of effector T cells; the induction of tolerogenic dendritic cell-specific genes, the induction of Foxp3 expression, the induction of IgE induction or IgE-mediated immune responses; the inhibition of antibody responses (e.g., antigen-specific antibody production); the inhibition of T helper cell response; the production of TGF-β and/or IL-10; the inhibition of effector function of autoantibodies (e.g., inhibition in the depletion of cells, cell or tissue damage or complement activation); etc.

Any of the foregoing may be measured in vivo in one or more animal models or may be measured in vitro. One of ordinary skill in the art is familiar with means for measuring in vivo or in vitro measurements. Undesired immune responses or tolerogenic immune responses can be monitored using, for example, methods of assessing immune cell number and/or function, tetramer analysis, ELISPOT, flow cytometry-based analysis of cytokine expression, cytokine secretion, cytokine expression profiling, gene expression profiling, protein expression profiling, analysis of cell surface markers, PCR-based detection of immune cell receptor gene usage (see T. Clay et al., “Assays for Monitoring Cellular Immune Response to Active Immunotherapy of Cancer” Clinical Cancer Research 7:1127-1135 (2001)). Undesired immune responses or tolerogenic immune responses may also be monitored using, for example, methods of assessing protein levels in plasma or serum, immune cell proliferation and/or functional assays, etc. In some embodiments, tolerogenic immune responses can be monitored by assessing the induction of Foxp3. In addition, specific methods are described in more detail in the Examples.

Preferably, tolerogenic immune responses lead to the inhibition of the development, progression or pathology of the diseases, disorders or conditions described herein. Whether or not the inventive compositions can lead to the inhibition of the development, progression or pathology of the diseases, disorders or conditions described herein can be measured with animal models of such diseases, disorders or conditions. In some embodiments, the reduction of an undesired immune response or generation of a tolerogenic immune response may be assessed by determining clinical endpoints, clinical efficacy, clinical symptoms, disease biomarkers and/or clinical scores. Undesired immune responses or tolerogenic immune responses can also be assessed with diagnostic tests to assess the presence or absence of a disease, disorder or condition as described herein. Undesired immune responses may further be assessed by methods of measuring therapeutic proteins levels and/or function in a subject. In embodiments, methods for monitoring or assessing undesired allergic responses include assessing an allergic response in a subject by skin reactivity and/or allergen-specific antibody production.

In some embodiments, monitoring or assessing the generation of an undesired immune response or a tolerogenic immune response in a subject can be prior to the administration of a composition of synthetic nanocarriers provided herein and/or prior to administration of a transplantable graft or therapeutic protein or exposure to an allergen. In other embodiments, assessing the generation of an undesired immune response or tolerogenic immune response can be after administration of a composition of synthetic nanocarriers provided herein and/or after administration of a transplantable graft or therapeutic protein or exposure to an allergen. In some embodiments, the assessment is done after
administration of the composition of synthetic nanocarriers, but prior to administration of a transplantable graft or therapeutic protein or exposure to an allergen. In other embodiments, the assessment is done after administration of a transplantable graft or therapeutic protein or exposure to an allergen, but prior to administration of the composition. In still other embodiments, the assessment is performed prior to both the administration of the synthetic nanocarriers and administration of a transplantable graft or therapeutic protein or exposure to an allergen, while in yet other embodiments the assessment is performed after both the administration of synthetic nanocarriers and administration of a transplantable graft or therapeutic protein or exposure to an allergen. In further embodiments, the assessment is performed both prior to and after the administration of the synthetic nanocarriers and/or administration of a transplantable graft or therapeutic protein or exposure to an allergen. In still other embodiments, the assessment is performed more than once on the subject to determine that a desirable immune state is maintained in the subject, such as a subject that has or is at risk of having an inflammatory disease, an autoimmune disease, an allergy, organ or tissue rejection or graft versus host disease. Other subjects include those that have undergone or will undergo transplantation as well as those that have received, are receiving or will receive a therapeutic protein against which they have experienced, are experiencing or are expected to experience an undesired immune response.

[0130] An antibody response can be assessed by determining one or more antibody titers. “Antibody titer” means a measurable level of antibody production. Methods for measuring antibody titers are known in the art and include Enzyme-linked Immunosorbent Assay (ELISA). In embodiments, the antibody response can be quantitated, for example, as the number of antibodies, concentration of antibodies or titer. The values can be absolute or they can be relative. Assays for quantifying an antibody response include antibody capture assays, enzyme-linked immunosorbent assays (ELISAs), inhibition liquid phase absorption assays (IL-PAs), rocket immunoelectrophoresis (RIE) assays and line immunoelectrophoresis (LIE) assays. When an antibody response is compared to another antibody response the same type of quantitative value (e.g., titer) and method of measurement (e.g., ELISA) is preferably used to make the comparison.

[0131] An ELISA method for measuring an antibody titer, for example, a typical sandwich ELISA, may consist of the following steps (i) preparing an ELISA-plate coating material such that the antibody target of interest is coupled to a substrate polymer or other suitable material; (ii) preparing the coating material in an aqueous solution (such as PBS) and delivering the coating material solution to the wells of a multwell plate for overnight deposition of the coating onto the multwell plate (iii) thoroughly washing the multwell plate with wash buffer (such as 0.05% Tween-20 in PBS) to remove excess coating material; (iv) blocking the plate for nonspecific binding by applying a diluent solution (such as 10% fetal bovine serum in PBS); (v) washing the blocking/diluent solution from the plate with wash buffer; (vi) diluting the serum sample(s) containing antibodies and appropriate standards (positive controls) with diluent as required to obtain a concentration that suitably saturates the ELISA response; (vii) serially diluting the plasma samples on the multwell plate such to cover a range of concentrations suitable for generating an ELISA response curve; (viii) incubating the plate to provide for antibody-target binding; (ix) washing the plate with wash buffer to remove antibodies not bound to antigen; (x) adding an appropriate concentration of a secondary detection antibody to a same diluent such as a biotin-coupled detection antibody capable of binding the primary antibody; (xi) incubating the plate with the applied detection antibody, followed by washing with wash buffer; (xii) adding an enzyme such as streptavidin-HRP (horse radish peroxidase) that will bind to biotin found on biotinylated antibodies and incubating; (xiii) washing the multwell plate; (xiv) adding substrate(s) (such as TMB solution) to the plate; (xv) applying a stop solution (such as 2N sulfuric acid) when color development is complete; (xvi) reading optical density of the plate wells at a specific wavelength for the substrate (450 nm with subtraction of readings at 570 nm); (xvii) applying a suitable multiparameter curve fit to the data and defining half-maximal effective concentration (EC50) as the concentration on the curve at which half the maximum OD value for the plate standards is achieved.

[0132] A “transplantable graft” refers to a biological material, such as cells, tissues and organs (in whole or in part) that can be administered to a subject. Transplantable grafts may be autografts, allografts, or xenografts of, for example, a biological material such as an organ, tissue, skin, bone, nerves, tendon, neurons, blood vessels, fat, cornea, pluripotent cells, differentiated cells (obtained or derived in vivo or in vitro), etc. In some embodiments, a transplantable graft is formed, for example, from cartilage, bone, extracellular matrix, or collagen matrices. Transplantable grafts may also be single cells, suspensions of cells and cells in tissues and organs that can be transplanted. Transplantable cells typically have a therapeutic function, for example, a function that is lacking or diminished in a recipient subject. Some non-liming examples of transplantable cells are β-cells, hepatocytes, hematopoietic stem cells, neuronal stem cells, neurons, glial cells, or myelinating cells. Transplantable cells can be cells that are unmodified, for example, cells obtained from a donor subject and usable in transplantation without any genetic or epigenetic modifications. In other embodiments, transplantable cells can be modified cells, for example, cells obtained from a subject having a genetic defect, in which the genetic defect has been corrected, or cells that are derived from reprogrammed cells, for example, differentiated cells derived from cells obtained from a subject.

[0133] “Transplantation” refers to the process of transferring (moving) a transplantable graft into a recipient subject (e.g., from a donor subject, from an in vitro source (e.g., differentiated autologous or heterologous native or induced pluripotent cells)) and/or from one bodily location to another bodily location in the same subject.

[0134] “Undesired immune response” refers to any undesired immune response that results from exposure to an antigen, promotes or exacerbates a disease, disorder or condition provided herein (or a symptom thereof), or is symptomatic of a disease, disorder or condition provided herein. Such immune responses generally have a negative impact on a subject’s health or is symptomatic of a negative impact on a subject’s health. Undesired immune responses include antigen-specific antibody production, antigen-specific B cell proliferation and/or activity or antigen-specific CD4+ T cell proliferation and/or activity.
C. INVENTIVE COMPOSITIONS

[0135] Provided herein are tolerogenic synthetic nanocarrier compositions comprising immunosuppressants and MHC Class II-restricted epitopes of an antigen that generates or is expected to generate undesired humoral immune responses, and related methods. Such compositions and methods are useful for reducing the generation of undesired humoral immune responses or promoting the generation of tolerogenic immune responses by, for example, reducing antigen-specific antibody production and/or antigen-specific CD4+ T cell help and/or antigen-specific B cell proliferation and/or activity. The compositions may be administered to subjects in which a tolerogenic immune response is desired. Such subjects include those that have or are at risk of having an inflammatory disease, an autoimmune disease, an allergy, organ or tissue rejection or graft versus host disease. Such subjects also include those that have been, are being or will be administered a therapeutic protein against which the subject has experienced or is expected to experience an undesired immune response. Such subjects also include those that have undergone or will undergo transplantation.

[0136] As mentioned above, the synthetic nanocarriers are designed to comprise immunosuppressants and, in some embodiments, antigen against which a tolerogenic effect is desired. In embodiments, the antigens comprise MHC Class II-restricted epitopes that when presented in conjunction with an immunosuppressant can lead to tolerogenic effects, such as the reduction in antigen-specific CD4+ T cell help. The resulting tolerogenic effects also include a reduction in antigen-specific B cell proliferation and/or activity and/or a reduction in antigen-specific antibody production. A wide variety of synthetic nanocarriers can be used according to the invention. In some embodiments, synthetic nanocarriers are spheres or spheroids. In some embodiments, synthetic nanocarriers are flat or plate-shaped. In some embodiments, synthetic nanocarriers are cubes or cubic. In some embodiments, synthetic nanocarriers are ovals or ellipses. In some embodiments, synthetic nanocarriers are cylinders, cones, or pyramids.

[0137] In some embodiments, it is desirable to use a population of synthetic nanocarriers that is relatively uniform in terms of size, shape, and/or composition so that each synthetic nanocarrier has similar properties. For example, at least 80%, at least 90%, or at least 95% of the synthetic nanocarriers, based on the total number of synthetic nanocarriers, may have a minimum dimension or maximum dimension that falls within 5%, 10%, or 20% of the average diameter or average dimension of the synthetic nanocarriers. In some embodiments, a population of synthetic nanocarriers may be heterogeneous with respect to size, shape, and/or composition.

[0138] Synthetic nanocarriers can be solid or hollow and can comprise one or more layers. In some embodiments, each layer has a unique composition and unique properties relative to the other layer(s). To give but one example, synthetic nanocarriers may have a core/shell structure, wherein the core is one layer (e.g., a polymeric core) and the shell is a second layer (e.g., a lipid bilayer or monolayer). Synthetic nanocarriers may comprise a plurality of different layers.

[0139] In some embodiments, synthetic nanocarriers may optionally comprise one or more lipids. In some embodiments, a synthetic nanocarrier may comprise a lipid. In some embodiments, a synthetic nanocarrier may comprise a lipid monolayer. In some embodiments, a synthetic nanocarrier may comprise a micelle. In some embodiments, a synthetic nanocarrier may comprise a core comprising a polymeric matrix surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.). In some embodiments, a synthetic nanocarrier may comprise a non-polymeric core (e.g., metal particle, quantum dot, ceramic particle, bone particle, viral particle, proteins, nucleic acids, carbohydrates, etc.) surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).

[0140] In other embodiments, synthetic nanocarriers may comprise metal particles, quantum dots, ceramic particles, etc. In some embodiments, a non-polymeric synthetic nanocarrier is an aggregate of non-polymeric components, such as an aggregate of metal atoms (e.g., gold atoms).

[0141] In some embodiments, synthetic nanocarriers may optionally comprise one or more amphiphilic entities. In some embodiments, an amphiphilic entity can promote the production of synthetic nanocarriers with increased stability, improved uniformity, or increased viscosity. In some embodiments, amphiphilic entities can be associated with the interior surface of a lipid membrane (e.g., lipid bilayer, lipid monolayer, etc.). Many amphiphilic entities known in the art are suitable for use in making synthetic nanocarriers in accordance with the present invention. Such amphiphilic entities include, but are not limited to, phosphoglycerides; phosphatidylcholines; dipalmitoyl phosphatidylcholine (DPPC); dioleoylphosphatidyl ethanolamine (DOPE); dioleoylpropionyl triethylammonium (DOTMA); dioleoylphosphatidylethanolamine; cholesterol; cholesterol ester; diaclylglycerol; diaclylglycerol succinate; dipalmitoyl glycerol (DPPG); hexanediol; fatty alcohols such as polyethylene glycol (PEG); polyoxyethylene-9-lauryl ether; a surface active fatty acid, such as palmitic acid or oleic acid; fatty acids; fatty acid monoglycerides; fatty acid diglycerides; fatty acid amides; sorbitan trioleate (Span®85) glycocholate; sorbitan monolaurate (Span®20); polysorbate 20 (Tween®20); polysorbate 60 (Tween®60); polysorbate 65 (Tween®65); polysorbate 80 (Tween®80); polysorbate 85 (Tween®85); polyoxyethylene monostearate; surfactin; a poloxamer; a sorbitan fatty acid ester such as sorbitan trioleate; lecithin; lysolecithin; phosphatidylserine; phosphatidylinositol; sphingomyelin; phosphatidylethanolamine (cephalin); cardiolipin; phosphatic acid; cerebrosides; dicetylphosphate; dipalmitoylphosphatidylglycerol; stearylamine; dodecylamine; hexadecyl-amine; acetyl palmitate; glycerol ricinoleate; hexadecyl stearate; isopropyl myristate; tyloxapol; poly(ethylene glycol) 5000-phosphatidylethanolamine; poly(ethylene glycol) 4000-monostearte; phospholipids; synthetic and/or natural detergents having high surfactant properties; deoxycholates; cyclodextrins; chaotropic salts; ion pairing agents; and combinations thereof. An amphiphilic entity component may be a mixture of different amphiphilic entities. Those skilled in the art will recognize that this is an exemplary, not comprehensive, list of substances with surfactant activity. Any amphiphilic entity may be used in the production of synthetic nanocarriers to be used in accordance with the present invention.

[0142] In some embodiments, synthetic nanocarriers may optionally comprise one or more carbohydrates. Carbohydrates may be natural or synthetic. A carbohydrate may be a derivatized natural carbohydrate. In certain embodiments, a carbohydrate comprises monosaccharide or disaccharide, including but not limited to glucose, fructose, galactose, ribose, lactose, sucrose, maltose, trehalose, cellulose, man-
nose, xylose, arabinose, glucoronic acid, galactoronic acid, mannnuronic acid, glucosamine, galatosamine, and neuramic acid. In certain embodiments, a carbohydrate is a polysaccharide, including but not limited to pullulan, cellulose, microcrystalline cellulose, hydroxypropyl methylcellulose (HPMC), hydroxyethylcellulose (HEC), methylcellulose (MC), dextran, cyclodextran, glycogen, hydroxyethylstarch, carageenan, glycon, amyllose, chitosan, N-O-carboxymethylchitosan, algin and alginate acid, starch, chitin, inulin, konjac, glucomannan, pustulan, heparin, hyaluronic acid, curdlan, and xanthan. In embodiments, the inventive synthetic nanocarriers do not comprise (or specifically exclude) carbohydrates, such as a polysaccharide. In certain embodiments, the carbohydrate may comprise a carbohydrate derivative such as a sugar alcohol, including but not limited to mannitol, sorbitol, xylitol, erythritol, maltitol, and lactitol.

When coupling occurs as a result of bonding between the immunosuppressants and/or antigens and synthetic nanocarriers, the coupling may occur via a coupling moiety. A coupling moiety can be any moiety through which an immunosuppressant and/or antigen is bonded to a synthetic nanocarrier. Such moieties include covalent bonds, such as an amide bond or ester bond, as well as separate molecules that bond (covalently or non-covalently) the immunosuppressant and/or antigen to the synthetic nanocarrier. Such molecules include linkers or polymers or a unit thereof. For example, the coupling moiety can comprise a charged polymer to which an immunosuppressant and/or antigen electrostatically binds. As another example, the coupling moiety can comprise a polymer or unit thereof to which it is covalently bonded.

In preferred embodiments, the synthetic nanocarriers comprise a polymer as provided herein. These synthetic nanocarriers can be completely polymeric or they can be a mix of polymers and other materials.

In some embodiments, the polymers of a synthetic nanocarrier associate to form a polymeric matrix. In some of these embodiments, a component, such as an immunosuppressant or antigen can be covalently associated with one or more polymers of the polymeric matrix. In some embodiments, covalent association is mediated by a linker. In some embodiments, a component can be noncovalently associated with one or more polymers of a polymeric matrix. For example, in some embodiments, a component can be encapsulated within, surrounded by, and/or dispersed throughout a polymeric matrix. Alternatively or additionally, a component can be associated with one or more polymers of a polymeric matrix by hydrophobic interactions, charge interactions, van der Waals forces, etc. A wide variety of polymers and methods for forming polymeric matrices therefrom are known conventionally.

Polymers may be natural or unnatural (synthetic) polymers. Polymers may be homopolymers or copolymers comprising two or more monomers. In terms of sequence, copolymers may be random, block, or comprise a combination of random and block sequences. Typically, polymers in accordance with the present invention are organic polymers.

In some embodiments, the polymer comprises a polyester, polycarbonate, polyamide, or polyether, or unit thereof. In other embodiments, the polymer comprises poly(ethylene glycol) (PEG), polypropylene glycol, poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or a polycaprolactone, or unit thereof. In some embodiments, it is preferred that the polymer is biodegradable. Therefore, in these embodiments, it is preferred that if the polymer comprises a polyether, such as poly(ethylene glycol) or polypropylene glycol or unit thereof, the polymer comprises a block-co-polymer of a polyether and a biodegradable polymer such that the polymer is biodegradable. In other embodiments, the polymer does not solely comprise a polyether or unit thereof, such as poly(ethylene glycol) or polypropylene glycol or unit thereof.

Other examples of polymers suitable for use in the present invention include, but are not limited to poly(uclidean esters, polycarbonates (e.g. poly(1,3-dioxan-2-one)), polyamides (e.g. polycaprolactam), polycetals, polyethers, polyesters (e.g., poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or a polycaprolactone, or unit thereof). In some embodiments, it is preferred that the polymer is biodegradable. Therefore, in these embodiments, it is preferred that if the polymer comprises a polyether, such as poly(ethylene glycol) or polypropylene glycol or unit thereof, the polymer comprises a block-co-polymer of a polyether and a biodegradable polymer such that the polymer is biodegradable. In other embodiments, the polymer does not solely comprise a polyether or unit thereof, such as poly(ethylene glycol) or polypropylene glycol or unit thereof.
anoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polycrylates, polymethacrylates, polyureas, poly styrenes, and polymaines, polylysine, polylysine-PEG copolymers, and poly(ethyleneimine), poly(ethylene imine)-PEG copolymers.

[0151] In some embodiments, polymers in accordance with the present invention include polymers which have been approved for use in humans by the U.S. Food and Drug Administration (FDA) under 21 C.F.R. §177.2600, including but not limited to polyesters (e.g., poly(lactic acid), poly(lactic-co-glycolic acid), polycaprolactone, polyvalerolactone, poly (1,3-dioxan-2-one)); poly(anhydrides) (e.g., poly(sebacic anhydride)); polyethers (e.g., polyethylene glycol); polyurethanes; polyetheracrylates; polyacrylates; and polycyanacrylates.

[0152] In some embodiments, polymers can be hydrophilic. For example, polymers may comprise anionic groups (e.g., phosphate group, sulphate group, carboxylate group); cationic groups (e.g., quaternary amine group); or polar groups (e.g., hydroxyl group, thiol group, amine group). In some embodiments, a synthetic nanocarrier comprising a hydrophilic polymeric matrix generates a hydrophilic environment within the synthetic nanocarrier. In some embodiments, polymers can be hydrophobic. In some embodiments, a synthetic nanocarrier comprising a hydrophobic polymeric matrix generates a hydrophobic environment within the synthetic nanocarrier. Selection of the hydrophilicity or hydrophobicity of the polymer may have an impact on the nature of the materials that are incorporated (e.g., coupled) within the synthetic nanocarrier.

[0153] In some embodiments, polymers may be modified with one or more moieties and/or functional groups. A variety of moieties or functional groups can be used in accordance with the present invention. In some embodiments, polymers may be modified with polyethylene glycol (PEG), with a carbohydrate, and/or with acrylic polyacetal derivatives derived from polysaccharides (Papishvili, 2001, ACS Symposium Series, 786:301). Certain embodiments may be made using the general teachings of U.S. Pat. No. 5,543,158 to Schuh et al., or WO publication WO2009/051837 by Von Andrian et al.

[0154] In some embodiments, polymers may be modified with a lipid or fatty acid group. In some embodiments, a fatty acid group may be one or more of butyric, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, or lignoceric acid. In some embodiments, a fatty acid group may be one or more of palmitoleic, oleic, vaccenic, linoleic, alpha-linoleic, gamma-linoleic, arachidonic, gadoleic, arachidonic, eicosapentaenoic, docosahexaenoic, or eicinic acid.

[0155] In some embodiments, polymers may be polyesters, including copolymers comprising lactic acid and glycolic acid units, such as poly(lactic acid-co-glycolic acid) and poly(lactic-co-glycolic acid), collectively referred to herein as “PLGA”; and homopolymers comprising glycolic acid units, referred to herein as “PGA,” and lactic acid units, such as poly-L-lactic acid, poly-D-lactic acid, poly-D,L-lactic acid, poly-L-lactide, poly-D-lactide, and poly-D,L-lactide, collectively referred to herein as “PLA.” In some embodiments, exemplary polyesters include, for example, polyhydroxycids; PEG copolymers and copolymers of lactic acid and glycolide (e.g., PEG-PLLA copolymers, PGA-PEG copolymers, PLGA-PEG copolymers, and derivatives thereof. In some embodiments, polyesters include, for example, poly(caprolactone), poly(caprolactone)-PEG copolymers, poly(L-lactide-co-L-lysine), poly(serine ester), poly(4-hydroxy-L-proline ester), poly(ε-(aminobutyl)-L-glycolic acid), and derivatives thereof.

[0156] In some embodiments, a polymer may be PLGA. PLGA is a biocompatible and biodegradable co-polymer of lactic acid and glycolic acid, and various forms of PLGA are characterized by the ratio of lactic acid:glycolic acid. Lactic acid can be L-lactic acid, D-lactic acid, or D,L-lactic acid. The degradation rate of PLGA can be adjusted by altering the lactic acid:glycolic acid ratio. In some embodiments, PLGA to be used in accordance with the present invention is characterized by a lactic acid:glycolic acid ratio of approximately 85:15, approximately 75:25, approximately 60:40, approximately 50:50, approximately 40:60, approximately 25:75, or approximately 15:85.

[0157] In some embodiments, polymers may be one or more acrylic polymers. In certain embodiments, acrylic polymers include, for example, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxylated methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid anhydride), methyl methacrylate, poly(methyl methacrylate), poly(methacrylic acid anhydride) and methacrylate copolymer, glycidyl methacrylate copolymers, polyacyloxyacrylates, and combinations comprising one or more of the foregoing polymers. The acrylic polymer may comprise fully-polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.

[0158] In some embodiments, polymers may be cationic polymers. In general, cationic polymers are able to condense and/or physically charge negatively charged strands of nucleic acids (e.g., DNA, or derivatives thereof). Amine-containing polymers such as polylysine (Zauner et al., 1998, Adv. Drug Del. Rev., 30:97; and Kabanov et al., 1995, Bioconjugate Chem., 6:7), poly(ethylene imine) (PEL; Bousif et al., 1995, Proc. Natl. Acad. Sci., USA, 1995, 92:7297), and poly(aminodimethylenediamine) dendrimers (Kukowska-Latallo et al., 1996, Proc. Natl. Acad. Sci., USA, 93:4897; Tang et al., 1996, Bioconjugate Chem., 7:703; and Haensler et al., 1993, Bioconjugate Chem., 4:372) are positively-charged at physiological pH, form ion pairs with nucleic acids, and mediate transfection in a variety of cell lines. In embodiments, the inventive synthetic nanocarriers may not comprise (or may exclude) cationic polymers.

[0160] The properties of these and other polymers and methods for preparing them are well known in the art (see, for example, U.S. Pat. Nos. 6,123,727; 5,804,178; 5,770,417;
Surface of the nanocarrier with antigens or immunosuppressants containing an azido group. Such cycloaddition reactions are preferably performed in the presence of a Cu(I) catalyst along with a suitable Cu(1)-ligand and a reducing agent to reduce Cu(II) compound to catalytic active Cu(I) compound. This Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) can also be referred as the click reaction.

[0166] Additionally, the covalent coupling may comprise a covalent linker that comprises an amide linker, a disulfide linker, a thioether linker, a hydrazone linker, a hydrazide linker, an imine or oxime linker, an urea or thiourea linker, an amidine linker, an amine linker, and a sulfonamide linker.

[0167] An amide linker is formed via an amide bond between an amine on one component with the carboxylic acid group of a second component such as the nanocarrier. The amide bond in the linker can be made using any of the conventional amide bond forming reactions with suitably protected amino acids and activated carboxylic acid such as N-hydroxysuccinimide-activated ester.

[0168] A disulfide linker is made via the formation of a disulfide (S=S) bond between two sulfur atoms of the form, for instance, of R1-S—S—R2. A disulfide bond can be formed by thiol exchange of a component containing thiol/mercaptan group (—SH) with another activated thiol group on a polymer or nanocarrier or a nanocarrier containing thiol/mercaptan groups with a component containing activated thiol group.

[0169] A triazole linker, specifically a 1,2,3-triazole of the form

\[\text{R}_1 \text{N} \equiv \text{N} \equiv \text{N} \text{R}_2 \]

wherein R1 and R2 may be any chemical entities, is made by the 1,3-dipolar cycloaddition reaction of an azide attached to a first component such as the nanocarrier with a terminal alkyne attached to a second component such as the immunosuppressant or antigen that comprises the epitope. The 1,3-dipolar cycloaddition reaction is performed with or without a catalyst, preferably with Cu(I)-catalyst, which links the two components through a 1,2,3-triazole function. This chemistry is described in detail by Sharpless et al., Angew. Chem. Int. Ed. 41(14), 2596, (2002) and Meldal, et al., Chem. Rev., 2008, 108(8), 2952-3015 and is often referred to as a “click” reaction or CuAAC.

[0170] In embodiments, a polymer containing an azide or alkyn group, terminal to the polymer chain is prepared. This polymer is then used to prepare a synthetic nanocarrier in such a manner that a plurality of the alkyne or azide groups are positioned on the surface of that nanocarrier. Alternatively, the synthetic nanocarrier can be prepared by another route, and subsequently functionalized with alkyne or azide groups.

The component is prepared with the presence of either an alkyne (if the polymer contains an azide) or an azide (if the polymer contains an alkyne) group. The component is then allowed to react with the nanocarrier via the 1,3-dipolar cycloaddition reaction with or without a catalyst which covalently couples the component to the particle through the 1,4-disubstituted 1,2,3-triazole linker.
A thioether linker is made by the formation of a sulfur-carbon (thioether) bond in the form, for instance, of R1–S—R2. Thioether can be made by either alkylation of a thiol/mercapto (—SH) group on one component with an alkylating group such as halide or epoxide on a second component. Thioether linkers can also be formed by Michael addition of a thiol/mercapto group on one component to an electron-deficient alkene group on a second component containing a maleimide group or vinyl sulfone group as the Michael acceptor. In another way, thioether linkers can be prepared by the radical thiol-ene reaction of a thiol/mercapto group on one component with an alkene group on a second component.

A hydrazone linker is made by the reaction of a hydrazide group on one component with an aldehyde/ketone group on the second component. A hydrazide linker is formed by the reaction of a hydrazine group on one component with a carboxylic acid group on the second component. Such reaction is generally performed using chemistry similar to the formation of amide bond where the carboxylic acid is activated with an activating reagent.

An imine or oxime linker is formed by the reaction of an amine or N-alkoxymine (or aminoxy) group on one component with an aldehyde or ketone group on the second component.

An urea or thiourea linker is prepared by the reaction of an amine group on one component with an isocyanate or thiocyanate group on the second component.

An amidine linker is prepared by the reaction of an amine group on one component with an imidazoster group on the second component.

An amine linker is made by the alkylation reaction of an amine group on one component with an alkylation group such as halide, epoxide, or sulfonate ester group on the second component. Alternatively, an amine linker can also be made by reductive amination of an amine group on one component with an aldehyde or ketone group on the second component with a suitable reducing reagent such as sodium cyanoborohydride or sodium triacetoxyborohydride.

A sulfonamide linker is made by the reaction of an amine group on one component with a sulfonyl halide (such as sulfonil chloride) group on the second component.

A sulfone linker is made by Michael addition of a nucleophile to a vinyl sulfone. Either the vinyl sulfone or the nucleophile may be on the surface of the nanocarrier or attached to a component.

The component can also be conjugated to the nanocarrier via non-covalent conjugation methods. For example, a negatively charged antigen or immunosuppressant can be conjugated to a positive charged nanocarrier through electrostatic adsorption. A component containing a metal ligand can also be conjugated to a nanocarrier containing a metal complex via a metal-ligand complex.

In embodiments, the component can be attached to a polymer, for example polyactic acid-block-polyethylene glycol, prior to the assembly of the synthetic nanocarrier or the synthetic nanocarrier can be formed with reactive or activatable groups on its surface. In the latter case, the component may be prepared with a group which is compatible with the attachment chemistry that is presented by the synthetic nanocarriers’ surface. In other embodiments, a peptide component can be attached to VLPs or liposomes using a suitable linker. A linker is a compound or reagent that capable of coupling two molecules together. In an embodiment, the linker can be a homobifunctional or heterobifunctional reagent as described in Hermanson 2008. For example, an VLP or liposome synthetic nanocarrier containing a carboxylic group on the surface can be treated with a homobifunctional linker, adipic dihydrazide (ADH), in the presence of EDC to form the corresponding synthetic nanocarrier with the ADH linker. The resulting ADH linked synthetic nanocarrier is then conjugated with a peptide component containing an acid group via the other end of the ADH linker on NC to produce the corresponding VLP or liposome peptide conjugate.

For detailed descriptions of available conjugation methods, see Hermanson G T “Bioconjugate Techniques”, 2nd Edition Published by Academic Press, Inc., 2008. In addition to covalent attachment the component can be coupled by adsorption to a pre-formed synthetic nanocarrier or it can be coupled by encapsulation during the formation of the synthetic nanocarrier.

Any immunosuppressant as provided herein can be coupled to the synthetic nanocarrier. Immunosuppressants include, but are not limited to, statins; mTOR inhibitors, such as rapamycin or rapamycin analog; TGF-β signaling agents; TGF-β receptor agonists; histone deacetylase (HDAC) inhibitors; corticosteroids; inhibitors of mitochondrial function, such as rotenone; P53 inhibitors; N1-sulf inhibitors; adenosine receptor agonists; prostaglandin E2 agonists; phosphodiesterase inhibitors, such as phosphodiesterase 4 inhibitor; proteasome inhibitors; kinase inhibitors; G-protein coupled receptor agonists; G-protein coupled receptor antagonists; glucocorticoids; retinoids; cytokine inhibitors; cytokine receptor inhibitors; cytokine receptor activators; peroxisome proliferator-activated receptor antagonists; peroxisome proliferator-activated receptor agonists; histone deacetylase inhibitors; calcineurin inhibitors; phosphatase inhibitors and oxidized ATPs. Immunosuppressants also include IDO, vitamin D3, cyclosporine A, aryl hydrocarbon receptor resveratrol, azathioprine, 6-mercaptopurine, aspirin, niflumic acid, esristol, tripolidie, interleukins (e.g., IL-1, IL-10), cyclosporine A, siRNAs targeting cytokines or cytokine receptors and the like.

Examples of statins include atorvastatin (LIPI-ITOR®, TORVAST®, cerivastatin, fluvastatin (LESCOL®, LESCOL® XL), lovastatin (MEVACOR®, ALTOPRE®, ALTOPRE®), mevastatin (COMPACTINE®, pitavastatin (LIVALOR®, PLAVAC®), rosuvastatin (PRAVACHOL®, SELEKTINE®, LIPOSTAT®, rosuvastatin (CRESTOR®), and simvastatin (ZOCOR®, LIPEX®).

Examples of mTOR inhibitors include rapamycin and analogs thereof (e.g., CCI-779, RAD001, AP23573, C20-methyllyrapamycin (C20-Marap), C16-(S)-butylsulfonyladlaporapycin (C16-BSnap), C16-(S)-3-methylindolyl-erapycin (C16-iRap) (Bayle et al. Chemistry & Biology 2006, 13:99-107)), AZD8055, BEZ235 (NVP-BEZ235), chrysophanic acid (chrysophanol), deforolimus (MK-8669), everolimus (RAD001), KU-0063794, PI-103, PP242, temsirolimus, and WYE-354 (available from Selleck, Houston, Tex., USA).

Examples of TGF-β signaling agents including TGF-β ligands (e.g., activin A, GDF1, GDF11, bone morphogenic proteins, nodal, TGF-β) and their receptors (e.g., ACVR1B, ACVR1c, ACVR2A, ACVR2B, BMPR2, BMPR1B, TGFBR1, TGFBR2), R-SMADs/coSMADs (e.g., SMAD1, SMAD2, SMAD3, SMAD4, SMAD5, SMAD8), and ligand inhibitors (e.g., follistatin, noggin, chordin, DAN, Ileky, LTBP1, THBS1, Decorin).
Examples of inhibitors of mitochondrial function include atractyloside (dipotassium salt), bongkrekic acid (tri-ammonium salt), carbonyl cyanide m-chlorophenylhydrazone, carboxyatractyloside (e.g., from *Atractylis gummifera*), CGP-37157, (-)-Deguelin (e.g., from *Mundulae sericea*), F16, hexokinase II VDAC binding domain peptide, oligomycin, rotenone, Ru360, SFK1, and valinomycin (e.g., from *Streptomyces fulvisissimus*). (EMD4 Biosciences, USA). Examples of P38 inhibitors include SB-203580 (4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl) 1H-imidazole), SB-239063 (trans-1-(4-hydroxyxyclohexyl)-4-(fluorophenyl)-5-(2-methoxy-pyrimidin-4-yl) imidazole), SB-220025 (5-(2-amino-4-pyrimidinyl)-4-(4-fluorophenyl)- 1-(4-piperidinyl)imidazole), and ARRY-77977.

Examples of NF (e.g., NK-κβ) inhibitors include IFRD1, 2-(1,8-naphthyridin-2-yl)-Phenol, 5-aminosalicylic acid, BAY 11-7082, BAY 11-7085, CAPE (Caffeic Acid Phenylethylster), diethylmaleate, IKK-2 Inhibitor IV, IMD 0534, lactacystin, MG-132 [Z-Leu-Leu-Leu-CHO], NFKB Activation Inhibitor III, NF-κB Activation Inhibitor II, JSH-23, parthenolide, Phenylarsine Oxide (PAO), PPM-18, pyrrolidinedithiocarbamic acid ammonium salt, QNZ, RO 106-9920, rocaglamide, rocaglamide A, rocaglamide C, rocaglamide 1, rocaglamide J, rocaglaol, (R)-MG-132, sodium salicylate, triclopoxide (PG490), wodelactone.

Examples of adenosine receptor agonists include COS-21680 and ATL-146a.

Examples of prostaglandin E2 agonists include E-Prostanoic acid 2 and E-Prostanoic acid 4.

Examples of phosphodiesterase inhibitors (non-selective and selective inhibitors) include caffeine, aminophylline, IBMX (3-isobutyl-1-methoxanthine), paraxanthine, pentoxifylline, theobromine, theophylline, methylated xanthines, vinpocetine, EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), amelgrelide, exonoximine (PERFAN™), milrinone, levosimendan, mesembrine, ibudilast, picamilast, luteloin, drotaverine, roflumilast (DAXAS™, DALRESIP™), sildenafil (REVATION®, VIAGRA®), tadalafil (AD-CIRCA®, CIALIS®), vardenafil (LEVITRA®, STAXYN®), udenafil, avanafil, icaritin, 4-methylypipenzaine, and pyrazolo pyrimidin-7-1.

Examples of proteasome inhibitors include bortezomib, disulfiram, epigallocatechin-3-gallate, and salinosporamide A.

Examples of kinase inhibitors include bevacizumab, BIBW 2992, cetuximab (ERBITUX®), imatinib (GLEEVAC®), trastuzumab (HERCEPTIN®), gefitinib (IRESSA®), ranibizumab (LUCENTIS®), pegaptanib, sorafenib, dasatinib, sunitinib, erlotinib, nilotinib, lapatinib, panitumumab, vandetanib, E7080, pazopanib, mibritinib.

Examples of glucocorticoids include hydrocortisone (cortisol), cortisone acetate, prednisone, prednisolone, methylprednisolone, dexamethasone, betamethasone, triamcinolone, beclomethasone, fludrocortisone acetate, deoxytocicosterone acetate (DOCA), and aldosterone.

Examples of retinoids include retinol, retinal, tretinoin (retinoid acid, RETIN-A®), isotretinoin (ACCUTANE®, AMNEXTEAM®), CLARAVE®, SOTRET®, ali-tretinoin (PANRETIN®), etretinate (TEGISON™) and its metabolite acitretin (SORIATAN®), tazarotene (Tazorac®, AVAGET®, ZORAC®), bexarotene (TARGETTN®, and adapalene (DIFFERIN®).

Examples of cytokine inhibitors include IL-1α, IL-1 receptor antagonist, IGFBP, TNF-β, uromodulin, Alpha-2-Macroglobulin, Cyclosporin A, Pentamidine, and Pentoxifylline (PENTOPAK®, PENTOXIL®, TRENTAL®).

Examples of peroxisome proliferator-activated receptor antagonists include GW9662, PPARγ antagonist III, G335, T0070090 (EMD4 Biosciences, USA).

Examples of peroxisome proliferator-activated receptor agonists include pioglitazone, ciglitazone, clofibrate, GW1929, GW7647, L-165,041, LY 171883, PPARγ activator, Fmoc-Leu, troglitazone, and WY-14645 (EMD4 Biosciences, USA).

Examples of histone deacetylase inhibitors include hydroxamic acids (or hydroxamates) such as trichostatin A, cyclic tetrapeptides (such as trapoxin B) and depsipeptides, benzamides, electrophilic ketones, aliphatic acid compounds such as phenylbutyrate and valproic acid, hydroxamic acids such as vorinostat (SAHA), belinostat (PXD101), LAQ824, and panobinostat (LBH589), benzamides such as entinostat (MS-275), CI994, and mocetinostat (MGCD0103), nicotinamide, derivatives of NAD, dihydrocoumarin, naphthopyrone, and 2-hydroxynaphthaldehydes.

Examples of calcineurin inhibitors include cyclosporine, pimecrolimus, voclosporin, and tacrolimus.

Examples of phosphatase inhibitors include BN82002 hydrochloride, CP-91149, calcytin A, cantharid acid, cantharidin, cypermethrin, ethyl-3,4-dephostatin, foscime sodium salt, MAZ51, methyl-3,4-dephostatin, NSC 95397, norkanadine, okadaic acid ammonium salt from prorocentrum concavum, okadaic acid, okadaic acid potassium salt, okadaic acid sodium salt, phenylarsine oxide, various phosphatase inhibitor cocktails, protein phosphatase 1C, protein phosphatase 2A inhibitor protein, protein phosphatase 2A1, protein phosphatase 2A2, sodium orthovanadate.

In some embodiments, antigens as described herein are also coupled to synthetic nanocarriers. In some embodiments, the antigens are coupled to the same or different synthetic nanocarriers as to which the immunosuppressants are coupled. In other embodiments, the antigens are not coupled to any synthetic nanocarriers. Antigens include any of the antigens provided herein, or fragments or derivatives thereof, such antigens are associated with inflammatory, autoimmune diseases, allergy, organ or tissue rejection, graft versus host disease, transplant antigens and therapeutic protein antigens. The epitopes, or proteins, polypeptides or peptides that comprise the epitopes, can be obtained or derived from any of the antigens provided or otherwise known in the art.

Therapeutic proteins include, but are not limited to, insulinfucine therapeutic proteins, enzymes, enzyme cofactors, hormones, blood clotting factors, cytokines and interferons, growth factors, monoclonal antibodies, and polyclonal antibodies (e.g., that are administered to a subject as a replacement therapy), and proteins associated with Pompe’s disease (e.g., α-glucosidase αl, rhGAA (e.g., Myozyme and Lumizyme (Genzyme)). Therapeutic proteins also include proteins involved in the blood coagulation cascade. Therapeutic proteins include, but are not limited to, Factor VIII, Factor VII, Factor IX, Factor V, von Willebrand Factor, von Heblebrand Factor, tissue plasminogen activator, insulin, growth hormone, erythropoietin αl, VEGF, thrombopoietin, lysosome, antithrombin and the like. Therapeutic proteins
also include adipokines, such as leptin and adiponectin. Other examples of therapeutic proteins are described below and elsewhere herein. Also included are fragments or derivatives of any of the therapeutic proteins provided as the antigen.

[0205] Examples of therapeutic proteins used in enzyme replacement therapy of subjects having a lysosomal storage disorder include, but are not limited to, imiglucerase for the treatment of Gaucher’s disease (e.g., CREZEMY™), a-galactosidase A (a-gal A) for the treatment of Fabry disease (e.g., agalsidase beta, FABRYZEM™), acid α-glucosidase (GAA) for the treatment of Pompe disease (e.g., alefacept, ALDURAZYME™, idursulfase, ELAPRASE™, arylsulfatase B for the treatment of mucopolysaccharidoses (e.g., laronidase, ALDURAZYME™, idursulfase, ELAPRASE™, arylsulfatase B, NAGLAZYME™).

[0206] Examples of enzymes include oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases.

[0207] Examples of hormones include Melatonin (N-acetyl-5-methoxytryptamine), Serotonin, Thryoxine (or thyroid hormone), Triiodothyronine (a thyroid hormone), Epinephrine (or adrenalin), Norepinephrine (or noradrenaline), Dopamine (or prolactin inhibiting hormone), Antimullerian hormone (or mullerian inhibiting factor or hormone), Adiponectin, Adrenocorticotropic hormone (or corticotropin), Angiotensinogen and angiotensin, Antidiuretic hormone (or vasopressin, arginine vasopressin), Atrial-natriuretic peptide (or atriopeptin), Calcitonin, Cholecystokinin, Corticotropin-releasing hormone, Erythropoietin, Follicle-stimulating hormone, Gastrin, Ghrelin, Glucagon, Glucagon-like peptide (GLP-1), GIP, Gonadotropin-releasing hormone, Growth hormone-releasing hormone, Human chorionic gonadotropin, Human placental lactogen, Growth hormone, Inhbin, Insulin, Insulin-like growth factor (or somatomedin), Leptin, Luteinizing hormone, Melanocyte stimulating hormone, Orexin, Oxytocin, Parathyroid hormone, Prolactin, Relaxin, Secretin, Somatostatin, Thrombopoietin, Thyroid-stimulating hormone (or thyrotropin), Thyrotropin-releasing hormone, Cortisol, Aldosterone, Testosterone, Dehydroepiandrosterone, Androstenedione, Dihydrotestosterone, Estradiol, Estrone, Estriol, Progesterone, Calcitriol (1,25-dihydroxyvitamin D3), Calcidiol (25-hydroxyvitamin D3), Prostaglandins, Leukotrienes, Prostaglandin, Thromboxane, Procolactin releasing hormone, Lipotropin, Brain natriuretic peptide, Neuropeptide Y, Histamine, Endothelin, Pancreatic polypeptide, Renin, and Enkephalin.

