02/093367 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

0 O 0O 00

(10) International Publication Number

21 November 2002 (21.11.2002) PCT WO 02/093367 A1l

(51) International Patent Classification”: GOG6F 9/44 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
A7, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US02/14933 CZ, DE, DK, DM, DZ, EC, EE, ES, I, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
. - LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(22) International Filing Date: 10 May 2002 (10.05.2002) MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

(25) Filing Language: English YU, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,

(30) Priority Data:

60/290,203 11 May 2001 (11.05.2001) US

(71) Applicant: COMPUTER ASSOCIATES THINK, INC.
[US/US]; One Computer Associates Plaza, Islandia, NY
11749 (US).

(72) Inventors: TONDREAU, David; 8519 Quaint Lane, Vi-

enna, VA 22182 (US). MAHONY, John; 47108 Kentwell

Place, Sterling, VA 20165 (US).

(74) Agents: JAWORSKI, Richard, F. et al.; Cooper & Dun-
ham LLP, 1185 Avenue of the Americas, New York, NY

10036 (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee METHOD AND SYSTEM FOR TRANSFORMING LEGACY SOFTWARE APPLICATIONS INTO MODERN OB-

JECT-ORIENTED SYSTEMS

(57) Abstract: A system and method for transforming a procedural program having procedural language code into an object-oriented
program, comprises scanning the procedural language code and creating a map based on the scanned procedural language code,
storing the scanned procedural language code as intermediate code, processing at least a segment of the procedural language code
using the map, creating a first data structure using the processed segment, modifying the intermediate code based on the first data
structure and generating an object-oriented program having an object class based on the modified intermediate code.

WO 02/093367 PCT/US02/14933

10

15

20

25

30

METHOD AND SYSTEM FOR TRANSFORMING LEGACY SOFTWARE
APPLICATIONS INTO MODERN OBJECT-ORIENTED SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional application Serial No.
60/290,203, filed May 11, 2001 and entitled “METHOD AND SYSTEM FOR
TRANSFORMING LEGACY SOFTWARE APPLICATIONS INTO MODERN
OBJECT-ORIENTED SYSTEMS”, which is incorporated in its entirety herein by

reference.

TECHNICAL FIELD
The present disclosure relates to the transformation of computer programs.
More specifically, the present disclosure relates to a method and system for

transforming legacy software applications into modern object-oriented systems.

DESCRIPTION OF THE RELATED ART

Many technologies and methodologies exist for converting software
applications from one programming language to another. But the language in which
a software application is written is only one aspect of its makeup. A software
application is a complex system having many parts.

The "code" is the portion of the software application that is written in a
programming language and contains the instructions for what the software application
is to do under various circumstances. In the early days of computers, software
applications were written using assembly language. An assembly language program
is converted by an application called an assembler into machine language which is
executed by the central processing unit of a computer. Assembly language operations
are very low level and can make writing applications difficult. As computer
technology evolved, alternative "higher level" languages were developed which
allowed the programmer to more easily create software which performed complex
tasks. A special software application called a compiler was developed which would

reduce higher level languages to machine language where it could be executed by the

WO 02/093367 PCT/US02/14933

10

15

20

25

30

computer. Higher level languages allowed a programmer to organize code into blocks
of code called routines or procedures, which could be used repeatedly, if necessary.

Software applications also need to be able to manage information. Software
development tools thus provide for the ability to declare data structures. Data
structures provide a way to store data in memory in an organized and identifiable
fashion so the data can be acted upon by the code. The code contains instructions for
acting on the data structures and is grouped in segments called routines. In early
software development tools, the data structures and routines were defined separately.
In order for any routine to operate on data, the data had to be passed to the routine as
a parameter. The approach of writing software that calls routines and passes
parameters is commonly referred to as "procedural programming.” A more modern
approach is the "object oriented” or OO model. The OO model is dramatically
different from the procedural model.

In the OO model, data structures and code routines may be grouped into a
single, independent data structure called a "class." A class is a template definition of
the routines, called methods, and data structures belonging to a particular kind of
object. The class defines the common properties of the member objects. OO programs
may be easily created and modified due to the modular, reusable code structure.

OO programming also allows for many other advantageous characteristics such
as inheritance. Inheritance allows users to create a new object first by specifying
another object as its parent class (or "super class"). The newly created object
immediately acquires all of the capabilities of its parent. However, users can
customize the new class’s behavior under any circumstance.

A "user interface" is a portion of the application that allows an individual to
interact with the software application. In many cases, the user interface is created
using "forms." A form specifies the appearance of the "fields" and "trim" that are
presented to the user on a display. Fields are individual areas where a user can enter
data. Trim is fixed information such as labels, which instruct the user what to enter
in different fields or provide some other purpose in the application. Often these forms

are not implemented using code. Rather, there is a "forms editor" which is part of a

2-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

software development environment that allows a programmer to interactively build
the forms. The definition of the form is stored in a repository and the development
environment and provides for the display of the forms when the application is
executed.

Software development tools of the 1970's and 1980's used a "character based"
user interface. Typically, this user interface was restricted to displaying a form of 80
characters per line by 24 lines. These tools often used a 25" line on a terminal to
display the commands associated with the active form. More modern tools allow the
implementation of forms which use a graphical user interface (GUI). The GUI allows
for the implementation of more complex forms with a greater number and variety of
user controls.

Together, the code and the forms create an application that can be executed to
perform a task. The portion of the program that manages the user interface is called
"presentation logic." This includes the code statements that trap user input and start
program actions, prompt the user for additional information or otherwise make
changes to the display. The remainder of the code is called "business logic." The
business logic includes the workflows, database access, transactions and other actions
that are a consequence of the user’s commands. It is quite common for business logic
and presentation logic to be intertwined.

