实用新型名称
一种基于 GPS/GPRS 的智能导盲拐杖

摘要
本实用新型设计了一种基于 GPS/GPRS 的智能导盲拐杖装置，包括拐杖，在拐杖中嵌入有数字信号处理器，在数字信号处理器上连接有超声波测距传感器、水深探测传感器、GPS 模块、GSM/GPRS 模块、电源模块、LED 灯、扬声器和麦克风。具有体积小、功能强大，使用简单，能自动识别前方 2 米内的障碍物，辨别前方路面的台阶、凹坑、水洼，可以保持与导盲台监控中心联系，自动将自己的定位信息通过移动无线网络发送到导盲台监控中心。能够快速报警和求助或请求导盲台控制中心进行人工导航服务。能够帮助盲人安全行走，同时导盲台监控中心还可以对盲人进行监控，实时掌握盲人的具体位置，指导盲人走正确的路线，对盲人起到了积极的监护和指导作用。
1. 一种基于 GPS/GPRS 的智能导盲拐杖，包括拐杖，其特征在于，在拐杖中嵌入有数字信号处理器，在数字信号处理器上连接有超声波测距传感器、水洼探测传感器、GPS 模块、GSM/GPRS 模块、电源模块、LED 灯、扬声器和麦克风。

2. 如权利要求 1 所述的基于 GPS/GPRS 的智能导盲拐杖，其特征在于，所述的超声波测距传感器采用 UCM40 压电陶瓷传感器。

3. 如权利要求 1 所述的基于 GPS/GPRS 的智能导盲拐杖，其特征在于，所述的水洼探测传感器光电式液位传感器 LL105000。

4. 如权利要求 1 所述的基于 GPS/GPRS 的智能导盲拐杖，其特征在于，所述的 GPS 模块采用 NavCore-S 芯片。

5. 如权利要求 1 所述的基于 GPS/GPRS 的智能导盲拐杖，其特征在于，所述的 GSM/GPRS 模块采用 GE865-QUAD 芯片。

6. 如权利要求 1 所述的基于 GPS/GPRS 的智能导盲拐杖，其特征在于，所述的数字信号处理器采用 ATMEGA64 单片机芯片。

7. 如权利要求 1 所述的基于 GPS/GPRS 的智能导盲拐杖，其特征在于，所述的水洼探测传感器位于拐杖的着地端。

8. 如权利要求 1 所述的基于 GPS/GPRS 的智能导盲拐杖，其特征在于，所述的 LED 灯嵌于拐杖的外表面。

9. 如权利要求 1 所述的基于 GPS/GPRS 的智能导盲拐杖，其特征在于，所述的电源模块选择大容量锂电池。
一种基于 GPS/GPRS 的智能导盲拐杖

技术领域
[0001] 本实用新型属于电子自动化控制技术领域，具体涉及一种基于 GPS/GPRS 的智能导盲盲人拐杖。

背景技术
[0002] 目前国内外的导盲器根据所有技术不同主要分为以下几类：利用红外或超声波检测前方小范围障碍物的导盲方式，基于 PC 平台，通过摄像头采集数据，实时检测障碍物的导盲方式，可以检测出生活中一些简单的物体；通过 GPS 定位和超声波测距的导盲方式，这些导盲方式一般含高新技术较多，导盲效果较好。根据导盲器设计的外观不同有电子式导盲器、移动式机器人、盲人导引手杖、穿戴式导盲器等。2010 年 5 月 20 日，日本盲人福祉大会公开了一种新发明的电子导盲杖，该导盲杖能够让使用者感受到脸部以下的障碍物。当前国内外导盲的研究并不是很兴盛。国内举办过一个关于导盲器的设计的比赛，当中出现了很多优秀的作品，用到了很多先进的技术，如数字图像处理，激光测距等等。虽然测量准确但同时带来许多问题。其中最主要的就是价格的问题，还有就是智能化的问题。比如，GPS 定位与超声波导盲器是以单片机 AT89C52 为主控件，具有 GPS 坐标定位、超声波障碍、语音提示等功能的智能拐杖。拐杖杆上部分和手把为中空，内部设计有以单片机为主的 GPS 模块、超声波检测模块和语音提示模块，拐杖头部有警示灯和扬声器。但是该设备由于要将电子地图集成在单片机终端系统中，这对单片机的存储容量和处理能力要求较高，实现起来复杂，且造价较高。单片机中的电子地图还需要单独进行更新升级。一般情况下导盲器的功能过于复杂，操作也变得复杂，盲人在初次使用导盲器时对导盲器的工作状态不是很了解，这样就有可能错误的使用导盲器。毕竟盲人不是一般的群体，如果能在这行走过中除了电子设备导航外，能有人随时陪着他们并实践监测他们的路线和路况，这才叫真正的智能化导盲。