[0208] Examples of blood and blood coagulation factors include Factor I (fibrinogen), Factor II (prothrombin), tissue factor, Factor V (proaccelerin, labile factor), Factor VII (stable factor, proconvertin), Factor VIII (antihemophilic globulin), Factor IX (Christmas factor or plasma thromboplastin component), Factor X (Stuart-Prower factor), Factor Xa, Factor XI, Factor XII (Hageman factor), Factor XIII (fibrin-stabilizing factor), von Willebrand factor, prokallikrein (Fletcher factor), high-molecular weight kininogen (HMWK) (Fitzgerald factor), fibrinectin, fibrin, thrombin, antithrombin III, heparin cofactor II, protein C, protein S, protein Z, protein Z-related protease inhibitor (ZPI), plasminogen, alpha 2-antiplasmin, tissue plasminogen activator (tPA), urokinase, plasminogen activator inhibitor-1 (PAI1), plasminogen activator inhibitor-2 (PAI2), cancer procoagulant, and epoetin alfa (Epogen, Procrit).

[0209] Examples of cytokines include lymphokines, interleukins, and chemokines, type 1 cytokines, such as IFN-γ, TGF-β, and type 2 cytokines, such as IL-4, IL-10, and IL-13.

[0210] Examples of growth factors include Adrenomedullin (AM), Angiopoietin (Ang), Autocrine motility factor, Bone morphogenetic proteins (BMPs), Brain-derived neurotrophic factor (BDNF), Epidermal growth factor (EGF), Erythropoietin (EPO), Fibroblast growth factor (FGF), Gli cell line-derived neurotrophic factor (GDNF), Granulocyte colony-stimulating factor (G-CSF), Granulocyte macrophage colony-stimulating factor (GM-CSF), Growth differentiation factor-9 (GDF9), Hepatocyte growth factor (HGF), Hepatoma-derived growth factor (HDGF), Insulin-like growth factor (IGF), Migration-stimulating factor, Myostatin (GDF-8), Nerve growth factor (NGF) and other neurotrophins, Platelet-derived growth factor (PDGF), Thrombopoietin (TPO), Transforming growth factor alpha (TGF-α), Transforming growth factor beta (TGF-β), Tumour necrosis factor alpha (TNF-α), Vascular endothelial growth factor (VEGF), Wnt Signaling Pathway, placental growth factor (PIGF), [(Foetal Bovine Somatotropin)] (FBS), IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, and IL-7.

zumab, Sonecizumab, Sontuzumab, Stasmumab, Sulesomab, Tacatuzumab tetraxetan, Tadocizumab, Talizumab, Tenezumab, Taplitumomab paptok, Tefibazumab, Telitumomab ariox, Tenatumomab, Tenexifinam, Teplitumomab, Ticilimumab (tremelimumab), Tigatuzumab, Ticilizumab (atlizumab), Toralizumab, Tositumomab, Trastuzumab, Tremelimumab, Uloczumab celmoleukin, Tuvirumab, Urtoxazumab, Ustekinumab, Vapalizumab, Veltuzumab, Vepalizumab, Viscilizumab, Vocolizumab, Votulumumab, Zanolimumab, Zirali- mumab, and Zolimumab ariox.

[0212] Examples of infusion therapy or injectable therapeutic proteins include, for example, Tocilizumab (Roche/Actemr®), alpha-1 antitrypsin (Kamada/AAT), Hematide® (Affymax and Takeda, synthetic peptide), albinterferon alfa-2b (Novartis/Zalbim®, Rhucin® (Pharming Group, C1 inhibitor replacement therapy), tesamorelin (Theranostic Potent, Egrifta, synthetic growth hormone-releasing factor), ocrelizumab (Genentech, Roche and Biogen), belimumab (GlaxoSmithKline/Benlysta®, pegloticase (Savient Pharmaceuticals/Krystexxa®), tuligr escolerase alfa (Protalo/Upala), agalsidase alfa (Shire/Replagal®), velagloscer alfa (Shire).

[0213] Additional therapeutic proteins useful in accordance to aspects of this invention will be apparent to those of skill in the art, and the invention is not limited in this respect.

[0214] In some embodiments, a component, such as an antigen or immunosuppressant, may be isolated. Isolated refers to the element being separated from its native environment and present in sufficient quantities to permit its identification or use. This means, for example, the element may be (i) selectively produced by expression cloning or (ii) purified as by chromatography or electrophoresis. Isolated elements may be, but need not be, substantially pure. Because an isolated element may be admixed with a pharmacologically acceptable excipient in a pharmaceutical preparation, the element may comprise only a small percentage by weight of the preparation. The element is nonetheless isolated in that it has been separated from the substances with which it may be associated in living systems, i.e., isolated from other lipids or proteins. Any of the elements provided herein can be included in the compositions in isolated form.

D. METHODS OF MAKING AND USING THE INVENTIVE COMPOSITIONS AND RELATED METHODS

[0215] Synthetic nanocarriers may be prepared using a wide variety of methods known in the art. For example, synthetic nanocarriers can be formed by methods as nanoprecipitation, flow focusing fluidic channels, spray drying, single and double emulsion solvent evaporation, solvent extraction, phase separation, milling, microemulsion procedures, microfabrication, nanofabrication, sacrificial layers, simple and complex coacervation, and other methods well known to those of ordinary skill in the art. Alternatively or additionally, aqueous and organic solvent syntheses for monodisperse semiconductor, conductive, magnetic, organic, and other nanomaterials have been described (Pellegrino et al., 2005, Small 1:48; Murray et al., 2000, Ann. Rev. Mat. Sci., 30:545; and Trindade et al., 2001, Chem. Mat., 13:3843). Additional methods have been described in the literature (see, e.g., Dombrow, Ed., “Microcapsules and Nanoparticles in Medicine and Pharmacy,” CRC Press, Boca Raton, 1992; Mathiowitz et al., 1987, J. Control. Release, 5:13; Mathiowitz et al., 1987, Reactive Polymers, 6:275; and Mathiowitz et al., 1988, J. Appl. Polymer Sci., 35:755; U.S. Pat. Nos. 5,578,325 and 6,007,845; P. Paolicelli et al., “Surface-modified PLGA-based Nanoparticles that can Efficiently Associate and Deliver Virus-like Particles” Nanomedicine. 5(6):843-853 (2010)).

[0217] In certain embodiments, synthetic nanocarriers are prepared by a nanoprecipitation process or spray drying. Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, stickiness, shape, etc.). The method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.

[0218] If particles prepared by any of the above methods have a size range outside of the desired range, particles can be sized, for example, using a sieve.

[0219] Elements (i.e., components) of the inventive synthetic nanocarriers (such as moieties of which an immunodefense surface is comprised, targeting moieties, polymeric matrices, antigens, immunosuppressants and the like) may be coupled to the overall synthetic nanocarrier, e.g., by one or more covalent bonds, or may be coupled by means of one or more linkers. Additional methods of functionalizing synthetic nanocarriers may be adapted from Published US Patent Application 2006/0002852 to Solfzman et al., Published US Patent Application 2009/0028910 to DeSimone et al., or Published International Patent Application WO/2008/127532 A1 to Murthy et al.

[0220] Alternatively or additionally, synthetic nanocarriers can be coupled to components directly or indirectly via non-covalent interactions. In non-covalent embodiments, the non-covalent coupling is mediated by non-covalent interactions including but not limited to charge interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof. Such couplings may be arranged to be on an external surface or an internal surface of an inventive synthetic nanocarrier. In embodiments, encapsulation and/or absorption is a form of coupling. In embodiments, the inventive synthetic nanocarriers can be combined with antigen by admixing in the same vehicle or delivery system.
Populations of synthetic nanocarriers may be combined to form pharmaceutical dosage forms according to the present invention using traditional pharmaceutical mixing methods. These include liquid-liquid mixing in which two or more suspensions, each containing one or more subsets of nanocarriers, are directly combined or are brought together via one or more vessels containing dissolvent. As synthetic nanocarriers may also be produced or stored in a powder form, dry powder-powder mixing could be performed as could the re-suspension of two or more powders in a common media. Depending on the properties of the nanocarriers and their interaction potentials, there may be advantages conferred to one or another route of mixing.

Typical inventive compositions that comprise synthetic nanocarriers may comprise inorganic or organic buffers (e.g., sodium or potassium salts of phosphate, carbonate, acetate, or citrate) and pH adjustment agents (e.g., hydrochloric acid, sodium or potassium hydroxide, salts of citrate or acetate, amino acids and their salts) antioxidants (e.g., ascorbic acid, alpha-tocopherol), surfactants (e.g., polysorbate 20, polysorbate 80, polyoxyethylene 9-10 nonyl phenol, sodium desoxycholate), solution and/or cryo/lyo stabilizers (e.g., sucrose, lactose, mannitol, trehalose), osmotic adjustment agents (e.g., salts or sugars), antibacterial agents (e.g., benzene acid, phenol, gentamicin), antifoaming agents (e.g., polydimethylsiloxane), preservatives (e.g., thimerosal, 2-phenoxyethanol, EDTA), polymeric stabilizers and viscosity adjustment agents (e.g., polyvinylpyrrolidone, poloxamer 408, carboxymethylcellulose) and co-solvents (e.g., glycerol, polyethylene glycol, ethanol).

Compositions according to the invention comprise inventive synthetic nanocarriers in combination with pharmaceutically acceptable excipients. The compositions may be made using conventional pharmaceutical manufacturing and compounding techniques to arrive at useful dosage forms. Techniques suitable for use in practicing the present invention may be found in Handbook of Industrial Mixing: Science and Practice, Edited by Edward L. Paul, Victor A. Atiemo-Obeng, and Suzanne M. Kresta, 2004 John Wiley & Sons, Inc., and Pharmaceutics: The Science of Dosage Form Design, 2nd Ed: Edited by M. E. Apte, 2001, Churchill Livingstone. In an embodiment, inventive synthetic nanocarriers are suspended in sterile saline solution for injection together with a preservative.

It is to be understood that the compositions of the invention can be made in any suitable manner, and the invention is in no way limited to compositions that can be produced using the methods described herein. Selection of an appropriate method may require attention to the properties of the particular moieties being associated.

In some embodiments, inventive synthetic nanocarriers are manufactured under sterile conditions or are terminally sterilized. This can ensure that resulting compositions are sterile and non-infectious, thus improving safety when compared to non-sterile compositions. This provides a valuable safety measure, especially when subjects receiving synthetic nanocarriers have immune defects, are suffering from infection, and/or are susceptible to infection. In some embodiments, inventive synthetic nanocarriers may be lyophilized and stored in suspension or as lyophilized powder depending on the formulation strategy for extended periods without losing activity.

The compositions of the invention can be administered by a variety of routes, including but not limited to subcutaneous, intranasal, oral, intravenous, intraperitoneal, intramuscular, transmucosal, transmucosal, sublingual, rectal, ophthalmic, pulmonary, intradermal, transdermal, transcutaneous or intradermal or by a combination of these routes. Routes of administration also include administration by inhalation or pulmonary aerosol. Techniques for preparing aerosol delivery systems are well known to those of skill in the art (see, for example, Sciarra and Cutie, "Aerosols," in Remington's Pharmaceutical Sciences, 18th edition, 1990, pp. 1694-1712; incorporated by reference).

The transplantable grafts or therapeutic proteins provided as a cell-based therapy of the invention may be administered by parenteral, intraarterial, intranasal or intravenous administration or by injection to lymph nodes or anterior chamber of the eye or by local administration to an organ or tissue of interest. The administration may be by subcutaneous, intraheal, intraventricular, intramuscular, intraperitoneal, intracoronary, intrapancreatic, infrabhepatic or bronchial injection.

The compositions of the invention can be administered in effective amounts, such as the effective amounts described elsewhere herein. Doses of dosage forms contain varying amounts of populations of synthetic nanocarriers and/or varying amounts of antigens and/or immunosuppressants, according to the invention. The amount of synthetic nanocarriers and/or antigens and/or immunosuppressants present in the inventive dosage forms can be varied according to the nature of the antigens and/or immunosuppressants, the therapeutic benefit to be accomplished, and other such parameters. In embodiments, dose ranging studies can be conducted to establish optimal therapeutic amount of the population of synthetic nanocarriers and the amount of antigens and/or immunosuppressants to be present in the dosage form. In embodiments, the synthetic nanocarriers and/or the antigens and/or immunosuppressants are present in the dosage form in an amount effective to generate a tolerogenic immune response to the antigens upon administration to a subject. It may be possible to determine amounts of the antigens and/or immunosuppressants effective to generate a tolerogenic immune response using conventional dose ranging studies and techniques in subjects. Inventive dosage forms may be administered at a variety of frequencies. In a preferred embodiment, at least one administration of the dosage form is sufficient to generate a pharmacologically relevant response. In more preferred embodiments, at least two administrations, at least three administrations, or at least four administrations, of the dosage form are utilized to ensure a pharmacologically relevant response.

Prophylactic administration of the inventive compositions can be initiated prior to the onset of disease, disorder or condition or therapeutic administration can be initiated after a disorder, disorder or condition is established.

In some embodiments, administration of synthetic nanocarriers is undertaken e.g., prior to administration of a therapeutic protein, transplantable graft or exposure to an allergen. In exemplary embodiments, synthetic nanocarriers are administered at one or more times including, but not limited to, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 days prior to administration of a therapeutic protein, transplantable graft or exposure to an allergen. In addition or alternatively, synthetic nanocarriers can be administered to a subject following administration of a therapeutic protein,
transplantable graft or exposure to an allergen. In exemplary embodiments, synthetic nanocarriers are administered at one or more times including, but not limited to, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, etc. days following administration of a therapeutic protein, transplantable graft or exposure to an allergen.

[0231] In some embodiments, a maintenance dose (e.g., of a synthetic nanocarrier composition provided herein) is administered to a subject after an initial administration has resulted in a tolerogenic response in the subject, for example to maintain the tolerogenic effect achieved after the initial dose, to prevent an undesired immune reaction in the subject, or to prevent the subject becoming a subject at risk of experiencing an undesired immune response or an undesired level of an immune response. In some embodiments, the maintenance dose is the same dose as the initial dose the subject received. In some embodiments, the maintenance dose is a lower dose than the initial dose. For example, in some embodiments, the maintenance dose is about 1/4, about 1/3, about 1/2, about 2/3, about 3/4, about 5/6, about 5/9, about 5/10, about 1/10, about 1/100, about 1/1000, about 1/5000, about 1/100,000, or about 1/1,000,000 (weight/weight) of the initial dose.

[0232] The compositions and methods described herein can be used to induce or enhance a tolerogenic immune response and/or to suppress, modulate, direct or redirect an undesired immune response for the purpose of immune suppression. The compositions and methods described herein can be used in the diagnosis, prophylaxis and/or treatment of diseases, disorders or conditions in which immune suppression (e.g., tolerogenic immune response) would confer a treatment benefit. Such diseases, disorders or conditions include inflammatory diseases, autoimmune diseases, allergies, organ or tissue rejection and graft versus host disease. The compositions and methods described herein can also be used in subjects who have undergone or will undergo transplantation. The compositions and methods described herein can also be used in subjects who have received, are receiving or will receive a therapeutic protein against which they have generated or are expected to generate an undesired immune response.

[0233] Autoimmune diseases include, but are not limited to, rheumatoid arthritis, multiple sclerosis, immune-mediated or Type I diabetes mellitus, inflammatory bowel disease (e.g., Crohn’s disease or ulcerative colitis), systemic lupus erythematosus, psoriasis, scleroderma, autoimmune thyroid disease, alopecia areata, Grave’s disease, Guillain-Barré syndrome, celiac disease, Sjögren’s syndrome, rheumatic fever, gastritis, autoimmune atrophic gastritis, autoimmune hepatitis, insulin, oophoritis, orchitis, uveitis, plasencogenic uveitis, myasthenia gravis, primary myxoedema, pernicious anemia, autoimmune haemolytic anemia, Addison’s disease, scleroderma, Goodpasture’s syndrome, nephritis, for example, glomerulonephritis, psoriasis, pemphigus vulgaris, pemphigoid, sympathetic ophthalma, idiopathic thromboeyocypenic purpura, idiopathic feucopenia, Wegener’s granulomatosis and poly/dermatomyositis.

[0234] Some additional exemplary autoimmune diseases, associated autoantigens, and autoantibodies, which are contemplated for use in the invention, are described in Table 1 below:

<table>
<thead>
<tr>
<th>Autoantibody Type</th>
<th>Autoantibody</th>
<th>Autoantigen</th>
<th>Autoimmune disease or disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-nuclear antibodies</td>
<td>Anti-SSA/Ro autoantibodies</td>
<td>ribonucleoproteins</td>
<td>Systemic lupus erythematosus, neonatal heart block, primary Sjögren’s syndrome</td>
</tr>
<tr>
<td>Anti-La/SS-B autoantibodies</td>
<td></td>
<td>ribonucleoproteins</td>
<td>Primary Sjögren’s syndrome</td>
</tr>
<tr>
<td>Anti-centromere antibodies</td>
<td></td>
<td>centromere</td>
<td>CREST syndrome</td>
</tr>
<tr>
<td>Anti-neutrophil nuclear antibody-2</td>
<td>Anti-bDNA</td>
<td>R(DNAse I digestion needed) double-stranded DNA</td>
<td>SLE</td>
</tr>
<tr>
<td>Anti-Jo1</td>
<td>Anti-Smith</td>
<td>histidine-tRNA ligase</td>
<td>Inflammatory myopathy</td>
</tr>
<tr>
<td>Anti-topoisomerase antibodies</td>
<td></td>
<td>snRNP core proteins</td>
<td>SLE</td>
</tr>
<tr>
<td>Anti-histone antibodies</td>
<td></td>
<td>Type 1 topoisomerase</td>
<td>Systemic sclerosis (anti-Scl-70 antibodies)</td>
</tr>
<tr>
<td>Anti-Sp100 antibodies[4]</td>
<td></td>
<td>nucleoporin 62</td>
<td>Primary biliary cirrhosis[3][4][5]</td>
</tr>
<tr>
<td>Anti-trans glutaminase antibodies</td>
<td>Anti-cTG</td>
<td>nucleoporin 210 kDa</td>
<td>Dermatitis herpetiformis</td>
</tr>
<tr>
<td>Anti-ganglioside antibodies</td>
<td>Anti-cTGB</td>
<td>ganglioside GQ1B</td>
<td>Miller-Fisher Syndrome</td>
</tr>
<tr>
<td>Anti-actin antibodies</td>
<td></td>
<td>ganglioside GD3</td>
<td>Acute motor axonal neuropathy (AMAN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ganglioside GM1</td>
<td>Multifocal motor neuropathy with conduction block (MMN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>actin</td>
<td>Coeliac disease anti-actin antibodies correlated with the level of intestinal damage[6][7]</td>
</tr>
</tbody>
</table>
-continued

<table>
<thead>
<tr>
<th>Autoantibody Type</th>
<th>Autoantibody</th>
<th>Autoantigen</th>
<th>Autoimmune disease or disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver kidney</td>
<td></td>
<td></td>
<td>Autoimmune hepatitis [8]</td>
</tr>
<tr>
<td>Micrornonal type 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibody</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td>Anti-thrombin</td>
<td>Thrombin</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>antibody</td>
<td>antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-neutrophil</td>
<td>p-ANCA</td>
<td>Neutrophil</td>
<td>Microscopic polyangiitis, Churg-Strauss</td>
</tr>
<tr>
<td>cytoplasmic</td>
<td></td>
<td>perinuclear</td>
<td>syndrome, systemic vasculitides (non-</td>
</tr>
<tr>
<td>antibody</td>
<td></td>
<td></td>
<td>specific)</td>
</tr>
<tr>
<td>Rheumatoid factor</td>
<td>IgG</td>
<td>Smooth muscle</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Anti-smooth muscle</td>
<td></td>
<td></td>
<td>Chronic autoimmune hepatitis</td>
</tr>
<tr>
<td>Antibody</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-mitochondrial</td>
<td>Mitochondria</td>
<td></td>
<td>Primary biliary cirrhosis [9]</td>
</tr>
<tr>
<td>Antibody</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-SRP</td>
<td></td>
<td></td>
<td>Polymyositis [10]</td>
</tr>
<tr>
<td>Anti-VGCC</td>
<td></td>
<td></td>
<td>Scleromyositis</td>
</tr>
<tr>
<td>Voltage-gated</td>
<td></td>
<td></td>
<td>Myasthenia gravis</td>
</tr>
<tr>
<td>Calcium channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/Q-type channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid peroxidase</td>
<td>Hashimoto’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(microsomal)</td>
<td>thyroiditis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH receptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yo (cerebellar)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parkin’s (Calz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphiphysin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-VGKC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage-gated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(VGKC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal ganglia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-methyl-D-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate receptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NMDA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamatic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decarboxylase (GAD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquaporin-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus type 1, stiff person syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuromyelitis optica (Devic’s syndrome)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inflammatory diseases include, but are not limited to, Alzheimer’s, arthritis, asthma, atherosclerosis, Crohn’s disease, colitis, cystic fibrosis, dermatitis, diverticulitis, hepatitis, irritable bowel syndrome (IBS), lupus erythematosus, muscular dystrophy, nephritis, Parkinson’s, shingles and ulcerative colitis. Inflammatory diseases also include, for example, cardiovascular disease, chronic obstructive pulmonary disease (COPD), bronchiectasis, chronic cholecystitis, tuberculosis, Hashimoto’s thyroiditis, sepsis, sarcoidosis, silicosis and other pneumoconioses, and an implanted foreign body in a wound, but are not so limited. As used herein, the term “sepsis” refers to a well-recognized clinical syndrome associated with a host’s systemic inflammatory response to microbial invasion. The term “sepsis” as used herein refers to a condition that is typically signaled by fever or hypothermia, tachycardia, and tachypnea, and in severe instances can progress to hypotension, organ dysfunction, and even death. In some embodiments, the inflammatory disease is non-autoimmune inflammatory bowel disease, post-surgical adhesions, coronary artery disease, hepatic fibrosis, acute respiratory distress syndrome, acute inflammatory pancreatitis, endoscopic retrograde cholangiopancreatography-induced pancreatitis, burns, atherogenesis of coronary, cerebral and peripheral arteries, appendicitis, cholecystitis, diverticulitis, visceral fibrotic disorders, wound healing, skin scarring disorders (keloids, hidradenitis suppurativa), granulomatous disorders (sarcoidosis, primary biliary cirrhosis), asthma, pyoderma gangrenosum, Sweet’s syndrome, Behcet’s disease, primary sclerosing cholangitis or an abscess. In some preferred embodiment the inflammatory disease is inflammatory bowel disease (e.g., Crohn’s disease or ulcerative colitis). In other embodiments, the inflammatory disease is an autoimmune disease. The autoimmune disease in some embodiments is rheumatoid arthritis, rheumatic fever, ulcerative colitis, Crohn’s disease, autoimmune inflammatory
Method for Preparing Synthetic Nanocarrier Containing Rapamycin and Ovalbumin (323-339)

[0244] A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining solution 1 (0.2 mL), solution 2 (0.2 mL), and solution 3 (1.0 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 4 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.

[0245] The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the synthetic nanocarriers to form. A portion of the synthetic nanocarriers were washed by transferring the synthetic nanocarrier suspension to a centrifuge tube and centrifuging at 21,000g and 4°C for one hour, removing the supernatant, and re-suspending the pellet in phosphate buffer saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final synthetic nanocarrier dispersion of about 10 mg/mL.

[0246] The amounts of peptide and rapamycin in the synthetic nanocarriers were determined by HPLC analysis. The total drug-synthetic nanocarrier mass per mL of suspension was determined by a gravimetric method.

Method for Synthetic Nanocarrier Containing Rapamycin

[0247] A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining 0.13 M hydrochloric acid solution (0.2 mL), solution 2 (0.2 mL), and solution 3 (1.0 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 4 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.

[0248] The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the synthetic nanocarriers to form. A portion of the synthetic nanocarriers were washed by transferring the synthetic nanocarrier suspension to a centrifuge tube and centrifuging at 21,000g and 4°C for one hour, removing the supernatant, and re-suspending the pellet in phosphate buffer saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final synthetic nanocarrier dispersion of about 10 mg/mL.

[0249] The amount of rapamycin in the synthetic nanocarrier was determined by HPLC analysis. The total dry-synthetic nanocarrier mass per mL of suspension was determined by a gravimetric method.

Method for Measuring Rapamycin Load

[0250] Approximately 3 mg of synthetic nanocarriers were collected and centrifuged to separate supernatant from synthetic nanocarrier pellet. Acetonitrile was added to the pellet, and the sample was sonicated and centrifuged to remove any

Method for Preparing Synthetic Nanocarrier Containing Rapamycin and Ovalbumin

[0238] Graft versus host disease (GVHD) is a complication that can occur after a pluripotent cell (e.g., stem cell) or bone marrow transplant in which the newly transplanted material results in an attack on the transplant recipient’s body. In some instances, GVHD takes place after a blood transfusion. Graft-versus-host-disease can be divided into acute and chronic forms. The acute or fulminant form of the disease (aGVHD) is normally observed within the first 100 days post-transplant, and is a major challenge to transplant owing to associated morbidity and mortality. The chronic form of graft-versus-host-disease (cGVHD) normally occurs after 100 days. The appearance of moderate to severe cases of cGVHD adversely influences long-term survival.

EXAMPLES

Example 1

Immune Response of Synthetic Nanocarriers with Coupled Rapamycin with and without Ovalbumin Peptide (323-339)

Materials

[0239] Ovalbumin peptide 323-339, a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505; Part #4065609). Rapamycin was purchased from TSS CHEM (185 Wilson Street, Framingham, Mass. 01702; Product Catalogue #R1017). PLGA with a lactide/glycolide ratio of 3:1 and an inherent viscosity of 0.75 dl/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).

[0240] Solution 1: Ovalbumin peptide 323-339 at 20 mg/mL in dithiothreitol and ethanol aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.

[0241] Solution 2: Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride.

[0242] Solution 3: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.

[0243] Solution 4: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
insoluble material. The supernatant and pellet were injected on RP-HPLC and absorbance was read at 278 nm. The µg found in the pellet were used to calculate % entrapped (load), µg in supernatant and pellet were used to calculate total µg recovered.

Method for Measuring Ovalbumin (323-339) Load

Approximately 3 mg of synthetic nanocarriers were collected and centrifuged to separate supernatant from synthetic nanocarrier pellet. Trifluoroethanol was added to the pellet and the sample was sonicated to dissolve the polymer, 0.2% trifluoroacetic acid was added and sample was sonicated and then centrifuged to remove any insoluble material. The supernatant and pellet were injected on RP-HPLC and absorbance was read at 215 nm. The µg found in the pellet were used to calculate % entrapped (load), µg in supernatant and pellet were used to calculate total µg recovered.

Antigen-Specific Tolerogenic Dendritic Cells (Tdc) Activity on Treg Cell Development

The assay included the use of OTII mice which have a transgenic T-cell receptor specific for an immune dominant ovalbumin (323-339). In order to create antigen-specific Tdc's, CD11c+ splenocytes were isolated, and the ovalbumin (323-339) peptide added in vitro at 1 µg/ml or no antigen. Soluble or nanocarrier-encapsulated rapamycin was then added to the DCs for 2 hours which were then washed extensively to remove free rapamycin from the culture. Purified responder CD4+CD25− cells were isolated from OTII mice and added to TDC at a 10:1 T to DC ratio. The mixture of TDC and OTII-cells were then cultured for 4-5 days, and the frequency of Treg cells (CD4+CD25highFoxP3+) were analyzed by flow cytometry as shown in FIG. 1. Regions were selected based on isotype controls.

Example 2

Mesoporous Silica Nanoparticles with Coupled Ibuprofen (Prophetic)

Mesoporous SiO2 nanoparticle cores are created through a sol-gel process. Hexadecyltrimethyl-ammonium bromide (CTAB) (0.5 g) is dissolved in deionized water (500 mL), and then 2 M aqueous NaOH solution (3.5 mL) is added to the CTAB solution. The solution is stirred for 30 min, and then Tetraethoxysilane (TEOS) (2.5 mL) is added to the solution. The resulting gel is stirred for 3 h at a temperature of 80°C. The white precipitate which forms is captured by filtration, followed by washing with deionized water and drying at room temperature. The remaining surfactant is then extracted from the particles by suspension in an ethanolic solution of HCl overnight. The particles are washed with ethanol, centrifuged, and redispersed under ultrasonication. This wash procedure is repeated a total of two additional times.

The SiO2 nanoparticles are then functionalized with amino groups using (3-aminopropyl)-trimethoxysilane (APTMMS). To do this, the particles are suspended in ethanol (30 mL), and APTMMS (50 µL) is added to the suspension. The suspension is allowed to stand at room temperature for 2 h and then is boiled for 4 h, keeping the volume constant by periodically adding ethanol. Remaining reactants are removed by five cycles of washing by centrifugation and redispersing in pure ethanol.

In a separate reaction, 1-4 nm diameter gold seeds are created. All water used in this reaction is first deionized and then distilled from glass. Water (45.5 mL) is added to a 100 mL round-bottom flask. While stirring, 0.2 M aqueous NaOH (1.5 mL) is added, followed by a 1% aqueous solution of tetrakis(hydroxymethyl)phosphonium chloride (THPC) (1.0 mL). Two minutes after the addition of THPC solution, a 10 mg/mL aqueous solution of chloroauric acid (2 mL), which has been aged at least 15 min, is added. The gold seeds are purified through dialysis against water.

To form the core-shell nanocarriers, the aminofunctionalized SiO2 nanoparticles formed above are first mixed with the gold seeds for 2 h at room temperature. The gold-decorated SiO2 particles are collected through centrifugation and mixed with an aqueous solution of chloroauric acid and potassium bicarbonate to form the gold shell. The particles are then washed by centrifugation and redispersing in water. Ibuprofen is loaded by suspending the particles in a solution of sodium ibuprofen (1 mg/mL) for 72 h. Free ibuprofen is then washed from the particles by centrifugation and redispersing in water.

Example 3

Liposomes Containing Cyclosporine A (Prophetic)

The liposomes are formed using thin film hydration, 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (32 µmol), cholesterol (32 µmol), and cyclosporin A (6.4 µmol) are dissolved in pure chloroform (3 mL). This lipid solution is added to a 50 mL round-bottom flask, and the solvent is evaporated on a rotary evaporator at a temperature of 60°C. The flask is then flushed with nitrogen gas to remove remaining solvent. Phosphate buffered saline (2 mL) and five glass beads are added to the flask, and the lipid film is hydrated by shaking at 60°C for 1 h to form a suspension. The suspension is transferred to a small pressure tube and sonicated at 60°C for four cycles of 30 s pulses with a 30 s delay between each pulse. The suspension is then left undisturbed at room temperature for 2 h to allow for complete hydration. The liposomes are washed by centrifugation followed by resuspension in fresh phosphate buffered saline.

Example 4

Polymeric Nanocarrier Containing Polymer-Rapamycin Conjugate (Prophetic)

Preparation of PLGA-Rapamycin Conjugate:

PLGA polymer with acid end group (7525 DG L1, acid number 0.46 mmol/g, Lakeshore Biomaterials; 5 g, 2.3 mmol, 1.0 eq) is dissolved in 30 mL of dichloromethane (DCM), N,N-Dicyclohexylcarbodiimide (1.2 eq, 2.8 mmol, 0.57 g) is added followed by rapamycin (1.0 eq, 2.3 mmol, 2.1 g) and 4-dimethylaminopyridine (DMAP) (2.0 eq, 4.6 mmol, 0.56 g). The mixture is stirred at rt for 2 days. The mixture is then filtered to remove insoluble dicyclohexylurea. The filtrate is concentrated to ca. 10 mL in volume and added to 100 mL of isopropyl alcohol (IPA) to precipitate out the PLGA-rapamycin conjugate. The IPA layer is removed and the polymer is then washed with 50 mL of IPA and 50 mL of methyl t-butyl ether (MTBE). The polymer is then dried under vacuum at 35°C for 2 days to give PLGA-rapamycin as a white solid (ca. 6.5 g).
Preparation of nanocarrier containing PLGA-rapa mycin conjugate and ovalbumin peptide (323-339):

Nanocarrier containing PLGA-rapamycin is prepared according to the procedure described in Example 1 as follows:

[0262] Solutions for nanocarrier formation are prepared as follows:

[0263] Solution 1: Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution is prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature. Solution 2: PLGA-rapamycin @ 100 mg/mL in methylene chloride. The solution is prepared by dissolving PLGA-rapamycin in pure methylene chloride. Solution 3: PLA-PEG @ 100 mg/mL in methylene chloride. The solution is prepared by dissolving PLA-PEG in pure methylene chloride. Solution 4: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.

[0264] A primary water-in-oil emulsion is prepared first. W1/O1 is prepared by combining solution 1 (0.2 mL), solution 2 (0.75 mL), and solution 3 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) is then prepared by combining solution 4 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 50% amplitude for 60 seconds using the Branson Digital Sonifier 250. The W1/O1/W2 emulsion is added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers is washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600xg and 4° C. for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure is repeated, and the pellet is re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

Example 5
Preparation of Gold Nanocarriers (AuNCs) Containing Rapamycin (Prophetic)

[0265] Preparation of HS-PEG-Rapamycin:

[0266] A solution of PEG acid disulfide (1.0 eq), rapamycin (2.0-2.5 eq), DCC (2.5 eq) and DMAP (3.0 eq) in dry DMF is stirred at rt overnight. The insoluble dicyclohexylurea is removed by filtration and the filtrate is added to isopropyl alcohol (IPA) to precipitate out the PEG-disulfide-di-rapamycin ester and washed with IPA and dried. The polymer is then treated with tris(2-carboxyethyl)phosphine hydrochloride in DMF to reduce the PEG disulfide to thiol PEG rapamycin ester (HS-PEG-rapamycin). The resulting polymer is recovered by precipitation from IPA and dried as previously described and analyzed by H NMR and GPC.

[0267] Formation of Gold NCs (AuNCs):

[0268] An aqueous solution of 500 mL of 1 mM HAntC14 is heated to reflux for 10 min with vigorous stirring in a 1 L round-bottom flask equipped with a condenser. A solution of 50 mL of 40 mM of trisodium citrate is then rapidly added to the stirring solution. The resulting deep wine red solution is kept at reflux for 25-30 min and the heat is withdrawn and the solution is cooled to room temperature. The solution is then filtered through a 0.8 μm membrane filter to give the AuNCs solution. The AuNCs are characterized using visible spectros copy and transmission electron microscopy. The AuNCs are ca. 20 nm diameter capped by citrate with peak absorption at 520 nm.

[0269] AuNCs conjugate with HS-PEG-rapamycin:

[0270] A solution of 150 μL of HS-PEG-rapamycin (10 μM in 10 mM pH 9.0 carbonate buffer) is added to 1 mL of 20 nm diameter citrate-capped gold nanocarriers (1.16 nM) to produce a molar ratio of thiol to gold of 2500:1. The mixture is stirred at room temperature under argon for 1 hour to allow complete exchange of thiol with citrate on the gold nanocarriers. The AuNCs with PEG-rapamycin on the surface is then purified by centrifugation at 12,000 g for 30 minutes. The supernatant is decanted and the pellet containing AuNC-S-PEG-rapamycin is then pellet washed with 1× PBS buffer. The purified Gold-PEG-rapamycin nanocarriers are then resuspended in suitable buffer for further analysis and bioassays.

Example 6
Mesoporous Silica-Gold Core-Shell Nanocarriers Containing Ovalbumin (Prophetic)

[0271] Mesoporous SiO2 nanoparticle cores are created through a sol-gel process. Hexadecyltrimethyl-ammonium bromide (CTAB) (0.5 g) is dissolved in deionized water (500 mL), and then 2 M aqueous NaOH solution (3.5 mL) is added to the CTAB solution. The solution is stirred for 30 min, and then Tetraethoxysilane (TEOS) (2.5 mL) is added to the solution. The resulting gel is stirred for 3 h at a temperature of 80° C. The white precipitate which forms is captured by filtration, followed by washing with deionized water and drying at room temperature. The remaining surfactant is then extracted from the particles by suspension in an ethanolic solution of HCl overnight. The particles are washed with ethanol, centrifuged, and redispersed under ultrasonication. This wash procedure is repeated two additional times.

[0272] The SiO2 nanoparticles are then functionalized with amino groups using (3-aminopropyl)-triethoxysilane (APiMS). To do this, the particles are suspended in ethanol (30 mL), and APiMS (50 μL) is added to the suspension. The suspension is allowed to stand at room temperature for 2 h and then is boiled for 4 h, keeping the volume constant by periodically adding ethanol. Remaining reactants are removed by five cycles of washing by centrifugation and redispersing in pure ethanol.

[0273] In a separate reaction, 1-4 nm diameter gold seeds are created. All water used in this reaction is first deionized and then distilled from glass. Water (45.5 mL) is added to a 100 mL round-bottom flask. While stirring, 0.2 M aqueous NaOH (1.5 mL) is added, followed by a 1% aqueous solution of tetrakis(hydroxymethyl)phosphonium chloride (THPC) (1.0 mL). Two minutes after the addition of THPC solution, a 10 mg/mL aqueous solution of chloroauric acid (2 mL), which has been aged at least 15 min, is added. The gold seeds are purified through dialysis against water.

[0274] To form the core-shell nanocarriers, the aminofunctionalized SiO2 nanoparticles formed above are first mixed with the gold seeds for 2 h at room temperature. The gold-decorated SiO2 particles are collected through centrifugation and mixed with an aqueous solution of chloroauric acid and potassium bichromate to form the gold shell. The particles are then washed by centrifugation and redispersed in water. Thiolated Ovalbumin (made by treating Ovalbumin with 2-iminothiolane hydrochloride) is loaded by suspending the particles in a solution of thiolated Ovalbumin (1 mg/mL) for
The particles are then pellet washed with 1×PBS (pH 7.4) to remove free protein. The resulting silica-gold core-shell nanocarriers containing Ovalbumin are then re-suspended in 1×PBS for further analysis and assays.

Example 7

Liposomes Containing Rapamycin and Ovalbumin (Prophetic)

[0275] The liposomes are formed by thin film hydration. 1:2-Dipalmityl-sn-glycero-3-phosphocholine (DPPC) (32 μmol), cholesterol (32 μmol), and rapamycin (6.4 μmol) are dissolved in pure chloroform (3 mL). This lipid solution is added to a 10 mL glass tube and the solvent is removed under nitrogen gas stream and desiccated for 6 h. under vacuum. Multilamellar vesicles are obtained by hydration of the film with 2.0 mL of 25 mM MOPS buffer pH 8.5, containing excess amount of Ovalbumin. The tube is vortexed until the lipid film is peeled off from the tube surface. To break the multilamellar vesicles into monolamellar, ten cycles of freezing (liquid nitrogen) and thawing (30°C, water bath) are applied. The sample is then diluted to 1 ml in 25 mM MOPS buffer pH 8.5. Size of the resulting liposome is homogenized by extrusion by passing the sample 10 fold through a 200 nm pore polycarbonate filters. The resulting liposomes are then used for further analysis and bioassays.

Example 8

Polymeric Nanocarriers Composed of Modified Polyamino Acid with Surface Conjugated Ovalbumin (Prophetic)

[0276] Step-1. Preparation of Poly(g-glutamic acid) (γ-PGA) modified with L-phenylalanine ethyl ester (L-PAE): 4.7 unit mmol of γ-PGA (Mn=300 kD) is dissolved in 0.25 N NaHCO₃ aqueous solution (50 mL). L-PAE (4.7 mmol) and EDC.HCl (4.7 mmol) are added to the solution and stirred for 30 min at 4°C. The solution is then maintained at room temperature with stirring for 24 h. Low-molecular-weight chemicals are removed by dialysis using dialysis membrane with MWCO 50 kD. The resulting γ-PGA-graft-L-PAE is obtained by freeze-drying.

[0277] Step-2. Preparation of nanoparticles from γ-PGA-graft-L-PAE polymer: Nanoparticles composed of γ-PGA-graft-L-PAE are prepared by a precipitation and dialysis method. γ-PGA-graft-L-PAE (20 mg) was dissolved in 2 mL of DMSO followed by addition of 2 mL of water to form a translucent solution. The solution is then dialyzed against distilled water using cellulose membrane tubing (50,000 MWCO) to form the nanoparticles and to remove the organic solvents for 72 h at room temperature. The distilled water is exchanged at intervals of 12 h. The resulting nanoparticle solution (10 mg/mL in water) is then used for antigen conjugation.

[0278] Step-3. Ovalbumin conjugation to γ-PGA nanoparticles: Surface carboxylic acid groups of the γ-PGA nanoparticles (10 mg/ml) are first activated by EDC and NHS (10 mg/mL each in phosphate buffer, pH 5.8) for 2 h at ambient temperature. After pellet washing to remove excess EDC/ NHS, the activated nanoparticles are mixed with 1 mL of Ovalbumin (10 mg/ml) in phosphate-buffered saline (PBS, pH 7.4) and the mixture is incubated at 4-8°C for 24 h. The resulting Ovalbumin conjugated γ-PGA nanoparticles are washed twice with PBS and resuspended at 5 mg/mL in PBS for further analysis and bioassays.

Example 9

Erythropoietin (EPO)-Encapsulated γ-PGA Nanoparticles (Prophetic)

[0279] To prepare the EPO-encapsulated γ-PGA nanoparticles, 0.25-4 mg of EPO is dissolved in 1 mL of PBS (pH 7.4) and 1 mL of the γ-PGA-graft-L-PAE (10 mg/mL in DMSO) is added to the EPO solution. The resulting solution is centrifuged at 14,000×g for 15 min and repeatedly rinsed with PBS. The resulting EPO-encapsulated γ-PGA nanoparticles are then resuspended in PBS (5 mg/mL) for further analysis and bioassay.

Example 10

Preparation of Gold Nanocarriers (AuNCS) Containing Ovalbumin (Prophetic)

[0280] Step-1. Formation of Gold NCS (AuNCS): An aq. solution of 500 mL of 1 mM HAuCl₄ is heated to reflux for 10 min with vigorous stirring in a 1 L round-bottom flask equipped with a condenser. A solution of 50 mL of 40 mM of trisodium citrate is then rapidly added to the stirring solution. The resulting deep wine red solution is kept at reflux for 25-30 min and the heat is withdrawn and the solution is cooled to room temperature. The solution is then filtered through a 0.8 μm membrane filter to give the AuNCS solution. The AuNCS are characterized using visible spectroscopy and transmission electron microscopy. The AuNCS are ca. 20 nm diameter capped by citrate with peak absorption at 520 nm.

[0281] Step-2. Conjugation of Ovalbumin to AuNCS: A solution of 150 μL of thiolated Ovalbumin (10 μM in 10 mM pH 9.0 carbonate buffer) is added to 1 mL of 20 nm diameter citrate-capped gold nanocarriers (1.16 nM) to produce a molar ratio of thiol to gold of 2500:1. The mixture is stirred at room temperature under argon for 1 hour to allow complete exchange of thiol with citrate on the gold nanocarriers. The AuNCS with Ovalbumin on the surface is then purified by centrifuge at 12,000 g for 30 minutes. The supernatant is decanted and the pellet containing AuNC-Ovalbumin is then pellet washed with 1×PBS buffer. The purified Gold-Ovalbumin nanocarriers are then resuspended in suitable buffer for further analysis and bioassays.

Example 11

Evaluating Tolerogenic Immune Response to Epoietin Alpha In Vivo (Prophetic)

[0282] Balb/c mice are immunized with epoietin alpha in incomplete Freunds adjuvant to induce CD4+ T-cell proliferation, the level of which is assessed. Subsequently, a composition of the invention comprising MHC Class II-restricted epitopes of epoietin alpha and an immunosuppressant is administered subcutaneously in a dose-dependent manner. The same mice are then again exposed to the epoietin alpha, and the level of CD4+ T cell proliferation is again assessed. Changes in the CD4+ T cell population are then monitored.
with a reduction in CD4+ T cell proliferation upon subsequent challenge with epoietin alpha indicating a tolerogenic immune response.