A database management system (DBMS) is a collection of programs that can
store, modify, and extract information from a database. Requests for information from
a database are made in the form of a query, which is a stylized question. The set of
rules for constructing queries is known as a query language. Different DBMS’s
support different query languages, although there is a semi-standardized query
language called SQL (structured query language).

The information stored in a database can be presented in a variety of formats.
Most DBMS’s include a report writer program that enables data to be output in the
form of a report. The report writer program, also called a report generator, is a part
of a database management system that extracts information from one or more files and

presents the information in a specified format. Report writers allow selection of

-3-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

records that meet certain conditions and display selected fields in rows and columns.
Data may be formatted into pie charts, bar charts, and other diagrams. Once a report
format is created, the format specifications may be saved in a file and reused for future
presentations.

Relational database management systems (RDBMS) are a type of database
management system (DBMS) that stores data in the form of related tables. Relational
databases may require few assumptions about how data is related or how it will be
extracted from the database. As a result, the same database may be viewed in many
different ways. In relational database management systems, information is stored in
the form of tables, for example, a spreadsheet, which refer to data arranged in rows
and columns. One desirable feature of relational systems is that a single database can
be spread across several tables.

A software application is implemented using some kind of "architecture." The
architecture describes the basic infrastructure of the application. One aspect of
architecture relates to the number of computers that are involved. A single-tier
software application is one in which all applications and/or systems run on a single
computer. This includes any external calls the software needs to make to other
software applications. For instance, a software application may "call" a database
management system in order to retrieve or update data. In the single-tier model, both
the software application and the database management system would be running on
a single computer. The user interface may be displayed on a "dumb terminal" which
is a device capable only of displaying a form, allowing the user to enter information,
and returning that input to the "host" computer.

A client/server application, or two-tiered software application, is one in which
the software application is running on one computer (the client) and makes external
calls to other software applications running on another computer (the server) via a
network connection.

An even more recent architectural innovation is the N-tiered application. In
the N-tiered model, only part of the software application is run on the client

workstation. This is usually an intelligent user interface (or thin client). When a

-4-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

specific task needs to be performed, the client locates an "application server"
containing the required business logic and the work is actually performed on the
computer running the application server. The application server may, in turn, need to
contact another computer, such as a database server, in order to complete the
processing requested by this client. As this chain of events can ultimately involve an
unlimited number of computers, the model is called the N-tiered model.

One challenge facing many organizations today is that they have invested large
sums of money and time developing software applications which use character
interfaces, are procedural in nature and are implemented in a single-tier model. These
applications are commonly called "legacy" applications. Supporting and enhancing
these applications is a major challenge because developers are no longer being taught
the technologies in which they were created. In addition, the current world of the
Internet and e-commerce requires systems that exploit the graphical user interfaces,
are object-orientated in nature and are implemented using a N-tier model. No
technologies have yet been created which allow an organization to transform their
existing legacy applications into modern, object-orientated, N-tier applications that
use a graphical user interface. As a result, the organization must undertake a time
consuming and expensive process to completely redesign and rewrite the application
using modern tools.

The method and system according to the present application solves these and
other problems. For example, the method and systems according to the present
disclosure are capable of "transforming" a legacy software application into a GUI
based software application. The transformation contemplated by the present disclosure
includes converting and enhancing the individual aspects of the system. In a single
process, the character based user interface of the legacy software application can be
transformed into a GUI, the code and data structures are integrated, reconfigured and
regenerated as appropriately formed object classes, and enhancements and additions
can be made to the legacy software application to enable it to operate as either a

client/server or N-tier system.

WO 02/093367 PCT/US02/14933

10

15

20

25

30

SUMMARY

The present disclosure relates to a method for transforming a procedural
program having procedural language code into an object-oriented program, comprises
scanning the procedural language code and creating a map based on the scanned
procedural language code, storing the scanned procedural language code as
intermediate code, processing at least a segment of the procedural language code using
the map, creating a first data structure using the processed segment, modifying the
intermediate code based on the first data structure, and generating an object-oriented
program having an object class based on the modified intermediate code. The method
may also comprise suspending the step of processing a segment of the procedural
language code when a predetermined segment of the procedural language code is
detected, and modifying an other intermediate code based on the predetermined
segment. The method may also comprise creating a second data structure based on
the procedural language and the second data structure may be a hierarchical tree
having a node identifying a property of a statement of the procedural programming
language. The step of creating a first data structure may include locating a node in the
second data structure based on the processed segment, traversing the nodes second
data structure to a root node, and including the contents of the traversed nodes in the
first data structure.

The present disclosure also relates to a storage medium including computer
executable code for transforming a procedural program having procedural language
code into an object-oriented program, comprising code for scanning the procedural
language code and creating a map based on the scanned procedural language code,
code for storing the scanned procedural language code as intermediate code, code for
processing at least a segment of the procedural language code using the map, code
creating a first data structure using the processed segment, code for modifying the
intermediate code based on the first data structure, and code for generating an object-
oriented program having an object class based on the modified intermediate code. The
storage medium may also comprise code for suspending processing a segment of the

procedural language code when a predetermined segment of the procedural language

-6-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

code is detected, and code for modifying an other intermediate code based on the
predetermined segment. The storage medium may also comprise code for creating a
second data structure based on the procedural language, and the second data structure
may be a hierarchical tree having a node identifying a property of a statement of the
procedural programming language. The code for creating a first data structure may
include code for locating a node in the second data structure based on the processed
segment, code for traversing the nodes second data structure to a root node, and code
for including the contents of the traversed nodes in the first data structure.