[0003] 以上这些盲人拐杖各有各自的优点，对盲人有一定的帮助，对外出行走的盲人无法进行实时掌控，盲人在发生意外情况时无法报警和定位，也无法进行实时指导帮助，所以有必要的发明一种功能强大的的导盲拐杖及系统。

发明内容
[0004] 本发明针对现有盲人拐杖存在的缺陷或不足，提供一种基于 GPS/GPRS 的智能导盲拐杖，以帮助盲人安全行走。导盲台中心可以实时监控盲人当前所处的位置，并能与使用人实时通话，指导其行进。

[0005] 为了实现上述技术任务，本实用新型采用如下的技术解决方案：

[0006] 一种基于 GPS/GPRS 的智能导盲拐杖，包括拐杖，其特征在于，在拐杖中嵌入有数字信号处理器，在数字信号处理器上连接有超声波测距传感器，水洼探测传感器，GPS 模块、GSM/GPRS 模块，电源模块，LED 灯，扬声器和麦克风。

[0007] 本实用新型的其它特点是：
所述的超声波测距传感器采用 UCM40 压电陶瓷传感器。
所述的水洼探测采用光电式液位传感器 LL105000。
所述的 GSM/GPRS 模块采用 GE865-QUAD 芯片。
所述的 GPS 模块采用 NavCore-S 芯片。
所述的数字信号处理器采用 ATMega64 单片机芯片。
所述的水洼探测传感器位于拐杖的着地端。
所述的 LED 灯嵌于拐杖的外表面上。
所述的电源模块选择大容量锂电。

本实用新型的基于 GPS/GPRS 的智能导盲拐杖，将体积尽可能小的超声波测距传感器、水洼探测传感器、GSM/GPRS 芯片、GPS 定位芯片以及微处理器连接集成在一起，方便嵌入合成制造的内部中空的拐杖中，使得拐杖构成微型的电子装置。其中，超声波测距传感器负责向道路前方发射超声波并接收由前方障碍物反射回来的反射波，数字信号处理器根据发射超声波和接收到反射波的时间差计算障碍物的距离，并根据设定条件判断前方是障碍物还是台阶或凹坑，同时发出语音警告；安装在拐杖末端的水洼探测传感器也一直在工作，当拐杖探到水洼中时，将从拐杖着地端侧面的三个竖直空进入并接触液位传感器，传感器检测到液体的存在立即发出语音警告，提示使用者绕行；通过 GPS 模块每隔几秒采集拐杖的当前位置信息，并通过 GSM/GPRS 模块向导盲台监控中心发送定位信息，导盲台监控中心包括有路由器、工作站、应用服务器、数据服务器、通讯服务器。导盲台监控中心可以在电子地图上实时监控使用者的当前所处位置，同时记录使用者的行走轨迹；使用者可以使用紧急求助功能和语音导航功能，当按下拐杖上的紧急求助按钮时，智能导盲拐杖向导盲台监控中心报警，导盲台监控中心接到报警后，通过通讯服务器与求救者之间的通话，询问情况是否需要到现场救助。

使用者按下拐杖上的导航按钮时，智能导盲拐杖可和导盲台监控中心进行通话，告诉导盲台监控中心要去的目的地，导盲台监控中心将根据应用服务器的中心导航地图上规划的路径实时语音提示行走路线，使用者可以方便到达预定地点。LED 灯嵌入在拐杖的杖体表面，智能导盲拐杖工作时，LED 灯不断闪烁，提醒他人注意。

导盲台监控中心的工作站接收到信息数据后，可保存到数据服务器中，为以后可查询使用者的行走轨迹提供依据。

本实用新型的基于 GPS/GPRS 的智能导盲拐杖，可以自动识别前方道路的障碍物，辨别前方路面的台阶、凹坑、水洼，帮助盲人安全行走，同时导盲台控制中心还可以对盲人进行监控，实时掌握盲人的具体位置，指导盲人走正确的路线，对盲人起到了积极的监护和指导作用。与现有盲人拐杖相比，本实用新型的基于 GPS/GPRS 的智能导盲拐杖具有以下优点：