Example 12

Evaluating Tolerogenic Immune Responses with Synthetic Nanocarriers Comprising Immunosuppressant and APC Presentable Antigen In Vivo

Materials and Methods of Synthetic Nanocarrier Production

Nanocarrier 1

[0283] Rapamycin was purchased from TSZ CHEM (185 Wilson Street, Framingham, Mass. 01702; Product Catalogue #R1017). PLGA with a lactide:glycolide ratio of 3:1 and an inherent viscosity of 0.75 dl/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). PLA-PEG block copolymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).

[0284] Solutions were prepared as follows:

[0285] Solution 1: Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride.

[0286] Solution 2: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.

[0287] Solution 3: PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.

[0288] Solution 4: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.

[0289] An oil-in-water emulsion was used to prepare the nanocarriers. The O/W emulsion was prepared by combining solution 1 (0.2 mL), solution 2 (0.75 mL), solution 3 (0.25 mL), and solution 4 (3 mL) in a small pressure tube and sonicating at 30% amplitude for 60 seconds using a Branson Digital Sonifier 250. The O/W emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 21,000g at 4°C for 45 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

[0290] Nanocarrier size was determined by dynamic light scattering. The amount of rapamycin in the nanocarrier was determined by HPLC analysis. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

Nanocarrier 2

[0291] Ovalbumin peptide 323-339, a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Biochem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505; Part #4065609). PLGA with a lactide:glycolide ratio of 3:1 and an inherent viscosity of 0.75 dl/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). PLA-PEG block copolymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).

[0292] Solutions were prepared as follows:

[0293] Solution 1: Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.

[0294] Solution 2: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.

[0295] Solution 3: PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.

[0296] Solution 4: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.

[0297] A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining solution 1 (0.2 mL), solution 2 (0.75 mL), and solution 3 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 4 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.

[0298] The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600g at 4°C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

[0299] Nanocarrier size was determined by dynamic light scattering. The amount of peptide in the nanocarrier was determined by HPLC analysis. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

<table>
<thead>
<tr>
<th>Nanocarrier ID</th>
<th>Effective Diameter (nm)</th>
<th>Rapamycin Content (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanocarrier 1</td>
<td>215</td>
<td>9.5</td>
</tr>
<tr>
<td>Nanocarrier 2</td>
<td>234</td>
<td>2.1</td>
</tr>
<tr>
<td>Nanocarrier 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0300] Simvastatin was purchased from LKT Laboratories, Inc. (2233 University Avenue West, St. Paul, Minn. 55114; Product Catalogue #S3449), PLGA with a lactide:glycolide
ratio of 3:1 and an inherent viscosity of 0.75 dl/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).

[0301] Solutions were prepared as follows:

[0302] Solution 1: Simvastatin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving simvastatin in pure methylene chloride.

[0303] Solution 2: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.

[0304] Solution 3: PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.

[0305] Solution 4: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.

[0306] An oil-in-water emulsion was used to prepare the nanocarriers. The O/W emulsion was prepared by combining solution 1 (0.15 mL), solution 2 (0.75 mL), solution 3 (0.25 mL), and solution 4 (3 mL) in a small pressure tube and sonicating at 30% amplitude for 60 seconds using a Branson Digital Sonifier 250. The O/W emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600 g and 4°C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

[0307] Nanocarrier size was determined by dynamic light scattering. The amount of simvastatin in the nanocarrier was determined by HPLC analysis. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

<table>
<thead>
<tr>
<th>Nanocarrier ID</th>
<th>Effective Diameter (nm)</th>
<th>Simvastatin Content (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanocarrier 3</td>
<td>196</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Nanocarrier 4

[0308] Ovalbumin peptide 323-339, a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Tornrance Calif. 90505; Part #4065609). Rapamycin was purchased from TSZ CHEM (185 Wilson Street, Framingham, Mass. 01702; Product Catalogue #R1017). PLGA with a lactide:glycolide ratio of 3:1 and an inherent viscosity of 0.75 dl/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).

[0309] Solutions were prepared as follows:

[0310] Solution 1: Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.

[0311] Solution 2: Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride.

[0312] Solution 3: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.

[0313] Solution 4: PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.

[0314] Solution 5: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.

[0315] A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining solution 1 (0.2 mL), solution 2 (0.25 mL), solution 3 (0.75 mL), and solution 4 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 5 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 50% amplitude for 60 seconds using the Branson Digital Sonifier 250.

[0316] The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 21,000 g and 4°C for 45 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

[0317] Nanocarrier size was determined by dynamic light scattering. The amounts of peptide and rapamycin in the nanocarriers were determined by HPLC analysis. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

<table>
<thead>
<tr>
<th>Nanocarrier ID</th>
<th>Effective Diameter (nm)</th>
<th>Rapamycin Content (% w/w)</th>
<th>Peptide Content (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>227</td>
<td>9.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Nanocarrier 5

[0318] Ovalbumin peptide 323-339, a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Tornrance Calif. 90505; Part #4065609). Simvastatin was purchased from LKTLaboratories, Inc. (2233 University Avenue West, St. Paul, Minn. 55114; Product Catalogue #38449). PLGA with a lactide:glycolide ratio of 3:1 and an inherent viscosity of 0.75 dl/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).
Solutions were prepared as follows:

Solution 1: Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.

Solution 2: Simvastatin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving simvastatin in pure methylene chloride.

Solution 3: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.

Solution 4: PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.

Solution 5: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.

A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining solution 1 (0.2 mL), solution 2 (0.15 mL), solution 3 (0.75 mL), and solution 4 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 5 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.

The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600g and 4°C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

Nanocarrier size was determined by dynamic light scattering. The amounts of peptide and simvastatin in the nanocarrier were determined by HPLC analysis. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

In Vivo Administration 1

Effective Simvastatin Peptide Nanocarrier Diameter Content Content ID (nm) (% w/w) (% w/w) Nanocarrier 5 226 2.7 1.9

In Vivo Administration 2

The next day the recipient CD45.1 mice were treated with targeted tolerogenic synthetic vaccine particles (tSVP). They were loaded with combinations of ovalbumin peptide (323-339) (OVA323-339), Rapamycin (Rapa) and/or Simvastatin (Simva) and were administered subcutaneously (s.c.).

The injection constitutes a tolerogenic treatment and was followed by 4 more injections each spaced 2 weeks apart. After the treatment schedule was completed the recipient CD45.1 animals were killed and their spleens and popliteal lymph nodes were harvested, mechanically dissociated and filtered separately through a 70 μm sieve to yield a single-cell suspension. The spleen cells were depleted of red blood cells (RBCs) by incubation with RBC lysis buffer (Stem Cell Technologies) and cell counts were performed on both the spleens and lymph nodes.

Spleens or lymph node cells were cultured in CM (complete media) supplemented with 10 U/mL IL-2, restimulated with OP1 at 0.3x10^5 cells/well in 96-well round bottom (RB) plates and incubated at 37°C, 5% CO2. Cells were split at Day 2 and harvested on Day 5. Supernatants were collected and frozen while cells were stained for phenotypic analysis by flow cytometry. The cells were analyzed on a Becton Dickinson FacsCanto flow cytometer.

In Vivo Administration 3

Spleens from B6.Cg-Tg(TcraTcrb)425Cbn/J (OTII) and C57BL/6 (B6) mice were harvested, mechanically dissociated and filtered separately through a 70 μm sieve to yield a single-cell suspension. Purified CD4^+CD25^− cells were then extracted in a 2-step process using a Miltenyi Biotec AutoMACS magnetic cell sorter. Spleen cells were labeled using Miltenyi’s CD4^+ T-cell isolation kit II. The unlabeled CD4^+ T-cell fraction was then depleted of CD25^+ cells with CD25 depletion kit. The purified CD4^+ cells from B6 mice were then stained with an intracellular dye, Carboxyfluorescein Succinimidyl Ester (CFSE), before being admixed at equal concentrations with the purified OTII cells. They were then injected intravenously (i.v.) into B6.SJL-Ppcre^+/BoyAi (CD45.1) recipient mice.

The next day the recipient CD45.1 mice were treated with targeted tolerogenic synthetic vaccine particles. They comprised combinations of ovalbumin peptide (323-339) (OVA323-339), Rapamycin (Rapa) and Simvastatin (Simva) and were administered subcutaneously (s.c.) or intravenously (i.v.).

After the treatment schedule was completed the recipient CD45.1 animals were killed and their spleens and popliteal lymph nodes were harvested, mechanically dissociated and filtered separately through a 70 μm sieve to yield a single-cell suspension. The spleen cells were depleted of red blood cells (RBCs) by incubation with RBC lysis buffer (Stem Cell Technologies) and cell counts were performed on both the spleens and lymph nodes.

Spleen or lymph node cells were cultured in CM supplemented with 10 U/mL IL-2, restimulated with 1 μM OP1 at 0.3x10^5 cells/well in 96-well round bottom (RB) plates and incubated at 37°C, 5% CO2. Cells were split at Day 2 and harvested on Day 5. Supernatants were collected and frozen while cells were stained for phenotypic analysis by flow cytometry. The cells were analyzed on a Becton Dickinson FacsCanto flow cytometer.
Results

[0336] The results are shown in FIGS. 2 and 3 (Immunomodulator 1: rapamycin; immunomodulator 2: simvastatin). The figures show in vivo effects and demonstrates that antigen-specific expansion of effecter immune cells is reduced with synthetic nanocarriers comprising antigen and immunosuppressants as compared to antigen alone or synthetic nanocarriers comprising antigen with and without an immunostimulatory molecule.

Example 13

Tolerogenic Immune Responses with Synthetic Nanocarriers

Materials and Methods

Nanocarrier 1

[0337] Ovalbumin protein was purchased from Worthington Biochemical Corporation (730 Vassar Avenue, Lakewood, N.J. 08701; Product Code 3048). PLGA with a lactide/glycolide ratio of 3:1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). Polyvinyl alcohol (85–89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001). PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Sodium cholate hydrate was purchased from Sigma-Aldrich Corp. (3050 Spruce Street, St. Louis, Mo. 63103; Product Code C6445).

[0338] Solutions were prepared as follows:

[0339] Solution 1: Ovalbumin @ 50 mg/mL in phosphate buffered saline solution. The solution was prepared by dissolving ovalbumin in phosphate buffered saline solution at room temperature. Solution 2: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride. Solution 3: PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride. Solution 4: Polyvinyl alcohol @ 50 mg/mL and sodium cholate hydrate @ 10 mg/mL in 100 mM pH 8 phosphate buffer.

[0340] A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining solution 1 (0.2 mL), solution 2 (0.75 mL), and solution 3 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 4 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250. The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600g and 4°C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

[0341] Nanocarrier size was determined by dynamic light scattering. The amount of protein in the nanocarrier was determined by an o-phthalaldehyde fluorometric assay. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

<table>
<thead>
<tr>
<th>Nanocarrier ID</th>
<th>Effective Diameter (nm)</th>
<th>Protein Content (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>191</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Nanocarrier 2

[0342] Ovalbumin protein was purchased from Worthington Biochemical Corporation (730 Vassar Avenue, Lakewood, N.J. 08701; Product Code 3048). Rapamycin was purchased from TSZ CHEM (185 Wilson Street, Framingham, Mass. 01702; Product Catalogue #R1017). PLGA with a lactide/glycolide ratio of 3:1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Polyvinyl alcohol (85–89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001). Sodium cholate hydrate was purchased from Sigma-Aldrich Corp. (3050 Spruce Street, St. Louis, Mo. 63103; Product Code C6445).

[0343] Solutions were prepared as follows:

[0344] Solution 1: Ovalbumin @ 50 mg/mL in phosphate buffered saline solution. The solution was prepared by dissolving ovalbumin in phosphate buffered saline solution at room temperature. Solution 2: Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride. Solution 3: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride. Solution 4: PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride. Solution 5: Polyvinyl alcohol @ 50 mg/mL and sodium cholate hydrate @ 10 mg/mL in 100 mM pH 8 phosphate buffer.

[0345] A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining solution 1 (0.2 mL), solution 2 (0.2 mL), solution 3 (0.75 mL), and solution 4 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 5 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250. The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600g and 4°C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
Nanocarrier size was determined by dynamic light scattering. The amount of rapamycin in the nanocarrier was determined by HPLC analysis. The amount of protein in the nanocarrier was determined by an o-phthalaldehyde fluorometric assay. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

<table>
<thead>
<tr>
<th>Nanocarrier ID</th>
<th>Effective Diameter (nm)</th>
<th>Rapamycin Content (% w/w)</th>
<th>Protein Content (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>172</td>
<td>7.4</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Immunization

The purpose of this experiment was to assess the effects of encapsulated (tSVP) immunosuppressant on ongoing antibody responses by measuring antigen-specific immunoglobulins. One group of animals remained unimmunized as a control. Two groups of animals were immunized using “passive administration” of Ovalbumin or active immunization with OVA and CpG with 3 injections (d0, d14 and d28) followed by an assessment of antibody titers and one or two weeks of rest. Another two groups received the same immunizations but received boosts every 2 weeks at the same time they received the treatment. Each of these groups was split into three subgroups to test the capacity of different treatments to modify the Ig titers induced. A control subgroup did not receive tolerogenic treatment. Two other treatments were applied to the other subgroups including NP carrying just OVA protein or in combination with immunosuppressant. For immunization, animals received 20 μl/lmb of OVA+CpG (12.5 μg OVA+10 μg CpG), both hind limbs s.c. or 25 μg of OVA i.v. in 100 μl. The tolerogenic treatment included administration of 200 μl tSVP i.v. using 10 μg of OVA. Nanoparticles were provided at 500 μg/ml of OVA content. tSVP was diluted in such a manner that the same amounts of OVA were injected in all groups.

Measurement of IgG

The level of IgG antibodies were measured. This level is indicative of immunoglobulins in general, including IgGs, which are of particular relevance in allergy. Blocker Casein in PBS (Thermo Fisher, Catalog #37528) was used as diluent. 0.05% Tween-20 in PBS was used as wash buffer, prepared by adding 10 ml of Tween-20 ((Sigma, Catalog #P9416-100 mL) to 2 liters of a 1xPBS stock (PBS: OmniPur® 10xPBS Liquid Concentrate, 4L, EMD Chemicals, Catalog #6505) and 18 Liters of deionized water. OVA protein at a stock concentration of 5 mg/ml was used as a coating material. A 1:1000 dilution to 5 μg/ml was used as a working concentration. Each well of the assay plates was coated with 100 μl diluted OVA per well, plates were sealed with sealing film (VWR catalog #60941-120), and incubated overnight at 4°C. Costar9017 96-well Flat bottom plates were used as assay plates, Costar9017.

Low-binding polypropylene 96-well plate or tubes were used as set-up plates, in which samples were prepared before being transferred to the assay plate. The setup plates did not contain any antigen and, therefore, serum antibodies did not bind to the plate during the setup of the samples. Setup plates were used for sample preparation to minimize binding that might occur during preparation or pipetting of samples if an antigen-coated plate was used to prepare the samples. Before preparing samples in the setup plate, wells were covered with diluent to block any non-specific binding and the plate was sealed and incubated at 4°C overnight.

Assay plates were washed three times with wash buffer, and wash buffer was completely aspirated out of the wells after the last wash. After washing, 300 μl diluent were added to each well of assay plate(s) to block non-specific binding and plates were incubated at least 2 hours at room temperature. Serum samples were prepared in the setup plate at appropriate starting dilutions. Starting dilutions were sometimes also prepared in 1.5 mL tubes using diluent. Appropriate starting dilutions were determined based on previous data, where available. Where no previous data was available, the lowest starting dilution was 1:40. Once diluted, 200 μl of the starting dilution of the serum sample was transferred from to the appropriate well of the setup plate.

An exemplary setup plate layout is described as follows: Columns 2 and 11 contained anti-Ovalbumin monoclonal IgG2b isotype (AbCam, ab17291) standard, diluted to 1 μg/ml (1:4000 dilution). Columns 3-10 contained serum samples (at appropriate dilutions). Columns 1 and 12 were not used for samples or standards to avoid any bias of measurements due to edge effect. Instead, columns 1 and 12 contained 200 μl diluent. Normal mouse serum diluted 1:40 was used as a negative control. Anti-mouse IgG2a diluted 1:500 from 0.5 μg/ml stock (BD Bioscience) was used as an isotype control.

Once all samples were prepared in the setup plate, the plate was sealed and stored at 4°C, until blocking of the assay plates was complete. Assay plates were washed three times with wash buffer, and wash buffer was completely aspirated after the last wash. After washing, 100 μl of diluent was added to all wells in rows B-H of the assay plates. A 12-channel pipet was used to transfer samples from the setup plate to the assay plate. Samples were mixed prior to transfer by pipetting 150 μl of diluted serum up and down 3 times. After mixing, 150 μl of each sample was transferred from the setup plate and added to row A of the respective assay plate.

Once the starting dilutions of each sample were transferred from the setup plate to row A of the assay plate, serial dilutions were pipetted on the assay plate as follows; 50 μl of each serum sample was removed from row A using 12-channel pipet and mixed with the 100 μl of diluent previously added to each well of row B. This step was repeated down the entire plate. After pipetting the dilution of the final row, 50 μl of fluid was removed from the wells in the final row and discarded, resulting in a final volume of 100 μl in every well of the assay plate. Once sample dilutions were prepared in the assay plates, the plates were incubated at room temperature for at least 2 hours.

After the incubation, plates were washed three times with wash buffer. Detection antibody (Goat anti-mouse anti-IgG, HRP conjugated, AbCam ab98717) was diluted 1:1500 (0.33 μg/ml) in diluent and 100 μl of the diluted antibody was added to each well. Plates were incubated for 1 hour at room temperature and then washed three times with wash buffer, with each washing step including a soak time of at least 30 seconds.

After washing, detection substrate was added to the wells. Equal parts of substrate A and substrate B (BD Biosciences TMB Substrate Reagent Set, catalog #555214) were combined immediately before addition to the assay plates, and 100 μl of the mixed substrate solution were added to each well and incubated for 10 minutes in the dark. The reaction was stopped by adding 50 μl of stop solution (2N H2SO4) to each well after the 10 minute period. The optical density (OD) of the wells was assessed immediately after adding the stop solution on a plate reader at 450 nm with subtraction at 570
Data analysis was performed using Molecular Device’s software SoftMax Pro v5.4. In some cases, a four-parameter logistic curve-fit graph was prepared with the dilution on the x-axis (log scale) and the OD value on the y-axis (linear scale), and the half maximum value (EC50) for each sample was determined. The plate template at the top of the layout was adjusted to reflect the dilution of each sample (1 per column).

Results

[0357] FIG. 4 shows a decrease in antigen-specific antibody production with nanocarriers comprising peptide antigen and immunosuppressant as compared to nanocarriers comprising the peptide alone. Panel 3 shows that the use of a strong immune stimulator, CpG, countered the tolerogenic effects of the synthetic nanocarriers comprising rapamycin in some instances.

Example 14

Tolerogenic Immune Responses with Synthetic Nanocarriers

Materials and Methods

[0358] Nanocarriers were prepared as in the above example (Example 13).

Immunization

[0359] The purpose of this experiment was to assess the effects of encapsulated (tSPV) immunosuppressant on emerging antibody responses by measuring antigen-specific immunoglobulins in animals that receive the immunogen and NP-treatment at the same time. One group of animals remained unimmunized as a control (but received the treatment). A second group of animals was immunized using “passive administration” of Ovalbumin, and a third group was immunized with OVA and CpG in the sub-seapular region. Each of these groups were given biweekly injection of nanoparticles (NPs) and anti-OVA Ig levels were monitored on the day previous to the boost. For immunization, animals received 100 μl of OVA+CpG s.c. (subcutaneous) or 25 μg of OVA i.v. in 1004 Tolerogenic treatment comprised administration of 100 μl tSPV i.v. Nanocarriers were provided at 5 mg/ml. 12SVP was diluted in such a manner that the same amounts of OVA were injected in all groups. Injections were performed at d0, d14, d28, d42, d56.

Measurement of IgG

[0360] The level of IgG antibodies were measured. This level is indicative of immunoglobulins in general, including IgGs, which are of particular relevance in allergy. Blocker Casein in PBS (Thermo Fisher, Catalog #37528) was used as diluent. 0.05% Tween-20 in PBS was used as wash buffer, prepared by adding 10 ml of Tween-20 ((Sigma, Catalog #P9416-100 mL) to 2 liters of a 10×PBS stock (PBS: OmniPor® 10×PBS Liquid Concentrate, 4L, EMD Chemicals, Catalog #6505) and 18 Liters of deionized water. OVA protein at a stock concentration of 5 mg/ml was used as a coating material. A 1:1000 dilution to 5 μg/ml was used as a working concentration. Each well of the assay plates was coated with 100 μl diluted OVA per well, plates were sealed with sealing film (VWR catalog #60041-120), and incubated overnight at 4 °C. Costar®9017 96-well Flat bottom plates were used as assay plates, Costar®9017.

[0361] Low-binding polystyrene 96-well plate or tubes were used as set-up plates, in which samples were prepared before being transferred to the assay plate. The setup plates did not contain any antigen and, therefore, serum antibodies did not bind to the plate during the setup of the samples. Setup plates were used for sample preparation to minimize binding that might occur during preparation or pipetting of samples if an antigen-coated plate was used to prepare the samples. Before preparing samples in the setup plate, wells were covered with diluent to block any non-specific binding and the plate was sealed and incubated at 4°C overnight.

[0362] Assay plates were washed three times with wash buffer, and wash buffer was completely aspirated out of the wells after the last wash. After washing, 300 μl diluent were added to each well of assay plate(s) to block non-specific binding and plates were incubated at least 2 hours at room temperature. Serum samples were prepared in the setup plate at appropriate starting dilutions. Starting dilutions were sometimes also prepared in 1.5 ml tubes using diluent. Appropriate starting dilutions were determined based on previous data, where available. Where no previous data was available, the lowest starting dilution was 1:40. Once diluted, 200 μl of the starting dilution of the serum sample was transferred from the appropriate well of the setup plate.

[0363] An exemplary setup plate layout is described as follows: Columns 2 and 11 contained anti-Ovabumin monoclonal IgG2b isotype (AbCam, ab17291) standard, diluted to 1 μg/ml (1:4000 dilution). Columns 3-10 contained serum samples (at appropriate dilutions). Columns 1 and 12 were not used for samples or standards to avoid any bias of measurements due to edge effect. Instead, columns 1 and 12 contained 200 μl diluent. Normal mouse serum diluted 1:40 was used as a negative control. Anti-mouse IgG2a diluted 1:500 from 0.5 mg/ml stock (BD Bioscience) was used as an isotype control.

[0364] Once all samples were prepared in the setup plate, the plate was sealed and stored at 4°C until blocking of the assay plates was complete. Assay plates were washed three times with wash buffer, and wash buffer was completely aspirated after the last wash. After washing, 100 μl of diluent was added to all wells in rows B-H of the assay plates. A 12-channel pipet was used to transfer samples from the setup plate to the assay plate. Samples were mixed prior to transfer by pipetting, 150 μl of diluted serum up and down 3 times. After mixing, 150 μl of each sample was transferred from the setup plate and added to row A of the respective assay plate.

[0365] Once the starting dilutions of each sample were transferred from the setup plate to row A of the assay plate, serial dilutions were pipetted on the assay plate as follows: 50 μl of each serum sample was removed from row A using 12-channel pipet and mixed with the 100 μl of diluent previously added to each well of row B. This step was repeated down the entire plate. After pipetting the dilution of the final row, 50 μl of fluid was removed from the wells in the final row and discarded, resulting in a final volume of 100 μl in every well of the assay plate. Once sample dilutions were prepared in the assay plates, the plates were incubated at room temperature for at least 2 hours.

[0366] After the incubation, plates were washed three times with wash buffer. Detection antibody (Goat anti-mouse anti-IgG, HRP conjugated, AbCam ab98717) was diluted 1:1500 (0.33 μg/ml) in diluent and 100 μl of the diluted antibody was added to each well. Plates were incubated for 1 hour at room temperature and then washed three times with wash buffer, with each wash step including a soak time of at least 30 seconds.

[0367] After washing, detection substrate was added to the wells. Equal parts of substrate A and substrate B (BD Biosciences TM3 Substrate Reagent Set, catalog #555214) were
combined immediately before addition to the assay plates, and 100 µl of the mixed substrate solution were added to each well and incubated for 10 minutes in the dark. The reaction was stopped by adding 50 µl of stop solution (2N H2SO4) to each well after the 10 minute period. The optical density (OD) of the wells was assessed immediately after adding the stop solution on a plate reader at 450 nm with subtraction at 570 nm. Data analysis was performed using Molecular Device’s software SoftMax Pro v5.4. In some cases, a four-parameter logistic curve-fit graph was prepared with the dilution on the x-axis (log scale) and the OD value on the y-axis (linear scale), and the half maximum value (EC50) for each sample was determined. The plate template at the top of the layout was adjusted to reflect the dilution of each sample (1 per column).

Results

FIg. 5 shows a decrease in antigen-specific antibody production with nanoparticles comprising antigen and immunosuppressant as compared to nanoparticles comprising the antigen alone. Again the data also show that the use of a strong immune stimulator, CpG, countered the tolerogenic effects of the synthetic nanoparticles comprising rapamycin in some instances.

Example 15

Assessing the Effects of Nanocarriers with Antigens and Immunosuppressants on Immune Responses

Materials and Methods

Nanocarrier 1

Ovalbumin peptide 323-339, a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiba Street, Torrance Calif. 90505; Part #4065609). PLGA with a lactide:glycolide ratio of 3:1 and an inherent viscosity of 0.75 dL/g was purchased from Surmodics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). PLGA-PEG block copolymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).

Solutions were prepared as follows:

Solution 1: Ovalbumin peptide 323-339 at 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature. Solution 2: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride. Solution 3: PLGA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA-PEG in pure methylene chloride. Solution 4: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.

Nanocarrier 2

Ovalbumin peptide 323-339, a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiba Street, Torrance Calif. 90505; Part #4065609). Rapamycin was purchased from TSZ CHEM (185 Wilson Street, Framingham, Mass. 01702; Product Catalogue #R017). PLGA with a lactide:glycolide ratio of 3:1 and an inherent viscosity of 0.75 dL/g was purchased from Surmodics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211; Product Code 7525 DLG 7A). PLGA-PEG block copolymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized. Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).

Solutions were prepared as follows:

Solution 1: Ovalbumin peptide 323-339 at 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature. Solution 2: Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride. Solution 3: PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride. Solution 4: PLGA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA-PEG in pure methylene chloride. Solution 5: Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.

A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining solution 1 (0.2 mL), solution 2 (0.2 mL), solution 3 (0.75 mL), and solution 4 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 1 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250. The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600×g and 4°C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

Nanocarrier size was determined by dynamic light scattering. The amount of peptide in the nanocarrier was determined by HPLC analysis. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

<table>
<thead>
<tr>
<th>Nanocarrier ID</th>
<th>Effective Diameter (nm)</th>
<th>Peptide Content (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>234</td>
<td>2.1</td>
</tr>
</tbody>
</table>

2

A primary water-in-oil emulsion was prepared first. W1/O1 was prepared by combining solution 1 (0.2 mL), solution 2 (0.2 mL), solution 3 (0.75 mL), and solution 4 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/O1/W2) was then prepared by combining solution 1 (3.0 mL) with the primary W1/O1 emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250. The W1/O1/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form. A portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 21,000×g
and 4°C for 45 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.

Nanocarrier size was determined by dynamic light scattering. The amounts of peptide and rapamycin in the nanocarrier were determined by HPLC analysis. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.

<table>
<thead>
<tr>
<th>Nanocarrier ID</th>
<th>Effective Diameter (nm)</th>
<th>Rapamycin Content (% w/w)</th>
<th>Peptide Content (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>227</td>
<td>9.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Immunization

Animals received immunization every 2 weeks at the same time they received the treatment. Each of these groups was split into subgroups to test the capacity of different treatments to modify the Ig levels induced. A control subgroup did not receive tolerogenic treatment. Two subgroups received nanocarrier carrying just OVA323-339 peptide or in combination with rapamycin.

Measurement of IgG

The level of IgG antibodies were measured. This level is indicative of immunoglobulins in general, including IgG, which are of particular relevance in allergy. Blocker Casein in PBS (Thermo Fisher, Catalog #37528) was used as diluent. 0.05% Tween-20 in PBS was used as wash buffer, prepared by adding 10 ml of Tween-20 (Sigma, Catalog #P9416-100 mL) to 2 liters of a 10xPBS stock (PBS: OmniPur® 10xPBS Liquid Concentrate, 1L, EMD Chemicals, Catalog #6505) and 18 Liters of deionized water. OVA protein at a stock concentration of 5 mg/mL was used as a coating material. A 1:1000 dilution to 5 μg/mL was used as a working concentration. Each well of the assay plates was coated with 100 μl diluted OVA per well, plates were sealed with sealing film (VWR catalog #60941-120), and incubated overnight at 4°C. Costar9017 96-well Flat bottom plates were used as assay plates, Costar9017.

Low-binding polystyrene 96-well plate or tubes were used as set-up plates, in which samples were prepared before being transferred to the assay plates. The setup plates did not contain any antigen and, therefore, serum antibodies did not bind to the plate during the setup of the samples. Setup plates were used for sample preparation to minimize binding that might occur during preparation or pipetting of samples if an antigen-coated plate was used to prepare the samples. Before preparing samples in the setup plate, wells were covered with diluent to block any non-specific binding and the plate was sealed and incubated at 4°C overnight.

Assay plates were washed three times with wash buffer, and wash buffer was completely aspirated out of the wells after the last wash. After washing, 300 μl diluent were added to each well of assay plate(s) to block non-specific binding and plates were incubated at least 2 hours at room temperature. Serum samples were prepared in the setup plate at appropriate starting dilutions. Starting dilutions were sometimes also prepared in 1.5 ml tubes using diluent. Appropriate starting dilutions were determined based on previous data, where available. Where no previous data was available, the lowest starting dilution was 1:40. Once diluted, 200 μl of the starting dilution of the serum sample was transferred from the appropriate well of the setup plate.

An exemplary setup plate layout is described as follows: Columns 2 and 11 contained anti-Ovabumin monoclonal IgG2b isotype (AbCam, ab17291) standard, diluted to 1 μg/mL (1:4000 dilution). Columns 3-10 contained serum samples (at appropriate dilutions). Columns 1 and 12 were not used for samples or standards to avoid any bias of measurements due to edge effect. Instead, columns 1 and 12 contained 200 μl diluent. Normal mouse serum diluted 1:40 was used as a negative control. Anti-mouse IgG2b diluted 1:500 from 0.5 mg/mL stock (BD Bioscience) was used as an isotype control.

Once all samples were prepared in the setup plate, the plate was sealed and stored at 4°C until blocking of the assay plates was complete. Assay plates were washed three times with wash buffer, and wash buffer was completely aspirated after the last wash. After washing, 100 μl of diluent was added to all wells in rows B-H of the assay plates. A 12-channel pipet was used to transfer samples from the setup plate to the assay plate. Samples were mixed prior to transfer by pipetting 150 μl of diluted serum up and down 3 times. After mixing, 150 μl of each sample was transferred from the setup plate and added to row A of the respective assay plate.

Once the starting dilutions of each sample were transferred from the setup plate to row A of the assay plate, serial dilutions were pipetted on the assay plate as follows: 50 μl of each serum sample was removed from row A using 12-channel pipet and mixed with the 100 μl of diluent previously added to each well of row B. This step was repeated down the entire plate. After pipetting the dilution of the final row, 50 μl of fluid was removed from the wells in the final row and discarded, resulting in a final volume of 100 μl in every well of the assay plate. Once sample dilutions were prepared in the assay plates, the plates were incubated at room temperature for at least 2 hours.

After the incubation, plates were washed three times with wash buffer. Detection antibody (Goat anti-mouse anti-IgG, HRP conjugated, AbCam ab98717) was diluted 1:1500 (0.33 μg/mL) in diluent and 100 μl of the diluted antibody was added to each well. Plates were incubated for 1 hour at room temperature and then washed three times with wash buffer, with each washing step including a soak time of at least 30 seconds.

After washing, detection substrate was added to the wells. Equal parts of substrate A and substrate B (BD Biosciences TMB Substrate Reagent Set, catalog #555214) were combined immediately before addition to the assay plates, and 100 μl of the mixed substrate solution were added to each well and incubated for 10 minutes in the dark. The reaction was stopped by adding 50 μl of stop solution (2N H2SO4) to each well after the 10 minute period. The optical density (OD) of the wells was assessed immediately after adding the stop solution on a plate reader at 450 nm with subtraction at 570 nm. Data analysis was performed using Molecular Device’s software SoftMax Pro v5.4. In some cases, a four-parameter logistic curve-fit graph was prepared with the dilution on the x-axis (log scale) and the OD value on the y-axis (linear scale), and the half maximum value (EC50) for each sample
was determined. The plate template at the top of the layout was adjusted to reflect the dilution of each sample (1 per column).

Determination of % OVA+Dividing B Cells

[0389] Ovalbumin+ B-cell division was assessed by flow cytometry. Splenocytes from experimental animals were stained with Cell Tracker Orange (CTO), a thiol-reactive fluorescent probe suitable for long-term cell labeling, and cultured in complete media at 37 C, 5% CO₂ with Ovalbumin protein or peptide for 3 days. On day 3 the cells were washed, blocked with anti-CD16/32 antibody and then stained with conjugated antibodies specific to B220 and CD19. Alexa 647 conjugated ovalbumin protein was also incubated with the cells to label Ovalbumin specific BCRs. Those splenocytes that were CD19+ B220+ OVA-Alexa647+ were assessed for proliferation by comparing the differential CTO staining. Those that were CTO low were labeled as proliferating Ovalbumin+B-cells and were compared to the CTO high Ovalbumin+B-cells to quantify the percentages.

Results

[0390] FIG. 6 shows a reduction in antigen-specific IgG levels with the administration of synthetic nanocarriers comprising ova peptide and the immunosuppressant rapamycin. FIG. 7 also demonstrates a reduction, but in the number of antigen-specific B cells with the synthetic nanocarriers. These results demonstrate the reduction in undesired immune responses relevant to allergy and allergic responses with synthetic nanocarriers coupled to ova peptide (comprising an MHC Class II-restricted epitope) and immunosuppressant.

Example 16

Assessing the Effects of Nanocarriers with Antigens and Immunosuppressants on Allergic Asthma

Nanocarriers

[0391] Nanocarriers were prepared according to methods provided above (Example 15).

Immunization

[0392] The nanocarriers were thawed and equilibrated. Initial dilutions constituted a 10x stock solution, and were further diluted to a concentration of 100 μg/ml in OVA323-333, or a 1x solution. This 1x solution was used for injections at 200 μl per i.v. injection. Animals were immunized with OVA protein (OVA) and treated with OVA323-333 peptide to assess the capacity of nanocarriers to control the allergic response in absence of B cell antigens. Immunization routes were as follows: 10 μg of OVA+4 mg Alum i.p. in 400 μl per each Balb/C immunologically naïve female mouse. Experimental groups consisted of 5 animals each. Spleen cells were restimulated with antigen using CFSE or CTO to determine the amount of Ag-specific proliferation.

Levels of Specific Types of Immune Cells

[0393] FCS files were analyzed using FlowJo software. 7AAD positive cells (a nuclear dye that label dead cells) positive cells were excluded and cell morphologies dependent on expression of CD4, CD8, Gr-1, F4/80, B220, TCRβ and CD11b were quantified. Gating strategy for T-cell subsets:→7AAD- F4/80- GR-1-TCRβ+ CD4+/− CD8+/− Gating strategy for B-cell subsets:→7AAD- B220+ TCRβ- Gating strategy for Eosinophils:→7AAD- F4/80- GR-1+ TCRβ- CD11b+ Gr-1+

Determination of % Dividing CD4+ T Cells

[0394] The frequency of Ovalbumin reactive CD4+ T cells was calculated by way of flow cytometry. Splenocytes from experimental animals were stained with CFSE, a thiol-reactive Fluorescent Probe suitable for long-term cell labeling, and cultured in complete media at 37 C, 5% CO₂ with Ovalbumin protein for 3 days. On day 3 the cells were washed, blocked with anti-CD16/32 antibody and then stained with conjugated antibodies specific to TCR CD4 and CD8α. Splenocytes that were TCR+CD4 or TCR+CD8α+ were assessed for proliferation by comparing the differential CFSE staining.

Results

[0395] FIGS. 8 and 9 demonstrate the effectiveness of the nanocarriers in an animal model. Specifically, FIG. 8 demonstrates a reduction in the number of CD4+ T cells in lavage samples from animal subjects treated with synthetic nanocarriers comprising OVA323-333 (an MHC Class II-restricted epitope) and immunosuppressant. FIG. 9 demonstrates a reduction in the percentage of dividing CD4+ T cells as a result of the same treatment.

SEQUENCE LISTING

 Ala Gly Met Asp Met Cys Ser Ala Gly Trp Leu Ala Asp Arg Ser Val
 1 5 10 15
Arg Tyr

<210> SEQ ID NO 2
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Aggrecan core protein precursor epitope

<400> SEQUENCE: 2

Glu Asp Ser Ser Ala Thr Leu Glu Val Val Lys Gly Ile Val Phe
1 5 10 15

His Tyr

<210> SEQ ID NO 3
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Aggrecan core protein precursor epitope

<400> SEQUENCE: 3

Ser Arg Val Ser Lys Glu Lys Glu Val Val Leu Leu Val Ala Thr Glu
1 5 10 15

Gly Arg

<210> SEQ ID NO 4
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Aggrecan core protein precursor epitope

<400> SEQUENCE: 4

Val Val Leu Leu Val Ala Thr Glu Arg Val Arg Val Asn Ser Ala
1 5 10 15

Tyr Gln

<210> SEQ ID NO 5
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Aggrecan core protein precursor epitope

<400> SEQUENCE: 5

Val Val Val Lys Gly Ile Val Phe His Tyr Arg Ala Ile Ser Thr Arg
1 5 10 15

Tyr Thr

<210> SEQ ID NO 6
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens alpha 2 type VI collagen isoform 2C2 precursor epitope

<400> SEQUENCE: 6
Asp Arg Ala Ser Phe Ile Lys Asn Leu
1 5

<210> SEQ ID NO 7
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 7

Ala Ser Ser Thr Ile Ile Lys Glu Gly Ile Asp Arg Thr Val Leu Gly
1 5 10 15

Ile Leu Val Ser
20

<210> SEQ ID NO 8
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 8

Ala Ser Thr Pro Thr Lys Leu Gln Glu Ser Leu Leu Lys Leu Gly
1 5 10 15

Ser Asn Thr Tyr
20

<210> SEQ ID NO 9
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 9

Asp Arg Thr Val Leu Gly Ile Leu Val Ser Tyr Gln Ile Lys Val Lys
1 5 10 15

Leu Thr Val Ser
20

<210> SEQ ID NO 10
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 10

Glu Phe Ala Arg His Asn Leu Lys Asp Ala Gly Glu Ala Glu Glu Gly
1 5 10 15

Lys Arg Asp Lys
20

<210> SEQ ID NO 11
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
-continued

<400> SEQUENCE: 11
Glu Pro Asn His Val Ile Phe Lys Lys Ile Ser Arg Asp Lys Ser Val
1 5 10 15
Thr Ile Tyr Leu
20

<210> SEQ ID NO 12
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope

<400> SEQUENCE: 12
Phe Glu Val Lys Ala Phe Ala Thr Ser Thr Asp Ala Glu Asp
1 5 10 15
Lys Ile Pro Lys
20

<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope

<400> SEQUENCE: 13
Gly Phe Leu Gly Glu Leu Thr Ser Ser Glu Val Ala Thr Glu Pro
1 5 10 15
Phe Arg Leu Met
20

<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope

<400> SEQUENCE: 14
Gly Lys Ile Lys His Glu Asp Thr Asn Leu Ala Ser Ser Thr Ile Ile
1 5 10 15
Lys Glu Gly Ile
20

<210> SEQ ID NO 15
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope

<400> SEQUENCE: 15
Gly Asn Arg Asp Tyr Ile Asp His Val Ser Gln Val Gln Pro Val Asp
1 5 10 15
Gly Val Val Leu
20

<210> SEQ ID NO 16
<211> LENGTH: 20
<212> TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens arrestin epitope

SEQUENCE: 16

Lys Pro Val Ala Met Glu Glu Ala Gln Glu Lys Val Pro Pro Asn Ser
1 5 10 15

Thr Leu Thr Lys
20

SEQ ID NO 17
LENGTH: 20
TYPE: PRT
FEATURE:
OTHER INFORMATION: Homo sapiens arrestin epitope

SEQUENCE: 17

Lys Val Pro Pro Asn Ser Thr Leu Thr Lys Thr Leu Thr Leu Pro
1 5 10 15

Leu Leu Ala Asn
20

SEQ ID NO 18
LENGTH: 20
TYPE: PRT
FEATURE:
OTHER INFORMATION: Homo sapiens arrestin epitope

SEQUENCE: 18

Leu Leu Lys Leu Gly Ser Asn Thr Tyr Pro Phe Leu Leu Thr Phe
1 5 10 15

Pro Asp Tyr Leu
20

SEQ ID NO 19
LENGTH: 20
TYPE: PRT
FEATURE:
OTHER INFORMATION: Homo sapiens arrestin epitope

SEQUENCE: 19

Leu Thr Phe Arg Arg Asp Leu Tyr Phe Ser Arg Val Gln Val Tyr Pro
1 5 10 15

Pro Val Gly Ala
20

SEQ ID NO 20
LENGTH: 20
TYPE: PRT
FEATURE:
OTHER INFORMATION: Homo sapiens arrestin epitope

SEQUENCE: 20

Met Ala Ala Ser Gly Lys Thr Ser Lys Ser Glu Pro Asn His Val Ile
1 5 10 15

Phe Lys Lys Ile
20
<210> SEQ ID NO 21
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 21

Asn Arg Glu Arg Arg Gly Ile Ala Leu Asp Gly Lys Ile Lys His Glu
1 5 10 15
Asp Thr Asn Leu
20

<210> SEQ ID NO 22
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 22

Pro Cys Ser Val Met Leu Gln Pro Ala Pro Gin Asp Gly Lys Ser
1 5 10 15
Cys Gly Val Asp
20

<210> SEQ ID NO 23
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 23

Pro Phe Leu Leu Thr Phe Pro Asp Tyr Leu Pro Cys Ser Val Met Leu
1 5 10 15
Gln Pro Ala Pro
20

<210> SEQ ID NO 24
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 24

Gln Asp Ser Gly Lys Ser Cys Gly Val Asp Phe Glu Val Lys Ala Phe
1 5 10 15
 Ala Thr Asp Ser
20

<210> SEQ ID NO 25
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 25

Gln Val Gln Pro Val Asp Gly Val Val Leu Val Asp Pro Asp Leu Val
1 5 10 15
Lys Gly Lys Lys
20

<210> SEQ ID NO 26
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 26

Arg Val Gln Val Tyr Pro Pro Val Gly Ala Ala Ser Thr Pro Thr Lys 1 5 10 15
Lys Glu Glu Ser
20

<210> SEQ ID NO 27
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 27

Ser Arg Asp Lys Ser Val Thr Ile Tyr Leu Gln Asn Arg Asp Tyr Ile 1 5 10 15
Asp His Val Ser
20

<210> SEQ ID NO 28
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 28

Thr Leu Thr Leu Leu Pro Leu Ala Asn Asn Arg Glu Arg Arg Gly 1 5 10 15
Ile Ala Leu Asp
20

<210> SEQ ID NO 29
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope
<400> SEQUENCE: 29

Val Ala Thr Glu Val Pro Phe Arg Leu Met His Pro Gln Pro Glu Asp 1 5 10 15
Pro Ala Lys Glu
20

<210> SEQ ID NO 30
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope

-Nov. 1, 2012
-continued

<400> SEQUENCE: 30
Val Asp Pro Asp Leu Val Lys Gly Lys Lys Val Tyr Val Thr Leu Thr
1 5 10 15
Cys Ala Phe Arg
20