The present disclosure also relates to a computer data signal embodied in a
transmission medium and including computer executable instructions for transforming
a procedural prograﬁ having procedural language code into an object-oriented
program, comprising a data signal portion for scanning the procedural language code
and creating a map based on the scanned procedural language code, a data signal
portion for storing the scanned procedural language code as intermediate code, a data
signal portion for processing at least a segment of the procedural language code using
the map, a data signal portion for creating a first data structure using the processed
segment, a data signal portion for modifying the intermediate code based on the first
data structure, and a data signal portion for generating an object-oriented program
having an object class based on the modified intermediate code. The computer data
signal may also comprise a data signal portion for suspending processing a segment
of the procedural language code Whén a predetermined segment of the procedural
language code is detected, and a data signal portion for modifying an other
intermediate code based on the predetermined segment. The computer data signal
may also comprise a data signal portion for creating a second data structure based on
the procedural language, and the second data structure may be a hierarchical tree
having a node identifying a property of a statement of the procedural programming
language. The data signal portion for creating a first data structure may include a data
signal portion for locating a node in the second data structure based on the processed
segment, a data signal portion for traversing the nodes second data structure to a root

node, and a data signal portion for including the contents of the traversed nodes in the

-7-

WO 02/093367 PCT/US02/14933

10

15

20

25

first data structure.

The present disclosure also relates to a method for transforming a procedural
program having procedural language code into an object-oriented program,
comprising: scanning the procedural language code and creating a map based on the
scanned procedural language code, storing the map and the scanned procedural
language code as metadata in a repository, creating a new set of target metadata
containers for transformed representations of each component, processing at least a
segment of the procedural language code using procedural metadata representations
to create a first abstract syntax tree using the processed segment, populating the target
metadata containers based on the first abstract syntax tree and generating an object-
oriented metadata representation of the original procedural program having an object
class based on the first abstract syntax tree. The method may further comprise
suspending the step of processing a segment of the procedural language code when a
predetermined segment of the procedural language code is detected and modifying
another abstract syntax tree based on the predetermined segment. The method may
further comprise creating a second abstract syntax tree based on the procedural
language, wherein the second abstract syntax tree may be an abstract syntax tree
having a node identifying a property of a statement of the procedural programming
language. The step of creating the first abstract syntax tree may include locating a
node in the second abstract syntax tree based on the processed segment, traversing the
nodes second abstract syntax tree to a root node, and including the contents of the

traversed nodes in the first abstract syntax tree.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the present disclosure and many of the
attendant advantages thereof will be readily obtained as the same becomes better
understood by reference to the following detailed description when considered in

connection with the accompanying drawings, wherein:

WO 02/093367 PCT/US02/14933

10

15

20

25

FIG. 1 shows an example of a computer system capable of implementing the
method and system of the present disclosure;

FIG. 2 shows an example of a process chart according to an embodiment of the
present disclosure;

FIG. 3 shows an example format of a legacy language statement grammar tree
according to an embodiment of the present disclosure;

FIG. 4 shows an example format of a abstract syntax tree according to an
embodiment of the present disclosure;

FIG. 5 shows a flowchart of a process according to an embodiment of the
present disclosure; and

FIG. 6 shows é representation of sample representation of an abstract syntax

tree expressed as an XML document.

DETAILED DESCRIPTION

In describing preferred embodiments of the present disclosure illustrated in
the drawings, specific terminology is employed for sake of clarity. However, the
present disclosure is not intended to be limited to the specific terminology so
selected, and it is to be understood that each specific element includes all technical
equivalents which operate in a similar manner.

Figure 1 shows an example of a computer system capable of implementing the
method and system of the present disclosure. The system and method of the presént
disclosure may be implemented in the form of a software application running on a
computer system, for example, a mainframe, personal computer (PC), handheld
computer, server etc. The software application may be stored on a recording media
locally accessible by the computer system, for example, floppy disk, compact disk,
hard disk, etc., or may be remote from the computer system and accessible via a hard
wired or wireless connection to a network, for example, a local area network, or the
Internet.

The computer system is referred to generally as system 100, and may include

-9-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

a central processing unit (CPU) 102, memory 104, for example, Random Access
Memory (RAM), a printer interface 106, a display unit 108, a (LAN) local area
network data transmission controller 110, a LAN interface 112, a network controller
114, an internal bus 116 and one or more input devices 118, for example, a keyboard,
mouse etc. As shown, the system 100 may be connected to a data storage device, for
example, a hard disk, 120, via a link 122.

The system and method of the present disclosure performs a transformation for
transforming legacy applications into modern, object-orientated, N-tier applications
that use a graphical user interface. This may include processes for analyzing the
legacy application program code, creating classes and their methods based on the
legacy code, as well as creating a graphical user interface based on the legacy code.
Under certain circumstances, conversion of some segments of legacy code may not be
desirable, in which case the process may transfer the original code or may substitute
new code.

Figure 2 shows an example of a process chart according to an embodiment of
the present disclosure. In one embodiment, the transformation begins with a mining
process 140 which may involve discovery 142, analysis 144, configuration 146, GUI
Style Wizard 148, Extension Wizard 150, Application Analysis Report 152, and
Preparation 154 and other steps required to collect all resources required from the
legacy software application and prepare them for transformation. Once stored in the
meta-format, the meta-components may be operated upon by a transformation process
156 and transformation 1- transformation 4 158-164, where the meta-components may
be processed, reorganized and enhanced. During this transformation process, the
legacy meta-components are transformed into object meta-components. Finally,
during a regeneration process 166, in the extension step 168, libraries are built based
on results from the mining process 140, and in the regeneration step 170, the object
meta-components are implemented as actual object classes in a specific, object-
orientated language.