1. 功能强大、体积小，方便安装到拐杖中；
2. 自动识别前方 2 米内的障碍物，辨别前方路面的台阶、凹坑、水洼；
3. 易于使用，使用者可随时了解自己的当前位置，并可手动报警求助或请求导盲台控制中心进行人工导航服务；
4. 导盲台控制中心可以实时监控盲人当前所处的位置，并可与使用者实时通话，指导其行进；
（5）本拐杖性价比高，使用寿命长，发展前景好。

附图说明
图1为本实用新型的基于GPS/GPRS的智能导盲拐杖的结构示意图；
图2为超声波测距接口电路；
图3为单片机外围接口电路原理图。
以下是结合附图和实例对本实用新型作进一步的解释说明。

具体实施方式
如图1所示，本实施例给出一种基于GPS/GPRS的智能导盲拐杖，包括拐杖，在拐杖中设有有数字信号处理器，在数字信号处理器上连接有超声波测距传感器、水洼探测传感器、GPS模块、GSM/GPRS模块、电源模块、LED灯、扬声器和麦克风。
本实施例中，超声波测距传感器采用UCM40 压电陶瓷传感器，水洼探测传感器采用Honeywell生产的光电式液位传感器LL105000，GPS模块采用NavCore-S芯片，GSM/GPRS模块采用GE865-QUAD芯片，数字信号处理器采用ATMEGA64单片机芯片。这些芯片集成度高，是同类芯片中尺寸最小或较小的，很方便构成微型的电子装置而嵌入到拐杖中。

水洼探测传感器位于拐杖的着地端，LED灯嵌于拐杖的外表面，电源模块选择大容量锂电池。

超声波测距传感器模块
超声波测距传感器采用UCM40 压电陶瓷传感器，其由超声波发射头UCM40T和与其匹配的接收头UCM40R组成。超声波发射头UCM40T向目标发射超声波，在发射时刻的开始计时，超声波在空气中传播，途中碰到障碍物就立即返回来，超声波接收头UCM40R收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s，根据时时刻表记录的时间t，就可以计算出发射点到障碍物的距离s，即s=340t/2。

超声波测距接口电路如图2所示。ATMEGA64单片机芯片的PCU端口输出脉冲宽度为25μs，载波为40kHz的超声波脉冲信号开始计时，超声波脉冲信号经三极管放大后驱动超声波发射头UCM40T，发出40kHz的脉冲超声波，且持续发射200ms。随后超声波接收头UCM40R将反射回来的超声波调制脉冲变为交变电压信号，经运算放大器两级放大后加至带有锁定环的音频译码集成块LM567，用锁相环电路进行检波，经处理后输出低电平，作为中断请求INTI信号，送至ATMEGA64单片机芯片处理。ATMEGA64单片机芯片启动中断程序，停止计时输出时间t，再由系统软件对其进行计算、判断后，得出相应的计算结果，判断前方是否有障碍物，台阶或凹坑，若有障碍物，台阶或凹坑则语音警告使用者注意。

水洼探测传感器模块
水洼探测传感器采用Honeywell光电式液位传感器LL105000，它能可靠的测量出水洼液位。传感器的塑料半圆球内放置1个LED和1个的光电接收器，根据光的内部反射原理，当无液体时，绝大多数LED光都会被光电接收器收到，当液面覆盖球表面时，圆球顶与液体截面的折射系数发生变化，光电接收器收到LED光将会减少，因此输出将会发生变化。该传感器LL105000为推入型传感元件，被密封在聚碳酸模球内，直径10mm，安装在拐杖着地端的内部。当拐杖着地端浸入水洼中时，水将从拐杖着地端侧面的三个竖孔
进入并接触液位传感器，传感器检测到液体存在，输出端跃变输出为低电平（无液体时输出高电平），作为中断请求信号，送至微处理器处理，微处理器执行中断子程序，语音提示前面有水洼请绕行。