<210> SEQ ID NO 31
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope

<400> SEQUENCE: 31
Val Val Leu Tyr Ser Ser Asp Tyr Val Lys Pro Ala Met Glu
1 5 10 15
Glu Ala Gln Glu
20

<210> SEQ ID NO 32
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens arrestin epitope

<400> SEQUENCE: 32
Tyr Gln Ile Lys Val Lys Leu Thr Val Ser Gly Phe Leu Gly Glu Leu
1 5 10 15
Thr Ser Ser Glu
20

<210> SEQ ID NO 33
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Chain B, Structure of Insulin epitope

<400> SEQUENCE: 33
Ala Leu Tyr Leu Val Cys Gly Glu Arg
1 5

<210> SEQ ID NO 34
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Chain B, Structure of Insulin epitope

<400> SEQUENCE: 34
Ser His Leu Val Glu Ala Leu Tyr Leu Val
1 5 10

<210> SEQ ID NO 35
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens chaperonin (HSP60) epitope
Gln Met Arg Pro Val Ser Arg Val Leu

1 5

Gly Ser Pro Ala Thr Trp Thr Thr Arg

1 6

Ala Arg Gly Gln Pro Gly Val Met Gly

1 5

Lys Met Leu Asp His Glu Tyr Thr Thr

1 5

Glu Tyr Thr Ala Lys Ile Ala Leu Leu

1 5

Leu Asn Ile Tyr Glu Lys Asp Asp Lys Leu

1 10
<220> FEATURES:
<221> OTHER INFORMATION: Homo sapiens glial fibrillary acidic protein isoform 2 epitope
<400> SEQUENCE: 41
Asn Leu Ala Gln Asp Leu Ala Thr Val
1 5

<210> SEQ ID NO 42
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<221> OTHER INFORMATION: Homo sapiens glial fibrillary acidic protein isoform 2 epitope
<400> SEQUENCE: 42
Gln Leu Ala Arg Gln Gln Val His Val
1 5

<210> SEQ ID NO 43
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<221> OTHER INFORMATION: Homo sapiens glucagon receptor epitope
<400> SEQUENCE: 43
Arg Arg Arg Trp His Arg Trp Arg Leu
1 5

<210> SEQ ID NO 44
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<221> OTHER INFORMATION: Homo sapiens glucose-6-phosphatase, catalytic, related epitope
<400> SEQUENCE: 44
Phe Leu Trp Ser Val Phe Trp Leu Ile
1 5

<210> SEQ ID NO 45
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<221> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 1 epitope
<400> SEQUENCE: 45
Asn Met Phe Thr Tyr Glu Ile Ala Pro Val Phe Val Leu Met Glu
1 5 10 15

<210> SEQ ID NO 46
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<221> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 46
Ile Ala Phe Thr Ser Glu His Ser His Phe Ser Leu Lys
1 5 10
<210> SEQ ID NO 47
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 47
Asn Phe Phe Arg Met Val Ile Ser Asn Pro Ala Ala Thr
1 5 10

<210> SEQ ID NO 48
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 48
Phe Leu Gln Asp Val Met Asn Ile Leu
1 5

<210> SEQ ID NO 49
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 49
Leu Leu Gln Glu Tyr Asn Trp Glu Leu
1 5

<210> SEQ ID NO 50
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 50
Arg Met Met Glu Tyr Gly Thr Thr Met Val
1 5 10

<210> SEQ ID NO 51
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 51
Val Met Asn Ile Leu Leu Gln Tyr Val Val
1 5 10

<210> SEQ ID NO 52
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 52
Ala Phe Thr Ser Glu His Ser His Phe Ser Leu
<210> SEQ ID NO 53
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 53
Ala Phe Thr Ser Glu His Ser His Phe Ser Leu Lys
1 5 10

<210> SEQ ID NO 54
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 54
Phe Lys Met Phe Pro Glu Val Lys Glu Lys Gly
1 5 10

<210> SEQ ID NO 55
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 55
Phe Thr Ser Glu His Ser His Phe Ser Leu
1 5 10

<210> SEQ ID NO 56
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 56
Met Ile Ala Arg Phe Lys Met Phe Pro Glu Val Lys Glu Lys Gly
1 5 10 15

<210> SEQ ID NO 57
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 57
Arg Phe Lys Met Phe Pro Glu Val Lys
1 5

<210> SEQ ID NO 58
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope
<400> SEQUENCE: 58
Arg Phe Lys Met Phe Pro Glu Val Lys Glu
1 5 10

<210> SEQ ID NO 59
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope

<400> SEQUENCE: 59
Arg Phe Lys Met Phe Pro Glu Val Lys Glu Lys
1 5 10

Thr Ser Glu His Ser His Phe Ser Lieu
1 5

<210> SEQ ID NO 60
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope

<400> SEQUENCE: 60
Val Met Asn Ile Leu Leu Gln Tyr Val
1 5

Glu Leu Ala Glu Tyr Leu Tyr Asn Ile
1 5

<210> SEQ ID NO 62
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope

<400> SEQUENCE: 62
Ile Leu Met His Cys Gln Thr Thr Leu
1 5

<210> SEQ ID NO 64
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens heat shock 27kDa protein 1 epitope
Gln Leu Ser Ser Gly Val Ser Glu Ile Arg His
1 5 10

Leu Arg Arg Tyr Leu Glu Asn Gly Lys
1 5

Val Met Ala Pro Arg Thr Val Leu Leu
1 5

Ala Leu Asn Glu Asp Leu Arg Ser Trp Thr Ala Ala Asp Thr
1 5 10

Ala Leu Asn Glu Asp Leu Ser Ser Trp Thr Ala Ala Asp Thr
1 5 10

Leu Leu Arg Gly Tyr His Gln Asp Ala Tyr
1 5 10

<210> SEQ ID NO 69
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens HLA-B27 epitope
<400> SEQ ID NO 69

Leu Leu Arg Gly Tyr His Gln Asp Ala Tyr
1 5 10

<210> SEQ ID NO 70
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens HLA-B27 epitope
<400> SEQUENCE: 70
Arg Val Ala Glu Gln Leu Arg Ala Tyr Leu Glu Gly Glu Cys Val
1 5 10 15

<210> SEQ ID NO 71
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens HLA-B27 epitope
<400> SEQUENCE: 71
Trp Asp Arg Glu Thr Gln Ile Cys Lys Ala Lys Ala Gln
1 5 10

<210> SEQ ID NO 72
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens insulin epitope
<400> SEQUENCE: 72
Ala Leu Trp Gly Pro Asp Pro Ala Ala Ala Phe
1 5 10

<210> SEQ ID NO 73
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens insulin epitope
<400> SEQUENCE: 73
Leu Ala Leu Trp Gly Pro Asp Pro Ala Ala
1 5 10

<210> SEQ ID NO 74
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens insulin epitope
<400> SEQUENCE: 74
Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu
1 5 10

<210> SEQ ID NO 75
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Insulin precursor epitope
<400> SEQUENCE: 75
Ala Leu Trp Met Arg Leu Leu Pro Leu
1 5
His Leu Val Glu Ala Leu Tyr Leu Val
1 5

Ser Leu Gin Lys Arg Gly Ile Val Glu Gin
1 5 10

Ser Leu Gin Pro Leu Ala Leu Glu Gly
1 5

Ser Leu Tyr Gin Leu Glu Asn Tyr Cys
1 5

Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr
1 5 10

Trp Gly Pro Asp Pro Ala Ala Ala
<210> SEQ ID NO 82
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Insulin precursor epitope

SEQUENCE: 82

Phe Tyr Thr Pro Lys Thr Arg Arg Glu

| 1 | 5 |

<210> SEQ ID NO 83
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Insulin precursor epitope

SEQUENCE: 83

Gly Glu Arg Gly Phe Phe Tyr Thr

| 1 | 5 |

<210> SEQ ID NO 84
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Insulin precursor epitope

SEQUENCE: 84

Glu Arg Gly Phe Phe Tyr Thr Pro Lys

| 1 | 5 |

<210> SEQ ID NO 85
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Insulin precursor epitope

SEQUENCE: 85

Leu Cys Gly Ser His Leu Val Glu Ala Leu

| 1 | 5 | 10 |

<210> SEQ ID NO 86
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Insulin precursor epitope

SEQUENCE: 86

Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr

| 1 | 5 | 10 |

<210> SEQ ID NO 87
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Insulin precursor epitope

SEQUENCE: 87
Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe
1 5 10

<210> SEQ ID NO 88
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Islet amyloid polypeptide precursor epitope

<400> SEQUENCE: 88
Phe Leu Ile Val Leu Ser Val Ala Leu
1 5

<210> SEQ ID NO 89
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Islet amyloid polypeptide precursor epitope

<400> SEQUENCE: 89
Lys Leu Gln Val Phe Leu Ile Val Leu
1 5

<210> SEQ ID NO 90
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens islet-specific glucose-6-phosphatase-related protein epitope

<400> SEQUENCE: 90
Phe Leu Trp Ser Val Phe Met Leu Ile
1 5

<210> SEQ ID NO 91
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens islet-specific glucose-6-phosphatase-related protein isoform 1 epitope

<400> SEQUENCE: 91
Phe Leu Phe Ala Val Gly Phe Tyr Leu
1 5

<210> SEQ ID NO 92
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens islet-specific glucose-6-phosphatase-related protein isoform 1 epitope

<400> SEQUENCE: 92
Leu Asn Ile Asp Leu Leu Trp Ser Val
1 5

<210> SEQ ID NO 93
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens islet-specific glucose-6-phosphatase-related protein isoform 1 epitope

<400> SEQUENCE: 93
Val Leu Phe Gly Leu Gly Phe Ala Ile
1 5

<210> SEQ ID NO 94
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens islet-specific glucose-6-phosphatase-related protein isoform 1 epitope

<400> SEQUENCE: 94
Asn Leu Phe Leu Phe Leu Phe Ala Val
1 5

<210> SEQ ID NO 95
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens islet-specific glucose-6-phosphatase-related protein isoform 1 epitope

<400> SEQUENCE: 95
Tyr Leu Leu Leu Arg Val Leu Asn Ile
1 5

<210> SEQ ID NO 96
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens keratin 6C epitope

<400> SEQUENCE: 96
Ala Leu Gln Lys Ala Lys Gln Asp Leu
1 5

<210> SEQ ID NO 97
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens keratin 6C epitope

<400> SEQUENCE: 97
Asp Ala Lys Asn Lys Leu Gln Gly Leu
1 5

<210> SEQ ID NO 98
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens keratin 6C epitope

<400> SEQUENCE: 98
-continued

Gly Ala Ser Gly Val Gly Ser Gly Leu
1 5

Lys Ala Lys Gln Asp Leu Ala Arg Leu
1 5

Asn Met Gln Asp Leu Val Glu Asp Leu
1 5

Arg Leu Leu Lys Glu Tyr Gln Glu Leu
1 5

Trp Tyr Gln Thr Lys Tyr Glu Glu Leu
1 5

Trp Tyr Gln Thr Lys Tyr Glu Glu Leu
1 5
<400> SEQUENCE: 104
Leu Arg Arg Val Leu Asp Glu Leu Thr Leu Ala Arg Thr Asp Leu Glu
1 5 10 15
Met Gln Ile Glu
20

<210> SEQ ID NO 105
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal
17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope

<400> SEQUENCE: 105
Ala Leu Glu Glu Ala Asn Ala Asp Leu
1 5

<210> SEQ ID NO 106
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal
17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope

<400> SEQUENCE: 106
Ala Asn Ala Asp Leu Glu Val Lys Ile
1 5

<210> SEQ ID NO 107
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal
17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope

<400> SEQUENCE: 107
Ala Arg Thr Asp Leu Glu Met Gln Ile
1 5

<210> SEQ ID NO 108
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal
17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope

<400> SEQUENCE: 108
Ala Ser Tyr Leu Asp Lys Val Arg Ala
1 5

<210> SEQ ID NO 109
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal
17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope

<400> SEQUENCE: 109
Asp Val Asn Gly Leu Arg Arg Val Leu
1 5

<210> SEQ ID NO 110
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal 17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope
<400> SEQUENCE: 110
Gly Leu Arg Arg Val Leu Asp Glu Leu
1 5

<210> SEQ ID NO 111
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal 17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope
<400> SEQUENCE: 111
Ile Ser Ser Val Leu Ala Gly Ala Ser Cys Pro Ala
1 5 10

<210> SEQ ID NO 112
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal 17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope
<400> SEQUENCE: 112
Leu Asp Lys Val Arg Ala Leu Glu Glu
1 5

<210> SEQ ID NO 113
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal 17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope
<400> SEQUENCE: 113
Gln Ile Glu Gly Leu Lys Glu Glu Leu
1 5

<210> SEQ ID NO 114
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Keratin, type I cytoskeletal 17 (Cytokeratin 17) (K17) (CK 17) (Version 2) epitope
<400> SEQUENCE: 114
Arg Ala Leu Glu Glu Ala Asn Ala Asp Leu Glu Val
1 5 10

<210> SEQ ID NO 115
<211> LENGTH: 9
Arg Leu Ala Ser Tyr Leu Asp Lys Val
1
5

Ser Tyr Leu Asp Lys Val Arg Ala
1
5

Glu Val Lys Ile
20

Met Gly Asn Ile Asp Ser Ile Asn Cys Lys
1
5
10
---continued---

<400> SEQUENCE: 120

Tyr Ser Leu Lys Leu Ile Lys Arg Leu
1 5

<210> SEQ ID NO 121
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 121

Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Tyr Leu Ala
1 5 10 15
Thr Ala Ser Thr
20

<210> SEQ ID NO 122
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 122

Glu Asn Pro Val Val His Phe Lys Asn Ile Val Thr Pro Arg
1 5 10 15

<210> SEQ ID NO 123
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 123

Val Val His Phe Lys Asn Ile Val
1 5

<210> SEQ ID NO 124
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 124

Asp Glu Asn Pro Val Val His Phe Lys Asn Ile Val Thr Pro Arg
1 5 10 15
Thr Pro Pro

<210> SEQ ID NO 125
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 125

His His Pro Ala Arg Thr Ala His Tyr Gly Ser Leu Pro Gln Lys Ser
1 5 10 15
His Gly Arg Thr
<210> SEQ ID NO 126
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 126

Val Val His Phe Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ser Glu Gly Lys
1 5 10 15

<210> SEQ ID NO 127
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 127

Ala Ser Glu Lys Arg Pro Ser Glu Arg His Gly Ser Lys Tyr Leu Ala Thr Ala Ser Thr Met
1 5 10 15

<210> SEQ ID NO 128
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 128

Phe Lys Gly Val Asp Ala Glu Gly Thr Leu Ser Lys Ile Phe Lys Leu Gly Gly Arg Asp
1 5 10 15

<210> SEQ ID NO 129
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 129

Arg Pro Gly Phe Gly Tyr Gly Gly Arg Ala Ser Asp Tyr Lys Ser Ala
1 5 10 15

<210> SEQ ID NO 130
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope

<400> SEQUENCE: 130

Ala Ser Glu Lys Arg Pro Ser Glu Arg His Gly Ser Lys Tyr Leu Ala
Thr Ala Ser Thr Met Asp His Ala Arg His Gly Phe Leu Pro Arg His
20 25 30
Arg Asp Thr Gly Ile Leu
35

<210> SEQ ID NO 131
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope
<400> SEQUENCE: 131
Lys Tyr Leu Ala Thr Ala Ser Thr Met
1 5

<210> SEQ ID NO 132
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope
<400> SEQUENCE: 132
Gly Leu Ser Leu Ser Arg Phe Ser Trp Gly Ala Glu Gly Gln Arg Pro
1 5 10 15
Gly Phe Gly Tyr
20

<210> SEQ ID NO 133
<211> LENGTH: 43
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope
<400> SEQUENCE: 133
Phe Gly Asp Arg Gly Ala Pro Lys Arg Gly Ser Gly Lys Asp Ser
1 5 10 15
His His Pro Ala Arg Thr Ala His Tyr Gly Ser Leu Pro Gln Lys Ser
20 25 30
His Gly Arg Thr Gln Asp Glu Asn Pro Val Val
35 40

<210> SEQ ID NO 134
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MBP protein epitope
<400> SEQUENCE: 134
Gly Leu Ser Leu Ser Arg Phe Ser Trp Gly Ala Glu Gly Gln Arg Pro
1 5 10 15
Gly Phe Gly Tyr Gly Gly Arg Ala Ser Asp Tyr Lys Ser Ala His Lys
20 25 30
Gly Phe Lys Gly Val Asp Ala Gln
35 40
<210> SEQ ID NO: 135
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens MHC class I related protein A epitope
<400> SEQUENCE: 135
Ala Ala Ala Ala Ile Phe Val Ile
1 5

<210> SEQ ID NO: 136
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Myelin basic protein epitope
<400> SEQUENCE: 136
Ser Leu Ser Arg Phe Ser Trp Gly Ala
1 5

<210> SEQ ID NO: 137
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Myelin basic protein epitope
<400> SEQUENCE: 137
Asp Tyr Ser Ala His Lys Gly Phe
1 5

<210> SEQ ID NO: 138
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens myelin basic protein epitope
<400> SEQUENCE: 138
Ser Lys Ile Phe Lys Leu Gly Gly Arg Asp Ser Arg Ser Gly Ser Pro
1 5 10 15
Met Ala Arg

<210> SEQ ID NO: 139
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens myelin basic protein epitope
<400> SEQUENCE: 139
Thr Pro Arg Thr Pro Pro Gln
1 5

<210> SEQ ID NO: 140
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens myelin proteolipid protein epitope
<400> SEQUENCE: 140
Phe Leu Tyr Gly Ala Leu Leu Leu Ala
1 5

<210> SEQ ID NO 141
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens myelin proteolipid protein epitope

<400> SEQUENCE: 141
Lys Leu Ile Glu Thr Tyr Phe Ser Lys
1 5

<210> SEQ ID NO 142
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Myelin-associated glycoprotein precursor epitope

<400> SEQUENCE: 142
Leu Met Trp Ala Lys Ile Gly Pro Val
1 5

<210> SEQ ID NO 143
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Myelin-associated glycoprotein precursor epitope

<400> SEQUENCE: 143
Ser Leu Leu Leu Glu Leu Glu Glu Val
1 5

<210> SEQ ID NO 144
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Myelin-associated glycoprotein precursor epitope

<400> SEQUENCE: 144
Val Leu Phe Ser Ser Asp Phe Arg lle
1 5

<210> SEQ ID NO 145
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Myosin heavy chain, skeletal muscle, adult 2 (Myosin heavy chain IIa) (MyHC-IIa) epitope

<400> SEQUENCE: 145
Glu Phe Gln Lys Met Arg Arg Asp Leu
1 5

<210> SEQ ID NO 146
<211> LENGTH: 9
continued

-continued

-continued
| Sequence ID No. | Length | Type | Organism | Feature | Other Information | Sequence
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>10</td>
<td>PRT</td>
<td>Artificial</td>
<td>Homo sapiens proinsulin precursor epitope</td>
<td>Homo sapiens proinsulin precursor epitope</td>
<td>Trp Met Arg Leu Leu Pro Leu Leu Ala Leu
1
5
10</td>
</tr>
<tr>
<td>153</td>
<td>10</td>
<td>PRT</td>
<td>Artificial</td>
<td>Homo sapiens proinsulin precursor epitope</td>
<td>Homo sapiens proinsulin precursor epitope</td>
<td>Pro Leu Ala Leu Glu Gly Ser Leu Glu Lys
1
5
10</td>
</tr>
<tr>
<td>154</td>
<td>9</td>
<td>PRT</td>
<td>Artificial</td>
<td>Homo sapiens proinsulin precursor epitope</td>
<td>Homo sapiens proinsulin precursor epitope</td>
<td>Pro Leu Leu Ala Leu Ala Gly Val Lys
1
5
10</td>
</tr>
<tr>
<td>155</td>
<td>9</td>
<td>PRT</td>
<td>Artificial</td>
<td>Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope</td>
<td>Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope</td>
<td>Leu Leu Pro Leu Leu Glu His
1
5
10</td>
</tr>
<tr>
<td>156</td>
<td>9</td>
<td>PRT</td>
<td>Artificial</td>
<td>Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope</td>
<td>Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope</td>
<td>Ser Leu Ala Ala Gly Val Lys
1
5
10</td>
</tr>
<tr>
<td>157</td>
<td>9</td>
<td>PRT</td>
<td>Artificial</td>
<td>Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope</td>
<td>Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope</td>
<td>Ser Leu Ala Gly Val Lys Leu
1
5</td>
</tr>
</tbody>
</table>
SEQ ID NO 157

<table>
<thead>
<tr>
<th>Ser</th>
<th>Leu</th>
<th>Ser</th>
<th>Pro</th>
<th>Leu</th>
<th>Gln</th>
<th>Ala</th>
<th>Glu</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

LENGTH: 5
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE: OTHER INFORMATION: Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope

SEQ ID NO 158

<table>
<thead>
<tr>
<th>Ala</th>
<th>Leu</th>
<th>Thr</th>
<th>Ala</th>
<th>Val</th>
<th>Ala</th>
<th>Glu</th>
<th>Glu</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

LENGTH: 5
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE: OTHER INFORMATION: Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope

SEQ ID NO 159

<table>
<thead>
<tr>
<th>Ser</th>
<th>Leu</th>
<th>Tyr</th>
<th>His</th>
<th>Val</th>
<th>Tyr</th>
<th>Glu</th>
<th>Val</th>
<th>Asn</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

LENGTH: 10
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE: OTHER INFORMATION: Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope

SEQ ID NO 160

<table>
<thead>
<tr>
<th>Thr</th>
<th>Ile</th>
<th>Ala</th>
<th>Asp</th>
<th>Phe</th>
<th>Trp</th>
<th>Gln</th>
<th>Met</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

LENGTH: 6
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE: OTHER INFORMATION: Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope

SEQ ID NO 161

<table>
<thead>
<tr>
<th>Val</th>
<th>Ile</th>
<th>Val</th>
<th>Met</th>
<th>Leu</th>
<th>Thr</th>
<th>Pro</th>
<th>Leu</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LENGTH: 5
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE: OTHER INFORMATION: Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope

SEQ ID NO 162

<table>
<thead>
<tr>
<th>Met</th>
<th>Val</th>
<th>Trp</th>
<th>Glu</th>
<th>Ser</th>
<th>Gly</th>
<th>Cys</th>
<th>Thr</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LENGTH: 5
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE: OTHER INFORMATION: Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope
<210> SEQ ID NO 163
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

<400> SEQUENCE: 163

Fhe Leu Gly Glu Leu Thr Ser Ser Glu Val Ala Thr Glu Val

1 5 10

<210> SEQ ID NO 164
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

<400> SEQUENCE: 164

Fhe Met Ser Asp Lys Pro Leu His Leu Ala Val Ser Leu Asn Lys Glu

1 5 10 15

Ile Tyr Phe His

20

<210> SEQ ID NO 165
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

<400> SEQUENCE: 165

Gly Glu Ala Glu Glu Gly Lys Arg Asp Lys Asn Asp Val Asp Glu

1 5 10 15

<210> SEQ ID NO 166
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

<400> SEQUENCE: 166

Gly Glu Pro Ile Pro Val Thr Val Thr Val Thr Asn Asp Thr Glu Lys

1 5 10 15

Thr Val Lys Lys

20

<210> SEQ ID NO 167
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

<400> SEQUENCE: 167

His Pro Gln Pro Glu Asp Pro Ala Lys Glu Ser Tyr Gln Asp Ala Asn

1 5 10 15

Leu Val Phe Glu

20

<210> SEQ ID NO 168
<211> LENGTH: 20
Ile Lys Ala Phe Val Gln Val Ala Asn Val Val Leu Tyr Ser Ser
1 5 10 15
Asp Tyr Tyr Val
20

Lys Ser Ser Val Arg Leu Leu Ile Arg Lys Val Gln His Ala Pro Leu
1 5 10 15
Glu Met Gly Pro
20

Gln Pro Arg Ala Glu Ala Ala Trp Gln Phe Phe Met Ser Asp Lys Pro
1 5 10 15
Leu His Leu Ala
20

Ser Tyr Gln Asp Ala Asn Leu Val Phe Glu Phe Ala Arg His Asn
1 5 10 15
Leu Lys Asp Ala
20

Thr Asp Ala Glu Glu Asp Lys Ile Pro Lys Lys Ser Ser Val Arg Leu
1 5 10 15
Leu Ile Arg Lys
20
<210> SEQ ID NO 173
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

Thr Asn Asn Thr Glu Lys Thr Val Lys Lys Ile Lys Ala Phe Val Glu
1 5 10 15

Gln Val Ala Asn
20

<210> SEQ ID NO 174
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

Val Gln His Ala Pro Leu Glu Met Gly Pro Gln Pro Arg Ala Glu Ala
1 5 10 15

Ala Trp Gln Phe
20

<210> SEQ ID NO 175
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

Val Ser Leu Asn Lys Glu Ile Tyr Phe His Gly Glu Pro Ile Pro Val
1 5 10 15

Thr Val Thr Val
20

<210> SEQ ID NO 176
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

Val Tyr Val Thr Leu Thr Cys Ala Phe Arg Tyr Gly Gln Glu Asp Ile
1 5 10 15

Asp Val Ile Gly
20

<210> SEQ ID NO 177
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

Tyr Gly Gln Glu Asp Ile Asp Val Ile Gly Leu Thr Phe Arg Arg Asp
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Leu Tyr Phe Ser</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 178

<211> LENGTH: 10

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Homo sapiens SSA protein 55 epitope

<400> SEQUENCE: 178

Tyr Thr Cys Pro Leu Cys Arg Ala Pro Val

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 179

<211> LENGTH: 8

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Homo sapiens Steroid 21-hydroxylase epitope

<400> SEQUENCE: 179

Glu Pro Leu Ala Arg Leu Glu Leu

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 180

<211> LENGTH: 20

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Homo sapiens Steroid 21-hydroxylase epitope

<400> SEQUENCE: 180

Glu Pro Leu Ala Arg Leu Glu Leu Phe Val Val Leu Thr Arg Leu Leu

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Gln Ala Phe Thr

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 181

<211> LENGTH: 20

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Homo sapiens Steroid 21-hydroxylase epitope

<400> SEQUENCE: 181

Ile Lys Asp Asp Asn Leu Met Pro Ala Tyr Tyr Cys Ile Gln Glu

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Val Leu Lys Thr

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 182

<211> LENGTH: 20

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Homo sapiens Steroid 21-hydroxylase epitope

<400> SEQUENCE: 182

Ile Arg Asp Ser Met Glu Pro Val Val Glu Gln Leu Thr Gln Glu Phe

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>
Cys Glu Arg Met
20

<210> SEQ ID NO 183
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens T-cell receptor V beta chain
13.1 epitope

<400> SEQUENCE: 183
Leu Gly Arg Ala Gly Leu Thr Tyr
1 5

<210> SEQ ID NO 184
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens transaldolase 1 epitope

<400> SEQUENCE: 184
Leu Leu Phe Ser Phe Ala Gln Ala Val
1 5

<210> SEQ ID NO 185
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Vasoactive intestinal polypeptide receptor 1 precursor epitope

<400> SEQUENCE: 185
Arg Arg Lys Trp Arg Arg Trp His Leu
1 5

<210> SEQ ID NO 186
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Vasoactive intestinal polypeptide receptor 1 precursor epitope

<400> SEQUENCE: 186
Arg Arg Lys Trp Arg Arg Trp His Leu
1 5

<210> SEQ ID NO 187
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea 2S protein 1 epitope

<400> SEQUENCE: 187
Ala His Ala Ser Ala Arg Gln Gln Trp Glu Leu Gln Gly Asp Arg Arg
1 5 10 15
Cys Gln Ser Gln
20

<210> SEQ ID NO 188
<210> SEQ ID NO 189
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea 2S protein 1 epitope

<400> SEQUENCE: 189

Ala Leu Gln Gln Ile Met Glu Asn Gln Ser Asp Arg Leu Gln Gly Arg
1 5 10 15
Gln Gln Gln

<210> SEQ ID NO 190
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea 2S protein 1 epitope

<400> SEQUENCE: 190

Ala Asn Leu Arg Pro Cys Glu Gln His Leu Met Gln Lys Ile Gln Arg
1 5 10 15
Asp Glu Asp Ser
20

<210> SEQ ID NO 191
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea 2S protein 1 epitope

<400> SEQUENCE: 191

Cys Asn Glu Leu Asn Glu Phe Glu Asn Asn Gln Arg Cys Met Cys Glu
1 5 10 15
Ala Leu Gln Gln
20

<210> SEQ ID NO 192
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens 5-hydroxytryptamine receptor 2C (5-HT2C) (Serotonin receptor 2C) (5-HT2C) (5-HT2C) (5HT-1C) epitope

<400> SEQUENCE: 192

Pro Arg Gly Thr Met Gln Ala Ile Asn Asn Glu Arg Lys Ala Ser Lys
1 5 10 15
<210> SEQ ID NO 193
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 193
Asp Gln Gly Thr Cys Leu Leu Leu Thr Glu Val Ala
1 5 10

<210> SEQ ID NO 194
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 194
Glu Leu Glu Lys Tyr Gln Gln Leu Asn Ser Glu Arg Gly Val
1 5 10

<210> SEQ ID NO 195
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 195
Gly Glu Arg Ile Thr Lys Met Thr Glu Leu Ala Lys
1 5 10

<210> SEQ ID NO 196
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 196
Pro Gly Glu Trp Arg Ile Ile Tyr Ala Ala Asp Asn Lys
1 5 10

<210> SEQ ID NO 197
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 197
Arg Ile Glu Cys Ile Asn Asp Cys
1 5

<210> SEQ ID NO 198
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 198
Val Ala Lys Arg Gln Glu Gly Tyr Val Tyr Val Leu
-continued

1 5 10

<210> SEQ ID NO 199
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 199

Val Ser Glu Asn Met Leu Val Thr Tyr Val
1 5 10

<210> SEQ ID NO 200
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 200

Asp Gln Thr Cys Leu Leu Thr Glu Val Ala
1 5 10

<210> SEQ ID NO 201
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 201

Glu Leu Glu Lys Tyr Gln Gln Leu Asn Ser Glu Arg Gly Val
1 5 10

<210> SEQ ID NO 202
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 202

Glu Leu Glu Lys Tyr Gln Gln Leu Asn Ser Glu Arg Gly Val Pro Asn
1 5 10 15

<210> SEQ ID NO 203
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 203

Gly Glu Arg Ile Thr Lys Met Thr Gly Leu Ala Lys
1 5 10

<210> SEQ ID NO 204
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 204
Pro Gly Glu Trp Arg Ile Ile Tyr Ala Ala Ala Asp Asn Lys

1 5 10

<210> SEQ ID NO 205
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 205
Arg Ile Glu Cys Ile Asn Asp Cys

1 5

<210> SEQ ID NO 206
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 206
Val Ala Lys Arg Glu Gly Tyr Val Tyr Val Leu

1 5 10

<210> SEQ ID NO 207
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Bos taurus Allergen Bos d 2 precursor epitope

<400> SEQUENCE: 207
Val Ser Glu Asn Met Leu Val Thr Tyr Val

1 5 10

<210> SEQ ID NO 208
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Allergen Cry j 2 epitope

<400> SEQUENCE: 208
Asp Ile Phe Ala Ser Lys Asn Phe His Leu Gin Lys Asn

1 5 10

<210> SEQ ID NO 209
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Allergen Cry j 2 epitope

<400> SEQUENCE: 209
Gly Ile Ile Ala Ala Tyr Gin Asn Pro Ala Ser Trp Lys

1 5 10

<210> SEQ ID NO 210
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Allergen Cry j 2 epitope
<400> SEQUENCE: 210
Lys Leu Thr Ser Gly Lys Ile Ala Ser Cys Leu Asn
1 5 10

<210> SEQ ID NO 211
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Allergen Cry j 2 epitope

<400> SEQUENCE: 211
Gln Phe Ala Lys Leu Thr Gly Phe Thr Leu Met Gly
1 5 10

<210> SEQ ID NO 212
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Asp f I/a epitope

<400> SEQUENCE: 212
Ile Asn Gln Gln Leu Asn Pro Lys
1 5

<210> SEQ ID NO 213
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Asp f I/a epitope

<400> SEQUENCE: 213
Ile Asn Gln Gln Leu Asn Pro Lys Thr Asn Lys Trp Glu Asp Lys
1 5 10 15

<210> SEQ ID NO 214
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Asp f I/a epitope

<400> SEQUENCE: 214
Leu Asn Pro Lys Thr Asn Lys Trp Glu Asp Lys
1 5 10

<210> SEQ ID NO 215
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Asp f I/a epitope

<400> SEQUENCE: 215
Ile Asn Gln Gln Leu Asn Pro Lys
1 5
<210> SEQ ID NO 216
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Aep f I/a epitope

<400> SEQUENCE: 216
Ile Asn Gln Gln Leu Asn Pro Lys Thr Asn Lys Trp Glu Asp Lys
1 5 10 15

<210> SEQ ID NO 217
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Aep f I/a epitope

<400> SEQUENCE: 217
Leu Asn Pro Lys Thr Asn Lys Trp Glu Asp Lys
1 5 10

<210> SEQ ID NO 218
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Aep f I/a epitope

<400> SEQUENCE: 218
Thr Asn Lys Trp Glu Asp Lys
1 5

<210> SEQ ID NO 219
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Aep f I/a epitope

<400> SEQUENCE: 219
Leu Asn Pro Lys Thr Asn Lys Trp Glu Asp Lys Arg
1 5 10

<210> SEQ ID NO 220
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Allergen Mag epitope

<400> SEQUENCE: 220
Pro Arg Leu Ser Trp His Gln Tyr Thr Lys Arg Asp Ser Arg Glu
1 5 10 15

<210> SEQ ID NO 221
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Allergen Mag epitope
-continued

<400> SEQUENCE: 221

Thr Val Asp Leu Ile Ser Pro Val Thr Lys Arg Ala Ser Leu Lys
 1 5 10 15

<210> SEQ ID NO 222
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-S1-casein precursor epitope

<400> SEQUENCE: 222

Ala Trp Tyr Tyr Val Pro Leu Gly Thr Glu Tyr Thr Asp Ala Pro Ser
 1 5 10 15

Phe Ser

<210> SEQ ID NO 223
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-S1-casein precursor epitope

<400> SEQUENCE: 223

Asp Ala Tyr Pro Ser Gly Ala Trp Tyr Tyr Val Pro Leu Gly Thr Glu
 1 5 10 15

Tyr Thr

<210> SEQ ID NO 224
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-S1-casein precursor epitope

<400> SEQUENCE: 224

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Ala Met Glu Asp Ile Lys
 1 5 10 15

Gln Met

<210> SEQ ID NO 225
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-S1-casein precursor epitope

<400> SEQUENCE: 225

Glu Asp Ile Lys Glu Met
 1 5

<210> SEQ ID NO 226
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-S1-casein precursor epitope

<400> SEQUENCE: 226

Glu Pro Met Ile Gly Val Asp Gln Glu Leu Ala Tyr
 1 5 10
-continued

<210> SEQ ID NO 227
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-S1-casein precursor epitope

<400> SEQUENCE: 227

Glu Pro Met Ile Gly Val Asn Gln Glu Leu Ala Tyr Phe Tyr Pro Glu
1 5 10 15
Leu Phe

<210> SEQ ID NO 228
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogea Ara h 2.01 allergen epitope

<400> SEQUENCE: 228

Glu Leu Asn Glu Phe Glu Asn Asn Gln Arg Cys Met Cys Gln Ala Leu
1 5 10 15
Gln

<210> SEQ ID NO 229
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogea Ara h 2.01 allergen epitope

<400> SEQUENCE: 229

Ser Gln Leu Glu Arg Ala Asn Leu Arg Pro Cys Glu Gln His Leu Met
1 5 10 15

<210> SEQ ID NO 230
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Cry j 1 precursor epitope

<400> SEQUENCE: 230

Gly Ala Thr Arg Asp Arg Pro Leu Trp Ile Ile Phe Ser Gly Asn
1 5 10 15

<210> SEQ ID NO 231
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Cry j 1 precursor epitope

<400> SEQUENCE: 231

Ile Phe Ser Gly Asn Met Asn Ile Lys Leu Lys Met Pro Met Tyr Ile
1 5 10 15
Ala Gly Tyr Lys
20

<210> SEQ ID NO 232
<211> LENGTH: 20
<212> TYPE: PRT
-continued

<<213> ORGANISM: Artificial Sequence
<<220> FEATURE:
<<223> OTHER INFORMATION: Cryptomeria japonica Cry j 1 precursor epitope

<<400> SEQUENCE: 232

Lys Met Pro Met Tyr Ile Ala Gly Tyr Lys Thr Phe Asp Gly Arg Gly
1 5 10 15

 Ala Gln Val Tyr
20

<<210> SEQ ID NO 233
<<211> LENGTH: 20
<<212> TYPE: PRT
<<213> ORGANISM: Artificial Sequence
<<220> FEATURE:
<<223> OTHER INFORMATION: Cryptomeria japonica Cry j 1 precursor epitope

<<400> SEQUENCE: 233

Leu Gly His Asp Asp Ala Tyr Ser Asp Asp Lys Ser Met Lys Val Thr
1 5 10 15

 Val Ala Phe Asn
20

<<210> SEQ ID NO 234
<<211> LENGTH: 19
<<212> TYPE: PRT
<<213> ORGANISM: Artificial Sequence
<<220> FEATURE:
<<223> OTHER INFORMATION: Cryptomeria japonica Cry j 1 precursor epitope

<<400> SEQUENCE: 234

Ser Gly Lys Tyr Glu Gly Gly Asn Ile Tyr Thr Lys Glu Ala Phe
1 5 10 15

 Asn Val Glu

<<210> SEQ ID NO 235
<<211> LENGTH: 11
<<212> TYPE: PRT
<<213> ORGANISM: Artificial Sequence
<<220> FEATURE:
<<223> OTHER INFORMATION: Cochliobolus lunatus Cytochrome c epitope

<<400> SEQUENCE: 235

Glu Asn Pro Lys Lys Tyr Ile Pro Gly Thr Lys
1 5 10

<<210> SEQ ID NO 236
<<211> LENGTH: 11
<<212> TYPE: PRT
<<213> ORGANISM: Artificial Sequence
<<220> FEATURE:
<<223> OTHER INFORMATION: Cochliobolus lunatus Cytochrome c epitope

<<400> SEQUENCE: 236

Gly Leu Phe Gly Arg Lys Thr Gly Ser Val Ala
1 5 10

<<210> SEQ ID NO 237
<<211> LENGTH: 9
<<212> TYPE: PRT
<<213> ORGANISM: Artificial Sequence
<<220> FEATURE:
<<223> OTHER INFORMATION: Cochliobolus lunatus Cytochrome c epitope
-continued

<400> SEQUENCE: 237
Lys Ile Gly Pro Glu Leu His Gly Leu
 1 5

<210> SEQ ID NO 238
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cochliobolus lunatus Cytochrome c epitope

<400> SEQUENCE: 238
Leu Lys Ala Gly Glu Gly Asn Lys Ile Gly Pro Glu
 1 5 10

<210> SEQ ID NO 239
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cochliobolus lunatus Cytochrome c epitope

<400> SEQUENCE: 239
Leu Lys Lys Pro Lys Asp Asn Asp Leu Ile
 1 5 10

<210> SEQ ID NO 240
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Der f 2 allergen epitope

<400> SEQUENCE: 240
Gly Leu Glu Ile Asp Val Pro Gly Ile Asp Thr Asn Ala Cys His Phe
 1 5 10 15
Val Lys

<210> SEQ ID NO 241
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Der f 2 allergen epitope

<400> SEQUENCE: 241
Pro Gly Ile Asp Thr Asn Ala Cys His Phe Val Lys Cys Pro Leu Val
 1 5 10 15
Lys Gly Gln Gln
 20

<210> SEQ ID NO 242
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Der p 1 allergen epitope

<400> SEQUENCE: 242
<210> SEQ ID NO 248
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-III epitope

<400> SEQUENCE: 248

Phe Ala Gly Lys Asp Leu Glu Ser Ile Lys Gly Thr Ala Pro Phe Glu
1 5 10 15

Ile His Ala Asn
20

<210> SEQ ID NO 249
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-III epitope

<400> SEQUENCE: 249

Val Asn Thr Phe Val Ala Ser His Lys Pro Arg Gly Val Thr His Asp
1 5 10 15 18

Gln Leu Asn Asn Phe
20

<210> SEQ ID NO 250
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-III precursor epitope

<400> SEQUENCE: 250

Ala Asp Pro Ser Ile Met Ala Lys
1 5

<210> SEQ ID NO 251
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-III precursor epitope

<400> SEQUENCE: 251

Ala Asp Pro Ser Ile Met Ala Lys Phe Thr Gln Phe Ala Gly Lys Asp
1 5 10 15 18

Leu Glu Ser Ile Lys
20

<210> SEQ ID NO 252
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<222> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-III precursor epitope
-continued

<400> SEQUENCE: 252
Ala Glu Ala Ala Trp
1 5

<210> SEQ ID NO 253
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chironomus thummi thummi Globin CTF-III precursor epitope
<400> SEQUENCE: 253
Ala Glu Ala Ala Trp Gly Ala Thr Leu Asp Thr Phe Phe Gly Met Ile
1 5 10 15
Phe Ser Lys Met
20

<210> SEQ ID NO 254
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chironomus thummi thummi Globin CTF-III precursor epitope
<400> SEQUENCE: 254
Ala Gly Phe Val Ser Tyr Met Lys
1 5

<210> SEQ ID NO 255
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phaseolus vulgaris Glycine-rich cell wall structural protein 1.8 precursor epitope
<400> SEQUENCE: 255
Gly Gly Tyr Gly Asp Gly Gly Ala His Gly Gly Gly Tyr Gly Gly
1 5 10 15

<210> SEQ ID NO 256
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Group V allergen Phi p 5 epitope
<400> SEQUENCE: 256
Ala Thr Pro Glu Ala Lys Tyr Asp Ala Tyr Val Ala Thr Leu Ser
1 5 10 15

<210> SEQ ID NO 257
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Group V allergen Phi p 5 epitope
<400> SEQUENCE: 257
Phe Thr Val Phe Glu Ala Ala Phe Asn Asn Ala Ile Lys Ala Gly
<210> SEQ ID NO 258
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Group V allergen Phl p 5 epitope
<400> SEQUENCE: 258
Lys Tyr Asp Ala Tyr Val Ala Ser Glu Ala Leu Arg Ile
1 5 10 15

<210> SEQ ID NO 259
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Group V allergen Phl p 5 epitope
<400> SEQUENCE: 259
Pro Ala Asn Asp Lys Phe Thr Val Phe Glu Ala Ala Phe Asn Asn
1 5 10 15

<210> SEQ ID NO 260
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens KIAA1224 protein epitope
<400> SEQUENCE: 260
Pro Lys Gly Gly Ala Glu Ser Ser Lys Ala Ala Leu Thr Ser
1 5 10 15

<210> SEQ ID NO 261
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lepidoglyphus destructor Lep D 2 precursor epitope
<400> SEQUENCE: 261
Asp Leu Glu Ser Tyr Leu Gln Leu Asn Cys Glu Arg Gly Thr Trp Arg
1 5 10 15

<210> SEQ ID NO 262
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lepidoglyphus destructor Lep D 2 precursor epitope
<400> SEQUENCE: 262
Lys Gly Glu Ala Leu Asp Phe Asn Tyr Gly Met Thr Ile Pro Ala
1 5 10 15

<210> SEQ ID NO 263
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Corylus avellana lipid transfer protein precursor epitope

SEQUENCE: 263
Ala Gly Leu Pro Gly Lys Cys Gly Val Asn Ile Pro
 1 5

FEATURE:
OTHER INFORMATION: Corylus avellana lipid transfer protein precursor epitope

SEQUENCE: 264
Ala Lys Gly Ile Ala Gly Leu Asn Pro Asn Leu Ala
 1 5

FEATURE:
OTHER INFORMATION: Corylus avellana lipid transfer protein precursor epitope