Separating the transformation system of the present disclosure into multiple

processes as described above provides several additional features of the present

-10-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

disclosure. A first feature is the creation of a "from anywhere/to anywhere"
transformation. This is because the makeup of the meta-components may be defined
by the transformation system. For example, in order to transform a particular legacy
software application, a mining process 140 capable of storing the legacy components
as meta-components in the repository may be provided. In order to transform a legacy
language software application into a particular object language, a transformation
process 156 and a regeneration process 166 capable of creating object classes in the
desired object language from the object meta-components may also be provided. A
second feature is that additional new steps may be added to the processes of the
transformation system when it is desired to alter the outcome of the transformation.

For instance, in order to customize a particular transformation methodology
it is possible to add "customization" steps to processes. These customization steps are
able to perform changes to any or all of the components before or after one of the
other steps in the transformation system is performed. Such customization steps can
be used to add to, delete from or alter a component. For example, it may be desirable
to remove a particular field from one or more forms, add a different field or other
resource (such as an icon) to the corresponding GUI and then make a change to the
related object code. There are many other features that are possible because of this
infrastructure.

Another aspect of the method according to the present disclosure is that it may
be made restartable from any step or process and any component within the legacy
software application. If, for instance, a power failure occurs during any part of the
processing, the transformation system and method may be restarted from the step and
component that was being processed when the power failure occurred. To achieve this
feature it may be desirable that the repository selected be a persistent storage facility
(e.g., a database repository).

An exemplary embodiment of the mining, transformation and regeneration
processes is described in more detail below.

Mining Process

The mining process 140 discovers the resources required for a transformation,

-11-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

stores them in the repository and prepares them and any other meta—componeﬁt
required for the transformation. Preferably, the mining process 140 has the ability to
report any deficiencies found in the legacy software application that would prevent a
complete transformation. These deficiencies are most commonly missing components
such as a source code or form definitions. The mining process 140 may also provides
for operator input which may be used when the mining process 140 encounters
capabilities of the legacy development environment for which there is either no known
transformation or for which the transformation system has not yet been programmed
to handle. This provides the opportunity for the operator to correct any deficiencies
in or to enhance the transformation system before the remainder of the processes are
run.

The following steps are examples of steps that may be performed by the
mining process 140. Each step described may or may not be utilized for a particular
transformation methodology. Further, each transformation methodology can be
provided with a set of configuration values which alter the output generated by the
process. For instance, a specific configuration value could cause the resulting
components to be renamed based on a specific pattern. Each configuration value may
have a default setting which can be overridden by the operator.

Discovery

The discovery step 142 queries the legacy software development environment
and develops a catalog of components contained in a particular application. The
discovery step may scan appropriate logical memory, for example, physical memory
blocks and virtual memory pages, according to the operating system present on the
computer scanned. The components scanned may include, but are not limited to, the
source code, form definition, application structure, the schema of any related database,
forms, frames, procedures, record definitions, global variables, constants, host
routines, etc. These components are preferably stored as meta-components in the
repository. In addition, for source code components, the source code may be
"tokenized" or broken down into a stream of basic programming symbols. Copies

of these components are then stored as meta-components in a "repository" where they

-12-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

may be retrieved, modified and saved repeatedly. This repository may be a memory
cache, a file system, a database or any other suitable information storage facility.

Analysis

In the analysis step 144, all of the information of a meta-component is
analyzed and a map is created for each component. The map contains information on
where each routine and section within a routine starts and stops within the token
stream. In addition, metrics concerning each component may be used to create an
Application Analysis Report 152.

Validation

During the validation phase, a cross-reference of all components in the legacy
application is generated. This cross-reference provides a list of every component
(module, data source, form, etc.) that is referenced by a component. Then, the
repository is checked to ensure that all of the components of the legacy environment
have been stored in the repository. If any components are found to be missing, the
operator is notified to allow the deficiency to be addressed. The process can continue
with unreferenced components but the components which reference them will not be
completely transformed.

Configuration

During the configuration step 146, the information from the analysis step 144
is used to establish the initial configuration. This configuration is stored in the meta-
component which describes the legacy application itself. This meta-component
controls the transformation process 156. Some of these parameters may be modified
during the validation phase.

GUI Style Wizard

The GUI Style Wizard 148 provides an operator with the ability to customize
the resulting graphical user interface by overriding its default specifications. The
wizard creates a custom menu bar, toolbar and button bar definitions are applied to all
graphical forms to provide a consistent look and feel in the resulting application.

Extension Wizard

The Extension Wizard 150 provides the operator with an opportunity to direct

-13-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

the transformation process 156 to create a new foundation class library, business
object library and front-end library for the application. These new object libraries are
built on the schema specifications found in the legacy software application and can
radically reduce the time required to develop new features‘ and functions in the new
application. If this step is not run, the transformation will not create these libraries.

Application Analysis Report

Preferably the application analysis report 152 is a comprehensive report on the
entire legacy infrastructure, and includes a cross-reference of all resources and detailed
information and metrics on each component. It may also provide a listing of problem
areas as described above. The metrics include: the kind and total number of
components in the legacy application, total lines of source code, the number and
definition of routines that make up each module, a compilation of all commands
presented by the application, etc.

Preparation

During the preparation step 154, all additional target OO meta-components
which will be used for the transformation are created in the repository. If the meta-
components exist in the repository from a prior run of the transformation process, they
are destroyed and new meta-components are created.