[0037] 3. GPS 模块

[0038] GPS 模块采用 NavCore-S 芯片。NavCore-S 芯片具有启动时间短、定位精度高、性能可靠的特点；同时功耗低、尺寸小、重量轻，载体适应能力强；兼容主流低功耗 RF 芯片。为导航、测量、授时等领域提供了全集成化的高性能核心器件。可以选择支持北斗二号、GPS、GLONASS 任意一个星座，实现精确的三维定位、三维测速、精确定位。热启动 1 秒、冷启动 <35 秒，重捕获 <1 秒；单点定位精度 5 米，差分定位精度 0.5 米。7x7x0.8mm 的尺寸十分适用于微型的电子装置。电子装置开始工作后，GPS 位模块启动进入定位状态，并持续将定位信息传送到 ATMEGA64 单片机芯片，ATMEGA64 单片机芯片接收到定位信息后通过通信模块将信息发送到导盲台控制中心。

[0039] 4. GSM/GPRS 模块

[0040] GSM/GPRS 模块采用 GE865-QUAD 芯片。GE865-QUAD 芯片采用了球栅列阵(BGA)技术，与此前的所有的型号以及大多数竞争性产品相比，体积大大缩小，而且具有显著的节能效果，是市场上最小的 GSM/GPRS 球栅列阵。GE865-QUAD 芯片的小巧设计和独特的 BGA 封装，内置 TCP/IP, UDP, FTP, SMTP 协议，非常适合于超紧凑的应用。GSM/GPRS 模块负责装置的数据无线传送和语音通话，向导盲台中心发送定位信息和求助信号等数据，还可以实现与导盲台中心语音通话。

[0041] 5. 数字信号处理器

[0042] ATMEGA64 单片机是 ATMEC 系列高性能、低功耗的 8 位 AVR 单片机，64K 字节的系统存储 Flash, 内部集成两个 8 位定时器/计数器和两个 16 位定时器/计数器, 8 路 10 位 ADC, 53 个可编程的 I/O 端口, 以及 8 个外部中断源, 完全满足本装置的输入输出和 A/D 转换需求。单片机主要外围接口电路原理图如图 3 所示。装置工作时, 在一个时间周期内 ATMEGA64 单片机驱动超声波发射器向前方发射超声波并开始计时，超声波接收器收到反射波后令单片机产生中断, ATMEGA64 单片机停止计时, 计算超声波接收器收到反射波的时间, 计算障碍物的距离和判断是否台阶和凹坑，如有前方有障碍物、台阶或凹坑则语音警告使用者当心前方的道路。该检测过程由定时器控制不断地进行重复执行。同时, ATMEGA64 单片机连续监控水洼探秘传感器 LL105000 的输出信号，一旦检测到拐杖下有水洼，则语音警告使用者注意。装置工作时 GPS 模块也持续工作, ATMEGA64 单片机每隔数秒采集当前的经纬度纬度和高度位置信息, 并将这些位置数据通过 GSM/GPRS 模块发送到导盲台控制中心。ATMEGA64 单片机可以响应使用者通过按下紧急求助按钮的请求，向导盲台控制中心发送紧急求助警报，也可以响应使用者通过按下导航按钮的请求，向导盲台控制中心发送请求路径导航信息，等待导盲台监控中心响应请求并接通和使用者的语音通话。

[0043] 6. 导盲台监控中心

[0044] 导盲台监控中心由路由器、应用服务器、通讯服务器、数据库服务器、工作站和监控屏幕组成。通讯服务器负责导盲台监控中心和拐杖的信息通信与利用者的语音通话，数据库服务器存储拐杖使用者的信息和设备参数，以及使用者的行走轨迹和通话记录。导盲台监控中心的应用服务器可以实时在电子地图上显示各个使用者的当前位置，实时响应使
用者的紧急求助请求和导航请求，服务人员响应请求后接通和使用者的语音对话，帮助使用者安全出行。

[0045] 7. 电源部分由大容量锂电池直接供电，并支持充电功能：LED 灯嵌入在拐杖的杖体表面，智能导盲拐杖工作时，彩色的 LED 灯不断闪烁，提醒路人注意。

[0046] 本实用新型的基于 GPS/GPRS 的智能导盲拐杖，所用的电子元器件均为市售的已知产品，购买方便、成本低廉、性能稳定可靠、电路实现简单，本领域技术人员根据本申请的技术方案实现各电子元器件的连接不存在技术上的困难。
图1

图2
图3