SEQUENCE: 265
Cys Gly Val Asn Ile Pro Tyr Lys Ile Ser Pro Ser
 1 5

FEATURE:
OTHER INFORMATION: Corylus avellana lipid transfer protein precursor epitope

SEQUENCE: 266
Cys Lys Gly Val Arg Ala Val Asp Ala Ser Arg
 1 5

FEATURE:
OTHER INFORMATION: Corylus avellana lipid transfer protein precursor epitope

SEQUENCE: 267
Cys Val Leu Tyr Leu Lys Asn Gly Gly Val Leu Pro
 1 5

FEATURE:
OTHER INFORMATION: Homo sapiens Lipocalin 1 (tear prealbumin) epitope

SEQUENCE: 268
US 2012/0276157 A1

-continued

Lys Pro Val Arg Gly Val Lys Leu Val Gly Arg Asp Pro Lys Asn Asn
1 5 10 15

<110> SEQ ID NO 269
<111> LENGTH: 15
<112> TYPE: PRT
<113> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Mag3 epitope

<400> SEQUENCE: 269

Glu Phe Asn Thr Glu Phe Thr Ile His Ala Asp Lys Asn Asn Leu
1 5 10 15

<110> SEQ ID NO 270
<111> LENGTH: 15
<112> TYPE: PRT
<113> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Mag3 epitope

<400> SEQUENCE: 270

Phe Thr Ile His Ala Asp Lys Asn Asn Leu Lys Met His Met Asp
1 5 10 15

<110> SEQ ID NO 271
<111> LENGTH: 15
<112> TYPE: PRT
<113> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Mag3 epitope

<400> SEQUENCE: 271

Lys Met His Met Asp Phe Pro Asn Val Phe Gln Ala Asp Leu Thr
1 5 10 15

<110> SEQ ID NO 272
<111> LENGTH: 13
<112> TYPE: PRT
<113> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apium graveolens Major allergen Api g 1 epitope

<400> SEQUENCE: 272

Ala Leu Phe Lys Ala Leu Glu Tyr Leu Ile Ala Asn
1 5 10

<110> SEQ ID NO 273
<111> LENGTH: 12
<112> TYPE: PRT
<113> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apium graveolens Major allergen Api g 1 epitope

<400> SEQUENCE: 273

Asp Ala Val Val Pro Glu Glu Asn Ile Lys Tyr Ala
1 5 10

<110> SEQ ID NO 274
<111> LENGTH: 12
<112> TYPE: PRT
<113> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apium graveolens Major allergen Api g 1 epitope
<400> SEQUENCE: 274
Asp Ile Leu Leu Gly Phe Ile Glu Ser Ile Glu Asn
1 5 10

<210> SEQ ID NO 275
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apium graveolens Major allergen Api g 1 epitope

<400> SEQUENCE: 275
Gly Gly Ser Ile Cys Lys Thr Thr Ala Ile Phe His
1 5 10

<210> SEQ ID NO 276
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apium graveolens Major allergen Api g 1 epitope

<400> SEQUENCE: 276
Gly Val Gln Thr His Val Leu Leu Thr Ser Ser
1 5 10

<210> SEQ ID NO 277
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Major allergen Asp f 2 precursor epitope

<400> SEQUENCE: 277
Phe Gly Asn Arg Pro Thr Met Glu Ala Val Gly Ala Tyr Asp Val
1 5 10 15

<210> SEQ ID NO 278
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Major allergen Asp f 2 precursor epitope

<400> SEQUENCE: 278
Met Glu Ala Val Gly Ala Tyr Asp Val Arg Thr Val Leu Arg Gly Asp Lys
1 5 10 15

<210> SEQ ID NO 279
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Canis lupus familiaris Major allergen Can f 1 precursor epitope

<400> SEQUENCE: 279
Ala Leu Glu Asp Phe Arg Glu Phe Ser Arg Ala Lys Gly Leu Asn Gln
1 5 10 15

<210> SEQ ID NO 280
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Canis lupus familiaris Major allergen Can f 1 precursor epitope

<400> SEQUENCE: 280

Asp Glu Glu Val Pro Glu Lys Pro Ser Val Thr Pro Met Ile Leu
1 5 10 15

<210> SEQ ID NO 281
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Corylus avellana major allergen Cor a 1.0401 epitope

<400> SEQUENCE: 281

Ala Gly Lys Glu Lys Ala Ala Gly Leu Phe Lys Ala
1 5 10

<210> SEQ ID NO 282
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Corylus avellana major allergen Cor a 1.0401 epitope

<400> SEQUENCE: 282

Ala Gly Leu Phe Lys Ala Val Glu Ala Tyr Leu Leu
1 5 10

<210> SEQ ID NO 283
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Corylus avellana major allergen Cor a 1.0401 epitope

<400> SEQUENCE: 283

Ala Pro Gln His Phe Thr Ser Ala Glu Asn Leu Glu
1 5 10

<210> SEQ ID NO 284
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Corylus avellana major allergen Cor a 1.0401 epitope

<400> SEQUENCE: 284

Ala Arg Leu Phe Lys Ser Phe Val Leu Asp Ala Asp
1 5 10

<210> SEQ ID NO 285
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Corylus avellana major allergen Cor a 1.0401 epitope
<400> SEQUENCE: 285
Glu Ile Asp His Ala Asn Phe Lys Tyr Cys Tyr Ser
1 5 10

<210> SEQ ID NO 286
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Daucus carota Major allergen Dau c 1 epitope

<400> SEQUENCE: 286
Ala Leu Phe Lys Ala Ile Glu Ala Tyr Leu Ile Ala Asn
1 5 10

<210> SEQ ID NO 287
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Equus caballus Major allergen Equ c 1 precursor epitope

<400> SEQUENCE: 287
Asp Gly Tyr Asn Val Phe Arg Ile Ser Glu Phe Glu Asn Asp Glu His
1 5 10 15

<210> SEQ ID NO 288
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Equus caballus Major allergen Equ c 1 precursor epitope

<400> SEQUENCE: 288
Asp Lys Asp Arg Pro Phe Gln Leu Phe Glu Phe Tyr Ala Arg Glu Pro
1 5 10 15

<210> SEQ ID NO 289
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Equus caballus Major allergen Equ c 1 precursor epitope

<400> SEQUENCE: 289
Asp Leu Thr Lys Ile Asp Arg Cys Phe Gln Leu Arg Gly Asn Gly Val
1 5 10 15

<210> SEQ ID NO 290
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Equus caballus Major allergen Equ c 1 precursor epitope

<400> SEQUENCE: 290
Asp Arg Pro Phe Gln Leu Phe Glu Phe Tyr Ala Arg Glu Pro Asp Val
1 5 10 15

<210> SEQ ID NO 291
Asp
Val
Ser
Pro
Glu
Ile
Lys
Glu
Phe
Val
Lys
Ile
Val
Gln
Lys
1
5
10
15

<210> SEQ ID NO 292
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
<223> OTHER INFORMATION: Felis catus major allergen I epitope

<400> SEQUENCE: 292
Glu
Asn
Ala
Arg
Ile
Leu
Lys
Asn
Cys
Val
Asp
Ala
Lys
Met
Thr
Glu
1
5
10
15

<210> SEQ ID NO 293
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
<223> OTHER INFORMATION: Felis catus major allergen I epitope

<400> SEQUENCE: 293
Arg
Asp
Val
Asp
Leu
Phe
Leu
Thr
Gly
Thr
Pro
Asp
Glu
Tyr
Val
Glu
1
5
10
15

<210> SEQ ID NO 294
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
<223> OTHER INFORMATION: Felis catus major allergen I epitope

<400> SEQUENCE: 294
Thr
Gly
Thr
Pro
Asp
Glu
Tyr
Val
Glu
Gln
Val
Ala
Gln
Tyr
Lys
Ala
1
5
10
15

<210> SEQ ID NO 295
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
<223> OTHER INFORMATION: Felis catus Major allergen I polypeptide chain 1 precursor epitope

<400> SEQUENCE: 295
Asp
Val
Asp
Leu
Phe
Leu
Thr
Gly
Thr
Pro
Asp
Glu
Tyr
Val
Glu
Gln
1
5
10
15

Val

<210> SEQ ID NO 296
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Felis catus Major allergen I polypeptide chain
 1 precursor epitope

<400> SEQUENCE: 296

Glu Ile Cys Pro Ala Val Lys Arg Asp Val Asp Leu Phe Leu Thr Gly
 1 5 10 15
Thr

<210> SEQ ID NO 297
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Felis catus Major allergen I polypeptide chain
 1 precursor epitope

<400> SEQUENCE: 297

Glu Gln Val Ala Gln Tyr Ala Leu Pro Val Val Leu Glu Asn Ala
 1 5 10 15

<210> SEQ ID NO 298
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Felis catus Major allergen I polypeptide chain
 1 precursor epitope

<400> SEQUENCE: 298

Lys Ala Leu Pro Val Leu Glu Asn Ala Arg Ile Leu Lys Asn Cys
 1 5 10 15
Val

<210> SEQ ID NO 299
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Felis catus Major allergen I polypeptide chain
 1 precursor epitope

<400> SEQUENCE: 299

Leu Phe Leu Thr Gly Thr Pro Asp Glu Tyr Val Glu Gln Val Ala Gln
 1 5 10 15
Tyr

<210> SEQ ID NO 300
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Felis catus major allergen I, polypeptide chain
 1 epitope

<400> SEQUENCE: 300

Lys Glu Asn Ala Leu Ser Leu Leu Asp Lys Ile Tyr Thr Ser Pro Leu
 1 5 10 15

<210> SEQ ID NO 301
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Felis catus major allergen 1, polypeptide chain 1 epitope

<400> SEQUENCE: 301
Lys Met Thr Glu Glu Asp Lys Glu Asn Ala Leu Ser Leu Leu Asp Lys
1 5 10 15

<210> SEQ ID NO 302
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Malus x domestica Major allergen Mal d 1 epitope

<400> SEQUENCE: 302
Gly Leu Phe Lys Leu Ile Glu Ser Tyr Leu Lys Asp His Pro Asp
1 5 10 15

<210> SEQ ID NO 303
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus avium Major allergen Pru av 1 epitope

<400> SEQUENCE: 303
Asn Leu Phe Lys Leu Ile Glu Thr Tyr Leu Lys Gly His Pro Asp
1 5 10 15

<210> SEQ ID NO 304
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis Major latex allergen Hev b 5 epitope

<400> SEQUENCE: 304
Ala Ala Pro Ala Glu Gly Glu Lys Pro Ala Glu Glu Lys Pro Ile
1 5 10 15
Thr Glu Ala Ala
20

<210> SEQ ID NO 305
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis Major latex allergen Hev b 5 epitope

<400> SEQUENCE: 305
Ala Glu Glu Glu Lys Pro Ile Thr Glu Ala Ala Glu Thr Ala Thr Thr
1 5 10 15
Glu Val Pro Val
20

<210> SEQ ID NO 306
<211> LENGTH: 20
<212> TYPE: PRT
<210> SEQ ID NO 307
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis Major latex allergen
Hev b 5 epitope

<400> SEQUENCE: 307

Ala Pro Ala Glu Pro Glu Ala Pro Ala Pro Glu Thr Glu Lys Ala Glu
1 5 10 15

Glu Val Glu Lys
20

<210> SEQ ID NO 308
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis Major latex allergen
Hev b 5 epitope

<400> SEQUENCE: 308

Ala Pro Glu Ala Asp Glu Thr Thr Pro Glu Glu Lys Pro Ala Glu Pro
1 5 10 15

Glu Pro Val Ala
20

<210> SEQ ID NO 309
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Major mite fecal
allergen Der p 1 epitope

<400> SEQUENCE: 309

Thr Ala Ala Pro
20

<210> SEQ ID NO 310
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Major mite fecal
allergen Der p 1 epitope

<400> SEQUENCE: 310

Asp Leu Ala Glu Thr His Thr Ala Ile Ala Val Ile Ile Gly Ile Lys
1 5 10 15

Asp Leu Asp
<210> SEQ ID NO 311
<211> LENGTH: 35
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Olea europaea Major pollen allergen epitope

<400> SEQUENCE: 311

Glu Asp Ile Pro Gln Pro Pro Val Ser Gln Phe His Ile Gln Gly Gln
1 5 10 15
Val Tyr Cys Asp Thr Cys Arg Ala Gly Phe Ile Thr Glu Leu Ser Glu
20 25 30
Phe Ile Pro
35

<210> SEQ ID NO 312
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Olea europaea Major pollen allergen epitope

<400> SEQUENCE: 312

Gly Ala Ser Leu Arg Leu Gln Cys Lys Asp Lys Glu Asn Gly Asp Val
1 5 10 15
Thr Phe Thr Glu Val Gly Tyr Thr Arg Ala Glu Gly Leu Tyr Ser
20 25 30

<210> SEQ ID NO 313
<211> LENGTH: 34
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Olea europaea Major pollen allergen epitope

<400> SEQUENCE: 313

Gly Thr Thr Arg Thr Val Asn Pro Leu Gly Phe Phe Lys Glu Ala
1 5 10 15
Leu Pro Lys Cys Ala Gln Val Tyr Asn Lys Leu Gly Met Tyr Pro Pro
20 25 30 35
Asn Met

<210> SEQ ID NO 314
<211> LENGTH: 53
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Olea europaea Major pollen allergen epitope

<400> SEQUENCE: 314

Leu Val Glu Arg Asp His Lys Asn Glu Phe Cys Glu Ile Thr Leu Ile
1 5 10 15
Ser Ser Gly Arg Lys Asp Cys Asn Glu Ile Pro Thr Glu Gly Trp Ala
20 25 30
Lys Pro Ser Leu Lys Phe Lys Leu Asn Thr Val Asn Gly Thr Thr Arg
35 40 45
Thr Val Asn Pro Leu
50
-continued

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM: Artificial Sequence</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Olea europaea Major pollen allergen epitope</td>
</tr>
</tbody>
</table>

| SEQUENCE:
Met Leu Val Glu Arg Asp His Lys Asn Glu Phe Cys Glu Ile Thr Leu
| 1 | 5 | 10 | 15 |
| Ile Ser Ser Gly Arg Lys Asp Cys Asn Glu Ile Pro Thr Glu Gly Trp
| 20 | 25 | 30 |
| Ala |

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM: Artificial Sequence</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Artemisia vulgaris Major pollen allergen Art</td>
</tr>
<tr>
<td>1 precursor epitope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SEQUENCE:
Ala Gly Gly Ser Pro Ser Pro Pro Pro Ala Asp Gly Gly
| 1 | 5 | 10 |

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM: Artificial Sequence</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>317</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Artemisia vulgaris Major pollen allergen Art</td>
</tr>
<tr>
<td>1 precursor epitope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SEQUENCE:
Ala Gly Ser Lys Leu Cys Glu Lys Thr Ser Lys Thr
| 1 | 5 | 10 |

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM: Artificial Sequence</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Artemisia vulgaris Major pollen allergen Art</td>
</tr>
<tr>
<td>1 precursor epitope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SEQUENCE:
Cys Asp Lys Lys Cys Ile Glu Trp Glu Lys Ala Gln
| 1 | 5 | 10 |

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM: Artificial Sequence</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Artemisia vulgaris Major pollen allergen Art</td>
</tr>
<tr>
<td>1 precursor epitope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SEQUENCE:
Asp Gly Gly Ser Pro Pro Pro Pro Ala Asp Gly Gly
| 1 | 5 | 10 |

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM: Artificial Sequence</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
</table>
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Artemisia vulgaris Major pollen allergen Art v 1 precursor epitope

<400> SEQUENCE: 320
Glu Lys Thr Ser Lys Thr Tyr Ser Gly Lys Cys Asp
1 5

<210> SEQ ID NO 321
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula Major pollen allergen Bet v 1-A epitope

<400> SEQUENCE: 321
Ala Ala Arg Leu Phe Lys Ala Phe Ile Leu Asp Gly
1 5

<210> SEQ ID NO 322
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula Major pollen allergen Bet v 1-A epitope

<400> SEQUENCE: 322
Ala Ala Arg Leu Phe Lys Ala Phe Ile Leu Asp Gly Asp Asn Leu
1 5 10

<210> SEQ ID NO 323
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula Major pollen allergen Bet v 1-A epitope

<400> SEQUENCE: 323
Ala Glu Gln Val Lys Ala Ser Lys Glu Met Gly Glu
1 5

<210> SEQ ID NO 324
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula Major pollen allergen Bet v 1-A epitope

<400> SEQUENCE: 324
Ala Phe Ile Leu Asp Gly Asp Asn Leu Phe Pro Lys Val Ala Pro Gln
1 5 10

Ala Ile Ser Ser Val
20

<210> SEQ ID NO 325
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Betula pendula Major pollen allergen Bet v 1-A epitope

SEQUENCE: 325
 Ala Ile Ser Ser Val Glu Aen Ile Glu Gly Aen Gly
 1 5 10

SEQ ID NO 326
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Betula pendula Major pollen allergen Bet v 1-A epitope

SEQUENCE: 326
 Glu Thr Leu Leu Arg Ala Val Glu Ser Tyr Leu Leu Ala His Ser
 1 5 10 15

SEQ ID NO 327
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Betula pendula Major pollen allergen Bet v 1-F/I epitope

SEQUENCE: 327
 Gly Glu Thr Leu Leu Arg Ala Val Glu Ser Tyr Leu Leu Ala His Ser
 1 5 10 15

SEQ ID NO 328
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Chamaecyparis obtusa Major pollen allergen Cha o 1 precursor epitope

SEQUENCE: 328
 Ala Aen Aen Aen Tyr Asp Pro Trp Ser Ile Tyr Ala Ile Gly Gly Ser
 1 5 10 15
 Ser Aen Pro Thr
 20

SEQ ID NO 329
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Chamaecyparis obtusa Major pollen allergen Cha o 1 precursor epitope

SEQUENCE: 329
 Ala Ser Thr Gly Val Thr Ile Ser Aen Aen His Phe Phe Aen His His
 1 5 10 15
 Lys Val Met Leu
 20

SEQ ID NO 330
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
-continued

FEATURE:

OTHER INFORMATION: Chamaecyparis obtusa Major pollen allergen
Cha o 1 precursor epitope

SEQUENCE: 330

Cys Ala Aen Trp Val Trp Arg Ser Thr Gln Aen Ser Phe Aen Aen Gly
1 5 10 15

A1a Tyr Phe Val
20

SEQ ID NO 331

LENGTH: 20

TYPE: PRT

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Chamaecyparis obtusa Major pollen allergen
Cha o 1 precursor epitope

SEQUENCE: 331

Amp Ala Ile Thr Met Arg Aen Val Thr Asp Val Trp Ile Amp His Aen
1 5 10 15

Ser Leu Ser Amp
20

SEQ ID NO 332

LENGTH: 20

TYPE: PRT

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Chamaecyparis obtusa Major pollen allergen Cha
o 1 precursor epitope

SEQUENCE: 332

Amp Ala Asn Trp Asp Gln Aen Arg Met Lys Leu Ala Amp Cys Ala Val
1 5 10 15

Gly Phe Gly Ser
20

SEQ ID NO 333

LENGTH: 20

TYPE: PRT

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Cynodon dactylon Major pollen allergen
Cyn d 1 epitope

SEQUENCE: 333

Ala Ile Gly Asp Lys Pro Gly Pro Aen Ile Thr Ala Thr Tyr Gly Aen
1 5 10 15

Lys Trp Leu Glu
20

SEQ ID NO 334

LENGTH: 20

TYPE: PRT

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Cynodon dactylon Major pollen allergen Cyn
d 1 epitope

SEQUENCE: 334

Cys Tyr Glu Ile Lys Cys Lys Glu Pro Val Glu Cys Ser Gly Glu Pro
1 5 10 15
Val Leu Val Lys
20

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val Leu Val Lys</td>
<td>20</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Cynodon dactylon Major pollen allergen Cyn d 1 epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp His Gly Gly Ala Cys Gly Tyr Lys Asp Val Asp Lys Pro Pro Phe</td>
<td>15</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Cynodon dactylon Major pollen allergen Cyn d 1 epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp Gly Gly Met Thr</td>
<td>20</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Cynodon dactylon Major pollen allergen Cyn d 1 epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Gly Gly Ala His Leu Val Gln Asp Val Ile Pro Ala Asn Trp</td>
<td>15</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Cynodon dactylon Major pollen allergen Cyn d 1 epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys Pro Asp Thr</td>
<td>20</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Cynodon dactylon Major pollen allergen Cyn d 1 epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe Lys Asp Gly Leu Gly Cys Gly Ala Cys Tyr Glu Ile Lys Cys Lys</td>
<td>15</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Cynodon dactylon Major pollen allergen Cyn d 1 epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Pro Val Glu</td>
<td>20</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Phleum pratense Major pollen allergen Phl p 4 precursor epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Glu Pro Phe Pro Lys</td>
<td>15</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Phleum pratense Major pollen allergen Phl p 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Glu Pro Phe Pro Lys</td>
<td>15</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Phleum pratense Major pollen allergen Phl p 4</td>
</tr>
</tbody>
</table>
precursor epitope

<400> SEQUENCE: 339
Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile Asp
1 5 10 15

<210> SEQ ID NO 340
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Major pollen allergen Phl p 4 precursor epitope

<400> SEQUENCE: 340
Ann Ser Phe lye Pro Phe Ala Glu Tyr Lye Ser Asp Tyr Val Tyr
1 5 10 15

<210> SEQ ID NO 341
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Rattus norvegicus Major urinary protein precursor epitope

<400> SEQUENCE: 341
Ala Ser Asn Lye Arg Glu Lye Ile Glu Glu Asn Gly Ser Met Arg Val
1 5 10 15
Phe Met Gin His
20

<210> SEQ ID NO 342
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Rattus norvegicus Major urinary protein precursor epitope

<400> SEQUENCE: 342
Asp Ile Lys Glu Lys Phe Ala Lys Leu Cys Glu Ala His Gly Ile Thr
1 5 10 15
Arg Asp Asn Ile
20

<210> SEQ ID NO 343
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Rattus norvegicus Major urinary protein precursor epitope

<400> SEQUENCE: 343
Glu Glu Ala Ser Ser Thr Arg Gly Asn Leu Asp Val Ala Lye Leu Ann
1 5 10 15
Gly Asp Trp Phe
20

<210> SEQ ID NO 344
<211> LENGTH: 20
<212> TYPE: PRT
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Rattus norvegicus Major urinary protein precursor epitope

SEQUENCE: 344

Glu Glu Asn Gly Ser Met Arg Val Phe Met Gin His Ile Asp Val Leu
1 5 10 15
Glu Asn Ser Leu
20

SEQ ID NO 345
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Rattus norvegicus Major urinary protein precursor epitope

SEQUENCE: 345

Glu Asn Ser Leu Gly Phe Lys Phe Arg Ile Lys Glu Asn Gly Glu Cys
1 5 10 15
Arg Glu Leu Tyr
20

SEQ ID NO 346
LENGTH: 21
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Dermatophagoides farinae Mite group 2 allergen Der f 2 precursor epitope

SEQUENCE: 346

Asp Ile Lys Tyr Thr Trp Asn Val Pro Lys Ile Ala Pro Lys Ser Glu
1 5 10 15
Asn Val Val Val Thr
20

SEQ ID NO 347
LENGTH: 17
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Dermatophagoides farinae Mite group 2 allergen Der f 2 precursor epitope

SEQUENCE: 347

Asp Asn Gly Val Leu Ala Cys Ala Ile Ala Thr His Gly Lys Ile Arg
1 5 10 15
Asp

SEQ ID NO 348
LENGTH: 21
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Dermatophagoides farinae Mite group 2 allergen Der f 2 precursor epitope

SEQUENCE: 348

Glu Ala Leu Phe Asp Ala Asn Gin Asn Thr Lys Thr Ala Lys Ile Glu
1 5 10 15
Ile Lys Ala Ser Leu
20

<210> SEQ ID NO 349
<211> LENGTH: 45
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinæ Mite group 2 allergen Der f 2 precursor epitope

<400> SEQUENCE: 349
Gln Tyr Asp Ile Lys Tyr Thr Trp Asn Val Pro Lys Ile Ala Pro Lys
1 5 10 15
Ser Glu Asn Val Val Thr Val Lys Leu Ile Gly Asp Asn Gly Val
20 25 30
Leu Ala Cys Ala Ile Ala Thr His Gly Lye Ile Arg Asp
35 40 45

<210> SEQ ID NO 350
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinæ Mite group 2 allergen Der f 2 precursor epitope

<400> SEQUENCE: 350
Thr Lys Thr Ala Lys Ile Glu Ile Lys Ala Ser Leu Asp Gly Leu Glu
1 5 10 15
Ile Asp Val

<210> SEQ ID NO 351
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Mite group 2 allergen Der p 2 epitope

<400> SEQUENCE: 351
Ala Ser Ile Asp Gly Leu Gly Val Asp Val Pro Gly Ile Asp
1 5 10

<210> SEQ ID NO 352
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Mite group 2 allergen Der p 2 epitope

<400> SEQUENCE: 352
Phe Glu Ala Val Gln Asn Thr Thr Ala Lys Ile Glu Ile Lys
1 5 10 15

<210> SEQ ID NO 353
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Mite group 2 allergen Der p 2 epitope
Arg Gly Lys Pro Pro Gln Leu Gln Ala Val Phe Gln Ala Val Gln Asn
1 5 10 15

Thr

Cys His Gly Ser Glu Pro Cys Ile Ile His Arg Gly Lys Pro Phe
1 5 10 15

Val Pro Leu Val Lys Gly Gln Gln Tyr Asp Ile Lys Tyr Thr Trp Asn
1 5 10 15

Asn Val Val Thr Val Lys Val Met Gly
20 25

Asp Ile Lys Tyr Thr Trp Asn Val Pro Lys Ile Ala Pro Lys Ser Glu
1 5 10 15

Asp Gln Val Asp Val Lys Asp Cys Ala Ann His Glu Ile Lys Lys
1 5 10 15
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Mite group 2 allergen Der p 2 precursor epitope

<400> SEQUENCE: 358

Amp Gln Val Amp Val Lys Asp Cys Ala Aam His Glu Ile Lys Lys Val
1 5 10 15
Leu Val Pro Gly
20

<210> SEQ ID NO 359
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Mite group 2 allergen Der p 2 precursor epitope

<400> SEQUENCE: 359

Cys His Gly Ser Glu Pro Cys Ile Ile His Arg Gly Lys Pro Phe
1 5 10 15

<210> SEQ ID NO 360
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lepidoglyphus destructor Mite group 2 allergen Lep d 2 precursor epitope

<400> SEQUENCE: 360

Amp Gly Val Met Ala Cys Gly Thr Val His Gly Gln Val Glu
1 5 10 15

<210> SEQ ID NO 361
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lepidoglyphus destructor Mite group 2 allergen Lep d 2 precursor epitope

<400> SEQUENCE: 361

Gly Cys Lys Phe Ile Lys Cys Pro Val Lys Gly Glu Ala Leu
1 5 10 15

<210> SEQ ID NO 362
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lepidoglyphus destructor Mite group 2 allergen Lep d 2 precursor epitope

<400> SEQUENCE: 362

Gly Glu Lys Met Thr Leu Glu Ala Lys Phe Ala Ala Aam Gln Asp
1 5 10 15

<210> SEQ ID NO 363
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lepidoglyphus destructor Mite group 2 allergen Lep d 2 precursor epitope
<400> SEQUENCE: 363

Gly Glu Val Thr Glu Leu Asp Ile Thr Gly Cys Ser Gly Asp Thr
1 5 10 15

<210> SEQ ID NO 364
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lepidoglyphus destructor Mite group 2 allergen
Lep d 2 precursor epitope

<400> SEQUENCE: 364

Gly Lys Met Thr Phe Lys Asp Cys Gly His Gly Glu Val Thr Glu
1 5 10 15

<210> SEQ ID NO 365
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Neurofilament heavy polypeptide
(NF-H) (Neurofilament triplet H protein) (200 kDa neurofilament protein) epitope

<400> SEQUENCE: 365

Tyr Gln Glu Ala Ile Gln Gln Leu Asp Ala Glu Leu Arg Asn Thr Lys
1 5 10 15

<210> SEQ ID NO 366
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica Non-specific lipid-transfer protei
1 epitope

<400> SEQUENCE: 366

Ala Ala Ala Leu Pro Gly Lys Cys Gly Val
1 5 10

<210> SEQ ID NO 367
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica Non-specific lipid-transfer protei
1 epitope

<400> SEQUENCE: 367

Ala Cys Cys Asn Gly Ile Arg Asn Val Asn
1 5 10

<210> SEQ ID NO 368
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica Non-specific lipid-transfer protei
1 epitope

<400> SEQUENCE: 368

Ala Pro Cys Ile Pro Tyr Val Arg Gly Gly
1 5 10
<210> SEQ ID NO 369
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica Non-specific lipid-transfer protein 1 epitope

Ile Arg Asn Val Asn Asn Leu Ala Arg Thr
1 5 10

<210> SEQ ID NO 370
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica Non-specific lipid-transfer protein 1 epitope

Ile Ser Ala Ser Thr Asn Cys Ala Thr Val Lys
1 5 10

<210> SEQ ID NO 371
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gallus gallus Ovalbumin epitope

Asn Leu Ala Arg Thr Thr Pro Asp Arg Gln
1 5 10

<210> SEQ ID NO 372
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gallus gallus Ovalbumin epitope

Cys Phe Asp Val Phe Lys Glu Leu Lys Val
1 5 10

<210> SEQ ID NO 373
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gallus gallus Ovalbumin epitope

Gly Ser Ile Gly Ala Ala Ser Met Glu Phe
1 5 10

<210> SEQ ID NO 374
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gallus gallus Ovalbumin epitope
Ile Gly Leu Phe Arg Val Ala Ser Met Ala Ser Glu Lys Met Lys Ile
1 5 10 15
Leu Glu

SEQ ID NO 375
LENGTH: 18
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Gallus gallus Ovalbumin epitope

Ile Lys His Ile Ala Thr Asn Ala Val Leu Phe Gly Arg Cys Val
1 5 10 15
Ser Pro

SEQ ID NO 376
LENGTH: 13
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Gallus gallus Ovalbumin epitope

Ile Met Ser Ala Leu Ala Met Val Tyr Leu Gly Ala Lys
1 5 10

SEQ ID NO 377
LENGTH: 14
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Gallus gallus Ovomucoid precursor epitope

Ala Glu Val Asp Cys Ser Arg Phe Pro Asn Ala Thr Asp Lys
1 5 10

SEQ ID NO 378
LENGTH: 14
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Gallus gallus Ovomucoid precursor epitope

Ala Thr Asp Lys Glu Gly Lys Asp Val Leu Val Cys Asn Lys
1 5 10

SEQ ID NO 379
LENGTH: 17
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Gallus gallus Ovomucoid precursor epitope

Ala Val Val Glu Ser Asn Gly Thr Leu Thr Leu Ser His Phe Gly Lys
1 5 10 15
Cys
-continued

<210> SEQ ID NO 380
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gallus gallus Ovomucoid precursor epitope

<400> SEQUENCE: 380

Cys Leu Leu Cys Ala Tyr Ser Ile Glu Phe Gly Thr Asn Ile Ser Lys
1 5 10 15

<210> SEQ ID NO 381
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gallus gallus Ovomucoid precursor epitope

<400> SEQUENCE: 381

Asp Asn Glu Cys Leu Leu Cys Ala His lys Val Glu Gln Gly Ala Ser
1 5 10 15

Val Asp Lys Arg
20

<210> SEQ ID NO 382
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Musa acuminate pectate lyase epitope

<400> SEQUENCE: 382

Gly His Ser Asp Glu Leu Thr Ser Asp Lys Ser Met Gln Val Thr Ile
1 5 10 15

<210> SEQ ID NO 383
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Zinnia violacea Pectate lyase precursor epitope

<400> SEQUENCE: 383

Gly His Ser Asp Ser Tyr Thr Gln Asp Lys Asn Met Gln Val Thr Ile
1 5 10 15

<210> SEQ ID NO 384
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Peptidase 1 precursor (Major mite fecal allergen Der f 1) (Allergen Der f 1) epitope

<400> SEQUENCE: 384

Asp Gly Arg Thr Ile Ile Gln His Asp Asn Gly Tyr Gln Pro Asn Tyr
1 5 10 15

His Ala Val Asn Ile
20

<210> SEQ ID NO 385
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Peptidase 1 precursor
(Major mite fecal allergen Der f 1) (Allergen Der f 1) epitope

<400> SEQUENCE: 385
Amp Leu Arg Ser Leu Arg Thr Val Val Pro Ile Arg Met Gln Gly Gly
1 5 10 15
Cys Gly Ser

<210> SEQ ID NO 386
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Peptidase 1 precursor
(Major mite fecal allergen Der f 1) (Allergen Der f 1) epitope

<400> SEQUENCE: 386
Gly Cys Gly Ser Cys Trp Ala Phe Ser Gly Val Ala Ala Thr Glu Ser
1 5 10 15
Ala Tyr Leu

<210> SEQ ID NO 387
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Peptidase 1 precursor
(Major mite fecal allergen Der f 1) (Allergen Der f 1) epitope

<400> SEQUENCE: 387
Ile Arg Glu Ala Leu Thr Gln Thr His Thr Ala Ile Ala Val Ile Ile
1 5 10 15
Gly Ile Lys Asp Leu
20

<210> SEQ ID NO 388
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides farinae Peptidase 1 precursor
(Major mite fecal allergen Der f 1) (Allergen Der f 1) epitope

<400> SEQUENCE: 389
Ile Arg Met Gln Gly Gly Cys Gly Ser Cys Trp Ala Phe Ser Gly Val
1 5 10 15
Ala Ala Thr

<210> SEQ ID NO 389
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Euroglyphus maynei Peptidase 1 precursor
(Mite group 1 allergen Bur m 1) (Allergen Bur m 1) epitope

<400> SEQUENCE: 389
Phe Arg His Tyr Asp Gly Arg Thr Ile Met Gin His Asp Asn Gly Tyr
1 5 10 15
Gln Pro Asn
<210> SEQ ID NO 390
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Euroglyphus maynei Peptidase 1 precursor (Mite group 1 allergen Eur m 1) (Allergen Eur m 1) epitope

<400> SEQUENCE: 390

Gly Arg Thr Ile Met Gln His Asp Ann Gly Tyr Gln Pro Asn Tyr His
1 5 10 15

Ala Val Ann

<210> SEQ ID NO 391
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Euroglyphus maynei Peptidase 1 precursor (Mite group 1 allergen Eur m 1) (Allergen Eur m 1) epitope

<400> SEQUENCE: 391

His Ala Val Ann Ile Val Gly Tyr Gly Ann Thr Gln Gly Val Asp Tyr
1 5 10 15

Trp Ile Val

<210> SEQ ID NO 392
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Euroglyphus maynei Peptidase 1 precursor (Mite group 1 allergen Eur m 1) (Allergen Eur m 1) epitope

<400> SEQUENCE: 392

Aan Lys Ile Arg Gln Ala Leu Thr Gln Thr His Thr Ala Val Ala Val
1 5 10 15

Ile Ile Gly

<210> SEQ ID NO 393
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Euroglyphus maynei Peptidase 1 precursor (Mite group 1 allergen Eur m 1) (Allergen Eur m 1) epitope

<400> SEQUENCE: 393

Pro Tyr Val Ala Arg Gln Ser Cys His Arg Pro Asn Ala Gln Arg
1 5 10 15

Tyr Gly Leu

<210> SEQ ID NO 394
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Phl p 3 allergen epitope

<400> SEQUENCE: 394

Ala Val Gln Val Thr Phe Thr Val Gln Lys Gly Ser Asp Pro Lys
<210> SEQ ID NO 395
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Phl p 3 allergen epitope

<400> SEQUENCE: 395

Glu Glu Trp Glu Pro Leu Thr Lys Gly Asn Val Trp Glu Val

<210> SEQ ID NO 396
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Phl p 3 allergen epitope

<400> SEQUENCE: 396

Phe Thr Val Gln Gly Ser Asp Pro Lys Lys Leu Val Leu Asp

<210> SEQ ID NO 397
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Phl p 3 allergen epitope

<400> SEQUENCE: 397

Phe Thr Val Gln Gly Ser Asp Pro Lys Lys Leu Val Leu Asn

<210> SEQ ID NO 398
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Phl p 3 allergen epitope

<400> SEQUENCE: 398

Gly Ser Asp Pro Lys Lys Leu Val Leu Asp Ile Lys Tyr Thr Arg

<210> SEQ ID NO 399
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apis mellifera Phospholipase A2 precursor epitope

<400> SEQUENCE: 399

Cys Asp Cys Asp Asp Lys Phe Tyr Asp Cys Leu Lys Asn Ser Ala

<210> SEQ ID NO 400
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apis mellifera Phospholipase A2 precursor epitope
<400> SEQUENCE: 400
Cys Leu His Tyr Thr Val Asp Lys Ser Lys Pro Lys
1 5 10

<210> SEQ ID NO 401
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apis mellifera Phospholipase A2 precursor epitope

<400> SEQUENCE: 401
Cys Arg Thr His Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu
1 5 10 15

<210> SEQ ID NO 402
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apis mellifera Phospholipase A2 precursor epitope

<400> SEQUENCE: 402
Asp Thr Ile Ser Ser Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile
1 5 10 15
Asp Thr

<210> SEQ ID NO 403
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Apis mellifera Phospholipase A2 precursor epitope

<400> SEQUENCE: 403
Glu Arg Thr Glu Gly Arg Cys Leu His Tyr Thr Val Asp Lys Ser Lys
1 5 10 15
Pro Lys

<210> SEQ ID NO 404
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Spiroplasma citri plectroirus spv1-r8a2b orf 14 transmembrane protein epitope

<400> SEQUENCE: 404
His Val Ile Glu Val Gln Gln Ile Asn Ser Glu Arg Ser Trp Phe Phe
1 5 10 15

<210> SEQ ID NO 405
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne pollen allergen epitope

<400> SEQUENCE: 405
Cys Gly Tyr Lys Asp Val Asp Lys Ala Pro Phe Asn Gly Met Thr Gly
1 5 10 15

Cys Gly Asn Thr
20

<210> SEQ ID NO 406
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne pollen allergen epitope
<400> SEQUENCE: 406

Gly Ala Gly Pro Lys Asp Asn Gly Gly Ala Cys Gly Tyr Lys Asp Val
1 5 10 15

Asp Lys Ala Pro
20

<210> SEQ ID NO 407
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne pollen allergen epitope
<400> SEQUENCE: 407

Ser Glu Val Glu Asp Val Ile Pro Glu Gly Trp Lys Ala Asp Thr Ser
1 5 10 15

Tyr Ser Ala Lys
20

<210> SEQ ID NO 408
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne pollen allergen epitope
<400> SEQUENCE: 408

Val Glu Lys Gly Ser Asn Pro Asn Tyr Leu Ala Ile Leu Val Lys Tyr
1 5 10 15

Val Asp Gly Asp
20

<210> SEQ ID NO 409
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne pollen allergen epitope
<400> SEQUENCE: 409

Tyr Pro Asp Asp Thr Lys Pro Thr Phe His Val Glu Lys Gly Ser Asn
1 5 10 15

Pro Asn Tyr Leu
20

<210> SEQ ID NO 410
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
OTHER INFORMATION: Ambrosia artemisiifolia Pollen allergen Amb a 1.1 precursor epitope

SEQUENCE: 410

Gly Ala Gly Asp Glu Asn Ile Glu Asp Arg Gly Met Leu Ala Thr Val
1 5 10 15

SEQ ID NO 411
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Ambrosia artemisiifolia Pollen allergen Amb a 1.1 precursor epitope

SEQUENCE: 411

Gly Ala Gly Asp Glu Asn Ile Glu Asp Arg Gly Met Leu Ala Thr Val
1 5 10 15

SEQ ID NO 412
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Ambrosia artemisiifolia Pollen allergen Amb a 2 precursor epitope

SEQUENCE: 412

Gly Ala Ser Asp Thr His Phe Glu Asp Leu Lys Met His Val Thr Leu
1 5 10 15

SEQ ID NO 413
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Ambrosia artemisiifolia Pollen allergen Amb a 2 precursor epitope

SEQUENCE: 413

Gly Ala Ser Asp Thr His Phe Glu Asp Leu Lys Met His Val Thr Leu
1 5 10 15

SEQ ID NO 414
LENGTH: 11
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Ambrosia artemisiifolia var. elatior Pollen allergen Amb a 3 epitope

SEQUENCE: 414

Glu Glu Ala Tyr His Ala Cys Asp Ile Lys Asp
1 5

SEQ ID NO 415
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Ambrosia artemisiifolia var. elatior Pollen allergen Amb a 3 epitope

SEQUENCE: 415

Gly Lys Val Tyr Leu Val Gly Gly Pro Glu Leu Gly Gly Trp Lys
<210> SEQ ID NO 416
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. elatior Pollen allergen Amb a 3 epitope

<400> SEQUENCE: 416

Leu Gly Gly Trp Lys Leu Gln Ser Asp Pro Arg Ala Tyr Ala Leu
1 5 10 15

<210> SEQ ID NO 417
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. elatior Pollen allergen Amb a 3 epitope

<400> SEQUENCE: 417

Pro Gly Gly Pro Asp Arg Phe Thr Leu Leu Thr Pro Gly Ser His
1 5 10 15

<210> SEQ ID NO 418
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. elatior Pollen allergen Amb a 3 epitope

<400> SEQUENCE: 418

Ala Tyr Cys Cys Ser Asp Pro Gly Arg Tyr Cys Pro Trp Gln Val
1 5 10 15

<210> SEQ ID NO 419
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. elatior Pollen allergen Amb a 3 epitope

<400> SEQUENCE: 419

Cys Gly Glu Lys Arg Ala Tyr Cys Cys Ser Asp Pro Gly Arg Tyr Cys
1 5 10 15
Pro Trp Gln Val
20

<210> SEQ ID NO 420
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. elatior Pollen allergen Amb a 3 epitope

<400> SEQUENCE: 420

Asp Pro Gly Arg Tyr Cys Pro Trp Gln Val Val Cys Tyr Glu Ser Ser
1 5 10 15

Glu
<210> SEQ_ID NO 421
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. eliator Pollen allergen Amb a 5 epitope

<400> SEQUENCE: 421
Amp Pro Gly Arg Tyr Cys Pro Trp Gln Val Val Cys Tyr Glu Ser Ser
 1 5 10 15
Glu Ile Cys Ser
 20

<210> SEQ_ID NO 422
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. eliator Pollen allergen Amb a 5 epitope

<400> SEQUENCE: 422
Gly Asn Val Cys Gly Glu Lys Arg Ala Tyr Cys Cys Ser Asp Pro
 1 5 10 15

<210> SEQ_ID NO 423
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. eliator Pollen allergen Amb a 5 epitope

<400> SEQUENCE: 423
Leu Val Pro Cys Ala Trp Ala Gly Asn Val Cys Gly Glu Lys Arg
 1 5 10 15

<210> SEQ_ID NO 424
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. eliator Pollen allergen Amb a 5 epitope

<400> SEQUENCE: 424
Leu Val Pro Cys Ala Trp Ala Gly Asn Val Cys Gly Glu Lys Arg Ala
 1 5 10 15
Tyr Cys Cys Ser
 20

<210> SEQ_ID NO 425
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. eliator Pollen allergen Amb a 5 epitope

<400> SEQUENCE: 425
Val Cys Tyr Glu Ser Ser Glu Ile Cys Ser Lys Lys Cys Gly Lys
 1 5 10 15
<210> SEQ ID NO 426
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia trifida Pollen allergen Amb t 5 precursor epitope

<400> SEQUENCE: 426

Cys Gly Lys Val Gly Lys Tyr Cys Ser Pro Ile Gly Lys Tyr Cys
1 5
Val Cys Tyr Asp
20

<210> SEQ ID NO 427
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia trifida Pollen allergen Amb t 5 precursor epitope

<400> SEQUENCE: 427

Asp Asp Gly Leu Cys Tyr Glu Gly Thr Asn Cys Gly Lys Val Gly Lys
1 5 10 15
Tyr Cys Cys Ser
20