Transformation Process

The transformation process 156 provides a mechanism by which the legacy
meta-components now stored in the repository are manipulated to create the object
meta-components. The transformation process 156 performs a transformation in
which the entire legacy application may be transformed in a multi-stage, parallel
process. In the transformation process 156, any particular source statement (in the
instance of code), or form part, or any other portion of a component of the legacy
software application can potentially trigger a rule which causes one or more
components (or procedures) to be modified in some way. For instance, during the
transformation of a "frame" (a frame is a procedure which requires a user interface and
has an associated form), the transformation process 156 may discover a parameter.

That parameter becomes an attribute of the object class being created to replace the

-14-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

frame. Processing of the frame is suspended, the object class is retrieved from the
repository, the attribute is added to the object class, the object class is returned to the
repository and processing of the source is resumed. Likewise, in the processing of the
frame’s form definition, if a field is encountered on the form, an attribute is added to
the same object class in a like manner. There are many other more complex
transactions in the process which may move entire blocks of code from one
component (or procedure) to another depending on the conditions.

In order to facilitate the parallel processing discussed above, a temporary
storage facility having the capability to manage intermediate representations of
components from both the legacy software application, the new application and an
intermediate application (or "meta-application") should be provided. The meta-
application is convenient because rather than being tied to a specific implementation
of any particular software development environment, it contains constructs which are
found in any of these environments. By manipulating "meta-components," the process
of transforming the legacy software application into the new application can be
separated into three distinct processes: mining, transformation and regeneration.

One embodiment of the transformation process 156 will be described below
as four transformations.

Transformation 1

The transformation 1 engine 158 is responsible for disassembling the legacy
source code and organizing it into a structured format that can be easily manipulated.
The source code for the components is disassembled using the maps created during
the analysis step as a guide. Each parameter and variable declaration and each source
statement is decomposed, organized and translated into an internal format. This can
be accomplished in a number of ways. One way is to decompose the legacy source
code for a component into a property tree data structure. A property tree is a
hierarchical structure that provides for the storage of an unlimited number of
identifiers or properties at any node in the tree. This decomposition is accomplished
using several steps.

The first step is to develop a grammar representation of the legacy

-15-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

programming language in the form of a hierarchical property tree. Prior to
transformation, a legacy programming language grammar, an example of which is
shown in Fig. 3, is created which represents the characteristics of the legacy
programming language. Each different type of statement the legacy language supports
is identified in the legacy language (e.g., FOR-ENDFOR, CALL, PROMPT, etc.).
The statements are grouped into a hierarchy by grouping statements of a common
type. For instance, FOR-ENDFOR and WHILE-ENDWHILE are considered "loop
controls". A single root node 200 is created for the property tree. At the root node
200, properties are created in the tree which are common to all statements. For
instance, "Line Number" may be a property common to all statements. Below the root
node, classification nodes 202 are created in the tree which represent the hierarchy
developed for the statements above. At each classification node 202, properties are
implemented which are common to those statements. For instance, "Loop Counter”
might be a common attribute of all loop controls. Finally, statement nodes 204 are
created in the appropriate classification node 202 that represent each specific
statement. Properties are created for that node which are unique to the statement. In
this method, at least one common property should be defined at each statement node
204 with a default value that is unique to the statement: the statement type.

During transformation 1 158, another type of tree, known as an abstract syntax
tree, is developed for each component. An abstract syntax tree is a specialized version
of a hierarchical property tree designed to contain fully decomposed source code. An
example of an abstract syntax tree is shown in Fig. 4 A root node 250 is created and
properties are defined at the root node 250 which identify the component as a whole.
Routine nodes 252 are created for each block of code that exists within the
component. Classification nodes (not shown) which hold different types of code
blocks can be created if this offers an advantage to the regeneration process 166
(discussed later in this document). Each routine node 252 has defined parameters
which identify the routine. Section nodes 254, 256, and 258 are created below the
routine node 252 and identify the different sections of the routine. The following

three section types are typical: parameters node 254, local variables node 256 and

-16-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

statements node 258.

The transformation 1 158 also uses the map created during the analysis step
144 of the mining process 140. The map contains information on where each routine
and section within a routine starts and stops within the token stream. Beginning at the
first token for the parameter section of the code, transformation 1 158 processes
tokens until it finds a complete declaration statement. It then adds a declaration node
260 to the parameter section node 254. At that node, it defines properties which
completely define the variable which is being declared as a parameter. This is repeated
for the local variable and statement section. Once transformation 1 158 identifies the
statement type, it locates the node in the legacy language grammar tree shown in Fig,
3 which represents that statement. It traverses up the tree copying all of the properties
which define the statement or are a property of any classification node up to and
including the root node. Those properties are then defined in the statement node of
the components property tree. Transformation 1 158 then parses the statement and
replaces the default values of each property with the exact values found in the
statement.

In addition, transformation 1 158 maintains relationships between statements.
For instance, any statement found after a FOR statement and before the corresponding
ENDFOR would be created as a child node of the FOR statement node. This nesting
can continue as deep as is necessary. Nesting the code in this manner makes it easy
to move entire code blocks later during the transformation. Once this process is
completed, a complete, organized version of the legacy source code has been created
and can now be acted upon. A sample visualization of an abstract syntax tree
expressed as an XML document is shown in Figure 6.

Transformation 2

The transformation 2 engine 160 is responsible for converting the legacy forms
into object meta-components which can be used to create a graphical interface during
regeneration. This can be accomplished in a manner similar to the way the legacy
source code was manipulated in transformation 1 158. This process, uses two

reference property trees, a Graphical Interface Form Template tree, and an OO class

-17-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

hierarchy tree.