<210> SEQ ID NO 428
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia trifida Pollen allergen Amb t 5 precursor epitope

<400> SEQUENCE: 428

Gly Lys Tyr Cys Val Cys Tyr Asp Ser Lys Ala Ile
1 5 10

<210> SEQ ID NO 429
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia trifida Pollen allergen Amb t 5 precursor epitope

<400> SEQUENCE: 429

Pro Ile Gly Lys Tyr Cys Val Cys Tyr Asp Ser Lys Ala Ile
1 5 10

<210> SEQ ID NO 430
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia trifida Pollen allergen Amb t 5 precursor epitope

<400> SEQUENCE: 430

Pro Ile Gly Lys Tyr Cys Val Cys Tyr Asp Ser Lys Ala Ile Cys Asn
1 5 10 15
Lys Asn Cys Thr
20

<210> SEQ ID NO 431
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia trifida Pollen allergen Amb t 5 precursor epitope

<400> SEQUENCE: 431
Val Cys Tyr Asp Ser Lys Ala Ile Cys Asn Lys Asn Cys Thr
1 5 10

<210> SEQ ID NO 432
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula pollen allergen Bet v 1 epitope

<400> SEQUENCE: 432
His Glu Val Lys Ala Glu Gln Val Lys Ala Thr Lys Glu Met Gly
1 5 10 15

<210> SEQ ID NO 433
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Poa pratensis Pollen allergen KBG 60 precursor epitope

<400> SEQUENCE: 433
Ala Ala Asn Lys Tyr Lys Thr Phe Val Ala Thr Phe Gly Ala Ala Ser
1 5 10 15

Asn Lys Ala Phe
20

<210> SEQ ID NO 434
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Poa pratensis Pollen allergen KBG 60 precursor epitope

<400> SEQUENCE: 434
Ala Ala Pro Ala Asn Lys Phe Thr Val Phe Glu Ala Ala Ala Thr
1 5 10 15

Asp Ala Ile Lys
20

<210> SEQ ID NO 435
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Poa pratensis Pollen allergen KBG 60 precursor epitope

<400> SEQUENCE: 435
Ala Ala Val Asp Ser Ser Lys Ala Ala Leu Thr Ser Lys Leu Asp Ala
1 5 10 15
Ala Tyr Lys Leu
20

<210> SEQ ID NO 436
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Poa pratensis Pollen allergen KBG 60 precursor epitope

<400> SEQUENCE: 436
Ala Glu Glu Val Lys Ala Thr Pro Ala Gly Glu Leu Gln Val Ile Asp
1 5 10 15
Lys Val Asp Ala
20

<210> SEQ ID NO 437
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Poa pratensis Pollen allergen KBG 60 precursor epitope

<400> SEQUENCE: 437
Ala Phe Lys Val Ala Ala Thr Ala Ala Asn Ala Ala Pro Ala Asn Asp
1 5 10 15
Lys Phe Thr Val
20

<210> SEQ ID NO 438
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne Pollen allergen Lol p 1 precursor epitope

<400> SEQUENCE: 438
Ala Phe Gly Ser Met Ala Lys Lys Gly Glu Glu Gln Asn Val Arg Ser
1 5 10 15
Ala Gly Glu Leu
20

<210> SEQ ID NO 439
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne Pollen allergen Lol p 1 precursor epitope

<400> SEQUENCE: 439
Ala Gly Glu Leu Glu Leu Gln Phe Arg Arg Val Lys Cys Lys Tyr Pro
1 5 10 15
Asp Asp Thr Lys
20

<210> SEQ ID NO 440
Ala Lys Ser Thr Trp Tyr Gly Lys Pro Thr Gly Ala Gly Pro Lys Asp
1 5 10 15
Asn Gly Gly Ala
20

Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala Phe Gly Ser Met Ala
1 5 10 15
Lys Lys Gly Glu
20

Ile Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala
1 5 10

Gly Lys Pro Ala
20

Ala Ala Asn Ala Ala Pro Thr Asn Asp Lys Phe Thr Val Phe Glu Ser
1 5 10 15
Ala Phe Asn Lys
 20
<210> SEQ ID NO 445
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne Pollen allergen Lol p VA precursor epitope

<400> SEQUENCE: 445
Ala Asp Lys Phe Lys Ile Phe Glu Ala Ala Phe Ser Glu Ser Ser Lys
1 5 10 15
Gly Leu Leu Ala
20

<210> SEQ ID NO 446
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne Pollen allergen Lol p VA precursor epitope

<400> SEQUENCE: 446
Ala Phe Ser Glu Ser Ser Lys Gly Leu Leu Ala Thr Ser Ala Ala Lys
1 5 10 15
Ala Pro Gly Leu
20

<210> SEQ ID NO 447
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne Pollen allergen Lol p VA precursor epitope

<400> SEQUENCE: 447
Ala Tyr Ala Ala Thr Val Ala Ala Ala Pro Glu Val Lys Tyr Ala Val
1 5 10 15
Phe Glu Ala Ala
20

<210> SEQ ID NO 448
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 epitope

<400> SEQUENCE: 448
Ala Cys Ser Gly Glu Pro Val Val Val His Ile Thr
1 5 10

<210> SEQ ID NO 449
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 epitope
<400> SEQUENCE: 449

Ala Glu Asp Val Ile Pro Glu Gly Trp Lys Ala Asp

1
5
10

<210> SEQ ID NO 450
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 epitope

<400> SEQUENCE: 450

Ala Gly Glu Leu Glu Leu Gln Phe Arg Arg Val Lys

1
5
10

<210> SEQ ID NO 451
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 epitope

<400> SEQUENCE: 451

Asp Lys Trp Ile Glu Leu Lys Glu Ser Trp Gly Ala

1
5
10

<210> SEQ ID NO 452
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 epitope

<400> SEQUENCE: 452

Asp Lys Trp Leu Asp Ala Lys Ser Thr Trp Tyr Gly

1
5
10

<210> SEQ ID NO 453
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 precursor epitope

<400> SEQUENCE: 453

Phe Glu Ile Lys Cys Thr Lys Pro Glu Ala Cys Ser

1
5
10

<210> SEQ ID NO 454
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 precursor epitope

<400> SEQUENCE: 454

Tyr His Phe Asp Leu Ser Gly His Ala Phe Gly Ala

1
5
10

<210> SEQ ID NO 455
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 precursor epitope

<400> SEQUENCE: 455
Glu Leu Lys Glu Ser Trp Gly Ala Ile Trp Arg Ile Asp Thr Pro
1 5 10 15

<210> SEQ ID NO 456
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 precursor epitope

<400> SEQUENCE: 456
Glu Pro Ile Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala Phe
1 5 10 15

<210> SEQ ID NO 457
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 precursor epitope

<400> SEQUENCE: 457
Phe Glu Ile Lys Cys Thr Lys Pro Glu Ala Cys Ser Gly Glu Pro
1 5 10 15

<210> SEQ ID NO 458
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 1 precursor epitope

<400> SEQUENCE: 458
Trp Gly Ala Ile Trp Arg Ile Asp Thr Pro Asp Lys Leu Thr Gly
1 5 10 15

<210> SEQ ID NO 459
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 11 epitope

<400> SEQUENCE: 459
Arg Tyr Ala Asn Pro Ile Ala Phe Phe Arg Lys Glu Pro Leu Lys
1 5 10 15

<210> SEQ ID NO 460
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 2 epitope

<400> SEQUENCE: 460
<table>
<thead>
<tr>
<th>Glu</th>
<th>His</th>
<th>Gly</th>
<th>Ser</th>
<th>Asp</th>
<th>Glu</th>
<th>Trp</th>
<th>Val</th>
<th>Ala</th>
<th>Met</th>
<th>Thr</th>
<th>Lys</th>
<th>Gly</th>
<th>Gly</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```<210> SEQ ID NO 461  
<211> LENGTH: 15  
<212> TYPE: PRT  
<213> ORGANISM: Artificial Sequence  
<220> FEATURES:  
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phel p 2 epitope  
<400> SEQUENCE: 461  
Glu Trp Val Ala Met Thr Lys Gly Gly Gly Val Trp Thr Phe  
1  5  10  
```

<table>
<thead>
<tr>
<th>Glu</th>
<th>Val</th>
<th>Trp</th>
<th>Thr</th>
<th>Phe</th>
<th>Asp</th>
<th>Ser</th>
<th>Glu</th>
<th>Pro</th>
<th>Leu</th>
<th>Gln</th>
<th>Gly</th>
<th>Pro</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

```<210> SEQ ID NO 462  
<211> LENGTH: 15  
<212> TYPE: PRT  
<213> ORGANISM: Artificial Sequence  
<220> FEATURES:  
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phel p 2 epitope  
<400> SEQUENCE: 462  
Gly Val Trp Thr Phe Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe  
1  5  10  
```

<table>
<thead>
<tr>
<th>Lys</th>
<th>Asn</th>
<th>Val</th>
<th>Asp</th>
<th>Asp</th>
<th>Val</th>
<th>Val</th>
<th>Pro</th>
<th>Glu</th>
<th>Lys</th>
<th>Thr</th>
<th>Ile</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

```<210> SEQ ID NO 463  
<211> LENGTH: 15  
<212> TYPE: PRT  
<213> ORGANISM: Artificial Sequence  
<220> FEATURES:  
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phel p 2 epitope  
<400> SEQUENCE: 463  
Lys Asn Val Phe Asp Asp Val Val Pro Glu Lys Tyr Thr Ile Gly  
1  5  
```

<table>
<thead>
<tr>
<th>Leu</th>
<th>Gln</th>
<th>Gly</th>
<th>Pro</th>
<th>Phe</th>
<th>Asn</th>
<th>Phe</th>
<th>Arg</th>
<th>Phe</th>
<th>Leu</th>
<th>Thr</th>
<th>Glu</th>
<th>Lys</th>
<th>Gly</th>
<th>Met</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

```<210> SEQ ID NO 464  
<211> LENGTH: 15  
<212> TYPE: PRT  
<213> ORGANISM: Artificial Sequence  
<220> FEATURES:  
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phel p 2 epitope  
<400> SEQUENCE: 464  
Leu Gln Gly Pro Phe Asn Phe Arg Phe Leu Thr Glu Lys Gly Met  
1  5  
```

<table>
<thead>
<tr>
<th>Phe</th>
<th>Lys</th>
<th>Pro</th>
<th>Phe</th>
<th>Ala</th>
<th>Glu</th>
<th>Tyr</th>
<th>Ser</th>
<th>Asp</th>
<th>Tyr</th>
<th>Val</th>
<th>Tyr</th>
<th>Glu</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

```<210> SEQ ID NO 465  
<211> LENGTH: 15  
<212> TYPE: PRT  
<213> ORGANISM: Artificial Sequence  
<220> FEATURES:  
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phel p 4 epitope  
<400> SEQUENCE: 465  
Phe Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Glu Pro  
1  5  
```

<table>
<thead>
<tr>
<th>Phe</th>
<th>Lys</th>
<th>Pro</th>
<th>Phe</th>
<th>Ala</th>
<th>Glu</th>
<th>Tyr</th>
<th>Ser</th>
<th>Asp</th>
<th>Tyr</th>
<th>Val</th>
<th>Tyr</th>
<th>Glu</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