The Graphical Interface Form Template tree contains a representation of an
empty graphical interface form. The root node for this form contains a description of
the basic characteristics of the form. The property tree would comprise three root
nodes. The first root node would contain the properties which describes the
"window." A window is an area for displaying information on a graphical user
interface. The second root node contains a placeholder for the menu bar. A menu bar
is a special area usually placed at the top of a window which allows the user to select
from a series of commands. The third root node contains child nodes which describe
the contents of the window itself. In order to create a more efficient process, a default
configuration for the window contents should be supplied in the property tree. The
OO class hierarchy tree describes the class hierarchy of the target object orientated
software development environment. This property tree is created substantially similar
to the Legacy Language Grammar Tree. Every OO model software development
environment has a "system" or built-class hierarchy. This class hierarchy defines the
foundation class objects which make up the development environment. The OO class
hierarchy tree is created by implementing a property tree which describes each
attribute of each class in the hierarchy.

Referring to Fig. 5, transformation 2 160 retrieves a meta-component from the
repository representing a legacy form (Step S350). A new property tree is created
which will represent the graphical interface form replacement for the legacy form
(Step S352). This is accomplished by first copying the Graphical Interface Form
Template. Transformation 2 160 scans the meta-component (Step S354) and, if the
code scanned is not a named data entry field (No, Step S356), then, for each item on
the legacy character form (field, trim, etc.), transformation 2 160 decides what
replacement object will be placed on the graphical form (Step S358). Once this
decision is made, the process can look up the object class in the OO class hierarchy
tree and collect all its properties by traversing the tree all the way up to the root node
and collecting properties along the way (Step S360). Then, a field node is created in
the form section of the abstract syntax tree and the copied properties are defined at that

-18-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

node with the default values replaced by those read from the legacy form (Step S362).
Once all items on the legacy form have been processed, what remains is a complete
description of a graphical interface.

Two other processes my be implemented during the creation of the graphical
interface. First, when a named data entry field is encountered on the legacy form
(Yes, Step S356), processing of the form is suspended (Step S364) while the meta
component for the object class which will replace the source code associated with the
form is retrieved and an attribute 1s added to the object which matches the definition
of the field (Step S366). This is done because in many legacy software development
environments, fields on forms are implicitly declared variables in the form’s source
code. In the OO model, they became declared attributes of the object. Second, after
processing the legacy form, the process scans the abstract syntax tree created in
transformation I 158 for the form’s source code. Specifically, the process looks for
user commands found in the legacy source. If any are found, any one of several GUI
controls (buttons, toolbar icons, or menubar commands) may be created on the
graphical user interface property tree based on input from a GUI Style Wizard. Then,
one or more "events," are added to the abstract syntax tree that represents the new
code logic for the form. These added “events” will associate the new GUI form
controls with the method that was generated in the object class that is the transformed
representation of the logic associated with the menu command in the legacy
application.

Transformation 3

In transformation 3 162, the abstract syntax tree for each legacy source code
component is retrieved from the repository. The corresponding object meta
component is retrieved as well. For every routine node in the abstract syntax tree, a
"method" node is created in the object meta component. A method is the source code
in an object that can act upon the object. Transformation 3 162 first takes any
parameters of the routine and declares them as parameters of the method.

The same is done with local variables. The statements are then processed. For

each legacy statement type, transformation 3 162 decides how to convert the statement

-19-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

and where to put it. In many instances, the engine may decide to completely move an
entire routine or subset of a routine to a completely different object. This happens
when a feature of the legacy software development language is not easily translated
into the new software development environment.

Another part of transformation 3 162 is transforming the procedural context
of the legacy software application into an object context. This has two aspects. First,
in a procedural environment, one component invokes another by "calling" it. In the
OO model, rather than calling a procedure, an instance (or copy) of an object is
created and one of its methods is invoked. Whenever transformation 3 162 encounters
some kind of legacy call statement, it suspends processing, retrieves the object meta
component which defines the called object, and validates the parameters to the call.
In some instances the object may require adjustments. Then, in the calling
component, the call statement is replaced with several different statements. The first
statement is to an Object Request Broker (ORB). An ORB is a special object whose
job is to manage the creation of other objects based on a request. The next statement
added is a call to a special method common to all transformed components which
"invokes" or starts the objects processing.

The second aspect of the transformation from a procedure to an object context
is the syntactical difference between a procedural software development tool and a OO
software development tool. During the processing of the statements, each token is
checked to see if it is a reference to what has been transformed into an attribute of the
class. If so, the appropriate changes are made to the source so the appropriate variable
is referenced.

Transformation 4

Transformation 4 164 is the transformation in this exemplary embodiment. It
involves the cleanup of a variety of small problems which can remain but may not be
dealt with in parallel to all of the processing which is performed in transformation 3
162.

Regeneration Process

The regeneration process 166 is the reverse of the mining process 140. During

-20-

WO 02/093367 PCT/US02/14933

10

15

the regeneration process 166, the object meta-components created during the
transformation process 156 are used to create the actual object classes that are placed
in the new software development environment. In addition, the new graphical
interface forms and any other necessary components are created and placed in the new
software development environment.

Extension

The extension step 168 builds the new Foundation Class Library, Business
Object Library and Front-End Component library as specified by the Extension
Wizard run during the mining process 140.

Regeneration

In regeneration step 170, actual object classes and GUI forms are generated
from the object meta-components according to the specifications contained therein.

Numerous additional modifications and variations of the present disclosure are
possible in view of the above-teachings. It is therefore to be understood that within
the scope of the appended claims, the present disclosure may be practiced other than

as specifically described herein.