```<210> SEQ ID NO 466  
<211> LENGTH: 15  
<212> TYPE: PRT  
<213> ORGANISM: Artificial Sequence  
<220> FEATURES:  
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phel p 4 epitope  
<400> SEQUENCE: 466  
Phe Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Glu Pro  
1  5  
```
<400> SEQUENCE: 466

Phe Pro Lys Glu Val Trp Glu Gln Ile Phe Ser Thr Trp Leu Leu
1 5 10 15

<210> SEQ ID NO 467
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 4 epitope

<400> SEQUENCE: 467

Phe Val His Leu Gly His Arg Asp Asn Ile Glu Asp Asp Leu Leu
1 5 10 15

<210> SEQ ID NO 468
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 4 epitope

<400> SEQUENCE: 468

Gly Ile Val Val Ala Trp Lys Val Arg Leu Leu Pro Val Pro Pro
1 5 10 15

<210> SEQ ID NO 469
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 4 epitope

<400> SEQUENCE: 469

Asn Arg Asn Asn Thr Phe Lys Pro Phe Ala Glu Tyr Lys Ser Asp
1 5 10 15

<210> SEQ ID NO 470
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 5a epitope

<400> SEQUENCE: 470

Glu Val Lys Tyr Thr Val Phe Glu Thr Ala Leu Lys
1 5 10

<210> SEQ ID NO 471
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 5a epitope

<400> SEQUENCE: 471

Asn Ala Gly Phe Lys Ala Ala Leu Ala Gly Ala Gly Val Glu Pro Ala
1 5 10 15

Asp Lys Tyr

<210> SEQ ID NO 472
<211> LENGTH: 27
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 5b precursor epitope

<400> SEQUENCE: 472

Ala Ala Gly Lys Ala Thr Thr Glu Glu Glu Gin Lys Leu Ile Glu Asp Ile
1 5 10 15
Asn Val Gly Phe Lys Ala Ala Val Ala Ala Ala
20 25

<210> SEQ ID NO 473
<211> LENGTH: 33
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 5b precursor epitope

<400> SEQUENCE: 473

Ala Ala Gly Lys Ala Thr Thr Glu Glu Glu Gin Lys Leu Ile Glu Asp Ile
1 5 10 15
Asn Val Gly Phe Lys Ala Ala Val Ala Ala Ala Ser Val Pro Ala
20 25 30
Ala

<210> SEQ ID NO 474
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 5b precursor epitope

<400> SEQUENCE: 474

Ala Ala Val Ala Ala Ala Ala Ala Ala Ser Val Pro Ala Ala Asp Lys Phe Lys
1 5 10 15
Thr Phe Glu

<210> SEQ ID NO 475
<211> LENGTH: 27
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 5b precursor epitope

<400> SEQUENCE: 475

Ala Lys Phe Asp Ser Phe Val Ala Ser Leu Thr Glu Ala Leu Arg Val
1 5 10 15
Ile Ala Gly Ala Leu Glu Val His Ala Val Lys
20 25

<210> SEQ ID NO 476
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Pollen allergen Phl p 5b precursor epitope
-continued

 Ala Met Ser Glu Val Gln Lys Val Ser Gln Pro Ala Thr Gly Ala Ala
 1 5 10 15

 Thr Val Ala

 Ala Arg Trp Lys Asn Ser Lys Ile Trp Leu Gln Phe Ala Gln Leu Thr
 1 5 10 15

 Asp Phe Asn Leu
 20

 Ala Val Leu Leu Val Pro Ala Asn Lys Lys Phe Phe Val Asn Asn Leu
 1 5 10 15

 Val Phe Arg Gly
 20

 Ala Gly Thr Ile Val Ala Gln Pro Asp Pro Ala Arg Trp Lys Asn Ser
 1 5 10 15

 Lys Ile Trp Leu
 20

 Phe Phe Val Asn Asn Leu Val Phe Arg Gly Pro Cys Gln Pro His Leu
 1 5 10 15

 Ser Phe Lys Val
 20
FEATURE:
OTHER INFORMATION: Chamaecyparis obtusa Polygalacturonase epitope

<400> SEQUENCE: 481

Phe Gly Glu Cys Glu Gly Val Lys Ile Gln Gly Leu Lys Ile Lys Ala
1 5 10 15
Pro Arg Asp Ser
20

<210> SEQ ID NO 482
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Polygalacturonase precursor epitope

<400> SEQUENCE: 482

Ala Ala Tyr Gln Asn Pro Ala Ser Trp Lys Asn Asn Arg Ile Trp
1 5 10 15

<210> SEQ ID NO 483
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Polygalacturonase precursor epitope

<400> SEQUENCE: 483

Ala Cys Lys Lys Pro Ser Ala Met Leu Leu Val Pro Gly Asn Lys
1 5 10 15

<210> SEQ ID NO 484
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Polygalacturonase precursor epitope

<400> SEQUENCE: 484

Ala Ile Lys Phe Asp Phe Ser Thr Gly Leu Ile Ile Gln Gly Leu
1 5 10 15

<210> SEQ ID NO 485
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Polygalacturonase precursor epitope

<400> SEQUENCE: 485

Ala Ile Asn Ile Phe Asn Val Glu Lys Tyr Gly Ala Val Gly Asp
1 5 10 15

<210> SEQ ID NO 486
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Polygalacturonase precursor epitope
Ala Asn Gly Tyr Phe Ser Gly His Val Ile Pro Ala Cys Lys Asn
1 5 10 15

SEQ ID NO: 487
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Arabidopsis thaliana Probable pectate lyase 10 precursor epitope

Gly His Ser Asp Thr Tyr Ser Arg Asp Lys Asn Met Glu Val Thr Ile
1 5 10 15

SEQ ID NO: 488
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Phleum pratense Profilin-2/4 epitope

Leu Gly His Asp Gly Thr Val Trp Ala Gln Ser Ala Asp Phe Pro
1 5 10 15

SEQ ID NO: 489
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Hevea brasiliensis Pro-hevein precursor epitope

Asp Glu Tyr Cys Ser Pro Asp His Asn Cys Gin Ser Asn Cys Lys Asp
1 5 10 15
Ser Gly Glu Gly
20

SEQ ID NO: 490
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Hevea brasiliensis Pro-hevein precursor epitope

Glu Gln Cys Gly Arg Gln Ala Gly Gly Lys Leu Cys Pro Asn Asn Leu
1 5 10 15
Cys Cys Ser Gln
20

SEQ ID NO: 491
LENGTH: 43
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Hevea brasiliensis Pro-hevein precursor epitope

Glu Gln Cys Gly Arg Gln Ala Gly Gly Lys Leu Cys Pro Asn Asn Leu
1 5 10 15
Cys Cys Ser Gln Trp Gly Trp Cys Gly Ser Thr Asp Glu Tyr Cys Ser
20 25 30
Pro Asp His Asn Cys Gln Ser Asn Cys Lys Asp
35 40

<210> SEQ ID NO 492
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis Pro-hevein precursor epitope

<400> SEQUENCE: 492
Lys Leu Cys Pro Asn Asn Leu Cys Cys Ser Gln Trp Gly Trp Cys Gly
1 5 10 15
Ser Thr Asp Glu
20

<210> SEQ ID NO 493
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis Pro-hevein precursor epitope

<400> SEQUENCE: 493
Asn Gly Gly Leu Asp Leu Asp Val Asn Val Phe Arg Gln Leu Asp Thr
1 5 10 15
Asp Gly Lys Gly
20

<210> SEQ ID NO 494
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica pru p 1 epitope

<400> SEQUENCE: 494
Gly Lys Cys Gly Val Ser Ile Pro Tyr Lys
1 5 10

<210> SEQ ID NO 495
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica pru p 1 epitope

<400> SEQUENCE: 495
Ile Thr Cys Gly Gln Val Ser Ser Ser Leu
1 5 10

<210> SEQ ID NO 496
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica pru p 1 epitope

<400> SEQUENCE: 496
Ser Ile Pro Tyr Lys Ile Ser Ala Ser Thr
<210> SEQ ID NO 497
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica Pru p 1 epitope

<400> SEQUENCE: 497
Amp Arg Gln Ala Ala Cys Asn Cys Leu Lys Gln Leu Ser Ala Ser
 1 5 10 15

<210> SEQ ID NO 498
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica Pru p 1 epitope

<400> SEQUENCE: 498
Val Asn Pro Asn Asn Ala Ala Ala Leu Pro Gly Lys Cys Gly Val
 1 5 10 15

<210> SEQ ID NO 499
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arabidopsis thaliana Putative pectate lyase 17 precursor epitope

<400> SEQUENCE: 499
Gly His Asn Asp Asn Phe Val Lys Asp Val Lys Met Lys Val Thr Val
 1 5 10 15

<210> SEQ ID NO 500
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens RAD51-like 1 isoform 1 epitope

<400> SEQUENCE: 500
Thr Arg Leu Ile Leu Gln Tyr Leu Asp Ser Glu Arg Arg Gln Ile Leu
 1 5 10 15

<210> SEQ ID NO 501
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Ribonuclease mitogillin precursor epitope

<400> SEQUENCE: 501
Asp Pro Gly Pro Ala Arg Val Ile Tyr Thr Tyr Pro Asn Lys Val Phe
 1 5 10 15

<210> SEQ ID NO 502
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Ribonuclease mitogillin
precursor epitope

<400> SEQUENCE: 502
Ala Thr Trp Thr Cys Ile Asn Gln Gln Leu Asn Pro Lys Thr Asn Lys
1 5 10 15
Trp Glu Asp Lys
20

<210> SEQ ID NO 503
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Ribonuclease mitogillin precursor epitope

<400> SEQUENCE: 503
His Tyr Leu Leu Glu Phe Pro Thr Phe Pro Asp Gly His Asp Tyr Lys
1 5 10 15
Phe Asp Ser Lys
20

<210> SEQ ID NO 504
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Ribonuclease mitogillin precursor epitope

<400> SEQUENCE: 504
Lys Phe Asp Ser Lys Lys Pro Lys Glu Asp Pro Gly Pro Ala Arg Val
1 5 10 15
Ile Tyr Thr Tyr
20

<210> SEQ ID NO 505
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Ribonuclease mitogillin precursor epitope

<400> SEQUENCE: 505
Leu Ile Lys Gly Arg Thr Pro Ile Lys Phe Gly Lys Ala Asp Cys Asp
1 5 10 15
Arg Pro Pro Lys
20

<210> SEQ ID NO 506
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Ribonuclease mitogillin precursor epitope

<400> SEQUENCE: 506
Ser Tyr Pro His Trp Phe Thr Asn Gly Tyr Asp Gly Asn Gly Lys Leu
1 5 10 15
Ile Lys Gly Arg
 Ala Glu Asp Glu Asp Asn Gln Gln Gly Gln Gly Gly Leu Lys Tyr
 1 5 10 15
 Leu Gly Phe

 Phe Ser Asn Val Tyr Leu Phe Ala Lys Asp Lys Ser Gly Pro Leu Gln
 1 5 10 15
 Pro Gly Val

 Lys Phe Val Asp Ser Thr Val Val Ala Ser Val Thr Ile Ile Asp Arg
 1 5 10 15
 Ser Leu Pro

 Gln Pro Gly Val Asp Ile Ile Gly Gly Pro Val Lys Asn Val Ala Val
 1 5 10 15
 Pro Leu Tyr
Arg Ser Leu Pro Pro Ile Val Lys Asp Ala Ser Ile Gln Val Val Ser
1 5 10 15

Ala Ile Arg

<table>
<thead>
<tr>
<th><210></th>
<th>SEQ ID NO 512</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>LENGTH: 17</td>
</tr>
<tr>
<td><212></td>
<td>TYPE: PRT</td>
</tr>
<tr>
<td><213></td>
<td>ORGANISM: Artificial Sequence</td>
</tr>
<tr>
<td><220></td>
<td>FEATURE:</td>
</tr>
<tr>
<td><223></td>
<td>OTHER INFORMATION: Bos taurus Serum albumin precursor epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>SEQUENCE: 512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp Asp Ser Pro Asp Leu Pro Lys Leu Pro Asp Pro Asn Thr Leu</td>
<td></td>
</tr>
<tr>
<td>1 5 10 15</td>
<td></td>
</tr>
</tbody>
</table>

Cys

<table>
<thead>
<tr>
<th><210></th>
<th>SEQ ID NO 513</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>LENGTH: 20</td>
</tr>
<tr>
<td><212></td>
<td>TYPE: PRT</td>
</tr>
<tr>
<td><213></td>
<td>ORGANISM: Artificial Sequence</td>
</tr>
<tr>
<td><220></td>
<td>FEATURE:</td>
</tr>
<tr>
<td><223></td>
<td>OTHER INFORMATION: Bos taurus Serum albumin precursor epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>SEQUENCE: 513</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Lys Asp Ala Ile Pro Glu Asn Leu Pro Leu Thr Ala Asp Phe</td>
<td></td>
</tr>
<tr>
<td>1 5 10 15</td>
<td></td>
</tr>
</tbody>
</table>

Ala Glu Asp Lys

<table>
<thead>
<tr>
<th><210></th>
<th>SEQ ID NO 514</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>LENGTH: 9</td>
</tr>
<tr>
<td><212></td>
<td>TYPE: PRT</td>
</tr>
<tr>
<td><213></td>
<td>ORGANISM: Artificial Sequence</td>
</tr>
<tr>
<td><220></td>
<td>FEATURE:</td>
</tr>
<tr>
<td><223></td>
<td>OTHER INFORMATION: Bos taurus Serum albumin precursor epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>SEQUENCE: 514</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Ser His Ala Gly Cys Glu Lys Ser</td>
<td></td>
</tr>
<tr>
<td>1 5</td>
<td></td>
</tr>
</tbody>
</table>

His Ser His Gly Cys Glu Lys Ser

<table>
<thead>
<tr>
<th><210></th>
<th>SEQ ID NO 515</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>LENGTH: 10</td>
</tr>
<tr>
<td><212></td>
<td>TYPE: PRT</td>
</tr>
<tr>
<td><213></td>
<td>ORGANISM: Artificial Sequence</td>
</tr>
<tr>
<td><220></td>
<td>FEATURE:</td>
</tr>
<tr>
<td><223></td>
<td>OTHER INFORMATION: Bos taurus Serum albumin precursor epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>SEQUENCE: 515</th>
</tr>
</thead>
<tbody>
<tr>
<td>His Pro Glu Tyr Ala Val Ser Val Leu Leu</td>
<td></td>
</tr>
<tr>
<td>1 5 10</td>
<td></td>
</tr>
</tbody>
</table>

His Pro Glu Tyr Ala Val Ser Val Leu Leu

<table>
<thead>
<tr>
<th><210></th>
<th>SEQ ID NO 516</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>LENGTH: 9</td>
</tr>
<tr>
<td><212></td>
<td>TYPE: PRT</td>
</tr>
<tr>
<td><213></td>
<td>ORGANISM: Artificial Sequence</td>
</tr>
<tr>
<td><220></td>
<td>FEATURE:</td>
</tr>
<tr>
<td><223></td>
<td>OTHER INFORMATION: Bos taurus Serum albumin precursor epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>SEQUENCE: 516</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu Ser Leu Ile Leu Asn Arg Leu Cys</td>
<td></td>
</tr>
<tr>
<td>1 5</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO</td>
<td>517</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>LENGTH</td>
<td>12</td>
</tr>
<tr>
<td>TYPE</td>
<td>PRT</td>
</tr>
<tr>
<td>ORGANISM</td>
<td>Artificial Sequence</td>
</tr>
<tr>
<td>FEATURE</td>
<td>OTHER INFORMATION: Hevea brasiliensis Small rubber particle protein epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amp</th>
<th>Phe</th>
<th>Val</th>
<th>Arg</th>
<th>Ala</th>
<th>Ala</th>
<th>Gly</th>
<th>Val</th>
<th>Tyr</th>
<th>Ala</th>
<th>Val</th>
<th>Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>518</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>12</td>
</tr>
<tr>
<td>TYPE</td>
<td>PRT</td>
</tr>
<tr>
<td>ORGANISM</td>
<td>Artificial Sequence</td>
</tr>
<tr>
<td>FEATURE</td>
<td>OTHER INFORMATION: Hevea brasiliensis Small rubber particle protein epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lys</th>
<th>Tyr</th>
<th>Leu</th>
<th>Amp</th>
<th>Phe</th>
<th>Arg</th>
<th>Ala</th>
<th>Ala</th>
<th>Gly</th>
<th>Val</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>519</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>12</td>
</tr>
<tr>
<td>TYPE</td>
<td>PRT</td>
</tr>
<tr>
<td>ORGANISM</td>
<td>Artificial Sequence</td>
</tr>
<tr>
<td>FEATURE</td>
<td>OTHER INFORMATION: Hevea brasiliensis Small rubber particle protein epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asn</th>
<th>Val</th>
<th>Val</th>
<th>Lys</th>
<th>Thr</th>
<th>Val</th>
<th>Val</th>
<th>Thr</th>
<th>Pro</th>
<th>Val</th>
<th>Tyr</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>520</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>12</td>
</tr>
<tr>
<td>TYPE</td>
<td>PRT</td>
</tr>
<tr>
<td>ORGANISM</td>
<td>Artificial Sequence</td>
</tr>
<tr>
<td>FEATURE</td>
<td>OTHER INFORMATION: Hevea brasiliensis Small rubber particle protein epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pro</th>
<th>Arg</th>
<th>Ile</th>
<th>Val</th>
<th>Leu</th>
<th>Asp</th>
<th>Val</th>
<th>Ala</th>
<th>Ser</th>
<th>Ser</th>
<th>Val</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>521</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>12</td>
</tr>
<tr>
<td>TYPE</td>
<td>PRT</td>
</tr>
<tr>
<td>ORGANISM</td>
<td>Artificial Sequence</td>
</tr>
<tr>
<td>FEATURE</td>
<td>OTHER INFORMATION: Hevea brasiliensis Small rubber particle protein epitope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gln</th>
<th>Gly</th>
<th>Tyr</th>
<th>Arg</th>
<th>Val</th>
<th>Ser</th>
<th>Ser</th>
<th>Tyr</th>
<th>Leu</th>
<th>Pro</th>
<th>Leu</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>522</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>16</td>
</tr>
<tr>
<td>TYPE</td>
<td>PRT</td>
</tr>
<tr>
<td>ORGANISM</td>
<td>Artificial Sequence</td>
</tr>
<tr>
<td>FEATURE</td>
<td>OTHER INFORMATION: Hevea brasiliensis Small rubber particle protein epitope</td>
</tr>
</tbody>
</table>
OTHER INFORMATION: Glycine max Stress-induced protein SAM22 epitope

SEQUENCE: 522
 Ala Leu Phe Lys Ala Ile Glu Ala Tyr Leu Leu Ala His Pro Asp
 1 5 10 15

SEQ ID NO 523
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Cryptomeria japonica Sugi basic protein precursor epitope

SEQUENCE: 523
 Ala Phe Asn Val Glu Asn Gly Asn Ala Thr Pro Gln Leu Thr Lys
 1 5 10 15

SEQ ID NO 524
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Cryptomeria japonica Sugi basic protein precursor epitope

SEQUENCE: 524
 Ala Asn Asn Asn Tyr Asp Pro Trp Thr Ile Tyr Ala Ile Gly Gly
 1 5 10 15

SEQ ID NO 525
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Cryptomeria japonica Sugi basic protein precursor epitope

SEQUENCE: 525
 Ala Tyr Ser Asp Asp Lys Ser Met Lys Val Thr Val Ala Phe Asn
 1 5 10 15

SEQ ID NO 526
LENGTH: 16
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Cryptomeria japonica Sugi basic protein precursor epitope

SEQUENCE: 526
 Cys Gly Gln Arg Met Pro Arg Ala Arg Tyr Gly Leu Val His Val
 1 5 10 15

SEQ ID NO 527
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Cryptomeria japonica Sugi basic protein precursor epitope

SEQUENCE: 527
 Cys Ser Asn Trp Val Trp Gln Ser Thr Gln Asp Val Phe Tyr Asn
<210> SEQ ID NO 528
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Trichophyton rubrum Tri r 2 allergen epitope
<400> SEQUENCE: 528
Ala Asp Phe Ser Amn Tyr Gly Ala Val Val Asp Val Tyr Ala Pro Gly
1 5 10 15
Lys Asp Ile Thr
20

<210> SEQ ID NO 529
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Trichophyton rubrum Tri r 2 allergen epitope
<400> SEQUENCE: 529
Ala Lys Gly Val Ser Leu Val Ala Val Lys Val Leu Asp Cys Asp Gly
1 5 10 15
Ser Gly Ser Amn
20

<210> SEQ ID NO 530
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Trichophyton rubrum Tri r 2 allergen epitope
<400> SEQUENCE: 530
Ala Ser Asn Gln Ala Ala Lys Ala Ile Ser Asp Ala Gly Ile Phe Met
1 5 10 15
Ala Val Ala Ala
20

<210> SEQ ID NO 531
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Trichophyton rubrum Tri r 2 allergen epitope
<400> SEQUENCE: 531
Asp Cys Asn Gly His Gly Thr His Val Ala Gly Thr Val Gly Gly Thr
1 5 10 15
Lys Tyr Gly Leu
20

<210> SEQ ID NO 532
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Trichophyton rubrum Tri r 2 allergen epitope
<400> SEQUENCE: 532
-continued

Asp Pro Ser Ala Gly Lys Gly Val Thr Ala Tyr Ile Ile Asp Thr Gly
1 5 10 15
Ile Asp Ile Asp
20

<210> SEQ ID NO 533
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Vespula vulgaris Venom allergen 5 precursor epitope

<400> SEQUENCE: 533
Ala Cys Tyr Gly Ser Leu Lys Pro Asn Cys Gly
1 5 10

<210> SEQ ID NO 534
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Vespula vulgaris Venom allergen 5 precursor epitope

<400> SEQUENCE: 534
Cys Asn Tyr Gly Pro Ser Gly Asn Phe Met Asn Glu
1 5 10

<210> SEQ ID NO 535
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Vespula vulgaris Venom allergen 5 precursor epitope

<400> SEQUENCE: 535
Asp Val Ala Lys Tyr Gln Val Gly Gln Asn Val Ala
1 5 10

<210> SEQ ID NO 536
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Vespula vulgaris Venom allergen 5 precursor epitope

<400> SEQUENCE: 536
Glu Lys Trp His Lys His Tyr Leu Val Cys Asn Tyr
1 5 10

<210> SEQ ID NO 537
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Vespula vulgaris Venom allergen 5 precursor epitope

<400> SEQUENCE: 537
Glu Leu Ala Tyr Val Ala Gln Val Trp Ala Asn Gln
1 5 10
-continued

<210> SEQ ID NO 538
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Corylus avellana 11S globulin-like protein epitope

<400> SEQUENCE: 539

Ala Phe Glu Ile Ser Arg Glu Ala Arg Arg Leu Lys Tyr Asn
1 5 10 15

<210> SEQ ID NO 539
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Carya illinoinsesis 11S legumin protein epitope

<400> SEQUENCE: 539

Glu Glu Ser Glu Arg Glu Ser Glu Gly Gln Arg
1 5 10

<210> SEQ ID NO 540
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Fagopyrum esculentum 13S globulin epitope

<400> SEQUENCE: 540

Asp Ala His Gln Pro Thr Arg Arg Val Arg Lys Gly Asp Val Val Ala
1 5 10 15

Leu Pro

<210> SEQ ID NO 541
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Fagopyrum esculentum 13S globulin seed storage protein 1 precursor (Legumin-like protein 1) epitope

<400> SEQUENCE: 541

Phe Lys Gln Asn Val Asn Arg Pro Ser Arg Ala Asp
1 5 10

<210> SEQ ID NO 542
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Fagopyrum esculentum 13S globulin seed storage protein 3 precursor (Legumin-like protein 3) (Allergen Fag e 1) epitope

<400> SEQUENCE: 542

Asp Ile Ser Thr Lys Glu Ala Phe Arg Leu Lys Asn
1 5 10

<210> SEQ ID NO 543
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Anacardium occidentale 2s albumin epitope

SEQUENCE: 543

Cys Gln Arg Gln Phe Glu Gln Gln Arg Phe Arg
1 5 10

SEQ ID NO 544
LENGTH: 10
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Sesamum indicum 2S seed storage protein 1 epitope

SEQUENCE: 544

His Phe Arg Glu Cys Cys Asn Glu Ile Arg
1 5 10

SEQ ID NO 545
LENGTH: 10
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Sesamum indicum 2S seed storage protein 1 precursor epitope

SEQUENCE: 545

Cys Met Gln Trp Met Arg Ser Met Arg Gly
1 5 10

SEQ ID NO 546
LENGTH: 14
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Bertholletia excelsa 2S sulfur-rich seed storage protein precursor [Allergen Ber e 1] epitope

SEQUENCE: 546

Cys Arg Cys Glu Gly Leu Arg Met Met Met Met Arg Met Gln
1 5 10

SEQ ID NO 547
LENGTH: 40
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens 52 kDa Ro protein epitope

SEQUENCE: 547

Leu Glu Lys Asp Glu Arg Glu Gln Leu Arg Ile Leu Gly Glu Lys Glu
1 5 10 15

Ala Lys Leu Ala Gln Gln Ser Gln Ala Leu Glu Glu Leu Ile Ser Glu
20 25 30

Leu Asp Arg Arg Cys His Ser Ser
35 40

SEQ ID NO 548
LENGTH: 10
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens 52-kD SS-A/Ro autoantigen epitope
<400> SEQUENCE: 548

Gln Glu Lys Leu Gln Val Ala Leu Gly Glu
1 5 10

<210> SEQ ID NO 549
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens 5-hydroxytryptamine (serotonin) receptor 4 epitope

<400> SEQUENCE: 549

Gly Ile Ile Asp Leu Ile Glu Arg Lys Phe Asn Gln Asn Ser Asn
1 5 10 15

Ser Thr Tyr Cys Val
20

<210> SEQ ID NO 550
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens 60 kDa heat shock protein, mitochondrial precursor epitope

<400> SEQUENCE: 550

Asp Gly Val Ala Val Leu Lys Val Gly Gly
1 5 10

<210> SEQ ID NO 551
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens 60 kDa SS-A/Ro ribonucleoprotein epitope

<400> SEQUENCE: 551

Glu Leu Tyr Lys Glu Lys Ala Leu Ser Val Glu Thr Glu Lys Leu Leu
1 5 10 15

Lys Tyr Leu Glu Ala Val
20

<210> SEQ ID NO 552
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens 60S acidic ribosomal protein P0 epitope

<400> SEQUENCE: 552

Ala Lys Val Glu Ala Lys Glu Ser Glu Glu Ser Asp Glu Asp Met
1 5 10 15

Gly Phe Gly Leu Phe Asp
20

<210> SEQ ID NO 553
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Homo sapiens 60S acidic ribosomal protein P2 epitope

SEQUENCE: 553

Glu Glu Ser Asp Asp Met Gly Phe Gly Leu Phe Asp
1 5 10

SEQ ID NO 554
LENGTH: 50
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens 64 kDa autoantigen epitope

SEQUENCE: 554

Ala Thr Lys Lys Glu Glu Glu Lys Gly Gly Asp Arg Asn Thr Gly
1 5 10 15
Leu Ser Arg Asp Lys Asp Lys Arg Glu Glu Met Lys Glu Val Ala
20 25 30
Lys Lys Glu Asp Glu Lys Val Lys Gly Glu Arg Arg Asn Thr Asp
35 40 45
Thr Arg
50

SEQ ID NO 555
LENGTH: 19
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens 65 kDa heat shock protein epitope

SEQUENCE: 555

Ala Leu Leu Arg Cys Ile Pro Ala Leu Asp Ser Leu Thr Pro Ala Asn
1 5 10 15
Glu Asp Cys

SEQ ID NO 556
LENGTH: 14
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens Acetylcholine receptor subunit alpha precursor epitope

SEQUENCE: 556

Ala Ile Asn Pro Glu Ser Asp Gln Pro Asp Leu Ser Asn Phe
1 5 10

SEQ ID NO 557
LENGTH: 21
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Cynodon dactylon acidic Cyn d 1 isoallergen isoform 1 precursor epitope

SEQUENCE: 557

Gln Asp Asp Val Ile Pro Glu Asp Trp Lys Pro Asp Thr Val Tyr Lys
1 5 10 15
Ser Lys Ile Gln Phe
20
Glu Glu Asp Lys Leu Arg Lys Ala Gly Glu Leu Met Leu Gln Phe Arg
1 5 10 15
Arg Val Lys Cys Glu Tyr Pro Ser Thr Lys Ile Thr Phe His Val
20 25 30
Glu Lys Gly Ser Ser Pro Asn Tyr Leu Ala Leu Leu Val Lys Tyr Ala
35 40 45
Ala Gly
50

Ala Ala Ala Ala Pro Ala Lys
1 5

Glu Ser Glu Glu Ser Asp Asp Met Gly Phe Gly Leu Phe Asp
1 5 10 15

Ala Pro Ala Ala Gly Ser Ala Pro Ala Ala Ala Ala Glu Glu Lys Lys
1 5 10 15

Ala Pro Ala Gly Ser Ala Pro Ala Ala Ala Ala Glu Glu Lys Lys
1 5 10 15

Glu Ser Glu Glu Ser Asp Asp Met Gly Phe Gly Leu Phe Asp
1 5 10 15

Ala Pro Ala Ala Gly Ser Ala Pro Ala Ala Ala Ala Glu Glu Lys Lys
1 5 10 15
His Trp Tyr Arg Ala Thr His Gln Glu Ala Ile Asn Cys Tyr Ala Asn
1 5 10 15

<210> SEQ ID NO 563
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Alanyl-tRNA synthetase, cytoplasmic epitope

<400> SEQUENCE: 563

Phe Ile Asp Glu Pro Arg Arg Arg Pro Ile
1 5 10

<210> SEQ ID NO 564
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus albumin epitope

<400> SEQUENCE: 564

Pro Val Glu Ser Lys Val Thr
1 5

<210> SEQ ID NO 565
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Juglans regia Albumin seed storage protein epitope

<400> SEQUENCE: 565

Gly Leu Arg Gly Glu Glu Met Glu Glu Met Val Gln Ser
1 5 10

<210> SEQ ID NO 566
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cochliobolus lunatus alcohol dehydrogenase epitope

<400> SEQUENCE: 566

Ala Val Asn Gly Asp Trp Pro Leu Pro Thr Lys Leu Pro Leu Val Gly
1 5 10 15

Gly His

<210> SEQ ID NO 567
<211> LENGTH: 37
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Penicillium chrysogenum alkaline serine protease epitope

<400> SEQUENCE: 567

Ala Asn Val Val Gln Arg Asn Ala Pro Ser Trp Gly Leu Ser Arg Ile
1 5 10 15

Ser Ser Lys Lys Ser Gly Ala Thr Asp Tyr Val Tyr Asp Ser Thr Ala
Gly Glu Gly Ile Val

Amp Asp Gln Cys Gln Arg Gln Leu Gln Arg
1 5 10

Glu Glu Ser Glu Asp Glu Lys Arg Arg Trp Gly Gln Arg Asp Asn
1 5 10 15

Ala Lys Ser Ser Pro Tyr Gln Lys Lys Thr
1 5 10

Ala Gly Val Ala Leu Ser Arg Leu Val Leu Arg Arg Asn Ala Leu
1 5 10 15

Asp Arg Gln Met Val Gln His Phe Lys Arg
1 5 10

<210> SEQ ID NO 568
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea allergen epitope

<400> SEQUENCE: 568

Amp Asp Gln Cys Gln Arg Gln Leu Gln Arg
1 5 10

<210> SEQ ID NO 569
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anacardium occidentale allergen Ana o 2 epitope

<400> SEQUENCE: 569

Glu Glu Ser Glu Asp Glu Lys Arg Arg Trp Gly Gln Arg Asp Asn
1 5 10 15

<210> SEQ ID NO 570
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea Allergen Ara h 1, clone F41B precursor epitope

<400> SEQUENCE: 570

Ala Lys Ser Ser Pro Tyr Gln Lys Lys Thr
1 5 10

<210> SEQ ID NO 571
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea allergen Arah3/Arah4 epitope

<400> SEQUENCE: 571

Ala Gly Val Ala Leu Ser Arg Leu Val Leu Arg Arg Asn Ala Leu
1 5 10 15

<210> SEQ ID NO 572
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea allergen Arah6 epitope

<400> SEQUENCE: 572

Asp Arg Gln Met Val Gln His Phe Lys Arg
1 5 10

<210> SEQ ID NO 573
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Periplaneta americana Allergen Cr-PI epitope

SEQUENCE: 573
Ile Pro Lys Gly Lys Lys Gly Gln Ala Tyr
1 5 10

SEQ ID NO 574
LENGTH: 8
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Aspergillus fumigatus allergen I/a; Asp f I/a epitope

SEQUENCE: 574
Ile Asn Gln Gln Leu Asn Pro Lys
1 5

SEQ ID NO 575
LENGTH: 10
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Arachis hypogaea Allergen II epitope

SEQUENCE: 575
Arg Arg Leu Gln Gly Arg Gln Gln Glu Gln
1 5 10

SEQ ID NO 576
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Lens culinaris allergen Len c 1.0101 epitope

SEQUENCE: 576
Ala Ile Asn Ala Ser Ser Asp Leu Asn Leu Ile Gly Phe Gly Ile
1 5 10 15

SEQ ID NO 577
LENGTH: 12
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Dermatophagoides farinae Allergen Mag epitope

SEQUENCE: 577
Asp Val Glu Leu Ser Leu Arg Ser Ser Asp Ile Ala
1 5 10

SEQ ID NO 578
LENGTH: 11
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Penicillium chrysogenum Allergen Pen n 18 epitope

SEQUENCE: 578
Ala His Ile Lys Ser Ser Lys Gly Asp Lys Lys Phe Lys Gly Ser
1 5 10 15
Val Ala Asn Met Ser Leu Gly Gly Gly Ser Ser Arg Thr Leu Asp
<210> SEQ ID NO 579
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Sinapis alba Allergen Sin a 1 epitope

<400> SEQUENCE: 579

Gln Gly Pro His Val Ile Ser Arg Ile Tyr Gln Thr Ala Thr
1 5

<210> SEQ ID NO 580
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ziziphus mauritiana allergen Zis m 1 epitope

<400> SEQUENCE: 580

Lys Thr Asn Tyr Ser Ser Ser Ile Ile Leu Glu Tyr
1 5

<210> SEQ ID NO 581
<211> LENGTH: 37
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Pogonurus tataricum allergenic protein epitope

<400> SEQUENCE: 581

Asp Ile Ser Thr Glu Glu Ala Tyr Lys Leu Lys Asn Gly Arg Gln Glu
1 5

Val Glu Val Phe Arg Pro Phe Glu Ser Arg Tyr Glu Lys Glu Glu Glu
20 25

Lys Glu Arg Glu Arg
35

<210> SEQ ID NO 582
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens alpha 2 interferon epitope

<400> SEQUENCE: 582

Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu Ser
1 5

<210> SEQ ID NO 583
<211> LENGTH: 30
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus alpha S1 casein epitope

<400> SEQUENCE: 583

Glu Asp Gln Ala Met Glu Asp Ile Lys Gln Met Glu Ala Glu Ser Ile
1 5

Ser Ser Ser Glu Ile Val Pro Asn Ser Val Glu Glu Lys
20 25
<210> SEQ ID NO 584
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Alpha/beta-gliadin A-II precursor epitope

<400> SEQUENCE: 584

Gln Val Ser Phe Gln Gln Pro Gln Gln Gln
1 5 10

<210> SEQ ID NO 585
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Alpha/beta-gliadin A-V epitope

<400> SEQUENCE: 585

Leu Ala Leu Gln Thr Leu Pro Ala Met Cys
1 5 10

<210> SEQ ID NO 586
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens alpha-1 type IV collagen epitope

<400> SEQUENCE: 586

Ser Arg Cys Gln Val Cys Met Arg Arg Thr
1 5 10

<210> SEQ ID NO 587
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens alpha1A-voltage-dependent calcium channel epitope

<400> SEQUENCE: 587

Glu Asp Ser Asp Glu Asp Glu Phe Gln Ile Thr Glu
1 5 10

<210> SEQ ID NO 588
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens alpha-2 type XI collagen epitope

<400> SEQUENCE: 588

Gly Ser Leu Asp Ser Leu Arg Glu Ile Glu Gln Met Arg Arg
1 5 10 15

<210> SEQ ID NO 589
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus alpha2[I] collagen epitope
Leu Pro Gly Leu Lys Gly His Asn Gly Leu Gln Gly Leu Pro Gly Leu
1 5 10 15

Ala Gly His His
20

<210> SEQ ID NO 590
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Alpha-amylase inhibitor 0.28 precursor (CIII) (WMAI-1) epitope

<400> SEQUENCE: 590

Ala Tyr Pro Arg Val
1 5

<210> SEQ ID NO 591
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Alpha-enolase epitope

<400> SEQUENCE: 591

Lys Ile His Ala Arg Glu Ile Phe Asp Ser Arg Gly Asn Pro Thr Val
1 5 10 15

Glu

<210> SEQ ID NO 592
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens alpha-fibrinogen precursor epitope

<400> SEQUENCE: 592

Gly Pro Arg Val Val Glu Arg His Gln Ser Ala Cys Lys Asp Ser
1 5 10 15

<210> SEQ ID NO 593
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Alpha-gliadin epitope

<400> SEQUENCE: 593

Leu Gly Gln Gly Ser Phe Arg Pro Ser Gln Gln Asn
1 5 10

<210> SEQ ID NO 594
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-lactalbumin epitope

<400> SEQUENCE: 594

Lys Asp Leu Lys Gly Tyr Gly Gly Val Ser
1 5 10
<210> SEQ ID NO 595
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-lactalbumin precursor epitope

<400> SEQUENCE: 595

Lys Cys Glu Val Phe Arg Glu Leu Asp Leu Lys Gly Tyr
1 5 10

<210> SEQ ID NO 596
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus alpha-S1-casein epitope

<400> SEQUENCE: 596

Leu Asn Glu Asn Leu Leu Arg Phe Phe Val Ala Pro Phe Pro Gln Val
1 5 10 15

Phe Gly Lys Glu
20

<210> SEQ ID NO 597
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-S1-casein precursor epitope

<400> SEQUENCE: 597

Ala Met Glu Asp Ile Lys Gln Met Glu Ala
1 5 10

<210> SEQ ID NO 598
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Alpha-S2-casein precursor epitope

<400> SEQUENCE: 598

Glu Asn Leu Cys Ser Thr Phe Cys Lys Glu
1 5 10

<210> SEQ ID NO 599
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens anti-beta-amyloid peptide immunoglobulin heavy chain variable region epitope

<400> SEQUENCE: 599

Ala His Ile Trp Trp Asn Asp
1 5

<210> SEQ ID NO 600
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Aquaporin-4 epitope
<400> SEQUENCE: 600

Phe Cys Pro Asp Val Glu Phe Lys Arg Arg Phe Lys Glu Ala Phe Ser
1 5 10 15
Lys Ala Ala Gln Gln Thr Lys Gly
20

<210> SEQ ID NO 601
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea Ara h 2.01 allergen epitope

<400> SEQUENCE: 601

Cys Cys Asn Glu Leu Asn Glu Phe Glu Asn Asn Gln Arg Cys Met
1 5 10 15

<210> SEQ ID NO 602
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens ATP-dependent DNA helicase 2 subunit 2 epitope

<400> SEQUENCE: 602

Glu Glu Ala Ser Gly Ser Ser Val Thr Ala Glu Glu Ala Lys Phe
1 5 10 15
Leu Ala Pro Lys
20

<210> SEQ ID NO 603
<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens autoantigen epitope

<400> SEQUENCE: 603

Glu Ile Arg Val Arg Leu Gln Ser Ala Ser Pro Ser Thr Arg Trp Thr
1 5 10 15
Glu Leu Asp Asp Val Lys Arg Leu Leu Lys Gly Ser
20 25

<210> SEQ ID NO 604
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Band 3 anion transport protein epitope

<400> SEQUENCE: 604

Leu Phe Lys Pro Pro Lys Tyr His Pro Asp Val Pro Tyr Val Lys Arg
1 5 10 15

<210> SEQ ID NO 605
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Glycine max Bd 30K (34 kDa maturing seed
-continued

protein epitope

<400> SEQUENCE: 605

Glu Asp Trp Gly Glu Asp Gly Tyr Ile Trp Ile Gln Arg Asn Thr
1 5 10 15

<210> SEQ ID NO 606
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Bence Jones protein HAJ epitope

<400> SEQUENCE: 606

Ala Trp His Gln Gln Gln Pro
1 5

<210> SEQ ID NO 607
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula Bet v 4 epitope

<400> SEQUENCE: 607

Phe Ala Arg Ala Asn Arg Gly Leu
1 5

<210> SEQ ID NO 608
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Haliaeetus albicilla beta-1, 3-glucanase epitope

<400> SEQUENCE: 608

Gly Leu Phe Tyr Pro Asn Lys Gln Pro
1 5

<210> SEQ ID NO 609
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis beta-1,3-glucanase epitope

<400> SEQUENCE: 609

Gly Leu Phe Phe Pro Asp Lys Arg Pro Lys Tyr Asn Leu Asn Phe
1 5 10 15

<210> SEQ ID NO 610
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Olea europaea beta-1,3-glucanase-like protein epitope

<400> SEQUENCE: 610

Ala Gly Arg Asn Ser Trp Asn Cys Asp Phe Ser Gln
1 5

<210> SEQ ID NO 611
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens beta-2-glycoprotein 1 precursor epitope

<400> SEQUENCE: 611

Leu Lys Thr Pro Arg Val
1 5

<210> SEQ ID NO 612
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens beta-2-glycoprotein I epitope

<400> SEQUENCE: 612

Thr Leu Arg Val Tyr Lys
1 5

<210> SEQ ID NO 613
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus beta-casein epitope

<400> SEQUENCE: 613

Gln Ser Lys Val Leu Pro Val Pro Gln Lys Ala Val Pro
1 5 10

<210> SEQ ID NO 614
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Beta-casein precursor epitope

<400> SEQUENCE: 614

Asp Glu Leu Gln Asp Lys Ile His Pro Phe Ala Gln
1 5 10

<210> SEQ ID NO 615
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Beta-lactoglobulin epitope

<400> SEQUENCE: 615

Ala Gln Lys Lys Ile Ile Ala Glu Lys Thr
1 5 10

<210> SEQ ID NO 616
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Beta-lactoglobulin precursor epitope

<400> SEQUENCE: 616

Ala Ala Ser Asp Ile Ser Leu Leu Asp Ala Gln Ser Ala Pro Leu Arg
1 5 10 15
<210> SEQ ID NO 617
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Botulinum neurotoxin type E epitope

<400> SEQUENCE: 617

Trp Lys Ala Pro Ser Ser Pro
1 5

<210> SEQ ID NO 618
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens bullous pemphigoid antigen epitope

<400> SEQUENCE: 618

Lys Ser Thr Ala Lys Asp Cys Thr Phe Lys Pro Asp Phe Glu Met Thr
1 5 10 15

Val Lys Glu

<210> SEQ ID NO 619
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens bullous pemphigoid antigen 1, isoforms 1/2/3/4/5/6 epitope

<400> SEQUENCE: 619

Leu Thr Asp Thr Lys Thr Gly Leu His Phe Asn Ile Asn Glu Ala Ile
1 5 10 15

Glu Gln Gly Thr
20

<210> SEQ ID NO 620
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Paspopyrum esculentum BW 16kDa allergen epitope

<400> SEQUENCE: 620

Glu Gly Val Arg Asp Leu Lys Glu
1 5

<210> SEQ ID NO 621
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens calcium channel, alpha 1A subunit isoform 3 epitope

<400> SEQUENCE: 621

Gly Asn Ile Gly Ile Asp Val Glu Asp Glu Asp Ser Asp Glu Asp Glu
1 5 10 15

Phe
-continued

<210> SEQ ID NO 622
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Calpastatin epitope

<400> SEQUENCE: 622

Ala Val Cys Arg Thr Ser Met Cys Ser Ile Gln Ser Ala Pro Pro
1 5 10 15

<210> SEQ ID NO 623
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Calreticulin precursor epitope

<400> SEQUENCE: 623

Lys Glu Gln Phe Leu Asp Gly Gly Asp Gly Trp Thr Ser Arg Trp Ile Glu
1 5 10 15
Ser Lys

<210> SEQ ID NO 624
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Ca-sensing receptor epitope

<400> SEQUENCE: 624

Phe Val Ala Gln Asn Gly Ser Ile Asp Leu Asn Leu Asp
1 5 10

<210> SEQ ID NO 625
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Caspase-8 precursor epitope

<400> SEQUENCE: 625

Asp Arg Asn Gly Thr His Leu Asp Ala
1 5

<210> SEQ ID NO 626
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens centromere protein A isoform a epitope

<400> SEQUENCE: 626

Gly Pro Ser Arg Arg Gly Pro Ser Leu Gly Ala Ser Ser His
1 5 10

<210> SEQ ID NO 627
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens centromere protein B, 80kDa epitope
<400> SEQUENCE: 627
Met Gly Pro Lys Arg Arg Gln Leu Thr Phe
1 5 10

<210> SEQ ID NO 628
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens centromere protein-A epitope

<400> SEQUENCE: 628
Glu Ala Pro Arg Arg Ser Pro Ser Pro
1 5 10

<210> SEQ ID NO 629
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula Chain A, Birch Pollen Profilin epitope

<400> SEQUENCE: 629
Ala Gln Ser Ser Ser Phe Pro Gln Phe Lys Pro Gln Glu Ile Thr Gly
1 5 10 15
Ile

<210> SEQ ID NO 630
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Chain A, Crystal Structure Of The Glycosylated Five-Domain Human Beta2-Glycoprotein I Purified From Blood Plasma epitope

<400> SEQUENCE: 630
Arg Gly Gly Met Arg
1 5

<210> SEQ ID NO 631
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Chain H, Three-Dimensional Structure Of A Human Immunoglobulin With A Hinge Deletion epitope

<400> SEQUENCE: 631
Ala Leu Pro Ala Pro Ile Glu
1 5

<210> SEQ ID NO 632
<211> LENGTH: 27
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens cholesterol side-chain cleavage enzyme P450ccc (RC 1.14.15.67) epitope

<400> SEQUENCE: 632
Phe Asp Pro Glu Asn Phe Asp Pro Thr Arg Trp Leu Ser Lys Asp Lys
1 5 10 15
Asn Ile Thr Tyr Phe Arg Asn Leu Gly Phe Gly
20 25

<210> SEQ ID NO 633
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens citrate synthase epitope

<400> SEQUENCE: 633
Ala Leu Lys His Leu Pro Asn Asp Pro Met
1 5 10

<210> SEQ ID NO 634
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens claudin 11 epitope

<400> SEQUENCE: 634
Ala His Arg Glu Thr
1 5

<210> SEQ ID NO 635
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Coagulation factor VIII precursor epitope

<400> SEQUENCE: 635
Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr
1 5 10

<210> SEQ ID NO 636
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oncorhynchus mykiss collagen a2(I) epitope

<400> SEQUENCE: 636
Met Lys Gly Leu Arg Gly His Gly Leu Gln Gly Met Pro Gly Pro
1 5 10 15

Asn Gly Pro Ser
20

<210> SEQ ID NO 637
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Collagen alpha-1(III) chain epitope

<400> SEQUENCE: 637
Ala Arg Gly Ala Gln Gly Pro Pro Gly Ala Thr Gly Phe Pro
1 5 10

<210> SEQ ID NO 638
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens collagen alpha-1(VII) chain precursor epitope

<400> SEQUENCE: 638
Gly Thr Leu His Val Val Gln Arg
1 5

<210> SEQ ID NO 639
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Collagen alpha-1(XVII) chain epitope

<400> SEQUENCE: 639
Arg Ser Ile Leu Pro Tyr Gly Asp Ser Met Asp Arg Ile Gln Lys Asp
1 5 10 15
Arg Leu Gln Gly Met Ala Pro
20

<210> SEQ ID NO 640
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Collagen alpha-3(IV) chain epitope

<400> SEQUENCE: 640
Thr Ala Ile Pro Ser Cys Pro Glu Gly Thr Val Pro Leu Tyr Ser
1 5 10 15

<210> SEQ ID NO 641
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens collagen VII epitope

<400> SEQUENCE: 641
Ile Ile Trp Arg Ser Thr Gln Gly
1 5

<210> SEQ ID NO 642
<211> LENGTH: 46
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus collagen, type 1, alpha 2 epitope

<400> SEQUENCE: 642
Ala Pro Gly Pro Asp Gly Asn Gly Ala Gln Gly Pro Pro Gly Leu
1 5 10 15
Gln Gly Val Gln Gly Gly Lys Gly Glu Gln Gly Pro Ala Gly Pro Pro
20 28
Gly Phe Glu Gly Leu Pro Gly Pro Ala Gly Thr Ala Gly Glu
35 40 45

<210> SEQ ID NO 643
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens collagen, type II, alpha 1 epitope

<400> SEQUENCE: 643

Pro Pro Gly Pro Thr Gly Ala Ser Gly
1 5

<210> SEQ ID NO 644
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens collagen, type II, alpha 1 isoform 1 precursor epitope

<400> SEQUENCE: 644

Ala Arg Gly Leu Thr Gly Arg Pro Gly Asp Ala
1 5 10

<210> SEQ ID NO 645
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens collagen, type II, alpha 1 isoform 2 precursor epitope

<400> SEQUENCE: 645

Leu Val Gly Pro Arg Gly Glu Gly Phe Pro
1 5 10

<210> SEQ ID NO 646
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Complement C1q subcomponent subunit A epitope

<400> SEQUENCE: 646

Lys Gly Glu Gln Gly Glu Gly Pro Gly Ala
1 5

<210> SEQ ID NO 647
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Condensin-2 complex subunit D3 epitope

<400> SEQUENCE: 647

Pro Thr Pro Glu Thr Gly Pro Leu Gln Arg
1 5 10

<210> SEQ ID NO 648
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea Conglutin-7 precursor epitope

<400> SEQUENCE: 648
<table>
<thead>
<tr>
<th>Seq ID No</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>649</td>
<td>8</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Periplaneta americana Cr-PII allergen epitope</td>
</tr>
<tr>
<td>650</td>
<td>11</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Cochliobolus lunatus Cytochrome c epitope</td>
</tr>
<tr>
<td>651</td>
<td>10</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Rattus norvegicus Cytochrome P450 3A1 epitope</td>
</tr>
<tr>
<td>652</td>
<td>15</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Homo sapiens cytoskeleton-associated protein 5 isoform b epitope</td>
</tr>
<tr>
<td>653</td>
<td>9</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Dermatophagoides farinae Der f 2 epitope</td>
</tr>
<tr>
<td>654</td>
<td>15</td>
<td>PRT</td>
<td>Artificial Sequence</td>
<td></td>
<td>Dermatophagoides farinae Der f 7 allergen</td>
</tr>
</tbody>
</table>
epitope

<400> SEQUENCE: 654

His Ile Gly Gly Leu Ser Ile Leu Asp Pro Ile Phe Gly Val Leu
1 5 10 15

<210> SEQ ID NO 655
<211> LENGTH: 43
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Der p 1 allergen epitope

<400> SEQUENCE: 655

Ala Arg Glu Gln Ser Cys Arg Arg Pro Aam Ala Gln Arg Phe Gly Ile
1 5 10 15
Ser Aam Tyr Cys Gln Ile Tyr Pro Pro Aam Ala Aam Lys Ile Arg Glu
20 25
Ala Leu Ala Gln Thr His Ser Ala Ile Ala Val
35 40

<210> SEQ ID NO 656
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Der p 7 allergen polypeptide epitope

<400> SEQUENCE: 656

His Ile Gly Gly Leu Ser Ile Leu Asp Pro Ile Phe Ala Val Leu
1 5 10 15

<210> SEQ ID NO 657
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Desmoglein-1 epitope

<400> SEQUENCE: 657

Arg Glu Trp Ile Lys Phe Ala Ala Ala Cys Arg Glu
1 5

<210> SEQ ID NO 658
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Desmoglein-3 precursor epitope

<400> SEQUENCE: 658

Arg Glu Trp Val Lys Phe Ala Lys Pro Cys Arg Glu
1 5

<210> SEQ ID NO 659
<211> LENGTH: 30
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens desmoglein-3 preproprotein epitope
<400> SEQUENCE: 659
Ser Gln Glu Pro Ala Gly Thr Pro Met Phe Leu Leu Ser Arg Asn Thr
 1 5 10 15
Gly Glu Val Arg Thr Leu Thr Asn Ser Leu Asp Arg Glu Gln
 20 25 30

<210> SEQ ID NO 660
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens desmoplakin epitope

<400> SEQUENCE: 660
Gly Asn Ser Ser Tyr Ser Tyr Ser Tyr Ser Phe Ser
 1 5 10

<210> SEQ ID NO 661
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens desmoplakin isoform II epitope

<400> SEQUENCE: 661
Leu Val Asp Arg Lys Thr Gly Ser Gln Tyr Asp Ile Gln Asp Ala Ile
 1 5 10 15
Asp Lys Gly Leu
 20

<210> SEQ ID NO 662
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex), isoform CRA_a epitope

<400> SEQUENCE: 662
 Ala Glu Ile Glu Thr Asp Lys Ala Thr Ile Gly Phe Glu Val Gln Glu
 1 5 10 15
Glu Gly

<210> SEQ ID NO 663
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens DNA topoisomerase I epitope

<400> SEQUENCE: 663
 Gly Val Pro Ile Glu Lys Ile Tyr Asn Lys Thr Gln Arg Glu Lys Phe
 1 5 10 15
Ala

<210> SEQ ID NO 664
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens DNA topoisomerase I epitope
Glu Leu Asp Gly Gln Glu Tyr Val Val Glu Phe Asp Phe Leu Gly Lys
 1 5 10 15
Asp Ser Ile Arg
 20

His Pro Met Leu Pro Asn Tyr Lys Asn Phe Lys Gly Thr Ile Gln Glu
 1 5 10 15
Leu Gly Gln Asn
 20

Tyr Ser Pro Thr Ser Pro Ser
 1 5

Ala Phe Asn Lys Thr Gly Val Ser Pro Tyr Ser Lys Thr Leu Val Leu
 1 5 10 15
Gln Thr Ser Glu Gly Lys Ala Leu Gln Gln Tyr Pro Ser Glu Arg Glu
 20 25 30
Leu Arg Gly Ile
 35

Gln Ala Ala Asn Asp Ser Tyr Ala Ala Gly Trp Gly Val Met Val Ser
 1 5 10 15
His Arg Ser Gly Thr Glu Asp Thr Phe Ile Ala Asp Leu Ser Val
 20 25 30
Ser Arg Ala Leu Ala Arg Glu Val Asp Leu Lys Asp Tyr Glu Asp Gln
1 5 10 15
Gln Lys

 Ala Arg Gly His Arg Pro Leu Asp Lys Asp Arg Glu Ala Pro Ser
1 5 10 15
Leu Arg Pro Ala

 Ala Asn Lys Tyr Gln Ile Ser Val Asn Lys Tyr Arg Gly Thr Ala Gly
1 5 10 15
Asn Ala Leu

 Asp Ser Pro Gly Ser Gly Asn Ala Arg Pro Asn Asn Pro Asp Trp
1 5 10 15

 Phe Leu Ala Glu Gly Gly Val Arg Gly Pro Arg Val Val Glu Arg
1 5 10 15
His
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens fibrinogen alpha chain preproprotein, isoform alpha epitope

<400> SEQUENCE: 679

Asp His Glu Gly Thr His Ser Thr Lys Arg Gly His Ala Lys Ser Arg
1 5 10 15
Pro Val Arg Gly
20

<210> SEQ ID NO: 680
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens fibrinogen beta chain epitope

<400> SEQUENCE: 680

Pro Arg Lys Gln Cys Ser Lys Glu Asp Gly Gly Gly Trp Trp Tyr
1 5 10 15

<210> SEQ ID NO: 681
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens fibrinogen beta chain, isoform CRA.4 epitope

<400> SEQUENCE: 681

Asp Glu Glu Gly Phe Phe Ser Ala Arg Gly His Arg Pro Leu Asp Lys
1 5 10 15
Lys

<210> SEQ ID NO: 682
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens fibrinogen beta chain, isoform CRA.1 epitope

<400> SEQUENCE: 682

Glu Glu Ala Pro Ser Leu Arg Pro Ala Pro Pro Pro Ile Ser Gly Gly
1 5 10 15
Gly Tyr Arg Ala Arg Pro Ala Lys
20

<210> SEQ ID NO: 683
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Fibronectin precursor epitope

<400> SEQUENCE: 683

Leu Thr Ser Arg Pro Ala
1 5

<210> SEQ ID NO: 684
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens filaggrin epitope

<400> SEQUENCE: 684

Leu Ser Gly His Arg Gly Tyr Ser Gly Ser Gln Ala Ser Asp Asn Glu
1 5 10 15

Gly His

<210> SEQ ID NO 685
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Pollistatin-related protein 1 epitope

<400> SEQUENCE: 685

Leu Lys Phe Val Glu Gln Asn Glu
1 5

<210> SEQ ID NO 686
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Forkhead box protein E3 epitope

<400> SEQUENCE: 686

Pro Thr Pro Ala Pro Gly Pro Gly Arg Arg
1 5 10

<210> SEQ ID NO 687
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens GAD65 autoantigen glutamic acid decarboxylase epitope

<400> SEQUENCE: 687

Ala Pro Ala Met Ile Pro Pro
1 5

<210> SEQ ID NO 688
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Gamma-gliadin precursor epitope

<400> SEQUENCE: 688

Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln
1 5 10

<210> SEQ ID NO 689
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chironomus thummi thummi Globin CTP-III epitope
<400> SEQUENCE: 689

Ala His Thr Asp Phe Ala Gly Ala Glu Ala Ala Trp Gly Ala Thr Leu
1 5 10 15
Asp Thr Phe Phe Gly
20

<210> SEQ ID NO: 690
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-III precursor epitope

<400> SEQUENCE: 690

Gly Val Thr His Asp Gln Leu Asn Asn Phe Arg
1 5 10

<210> SEQ ID NO: 691
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-IV precursor epitope

<400> SEQUENCE: 691

Lys Ala His Thr Asp Phe Ala Gly Ala Glu Ala Ala Trp Gly Ala Thr
1 5 10 15
Leu Asp Ala Phe Phe Gly Met
20

<210> SEQ ID NO: 692
<211> LENGTH: 35
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-VI precursor epitope

<400> SEQUENCE: 692

Ile Val Ser Phe Leu Ser Glu Val Ile Ser Leu Ala Gly Ser Asp Ala
1 5 10 15
Asn Ile Pro Ala Ile Gln Asn Leu Ala Lys Glu Leu Ala Thr Ser His
20 25 30
Lys Pro Arg
35

<210> SEQ ID NO: 693
<211> LENGTH: 35
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chironomus thummi thummi Globin CTT-VIII epitope

<400> SEQUENCE: 693

Ile Val Gly Phe Phe Ser Glu Val Ile Gly Leu Ile Gly Asn Pro Glu
1 5 10 15
Asn Arg Pro Ala Leu Lys Thr Leu Ile Asp Gly Leu Ala Ser Ser His
20 25 30
<table>
<thead>
<tr>
<th>Lys</th>
<th>Ala</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO 694
LENGTH: 9
TYPE: PRT
ORGANISM: Artificial Sequence
OTHER INFORMATION: Hevea brasiliensis Glucan endo-1,3-beta-glucosidase, basic vacuolar isoform epitope

<table>
<thead>
<tr>
<th>Ala</th>
<th>Trp</th>
<th>Leu</th>
<th>Ala</th>
<th>Gln</th>
<th>Phe</th>
<th>Val</th>
<th>Leu</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO 695
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
OTHER INFORMATION: Homo sapiens glutamate decarboxylase epitope

<table>
<thead>
<tr>
<th>Phe</th>
<th>Arg</th>
<th>Glu</th>
<th>Arg</th>
<th>Gln</th>
<th>Ser</th>
<th>Ser</th>
<th>Ser</th>
<th>Lys</th>
<th>Asn</th>
<th>Leu</th>
<th>Leu</th>
<th>Cys</th>
<th>Glu</th>
<th>Asn</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO 696
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 1 epitope

<table>
<thead>
<tr>
<th>Met</th>
<th>Ala</th>
<th>Ser</th>
<th>Ser</th>
<th>Thr</th>
<th>Ser</th>
<th>Ser</th>
<th>Ser</th>
<th>Ala</th>
<th>Ser</th>
<th>Asn</th>
<th>Ala</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO 697
LENGTH: 19
TYPE: PRT
ORGANISM: Artificial Sequence
OTHER INFORMATION: Homo sapiens Glutamate decarboxylase 2 epitope

<table>
<thead>
<tr>
<th>Pro</th>
<th>Gly</th>
<th>Ser</th>
<th>Gly</th>
<th>Phe</th>
<th>Ser</th>
<th>Gly</th>
<th>Ser</th>
<th>Glu</th>
<th>Asp</th>
<th>Gly</th>
<th>Ser</th>
<th>Gly</th>
<th>Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO 698
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
OTHER INFORMATION: Homo sapiens glutamate receptor, ionotropic, N-methyl D-aspartate 2A epitope

<table>
<thead>
<tr>
<th>Ser</th>
<th>Glu</th>
<th>Asn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO 699
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
OTHER INFORMATION: Homo sapiens glutamate receptor, ionotropic, N-methyl D-aspartate 2A epitope

<table>
<thead>
<tr>
<th>Ser</th>
<th>Val</th>
<th>Ser</th>
<th>Tyr</th>
<th>Asp</th>
<th>Asp</th>
<th>Trp</th>
<th>Asp</th>
<th>Tyr</th>
<th>Ser</th>
<th>Leu</th>
<th>Glu</th>
<th>Ala</th>
<th>Arg</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
<210> SEQ ID NO 699
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens glutathione peroxidase-GI epitope

<400> SEQUENCE: 699

Arg Glu His Pro Val Phe Ala Tyr Leu Lys Asp Lys Leu Pro
1 5

<210> SEQ ID NO 700
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Glutenin, high molecular weight subunit DXS epitope

<400> SEQUENCE: 700

Ala Gln Gly Gln Gln Pro Gly Gln Gln Gln Gln
1 5

<210> SEQ ID NO 701
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Glutenin, high molecular weight subunit DXS precursor epitope

<400> SEQUENCE: 701

Gln Gln Pro Gly Gln
1 5

<210> SEQ ID NO 702
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Glutenin, low molecular weight subunit precursor epitope

<400> SEQUENCE: 702

Gln Gln Gln Pro Pro
1 5

<210> SEQ ID NO 703
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phaseolus vulgaris Glycine-rich cell wall structural protein 1.8 precursor epitope

<400> SEQUENCE: 703

Gly Gly Tyr Gly Asp Gly Gly Ala His Gly Gly Tyr Gly Gly
1 5

<210> SEQ ID NO 704
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES: |<223> OTHER INFORMATION: Arachis hypogaea Glycinin epitope
<400> SEQUENCE: 704
Ala Leu Ser Arg Leu Val Leu Arg Arg Asn Ala Leu Arg Arg Pro
1 5 10 15

<210> SEQ ID NO 705
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES: |<223> OTHER INFORMATION: Glycine max Glycinin G1 precursor epitope
<400> SEQUENCE: 705
Gly Ala Ile Val Thr Val Lys Gly Gly Leu Ser Val Ile
1 5 10

<210> SEQ ID NO 706
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES: |<223> OTHER INFORMATION: Glycine max Glycinin G2 precursor epitope
<400> SEQUENCE: 706
Ala Leu Ser Arg Cys Thr Leu Asn Arg Asn Ala Leu Arg Arg Pro
1 5 10 15

<210> SEQ ID NO 707
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES: |<223> OTHER INFORMATION: Holcus lanatus group V allergen epitope
<400> SEQUENCE: 707
Ala Asn Val Pro Pro Ala Asp Lys Tyr Lys Thr Phe Glu Ala Ala
1 5 10 15

<210> SEQ ID NO 708
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES: |<223> OTHER INFORMATION: Homo sapiens Gp protein epitope
<400> SEQUENCE: 708
Ile Asp Ala Pro Lys Pro Lys Lys Met Lys Lys Glu Lys Glu Met Asn
1 5 10 15
Gly Glu Thr Arg Glu Lys Ser Pro Lys Leu Lys Asn Gly Phe Pro His
20 25 30
Pro Glu Pro Asp Cys Asn
35

<210> SEQ ID NO 709
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES: |<223> OTHER INFORMATION: Homo sapiens H1 histone family, member 0 epitope
<400> SEQUENCE: 709
<table>
<thead>
<tr>
<th>Lys Glu Ile Lys Lys Val Ala Thr Pro Lys Lys Ala Ser Lys Pro Lys</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO: 710
LENGTH: 12
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens heat shock 60kDa protein 1 (chaperonin) epitope

SEQUENCE: 710

<table>
<thead>
<tr>
<th>Ala Tyr Ala Lys Asp Val Lys Phe Gly Ala Asp Ala</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
</table>

SEQ ID NO: 711
LENGTH: 6
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens Heat shock protein HSP 90-beta epitope

SEQUENCE: 711

<table>
<thead>
<tr>
<th>Gly Leu Glu Leu Pro Glu</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
</table>

SEQ ID NO: 712
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens high mobility group protein 17 epitope

SEQUENCE: 712

<table>
<thead>
<tr>
<th>Lys Lys Ala Pro Ala Lys Gly Glu Lys Val Pro Lys Gly Lys</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
</table>

SEQ ID NO: 713
LENGTH: 22
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens High mobility group protein 1 epitope

SEQUENCE: 713

<table>
<thead>
<tr>
<th>Ala Lys Gly Lys Pro Asp Ala Ala Lys Gly Val Val Lys Ala Glu</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys Ser Lys Lys Lys Lys</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO: 714
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens high-mobility group box 2 epitope

SEQUENCE: 714

| Phe Glu Asp Met Ala Lys Ser Asp Lys Ala Arg Tyr Asp Arg Glu | | | | |
<210> SEQ ID NO 715
<211> LENGTH: 43
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens histidyl-tRNA synthetase, cytoplasmic epitope

<400> SEQUENCE: 715

Ala Glu Arg Ala Ala Leu Glu Leu Val Lys Leu Gln Gly Glu Arg
 1 5 10 15
Val Arg Gly Leu Lys Gln Gln Ala Ser Ala Glu Leu Ile Glu Glu
 20 25 30
Glu Val Ala Lys Leu Leu Leu Lys Ala Gin
 35 40

<210> SEQ ID NO 716
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Histone H1.4 epitope

<400> SEQUENCE: 716

Ser Glu Thr Ala Pro Ala Ala Pro Ala Ala Pro Ala Glu Lys
 1 5 10 15

<210> SEQ ID NO 717
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens histone H1b epitope

<400> SEQUENCE: 717

Lys Pro Lys Ala Ala Lys Pro Lys Ala Ala Ala Ala Lys Lys Lys
 1 5 10 15

<210> SEQ ID NO 718
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Histone H2A.Z epitope

<400> SEQUENCE: 718

Gly Lys Ala Lys Thr Lys Ala Val Ser Arg Ser Gln Arg Ala Gly Leu
 1 5 10 15
Gln Phe Pro Val
 20

<210> SEQ ID NO 719
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens histone H3 epitope

<400> SEQUENCE: 719

Leu Pro Phe Glu Arg Leu Val Arg Glu Ile Ala Gin Asp Phe Lys
 1 5 10 15
<210> SEQ ID NO 720
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Histone H3-like centromeric protein A epitope

<400> SEQUENCE: 720

Lys Pro Glu Ala Pro Arg Arg Ser Pro
1 5 10

<210> SEQ ID NO 721
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens HLA class I histocompatibility antigen, B-27 alpha chain precursor epitope

<400> SEQUENCE: 721

Lys Ala Lys Ala Gln Thr Asp Arg
1 5

<210> SEQ ID NO 722
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens HLA-B27 epitope

<400> SEQUENCE: 722

Ala Lys Ala Gln Thr Asp Arg Glu Leu Arg Thr Leu Leu Arg Tyr
1 5 10 15

<210> SEQ ID NO 723
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens HLA-DR3 epitope

<400> SEQUENCE: 723

Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln
1 5 10 15

Lys Arg Gly Arg
20

<210> SEQ ID NO 724
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens HMG-17 epitope

<400> SEQUENCE: 724

Asp Gly Lys Ala Lys Val Lys Asp Glu Pro Gin Arg Arg Ser Ala
1 5 10 15

<210> SEQ ID NO 725
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURES:

OTHER INFORMATION: Homo sapiens MNHPS2B1 protein epitope

SEQUENCE: 725

Glu Thr Thr Glu Glu Ser Leu Arg Asn Tyr Tyr Glu Gln
1 5 10

SEQ ID NO 726
LENGTH: 35
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens hypothetical protein epitope

SEQUENCE: 726

 Ala Asn Glu Asp Ala Ala Gln Gly Ile Ala Asn Trp Asp Ala Val Gln
1 5 10 15

Asp Ile Ala Asn Glu Asp Gly Phe His Gly Ile Asp Ile Glu Asp Ala
20 25 30

Ala Gln Gly
35

SEQ ID NO 727
LENGTH: 12
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Oryza sativa Japonica Group hypothetical protein epitope

SEQUENCE: 727

 Ala Phe Asn His Phe Gly Ile Gln Leu Val Gln Arg
1 5 10

SEQ ID NO 728
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens Ig alpha-1 chain C region epitope

SEQUENCE: 728

 Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr
1 5 10 15

Pro Ser Pro Ser
20

SEQ ID NO 729
LENGTH: 7
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens Ig gamma-1 chain C region epitope

SEQUENCE: 729

Lys Phe Asn Trp Tyr Val Asp
1 5

SEQ ID NO 730
LENGTH: 7
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
-continued

<223> OTHER INFORMATION: Homo sapiens Ig gamma-3 chain C region epitope

<400> SEQUENCE: 730

Amp Gly Ser Phe Phe Leu Tyr
1 5

<210> SEQ ID NO 731
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Ig heavy chain V-III region (ART) epitope

<400> SEQUENCE: 731

Cys Ser Val Met His Glu Gly
1 5

<210> SEQ ID NO 732
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Ig lambda chain V-II region NC epitope

<400> SEQUENCE: 732

Ser Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr
1 5 10 15

<210> SEQ ID NO 733
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Ig L-chain V-region epitope

<400> SEQUENCE: 733

Ala Pro Ser Val Thr Leu Phe
1 5

<210> SEQ ID NO 734
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Immunoglobulin heavy chain epitope

<400> SEQUENCE: 734

Amp Lys Ser Arg Trp Gln Glu
1 5

<210> SEQ ID NO 735
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens immunoglobulin light chain epitope

<400> SEQUENCE: 735

Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val
1 5 10 15

<210> SEQ ID NO 736
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens immunoglobulin light chain variable region epitope

<400> SEQUENCE: 736

Ala Gly Glu Lys Val Thr Met
1 5

<210> SEQ ID NO 737
<211> LENGTH: 3
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Insulin precursor epitope

<400> SEQUENCE: 737

Thr Ser Ile
1

<210> SEQ ID NO 738
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Integrin alpha-6 epitope

<400> SEQUENCE: 738

Leu Lys Arg Asp Met Lys Ser Ala His Leu Leu Pro Glu His
1 5 10

<210> SEQ ID NO 739
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Integrin beta-3 precursor epitope

<400> SEQUENCE: 739

Cys Ala Pro Glu Ser Ile Glu Phe Pro Val Ser Glu Ala Arg Val Leu
1 5 10 15

Glu Asp

<210> SEQ ID NO 740
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens interferon alpha 2 epitope

<400> SEQUENCE: 740

Cys Asp Leu Pro Glu Thr His Ser Leu Gly Ser Arg Arg Thr
1 5 10

<210> SEQ ID NO 741
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens interferon alpha A epitope

<400> SEQUENCE: 741
-continued

Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile
1 5 10

<210> SEQ ID NO: 742
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens interferon beta precursor epitope

<400> SEQUENCE: 742
His Leu Lys Arg Tyr Tyr Gly Arg Ile Leu His Tyr
1 5 10

<210> SEQ ID NO: 743
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens interferon-alpha 2 epitope

<400> SEQUENCE: 743
Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser
1 5 10

<210> SEQ ID NO: 744
<211> LENGTH: 37
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens islet amyloid polypeptide precursor epitope

<400> SEQUENCE: 744
Met Gly Ile Leu Lys Leu Gln Val Phe Leu Ile Val Leu Ser Val Ala
1 5 10 15
Leu Asn His Leu Lys Ala Thr Pro Ile Glu Ser His Gln Val Glu Lys
20 25 30
Arg Lys Cys Asn Thr
35

<210> SEQ ID NO: 745
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus Kappa-casein precursor epitope

<400> SEQUENCE: 745
Ala Lys Tyr Ile Pro Ile Gln Tyr Val Leu Ser Arg Tyr Pro
1 5 10

<210> SEQ ID NO: 746
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Ku antigen epitope

<400> SEQUENCE: 746
Arg Gly Asp Gly Pro Phe Arg Leu Gly Gly
1 5 10
Gly Arg Gly Aen Gly Asp Pro Gly Gly Gly Met Glu Lys Asp Gly
1 5 10 15

Ile Lys Lys Val Ala Thr Pro Lys Lys Ala Ser Pro Lys Lys
1 5 10

Ala Gln Pro Gly Ser Gly Lys Gly Lys Val Gln Phe Gln Gly Lys Lys
1 5 10 15

Thr Lys Phe Ala Ser Asp Asp
20

Gly Pro Pro Ala Ala Ala Pro Gly His Pro Leu Ala Pro Gly Pro His
1 5 10 15

Pro Ala Ala Pro Ser Ser Trp Gly Pro Arg Pro Arg Arg Tyr
20 25 30

Glu Pro Thr Ile Thr Phe Gly Thr Ala Ile
1 5 10

<210> SEQ ID NO 749
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Lupus La protein epitope
<400> SEQUENCE: 749

<210> SEQ ID NO 750
<211> LENGTH: 30
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens lymphocyte activation gene 3
protein precursor epitope
<400> SEQUENCE: 750

<210> SEQ ID NO 751
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens m3 muscarinic cholinergic receptor
epitope
<400> SEQUENCE: 751

<210> SEQ ID NO 752
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Alternaria alternata Major allergen Alt a 1 precursor epitope

<400> SEQUENCE: 752

Ala Asp Pro Val Thr Thr Glu Gly Asp Tyr Val Val Lys Ile Ser Glu 1 5 10 15
Fhe Tyr Gly Arg 20

<216> SEQ ID NO 753
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anisakis simplex Major allergen Ani s 1 epitope

<400> SEQUENCE: 753

Cys Lys Met Pro Asp Arg Gly Ala Ala Leu Gly Lys Lys Pro 1 5 10 15

<216> SEQ ID NO 754
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Major allergen Asp f 1 epitope

<400> SEQUENCE: 754

Leu Asn Pro Lys Thr Asn Lys Trp Glu Asp Lys Arg Tyr 1 5 10

<216> SEQ ID NO 755
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Major allergen Asp f 2 epitope

<400> SEQUENCE: 755

Ala His Ile Leu Arg Trp Gly Asn Glu Ser 1 5 10

<216> SEQ ID NO 756
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Bos taurus major allergen beta-lactoglobulin epitope

<400> SEQUENCE: 756

Leu Gln Lys Trp Glu Asn Asp Glu Cys Ala Gln Lys Lys Ile Ile Ala 1 5 10 15

Glu Lys Thr Lys 20

<216> SEQ ID NO 757
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Felis catus Major allergen I polypeptide chain 1 precursor epitope

SEQUENCE: 757
Asp Ala Lys Met Thr Glu Glu Asp Lys Glu Gln Ala Leu Ser
1 5 10

SEQ ID NO 758
LENGTH: 14
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Felis catus Major allergen I polypeptide chain 2 precursor epitope

SEQUENCE: 758
Glu Pro Glu Arg Thr Ala Met Lys Lys Ile Gln Asp Cys Tyr
1 5 10

SEQ ID NO 759
LENGTH: 11
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Felis catus major allergen I, polypeptide chain 1 epitope

SEQUENCE: 759
Leu Leu Asp Lys Ile Tyr Thr Ser Pro Leu Cys
1 5 10

SEQ ID NO 760
LENGTH: 29
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Turbo cornutus major allergen Tur c1 + Turbo cornutus epitope

SEQUENCE: 760
Leu Glu Asp Glu Leu Leu Ala Glu Lys Tyr Lys Ala Ile Ser
1 5 10 15
Asp Glu Leu Asp Gln Thr Phe Ala Glu Leu Ala Gly Tyr
20 25

SEQ ID NO 761
LENGTH: 25
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Dermatophagoides pteronyssinus major house dust allergen epitope

SEQUENCE: 761
Leu Ala His Arg Asn Gln Ser Leu Asp Leu Ala Glu Gln Glu Leu Val
1 5 10 15
Asp Cys Ala Ser Gln His Gly Cys His
20 25

SEQ ID NO 762
LENGTH: 9
TYPE: PRT
ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Hevea brasiliensis Major latex allergen Hev b 5 epitope

<400> SEQUENCE: 762

Ala Pro Pro Ala Ser Glu Gln Glu Thr
1 5

<210> SEQ ID NO 763
<211> LENGTH: 43
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Dermatophagoides pteronyssinus Major mite fecal allergen Der p 1 epitope

<400> SEQUENCE: 763

Ala Arg Glu Gln Ser Cys Arg Arg Pro Asn Ala Gln Arg Phe Gly Ile
1 5 10 15
Ser Asn Tyr Cys Gln Ile Tyr Pro Pro Asn Ala Asn Lys Ile Arg Glu
20 25 30
Ala Leu Ala Gln Pro Gln Arg Tyr Cys Arg His
35 40

<210> SEQ ID NO 764
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Olea europaea Major pollen allergen epitope

<400> SEQUENCE: 764

Phe Thr Glu Val Gly Tyr Thr Arg Ala Glu Gly Leu
1 5 10

<210> SEQ ID NO 765
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Betula pendula Major pollen allergen Bet v 1-A epitope

<400> SEQUENCE: 765

Asp Gly Asp Asn Leu Phe Pro Lys Val Ala
1 5 10

<210> SEQ ID NO 766
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Chamaecyparis obtusa Major pollen allergen Cha o 1 precursor epitope

<400> SEQUENCE: 766

Trp Arg Ser Thr Gln Asp Ser Phe Asn Asn Gly
1 5 10

<210> SEQ ID NO 767
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
OTHER INFORMATION: Corylus avellana Major pollen allergen Cor a 1 epitope

SEQUENCE: 767

Tyr Val Leu Asp Gly Asp Lys Leu Leu Pro Lys Val Ala Pro Gln Ala
1 5 10 15

Leu

SEQ ID NO 768
LENGTH: 27
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Holcus lanatus Major pollen allergen Hol l 1 precursor epitope
SEQUENCE: 768

Ala Lys Ser Thr Trp Tyr Gly Lys Pro Thr Gly Ala Gly Pro Lys Asp
1 5 10 15

Asn Gly Gly Ala Cys Gly Tyr Lys Asp Val Asp
20 25

SEQ ID NO 769
LENGTH: 12
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Juniperus ashei Major pollen allergen Jun a 1 precursor epitope
SEQUENCE: 769

Ala Phe Asn Gln Phe Gly Pro Asn Ala Gly Gin Arg
1 5 10

SEQ ID NO 770
LENGTH: 34
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Olea europaea Major pollen allergen Ole e 1 epitope
SEQUENCE: 770

Ser Gly Arg Lys Asp Cys Asn Glu Ile Pro Thr Glu Gly Trp Val Lys
1 5 10 15

Pro Ser Leu Lys Phe Ile Leu Asn Thr Val Asn Gly Thr Thr Arg Thr
20 28 30 30

Val Asn

SEQ ID NO 771
LENGTH: 9
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Malus x domestica mal d 3 epitope
SEQUENCE: 771

Arg Thr Thr Ala Asp Arg Gln Thr Ala
1 5

SEQ ID NO 772
LENGTH: 15
Glu Asn Pro Val Val His Phe Phe Lys Asn Ile Val Thr Pro Arg
1 5 10 15

 Ala Glu His Ala Ser Arg Met Ser Val Leu Arg Ala Lys Pro Met Ser
1 5 10 15
Asn Ser Gln Arg Leu Leu Leu Ser Pro Gly Ser Pro
20 25 30

Gln Val Pro Thr Thr Glu Val Val Gly Thr Thr Pro Gly Gln Ala Pro
1 5 10 15

Glu Gln Arg Arg Ala Ala
1 5

Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln
1 5 10 15
Arg Arg Ala Ala
20
<400> SEQUENCE: 782

Gln Tyr Leu Val Gly Glu Arg Thr Val Leu Ala Gly Gln Cys Tyr Ile
1 5 10 15
Gln Phe Leu Ser Gln
20

<210> SEQ ID NO 783
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens myelin associated glycoprotein epitope

<400> SEQUENCE: 783

Asp Ser Tyr Thr Leu Thr Glu Leu Ala Tyr Ala Glu Ile Arg Val
1 5 10 15
Lys

<210> SEQ ID NO 784
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Myelin basic protein epitope

<400> SEQUENCE: 784

Ile Val Thr Pro Arg Thr Pro Pro Pro Ser Gln Gly Lys
1 5 10

<210> SEQ ID NO 785
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens myelin oligodendrocyte glycoprotein epitope

<400> SEQUENCE: 785

Ala Leu Val Gly Asp Glu Val Glu Leu Pro Cys Arg Ile Ser Pro Gly
1 5 10 15
Lys Asn Ala Thr Gly Met Glu Leu Gly Trp
20 25

<210> SEQ ID NO 786
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens myelin oligodendrocyte glycoprotein isoform alpha6 precursor epitope

<400> SEQUENCE: 786

His Arg Thr Phe Glu
1 5

<210> SEQ ID NO 787
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens myelin proteolipid protein epitope
Ala Asp Ala Arg Met
 1 5

Gly His Trp Gly Ala Trp Met Pro Ser Ser Ile Ser Ala Phe Glu Gly
 1 5 10 15
Thr Cys Val Ser Ile
 20

Gly Gln Phe Arg Val Ile Gly Pro Arg His Pro Ile Arg Ala Leu Val
 1 5 10 15
Gly Asp Glu Val Glu Leu Pro Cys Arg Ile
 20 25

Ala His Arg Pro Pro Ser Pro Ala
 1 5

Gly Ser Ala Ser Pro Met Glu Leu Leu Ser
 1 5 10

Gly Ser Ala Ser Pro Met Glu Leu Leu Ser
Ala Leu Lys Thr Glu Leu Glu Asp Thr Leu Asp Ser Thr Ala Thr Gln
 1 5 10 15
Gln Glu Leu Arg
 20

<210> SEQ ID NO 793
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Neurofilament heavy polypeptide
 (NF-H) (Neurofilament triplet H protein) (200 kDa neurofilament
 protein) epitope
<400> SEQUENCE: 793
Ala Lys Ser Pro Glu Lye Ala Lys
 1 5

<210> SEQ ID NO 794
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens nicotinic acetylcholine receptor
alpha subunit hR alpha subunit epitope
<400> SEQUENCE: 794
Glu Val Asn Gln Ile Val Thr Thr Asn Val Arg Leu Lys Gln Gln Trp
 1 5 10 15

<210> SEQ ID NO 795
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Non-histone chromosomal protein
HM-17 epitope
<400> SEQUENCE: 795
Val Lys Asp Glu Pro Gln Arg Arg Ser Ala
 1 5 10

<210> SEQ ID NO 796
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus armeniaca Non-specific lipid-transfer
protein 1 epitope
<400> SEQUENCE: 796
Val Asn Pro Ann Asn Ala Ala Ala Leu
 1 5

<210> SEQ ID NO 797
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus armeniaca Non-specific lipid-transfer
protein 1 (LTP 1) (Major allergen Pru ar 3) epitope
<400> SEQUENCE: 797
Leu Ala Arg Thr Thr Pro Asp Arg Arg Thr Ala Cys Asn Cys Leu
 1 5 10 15
-continued

SEQ ID NO 798
LENGTH: 18
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Prunus domestica Non-specific lipid-transfer protein 1 (LTP 1) (Major allergen Pru d 3) epitope

SEQUENCE: 798
Leu Ala Arg Thr Thr Ala Asp Arg Arg Ala Ala Cys Asn Cys Leu Lys
1 5 10 15
Gln Leu

SEQ ID NO 799
LENGTH: 15
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Malus x domestica Non-specific lipid-transfer precursor (LTP) (Allergen Mal d 3) epitope

SEQUENCE: 799
 Ala Asp Arg Glu Thr Ala Cys Asn Cys Leu Lys Asn Leu Ala Gly
1 5 10 15

SEQ ID NO 800
LENGTH: 10
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens NR2 subunit NMDA receptor epitope

SEQUENCE: 800
Asp Trp Glu Tyr Ser Val Trp Leu Ser Asn
1 5 10

SEQ ID NO 801
LENGTH: 8
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens nuclear autoantigen Sp-100 isoform 1 epitope

SEQUENCE: 801
Glu Val Phe Ile Ser Ala Pro Arg
1 5

SEQ ID NO 802
LENGTH: 12
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Olea europaea Ole e 1 protein epitope

SEQUENCE: 802
Glu Asp Val Pro Gln Pro Pro Val Ser Gln Phe His
1 5 10

SEQ ID NO 803
LENGTH: 25
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Olea europaea Ole e 1.0102 protein epitope

<400> SEQUENCE: 803

Glu Asp Val Pro Gln Pro Pro Val Ser Gln Phe His Ile Gln Gly Gln
1 5 10 15
Val Tyr Cys Asp Thr Cys Arg Ala Gly
20 25

<210> SEQ ID NO 904
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum Omega gliadin storage protein epitope

<400> SEQUENCE: 804

Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln
1 5 10

<210> SEQ ID NO 805
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum omega-G gliadin epitope

<400> SEQUENCE: 805

Gln Gln Phe His Gln Gln Gln
1 5

<210> SEQ ID NO 806
<211> LENGTH: 35
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Oryzir precursor epitope

<400> SEQUENCE: 806

Ala Ser Asn Thr Ser Pro Ala Ser Ala Pro Asn Ala Leu Thr Val Ala
1 5 10 15
Ala Ile Asn Lys Ser Asn Ala Arg Ala Ser Phe Ser Asn Tyr Gly Ser
20 25 30
Val Val Asp
35

<210> SEQ ID NO 807
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gallus gallus Ovalbumin epitope

<400> SEQUENCE: 807

Cys Phe Asp Val Phe Lys Glu Leu Lys
1 5

<210> SEQ ID NO 808
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
OTHER INFORMATION: Gallus gallus Ovomucoid epitope

SEQUENCE: 808

Cys Asn Phe Cys Asn Ala Val Val Glu Ser
1 5 10

SEQ ID NO 809
LENGTH: 14
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Gallus gallus Ovomucoid precursor epitope

SEQUENCE: 809

Ala Glu Val Asp Cys Ser Arg Phe Pro Asn Ala Thr Asp Lys
1 5 10

SEQ ID NO 810
LENGTH: 10
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Glycine max P34 probable thiol protease precursor epitope

SEQUENCE: 810

Ala Ser Trp Asp Trp Arg Lys Gly Val
1 5 10

SEQ ID NO 811
LENGTH: 10
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Glycine max P34 probable thiol protease precursor: Gly m 1 epitope

SEQUENCE: 811

Pro Gln Glu Phe Ser Lys Thr Tyr Gln
1 5 10

SEQ ID NO 812
LENGTH: 9
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens p70 autoantigen epitope

SEQUENCE: 812

Glu Ala Leu Thr Lys His Phe Gln Asp
1 5

SEQ ID NO 813
LENGTH: 20
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens PADI-N protein epitope

SEQUENCE: 813

Lys Ala Ala Ser Gly Ser Thr Gly Asp Gln Lys Val Gln Ile Ser Tyr
1 5 10 15

Tyr Gly Pro Lys
20
<210> SEQ ID NO 814
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Parietaria judaica Par j epitope

<400> SEQUENCE: 814

Gly Thr Ser Ser Cys Arg Leu Val Pro
1 5

<210> SEQ ID NO 815
<211> LENGTH: 47
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Blomia tropicalis Paramyosin epitope

<400> SEQUENCE: 815

Glu Lys Leu Arg Asp Gln Lys Glu Ala Leu Ala Arg Glu Asn Lys Lys
1 5 10 15
Leu Ala Asp Arg Leu Ala Glu Ala Lys Ser Gin Leu Aen Asp Ala His
20 25 30
Arg Arg Ile His Glu Gln Glu Ile Glu Ile Lys Arg Leu Glu Asn
35 40 45

<210> SEQ ID NO 816
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gadus morhua callarias Parvalbumin beta epitope

<400> SEQUENCE: 816

Ala Ala Glu Ala Ala Cys Phe Lys
1 5

<210> SEQ ID NO 817
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Salmo salar parvalbumin like 1 epitope

<400> SEQUENCE: 817

Ala Asp Ile Lys Thr Ala Leu Glu Ala Arg Lys Ala Ala Asp Thr
1 5 10 15

<210> SEQ ID NO 818
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Juniperus ashei Pathogenesis-related protein precursor epitope

<400> SEQUENCE: 818

Ala Asp Ile Asn Ala Val Cys Pro Ser Glu Leu Lys
1 5 10

<210> SEQ ID NO 819
<211> LENGTH: 12
 Ala Tyr Asn His Phe Gly Lys Arg Leu Asp Glu Arg
1 5 10

 Ala Phe Asn His Phe Gly Glu Gly Leu Ile Glu Arg
1 5 10

 Ala Asn Ile Glu Leu Val Glu Asp Lys Ala Leu Ser Asn Ala
1 5 10 15

 Ala Arg Glu Gin Ser Cys Arg Arg Pro Asn Ala Gin Arg Phe Gly Ile
1 5 10 15

 Ala Leu Ala Gin Thr His Ser Ala Ile Ala Val
35 40

 Lys Asp Cys
1
Ile His Asp Arg Lys Ser Gly Lys Phe Ser Ile Glu Glu Ala Leu
 1 5 10 15
Gln Ser Gly Arg
 20

Leu Ile Asp Thr Lys Cys Tyr Leu Glu His Pro Val Thr Gly Cys
 1 5 10 15
Gly Glu Arg Thr Glu Gly Arg Cys Leu His Tyr Thr Val Asp Lys Ser
 20 25
Lys Pro Lys Val Tyr Gln Trp Phe Asp Leu Arg Lys Tyr
 35 40 45

Lys Glu Ala Ile Pro Met Ala Val Glu Met Ala Lys Ser Gln
 1 5 10

 Ala Ser Ala Ile Ser Val Ala Arg
 1 5

Arg Ala Arg Ala Lys Trp
 1 5
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens plexin domain containing 1, isoform CRA_b epitope

<400> SEQUENCE: 829

Asn Cys Ser Trp Cys His Val Leu Gln Arg Cys Ser
1 5

<210> SEQ ID NO 930
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens PM/Scl 100KD nucleolar protein epitope

<400> SEQUENCE: 930

Cys Ile Ala Ala Lys Lys Ile Lys Gln Ser Val Gly Asn Lys Ser
1 5 10

<210> SEQ ID NO 931
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula Polcalcin Bet v 4 epitope

<400> SEQUENCE: 931

Phe Gly Arg Ala Asn Arg Gly Leu
1 5

<210> SEQ ID NO 932
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phleum pratense Polcalcin Phl p 7 (Calcium-binding pollen allergen Phl p 7) (P7) epitope

<400> SEQUENCE: 932

Ala Asp Asp Met Glu Arg Ile Phe Lys Arg Phe Asp Thr Asn Gly Asp
1 5 10 15

Gly Lys Ile Ser Leu Ser Glu Leu Thr Asp Ala Leu Arg Thr Leu Gly
20 25 30

Ser Thr Ser Ala
35

<210> SEQ ID NO 933
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Lolium perenne pollen allergen epitope

<400> SEQUENCE: 933

Glu Gly Gly Thr Lys Ser Glu Val Glu Asp Val Ile Pro Glu Gly Trp
1 5 10 15

Lys Ala Asp Thr Ser Tyr Ser Ala Lys
20 25
<210> SEQ ID NO 934
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia Pollen allergen Amb a 1.4 epitope

<400> SEQUENCE: 934
Ala Phe Asn Lys Phe Thr Asp Asn Val Asp Gln Arg
1 5 10

<210> SEQ ID NO 935
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia Pollen allergen Amb a 2 precursor epitope

<400> SEQUENCE: 935
Met Pro Arg Cys Arg Phe Gly Phe
1 5

<210> SEQ ID NO 936
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ambrosia artemisiifolia var. elatior Pollen allergen Amb a 3 epitope

<400> SEQUENCE: 936
Cys Asp Ile Lys Asp Pro Ile Arg Leu Glu Pro Gly Gly Pro Asp
1 5 10 15

<210> SEQ ID NO 937
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Betula pendula pollen allergen Bet v 1 epitope

<400> SEQUENCE: 937
Lys Ala Glu Gln Val Lys Ala Ser Lys Glu Met Gly Glu Thr Leu Leu
1 5 10 15
Arg Ala Val Glu Ser Tyr Leu Leu Ala His Ser Asp Ala Tyr Asn
20 25 30

<210> SEQ ID NO 938
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Poa pratensis Pollen allergen KEG 60 precursor epitope

<400> SEQUENCE: 938
Ala Ala Asn Lys Tyr Lys Thr Phe Val Ala Thr Phe Gly Ala Ala Ser
1 5 10 15
Asn Lys Ala Phe
20

<210> SEQ ID NO 939
Glu Lys Gly Met Arg Asn Val Phe Asp Asp Val Val Pro Ala Asp Phe
1 5 10 15
Lys Val Gly Thr Thr Tyr Lys Pro Glu
20 25

Lys Gly Gly Met Lys Asn Val Phe Asp Glu Val Ile Pro Thr Ala Phe
1 5 10 15
Thr Val Gly Lys Thr Tyr Thr Pro Glu Tyr Asn
20 25

Ala Ala Glu Gly Ala Thr Pro Glu Ala Lys Tyr Asp
1 5 10

Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala Phe Gly Ala Met
1 5 10 15

Arg Asp Arg Ala Arg Val Pro Leu
1 5
Ile Pro Lys Val Pro Pro Gly Pro Asn Ile Thr Ala
1 5 10

Gly Gln Cys Lye Trp Val Asn Gly Glu Ile Cys Asn Asp Arg Asp
1 5 10 15
Arg Pro Thr Ala
20

Gln Glu Thr Cys Gly Thr Met Val Arg Ala Leu Met Pro Cys Leu Pro
1 5 10 15
Phe Val Gln Lys Glu Lys Glu Pro Ser Lys Gly Cys Cys
20 25 30

Ala Glu Val Pro Lys Lys Cys Asp Ile Lys
1 5 10

Glu Ala Cys Gly Lys Val Val Gln Asp Ile Met Pro Cys Leu His Phe
1 5 10 15
Val Lys Gly Glu Glu Lys Glu Pro Ser Lys Gly Cys Cys Ser
20 25 30
 Ala Phe Asn His Phe Gly Lys Arg Leu Ile Gln Arg
1 5 10

 Gly Gly Gin Gly Ser Arg His Gln Gln Ala Arg
1 5 10

 Ala Phe Arg Leu Glu Glu Ile Ala Ala Ile
1 5 10

 Trp Ala Gln Ser Thr Asp Phe Pro Gln Phe Lys Pro Glu Glu Ile Thr
1 5 10 15
 Ala Ile Met Asp Asp Pro Gly Ser Leu Ala Pro Thr Gly
20 25 30
 Leu Tyr Leu Gly Thr Lys Tyr Met Val Ile Gln Gly Glu Pro Gly
35 40 45
 Ala Val Ile Arg Gly Lys Gly Lys
50 55

 Glu Gln Cys Gly Arg Gln Ala Gly Gly Lys Leu Cys Pro Asn Asn Leu
1 5 10 15
 Cys Cys Ser Gln Trp Gly Trp Cys Gly Ser Thr Asp Glu Tyr Cys Ser
20 25 30
| Pro | Asp | His | Asn | Cys | Gln | Ser | Asn | Cys | Lys | Asp | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | 35 | 40 |

- **SEQ ID NO 854**
- **LENGTH: 15**
- **TYPE: PRT**
- **ORGANISM: Artificial Sequence**
- **FEATURE:**
 - **OTHER INFORMATION:** Homo sapiens Proliferating cell nuclear antigen epitope

| | 1 | 5 | 10 | 15 |

- **SEQ ID NO 855**
- **LENGTH: 9**
- **TYPE: PRT**
- **ORGANISM: Artificial Sequence**
- **FEATURE:**
 - **OTHER INFORMATION:** Homo sapiens Proline-rich transmembrane protein 2 epitope

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 5 | | 5 |

- **SEQ ID NO 856**
- **LENGTH: 15**
- **TYPE: PRT**
- **ORGANISM: Artificial Sequence**
- **FEATURE:**
 - **OTHER INFORMATION:** Homo sapiens proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; E1), isoform CRA_a epitope

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 5 | 10 | 15 |

- **SEQ ID NO 857**
- **LENGTH: 13**
- **TYPE: PRT**
- **ORGANISM: Artificial Sequence**
- **FEATURE:**
 - **OTHER INFORMATION:** Homo sapiens protein tyrosine phosphatase-like autoantigen epitope

| | | | | | | | | | | | 1 | 5 | 10 | | 10 |

- **SEQ ID NO 858**
- **LENGTH: 20**
- **TYPE: PRT**
- **ORGANISM: Artificial Sequence**
- **FEATURE:**
 - **OTHER INFORMATION:** Homo sapiens protein-arginine deiminase type-4 epitope

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 5 | 10 | 15 |

- **SEQ ID NO 859**
- **LENGTH: 20**
- **TYPE: PRT**
- **ORGANISM: Artificial Sequence**
- **FEATURE:**
 - **OTHER INFORMATION:** Homo sapiens protein-arginine deiminase type-4 epitope

| | | | | | | | | | | | | 20 | | 20 | | 20 |
<210> SEQ ID NO 959
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens proteinase 3 epitope

<400> SEQUENCE: 959

Cys Ala Thr Arg Leu Phe Pro Asp Phe Thr Arg Val Ala Leu
1 5 10 15

<210> SEQ ID NO 860
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus persica pru p 1 epitope

<400> SEQUENCE: 860

Gly Lys Cys Gly Val Ser Ile Pro Tyr Lys
1 5

<210> SEQ ID NO 861
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus dulcis prunin 1 precursor epitope

<400> SEQUENCE: 861

Glu Glu Ser Gln Gln Ser Ser Gln Gly Arg Gln Gln Gln Gln
1 5 10 15

<210> SEQ ID NO 862
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Prunus dulcis prunin 2 precursor epitope

<400> SEQUENCE: 862

Asp Ser Gln Pro Gln Gln Phe Gln Gln Gln Gln Gln Gln Gln
1 5 10 15

<210> SEQ ID NO 863
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hesperocyparis arizonica putative allergen Cup a 1 epitope

<400> SEQUENCE: 863

Trp Arg Phe Thr Arg Asp Ala Phe Thr Aam Gly
1 5

<210> SEQ ID NO 864
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Putative HTLV-1-related endogenous sequence (p25) epitope
<400> SEQUENCE: 864

Pro Thr Arg Ala Pro Ser Gly Pro Arg Pro Pro
1 5 10

<210> SEQ ID NO 865
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Putative small nuclear ribonucleoprotein polypeptide N-like protein 1 epitope

<400> SEQUENCE: 865

Glu Ile His Ser Lys Thr Lys Ser
1 5

<210> SEQ ID NO 866
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Receptor tyrosine-protein kinase erbB-2 precursor epitope

<400> SEQUENCE: 866

Pro Glu Ser Phe Asp Gly Asp Pro Ala Ser Asn Thr Ala Pro Leu Gln
1 5 10 15

Pro Glu

<210> SEQ ID NO 867
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Receptor-type tyrosine-protein phosphatase-like N precursor epitope

<400> SEQUENCE: 867

Lys Glu Arg Leu Ala Leu Ala Gly Pro Glu Gly Ala His
1 5 10

<210> SEQ ID NO 868
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens recombinant IgG2 heavy chain epitope

<400> SEQUENCE: 868

Glu Pro Gln Val Val Thr Leu Pro Pro Ser Arg
1 5 10

<210> SEQ ID NO 869
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Replication protein A 32 kDa subunit epitope

<400> SEQUENCE: 869

Arg Ser Phe Gln Asn Lys Lys Ser Leu Val Ala Phe Lys Ile Met Pro
1 5 10 15
Leu Glu Asp Met
20

<P>SEQ ID NO 870
<LENGTH: 10
<TYPE: PRT
<ORGANISM: Artificial Sequence
<FEATURE:
<OTHER INFORMATION: Aspergillus fumigatus Ribonuclease mitogillin precursor epitope

Phe Pro Thr Phe Pro Asp Gly His Asp Tyr
1 5 10

<P>SEQ ID NO 871
<LENGTH: 23
<TYPE: PRT
<ORGANISM: Artificial Sequence
<FEATURE:
<OTHER INFORMATION: Homo sapiens ribosomal protein L7 epitope

Glu Leu Lys Ile Lys Arg Leu Arg Lys Phe Ala Gln Lys Met Leu
1 5 10 15
Arg Lys Ala Arg Arg Lys Leu
20

<P>SEQ ID NO 872
<LENGTH: 14
<TYPE: PRT
<ORGANISM: Artificial Sequence
<FEATURE:
<OTHER INFORMATION: Homo sapiens ribosomal protein P2 epitope

Ser Glu Glu Ser Asp Asp Met Gly Phe Gly Leu Phe Asp
1 5 10

<P>SEQ ID NO 873
<LENGTH: 12
<TYPE: PRT
<ORGANISM: Artificial Sequence
<FEATURE:
<OTHER INFORMATION: Mangifera indica ripening-related pectate lyase epitope

Ala Tyr Arg His Phe Gly Glu Gly Leu Ile Gln Arg
1 5 10

<P>SEQ ID NO 874
<LENGTH: 21
<TYPE: PRT
<ORGANISM: Artificial Sequence
<FEATURE:
<OTHER INFORMATION: Homo sapiens RNA binding protein, auto-antigenic
(inRNP-associated with lethal yellow homolog (mouse)), isoform CRA_c epitope

1 5 10 15
<210> SEQ ID NO 875
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Ro ribonucleoprotein epitope

<400> SEQUENCE: 875
Asp Gly Tyr Val Trp Gln Val Thr Asp Met Asn Arg Leu His Arg Phe
1 5 10 15
Leu Cys Phe Gly Ser
20

<210> SEQ ID NO 876
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis Rubber elongation factor protein epitope

<400> SEQUENCE: 876
Ala Glu Asp Glu Asp Asn Gln Gln Gly Gin
1 5 10

<210> SEQ ID NO 877
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens S-arrestin epitope

<400> SEQUENCE: 877
Phe Leu Gly Leu Thr Ser Ser Glu Val Ala Thr Glu Val
1 5 10

<210> SEQ ID NO 878
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Juglans regia seed storage protein epitope

<400> SEQUENCE: 878
Asp Asp Gly Leu Glu Glu Thr Ile Cys Thr Leu Arg Leu Arg
1 5 10 15

<210> SEQ ID NO 879
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Arachis hypogaea seed storage protein SSP2 epitope

<400> SEQUENCE: 879
Cys Gly Leu Arg Ala Pro Gln Arg Cys Asp Leu Asp Val Glu Ser
1 5 10 15

<210> SEQ ID NO 880
<211> LENGTH: 8

-glyglyglyserser

20
Arg Pro Asn Ala Thr Tyr Ser Leu
1 5

SEQ ID NO 981
LENGTH: 8
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Gallus gallus serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 3 epitope

SEQUENCE: 981
Gln Ser Arg Ala Thr Leu Gly Ile
1 5

SEQ ID NO 982
LENGTH: 17
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Bos taurus Serum albumin precursor epitope

SEQUENCE: 982
Asp Asp Ser Pro Asp Leu Pro Lys Leu Lys Pro Asp Pro Ann Thr Leu
1 5 10 15
Cys

SEQ ID NO 983
LENGTH: 8
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens small nuclear ribonucleoprotein epitope

SEQUENCE: 983
Pro Pro Pro Gly Ile Arg Gly Pro
1 5

SEQ ID NO 984
LENGTH: 8
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens small nuclear ribonucleoprotein B' epitope

SEQUENCE: 984
Pro Pro Pro Gly Met Arg Gly Pro
1 5

SEQ ID NO 985
LENGTH: 24
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Homo sapiens small nuclear ribonucleoprotein D1 polypeptide epitope
Lys Met Thr Leu Lys Asn Arg Glu Pro Val Gln Leu Glu Thr Leu Ser
1 5 10 15
Ile Arg Gly Asn Arg Ile Arg Tyr
20

Gly Lys Lys Ser Lys Pro Val Asn Lys Asp Arg Tyr Ile Ser Lys
1 5 10 15
Met Phe Leu Arg Gly Asp Ser
20

Glu Glu Glu Glu Asp Gly Glu Met
1 5

Trp Ser Lys Ala His Pro Pro Glu
1 5

Ala Met Lys Ile Ser Phe Ala Lys Lys
1 5
<400> SEQUENCE: 890

Pro Pro Gly Met Arg Pro Pro
 1
 5

<210> SEQ ID NO 891
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens small nuclear ribonucleoprotein polypeptide B/B' isoform B epitope

<400> SEQUENCE: 891
Met Gly Arg Gly Ala Pro Pro Pro Gly Met Met Gly
 1
 5
 10

<210> SEQ ID NO 892
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens small nuclear ribonucleoprotein polypeptide C, isoform CRA_b epitope

<400> SEQUENCE: 892
Ala Pro Gly Met Arg Pro Pro
 1
 5

<210> SEQ ID NO 893
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens small nuclear ribonucleoprotein polypeptide D1 epitope

<400> SEQUENCE: 893
Ala Ala Arg Gly Arg Gly Arg Gly Met Gly Arg Gly Asn Ile Phe
 1
 5
 10
 15

<210> SEQ ID NO 894
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens small nuclear ribonucleoprotein polypeptide N variant epitope

<400> SEQUENCE: 894
Val Gly Arg Ala Thr Pro Pro Pro Gly Ile Met Ala
 1
 5
 10

<210> SEQ ID NO 895
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Small nuclear ribonucleoprotein Sm D1 epitope

<400> SEQUENCE: 895
 1
 5
 10
 15

Gly Arg Gly Gly Pro Arg Arg
<210> SEQ ID NO 896
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Small nuclear ribonucleoprotein Sm D2 epitope

<400> SEQUENCE: 896
Glu Glu Leu Gln Lys Arg Glu Glu
1 5

<210> SEQ ID NO 897
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Small nuclear ribonucleoprotein-associated proteins B and B' epitope

<400> SEQUENCE: 897
Arg Gly Val Gly Gly Pro Ser Gln
1 5

<210> SEQ ID NO 898
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hevea brasiliensis Small rubber particle protein epitope

<400> SEQUENCE: 898
Ala Glu Glu Val Glu Glu Gly Leu Lys
1 5 10

<210> SEQ ID NO 899
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Smoothelin epitope

<400> SEQUENCE: 899
Gly Ser Thr Met Met Gln Thr Lys Thr Phe Ser Ser Ser Ser Ser Ser
1 5 10 15
Lys Lys Met Gly
20

<210> SEQ ID NO 900
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens sMaNP polypeptide B epitope

<400> SEQUENCE: 900
Pro Pro Gly Met Arg Pro Pro Met Gly Pro Met Gly Ile Pro Pro
1 5 10 15

<210> SEQ ID NO 901
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens sMaNP polypeptide C epitope

<400> SEQUENCE: 901
His Lys Met Met Arg Pro Pro Met Gly Pro Met Gly Ile Pro Pro
-continued

<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens spectrin, alpha, non-erythrocytic 1 (alpha-fodrin), isoform CRA_e epitope

<400> SEQUENCE: 901

Phe Gln Phe Phe Gln Arg Asp Ala Glu Glu Leu Lys Trp
 1 5

<210> SEQ ID NO 902
<211> LENGTH: 43
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens steroid 17-alpha-hydroxylase/17,20 lyase epitope

<400> SEQUENCE: 902

Glu Val Pro Asp Asp Gly Gln Leu Pro Ser Leu Glu Gly Ile Pro Lys
 1 5 10 15

Val Val Phe Leu Ile Asp Ser Phe Lys Val Lys Ile Lys Val Arg Glu
 20 25 30

Ala Trp Arg Glu Ala Glu Ala Glu Gly Ser Thr
 35 40

<210> SEQ ID NO 903
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Sucrase-isomaltase, intestinal epitope

<400> SEQUENCE: 903

Asp Phe Thr Tyr Asp Gln Val Ala Phe Asn Gly Leu Pro Gln Phe
 1 5 10 15

<210> SEQ ID NO 904
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Cryptomeria japonica Sugi basic protein precursor epitope

<400> SEQUENCE: 904

Asp Ala Leu Thr Leu Arg Thr Ala Thr Asn Ile Trp
 1 5 10

<210> SEQ ID NO 905
<211> LENGTH: 48
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Aspergillus fumigatus Superoxide dismutase epitope

<400> SEQUENCE: 905

Tyr Thr Leu Pro Pro Leu Pro Tyr Pro Tyr Asp Ala Leu Gln Pro Tyr
 1 5 10 15

Ile Ser Gln Gln Ile Met Glu Leu His His Lys Lys His His Glu Thr
 20 25 30
<210> SEQ ID NO 906
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens T cell receptor beta variable 20 epitope

<400> SEQUENCE: 906

Arg Ser Leu Asp Phe Gln Ala Thr Thr Met Phe
1 5 10

<210> SEQ ID NO 907
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens T cell receptor beta variable 5 epitope

<400> SEQUENCE: 907

Ala Leu Gly Gln Gly Pro Gln Phe Ile Phe Gln Tyr Tyr Glu Glu Glu
1 5 10 15

Glu Arg

<210> SEQ ID NO 908
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Tax1-binding protein 1 epitope

<400> SEQUENCE: 908

Glu Phe Lys Lys Arg Phe Ser Asp Ala Thr Ser Lys Ala His Gln
1 5 10 15

<210> SEQ ID NO 909
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens T-cell receptor beta chain epitope

<400> SEQUENCE: 909

Gln Pro Leu Lys Glu Gln Pro Ala Leu Asp Ser Arg Tyr Cys Leu
1 5 10 15

<210> SEQ ID NO 910
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens T-cell receptor beta chain C region epitope

<400> SEQUENCE: 910

Ser Ala Thr Phe Trp Asn Pro Arg Asn His Phe Arg Cys Gln Val
1 5 10 15

<210> SEQ ID NO 911
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens T-cell receptor beta chain V region YT95 epitope

<400> SEQUENCE: 911

Cys Lys Pro Ile Ser Gly His Asn Ser Leu Phe Trp Tyr Arg Gln Thr
1 5 10 15

<210> SEQ ID NO 912
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens T-cell receptor beta-chain (V1-D-J-C) precursor epitope

<400> SEQUENCE: 912

Ser Pro Arg Ser Gly Asp Leu Ser Val Tyr
1 5 10

<210> SEQ ID NO 913
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens TCR V-beta 6.1 epitope

<400> SEQUENCE: 913

Leu Gly Gln Gly Pro Glu Phe Leu Ile Tyr Phe Gln Gly Thr Gln Ala
1 5 10 15
Ala Asp Asp Ser Gly
20

<210> SEQ ID NO 914
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens TCR V-beta 6.3 epitope

<400> SEQUENCE: 914

Asp Pro Ile Ser Gly His Val Ser Leu Phe
1 5 10

<210> SEQ ID NO 915
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Thyroglobulin epitope

<400> SEQUENCE: 915

Pro Pro Ala Arg Ala Leu Lys Arg Ser Leu Trp Val Glu Val Asp Leu
1 5 10 15
Leu Ile Gly Ser
20

<210> SEQ ID NO 916
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
-continued

<223> OTHER INFORMATION: Homo sapiens Thyroid peroxidase epitope

<400> SEQUENCE: 916

Gly Leu Pro Arg Leu Glu Thr Pro Ala Asp Leu Thr Ala Ile Ala
 1 5 10 15
Ser Arg Ser

<210> SEQ ID NO 917
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens thyroid stimulating hormone receptor epitope

<400> SEQUENCE: 917

Glu Ile Ile Gly Phe Gly Gln Glu Leu Lys Asn Pro Gln Glu Glu
 1 5 10 15

<210> SEQ ID NO 918
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens thyroid stimulating hormone receptor variant epitope

<400> SEQUENCE: 918

Glu Glu Gln Glu Asp Glu Ile Ile Gly Phe Gly Gln Glu Leu Lys Asn
 1 5 10 15

<210> SEQ ID NO 919
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens Thyrotropin receptor epitope

<400> SEQUENCE: 919

Gly Gln Glu Leu Lys Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Asp
 1 5 10 15
Ser His Tyr Asp
 20

<210> SEQ ID NO 920
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens transaldolase 1 epitope

<400> SEQUENCE: 920

Ala Ala Ala Gln Met Pro Ala Tyr Gln Glu Leu Val Glu Glu Ala
 1 5 10 15

<210> SEQ ID NO 921
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Trichophyton rubrum Tri r 2 allergen epitope

<400> SEQUENCE: 921
<400> SEQUENCE: 926

Phe Leu Ala Glu Glu Ala Asp Arg Lys
1 5

<210> SEQ ID NO 927
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens TSHR protein epitope

Cys His Gln Glu Glu Asp Phe Arg Val Thr Cys Lys Asp Ile Gln Arg
1 5 10 15
Ile Pro Ser Leu
20

<210> SEQ ID NO 928
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens tubulin beta-6 chain epitope

<400> SEQUENCE: 928

Ala Ala Cys Asp Pro Arg His Gly Arg Tyr Leu Thr Val Ala
1 5 10

<210> SEQ ID NO 929
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens tumor necrosis factor ligand superfamily member 6 epitope

<400> SEQUENCE: 929

Glu Trp Glu Asp Thr Tyr Gly Ile Val Leu
1 5 10

<210> SEQ ID NO 930
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Paralichthys olivaceous type 1 collagen alpha 2 epitope

<400> SEQUENCE: 930

Met Lys Gly Leu Arg Gly His Pro Gly Leu Gin Gly Met Pro Gly Pro
1 5 10 15
Ser Gly Pro Ser
20

<210> SEQ ID NO 931
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Triticum aestivum type 1 non-specific lipid transfer protein precursor epitope

<400> SEQUENCE: 931
Ala Arg Gly Thr Pro Leu Lys Cys Gly Val
1 5 10

<210> SEQ ID NO 932
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens U1 small nuclear ribonucleoprotein 70 kDa epitope

<400> SEQUENCE: 932
Glu Arg Lys Arg Arg
1 5

<210> SEQ ID NO 933
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens U1 small nuclear ribonucleoprotein A epitope

<400> SEQUENCE: 933
Ala Gly Ala Ala Arg Asp Ala Leu Gln Gly Phe Lys Ile Thr Gln Asn
1 5 10 15
Asn Ala Met Lys Ile Ser Phe Ala Lys Lys
20 25

<210> SEQ ID NO 934
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens U1 small nuclear ribonucleoprotein C epitope

<400> SEQUENCE: 934
Pro Ala Pro Gly Met Arg Pro Pro
1 5

<210> SEQ ID NO 935
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anisakis simplex UA3-recognized allergen epitope

<400> SEQUENCE: 935
Met Cys Gln Cys Val Gln Lys Tyr Gly Thr Glu Phe Cys Lys Lys Arg
1 5 10 15
Leu Ala

<210> SEQ ID NO 936
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Homo sapiens unnamed protein product epitope

<400> SEQUENCE: 936
Ala Phe Gln Gln Gly Lys Ile Pro Pro
1 5
Ser Phe Glu Asp Gln Gly Arg Arg
1 5

 Ala Ile Met Gly Pro Pro Thr Lys Phe Ser Phe Ser Leu Phe Leu
1 5 10 15

Asp Gln Arg Ser Gln Glu Glu Arg Glu Arg
1 5 10

Arg Leu Arg Ser Ser Val Pro Gly Val Arg Leu Leu Gln Asp Ser Val
1 5 10 15

Asp Phe Ser Leu
20

His Cys Gln Ile Cys His Cys Asp Val Val Aem Leu Thr Cys Glu
1 5 10 15
1. A composition comprising:
 (i) a first population of synthetic nanocarriers that are
 coupled to immunosuppressants, and
 (ii) a second population of synthetic nanocarriers that are
 coupled to MHC Class II-restricted epitopes of an anti-
 gen that generates an undesired humoral immune
 response.

2. The composition of claim 1, wherein the first population
 and the second population are the same.

3. The composition of claim 1, wherein the composition
 comprises substantially no B cell epitopes of the antigen
 that generate an undesired humoral immune response.

4. The composition of claim 3, wherein the undesired
 humoral immune response is the generation of antigen-specific
 antibodies.

5. The composition of claim 3, wherein the undesired
 humoral immune response is CD4+ T cell proliferation and/or
 activity and/or B cell proliferation and/or activity.

6. The composition of claim 1, wherein the first population
 and/or second population of synthetic nanocarriers are also
 coupled to MHC Class I-restricted epitopes.

7. The composition of claim 1, wherein the immunosup-
 pressants comprise a statin, an mTOR inhibitor, a TGF-β
 signaling agent, a corticosteroid, an inhibitor of mitochon-
 drial function, a p38 inhibitor, an NFκB inhibitor, an adenos-
 in receptor agonist, a prostaglandin E2 agonist, a phosphodi-
 esterase 4 inhibitor, an HDAC inhibitor or a proteasome
 inhibitor.

8. (canceled)

9. The composition of claim 1, wherein the antigen is an
 allergen, autoantigen or therapeutic protein, or is associated
 with an inflammatory disease, an autoimmune disease, organ
 or tissue rejection or graft versus host disease.

10. (canceled)

11. The composition of claim 1, wherein the load of the
 immunosuppressants and/or epitopes on average across the
 first and/or second population of synthetic nanocarriers is
 between 0.0001% and 50% (weight/weight).

12. (canceled)

13. The composition of claim 1, wherein the synthetic
 nanocarriers of the first population and/or second population
 comprise lipid nanoparticles, polymeric nanoparticles,
 metallic nanoparticles, surfactant-based emulsions, dendrim-
 ers, buckyballs, nanowires, virus-like particles or peptide
 or protein particles.

14.-23. (canceled)

24. The composition of claim 1, wherein the mean of a
 particle size distribution obtained using dynamic light scat-
 tering of the synthetic nanocarriers of the first and/or second
 population is a diameter greater than 100 nm.

25.-28. (canceled)

29. The composition of claim 1, wherein the aspect ratio of
 the synthetic nanocarriers of the first population and/or sec-
 ond population is greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5,
 1:7 or 1:10.

30. (canceled)

31. A dosage form comprising the composition of claim 1.

32. A method comprising administering the composition of
 claim 1.

33.-35. (canceled)

36. A method comprising:
 administering to a subject a composition comprising:
 (i) a first population of synthetic nanocarriers that are
 coupled to immunosuppressants, and
 (ii) a second population of synthetic nanocarriers that are
 coupled to MHC Class II-restricted epitopes of an anti-
 gen that generates an undesired humoral immune
 response.
 wherein the composition is in an amount effective to
 reduce an undesired humoral immune response to the
 antigen in the subject.
37. A method comprising:
 reducing an undesired humoral immune response to an antigen in a subject by administering a composition comprising:
 (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and
 (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of the antigen.

38. A method comprising:
 administering a composition to a subject according to a protocol that was previously shown to reduce an undesired humoral immune response to an antigen in one or more test subjects;
 wherein the composition comprises:
 (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and
 (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of the antigen.

39.-73. (canceled)

74. A method comprising:
 (i) producing a first population of synthetic nanocarriers that are coupled to immunosuppressants, and
 (ii) producing a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response.

75.-82. (canceled)

83. A process for producing a composition or dosage form comprising the steps of:
 (i) coupling a first population of synthetic nanocarriers to immunosuppressants, and
 (ii) coupling a second population of synthetic nanocarriers to MHC Class II-restricted epitopes of an antigen that generates an undesired humoral immune response.

84. (canceled)

85. A composition or dosage form obtainable by the method or process of claim 74.

86.-89. (canceled)

* * * * *