21-

WO 02/093367 PCT/US02/14933

5

10

15

20

25

30

What is claimed is:
1. A method for transforming a procedural program having procedural
language code into an object-oriented program, comprising:
scanning the procedural language code and creating a map based on the
scanned procedural language code;
storing the scanned procedural language code as intermediate code;
processing at least a segment of the procedural language code using the map;
creating a first data structure using the processed segment;
modifying the intermediate code based on the first data structure; and
generating an object-oriented program having an object class based on the

modified intermediate code.

2. The method of claim 1, further comprising:
suspending the step of processing a segment of the procedural language code
when a predetermined segment of the procedural language code is detected; and

modifying an other intermediate code based on the predetermined segment.

3. The method of claim 1, further comprising creating a second data
structure based on the procedural language, wherein the second data structure is a
hierarchical tree having a node identifying a property of a statement of the procedural

programming language.

4. The method of claim 3, wherein the step of creating a first data structure
includes locating a node in the second data structure based on the processed segment,
traversing the nodes second data structure to a root node, and including the contents

of the traversed nodes in the first data structure.

5. A storage medium including computer executable code for transforming a
procedural program having procedural language code into an object-oriented program,

comprising:

-22-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

code for scanning the procedural language code and creating a map based on
the scanned procedural language code;

code for storing the scanned procedural language code as intermediate code;

code for processing at least a segment of the procedural language code using
the map;

code creating a first data structure using the processed segment;

code for modifying the intermediate code based on the first data structure; and

code for generating an object-oriented program having an object class based

on the modified intermediate code.

6. The storage medium of claim 5, further comprising:

code for suspending processing a segment of the procedural language code
when a predetermined segment of the procedural language code is detected; and

code for modifying an other intermediate code based on the predetermined

segment.

7. The storage medium of claim 5, further comprising code for creating a
second data structure based on the procedural language, wherein the second data
structure is a hierarchical tree having a node identifying a property of a statement of

the procedural programming language.

8. The storage medium of claim 7, wherein the code for creating a first data
structure includes code for locating a node in the second data structure based on the
processed segment, code for traversing the nodes second data structure to a root node,

and code for including the contents of the traversed nodes in the first data structure.

9. A computer data signal embodied in a transmission medium and including
computer executable instructions for transforming a procedural program having
procedural language code into an object-oriented program, comprising:

a data signal portion for scanning the procedural language code and creating

23-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

a map based on the scanned procedural language code;

a data signal portion for storing the scanned procedural language code as
intermediate code;

a data signal portion for processing at least a segment of the procedural
language code using the map;

a data signal portion for creating a first data structure using the processed
segment;

a data signal portion for modifying the intermediate code based on the first
data structure; and

a data signal portion for generating an object-oriented program having an

object class based on the modified intermediate code.

10. The computer data signal of claim 9, further comprising:

a data signal portion for suspending processing a segment of the procedural
language code when a predetermined segment of the procedural language code is
detected; and

a data signal portion for modifying an other intermediate code based on the

predetermined segment.

11. The computer data signal of claim 9, further comprising a data signal for
creating a second data structure based on the procedural language, wherein the second
data structure is a hierarchical tree having a node identifying a property of a statement

of the procedural programming language.

12. The computer data signal of claim 11, wherein the data signal portion for
creating a first data structure includes a data signal portion for locating a node in the
second data structure based on the processed segment, a data signal portion for
traversing the nodes second data structure to a root node, and a data signal portion for

including the contents of the traversed nodes in the first data structure.

-24-

WO 02/093367 PCT/US02/14933

10

15

20

25

30

13. A method for transforming a procedural program having procedural
language code into an object-oriented program, comprising:

scanning the procedural language code and creating a map based on the
scanned procedural language code;

storing the map and the scanned procedural language code as metadata in a
repository;

creating a new set of target metadata containers for transformed
representations of each component;

processing at least a segment of the procedural language code using procedural
metadata representations to create a first abstract syntax tree using the processed
segment;

populating the target metadata containers based on the first abstract syntax
tree; and

generating an object-oriented metadata representation of the original

procedural program having an object class based on the first abstract syntax tree.

14. The method of claim 13, further comprising:
suspending the step of processing a segment of the procedural language code
when a predetermined segment of the procedural language code is detected; and

modifying another abstract syntax tree based on the predetermined segment.

15. The method of claim 13, further comprising creating a second abstract
syntax tree based on the procedural language, wherein the second abstract syntax tree
may be a abstract syntax tree having a node identifying a property of a statement of

the procedural programming language.

16. The method of claim 15, wherein the step of creating a first abstract syntax
tree includes locating a node in the second abstract syntax tree based on the processed
segment, traversing the nodes second abstract syntax tree to a root node, and including

the contents of the traversed nodes in the first abstract syntax tree.

-25-

WO 02/093367

100

FIGURE 1

PCT/US02/14933

//\
102 \\M 116 < R 114
Network TO
CPU a o - Controlier PSTN
104 110
LAN DATA
Memory |« > - TRANSMISSION
CONTROLLER
\ 112
\
LAN TO
INTERFACE E LAN
120 118
< 122
/
Data £ INPUT
Storage — X - ~| DEVICES
106 108
¥
PRINTER | _ | DISPLAY
INTERFACE| '\/‘ - UNIT

1/7

WO 02/093367 PCT/US02/14933
Figure 2
140
Mining
142 154
Discovery Preparation
Analysis V" 144 Appl. Analysis
152 Report
Configuration " 446
Extension
GUI Style Wizard
Wizard 190
148
156
Transformation
158 164
Transformation 1 Transformation 4
Transformation 2 Transformation 3
160 162
166
Regeneration
Extension Regeneration
168 170

2/7

WO 02/093367 PCT/US02/14933

Figure 3
200
Root Node
202 202
Classification Classification
Node Node
204 ‘/////////\\\\\\\\\\\ 204
Statement Statement

Node Node

3/7

WO 02/093367 PCT/US02/14933

Figure 4
250
Root Node
Routine Routine
Node Node
254 256 258
Parameters Local Variables Statements
Node Node Node

260
)

Declaration
Node

4/7

WO 02/093367 PCT/US02/14933

Figure 5

S350 Retrieve Meta-Component

i

Create New
S352 Property Tree
Y
S354 Scan Meta-Component |«
Named Data .
S356 Entry Field? Suspend Processing

S364

[

Retreive Meta-Component,

S358 Determine Replacement Object

Add Attribute to -
\ Object Matching
$360 Find Replacement Object Definition of Field
In OO Class Tree 3366
\
3362 Create Field Node

in New Property Tree

511

PCT/US02/14933

V9 914

g

2

WO 02/093367

<, Joboyu},=adf | Jefeag ,a|dug,=snjeALIN}BY /NN 10N, =S[INN ,PI0081j08]8S,=8WEN
«0,=0leogereq ,0,=uoisaldeleq ,0,=Uibusteleq Jebaju),=sse|neeq Jejeas,=kiobajeneleq ,8Inpasold [8907,=U0NLINISSE]) PI0DaID8[ess-
< JoBeju],=adA Lejeag ,ejdwig, =anjeAuInjay [INN JON,=S[IN ,PI0981)1asul,=aeN

0,:=0[89581eq ,0,=uoisialdereq ,0,=yibuateleq Jebaju),=sseneleq Jejeas,=Alobojeneleq ,mnpaooid [B90T,=U0NBILISSE)) PIOJRIIaSUIS+
<, JoBaju},=adf Jefeag ,aiduwig,=anje AUIMIBY JINN 10N,=SIINN ,p102aIa)ejep,=sllieN

.0,=9[e0SEleq ,0,=uoisioaldeleq ,0,=ubusTeieq Jebiajuj,=sse|eleq Jejeas,=Aiobajeneleq ,aInpaocid [Bo07,=UONEINISSE]) PIoJBIe)B|eps +
<, Jobaju),=odf 1 1ejedg ,a1dwiS, =enfeAuIjay JINN JON,=SINN ,SPIeiLes],=oWeN

.=9[E9SeIeq ,0,=Uoisioaldejeq ,0,=UibuaTereq Jebieju,=sseiejeq ,e[eag,=AioBajenejeq ,aINpeacid (007, =UONBOLISSE]) SPiRIEss +
<,S8UIIN0Y, =UOIJBILISSE]) S8INPas0Id[eaoTs -

: <,S8UIIN0Y,=UONBINISSE[) SJUSAT> +

) <,0,=USY0L}IeIS ,0,=UeY0] pU3 ,80in0S,=UOBILISSEI]) SZifefiuls +

<, SUOIJeJe[a=UONBIISSE]) SO|qBLBAS +

<, SUOIIRIB0a(],=UONEalISSE])) SIBjoUIBIEd> +

< Jobiajuy,=adk | Jo[e0g ,BUON,=8N[EAUINIGY UONBLLOJU] 10BJUO7) [eUosiad AnuT, =yewsy JInN

JON,=SIINN ,Uosied,=sLueN ,0,=01e0Sejeq ,0,=uoisiaidereq ,b,=yibueteleq Jobeju,=ssejoeeq 1ajeag,=Aiobejeneleq ,aeld Jasp,=UoNeaLisse|s uosiads -
<,UofelLLIoju| JoBjuoY [euosiadiAnud,=uopduosa(,sweld 4gy uosied,=sweN oNINYY4aY40>=

< ("adfyaop jiny 10} 821108 3_\ ONINVY49Y40 IJALIOG>
<¢, 40"} ,=UOISIOA JWX; >

lwxzelooooodwansaona [sSaIppY ||

O OE O ersn® somonedJ yoresso | P [&) a 4 axoegm |

dieH siooL seoneq melA P elid |

IaJojdx3 Joulsyu] Josooly - WX z€100000\dwensaona]

199 | g gy s

6/7

SUBSTITUTE SHEET ®mulLE 28)

PCT/US02/14933

DI |

d9 914

Jepndwiod AN [

<OllUM/>

</ Siejgiod,=jebie] Apeay,=sniels NOILONNATIVO LS,=edh Luswalels

W82 hi=UBYO LIS (), =SIRjouIeIed ,3STY,=oARoRIBIU(S] IS TY,=TOSSEH .L87,~UBY0L PuZ, TOSHP8YD,=Iuauoduiod Uogoun2ens
</ I Uosiad: = pi uosied,=eieyp Apesy,=sniej
0T3S LS,=0dALjuswalels G ||, =USYOLVEIS , O TAS 3S,=80A110918S ,pi8jou = pi"ejou: * piasnods = pi~asnods: * spiomoy =
%_oie_._m:oﬁ 0UBJSISSE = w:oﬁl Sjuejsisse: ‘ LB B0UE)sISSe = alleu sjuejsisse: * suoyd ajiqoul = suoyd sjiqow: * iobeds= sabed:
wwe%m Jlewa a0y = Ssaippe” lews auioy: * suoyd™swoy = auioyd”suuoy: ‘ Xejsuwoy = Xej suioy: * Ajunod”suioy = Auncaswoy;
*apodjejsodauoy = 3poo ejsod eluoy: * ajels” aluol = ajejs™suioy: * Aoawoy = Ayjo™BLIoy; gJeRls” B0 = £}o8s By,
719945 8L0Y = 7}0al1S BLOY: ‘ J8eS BWIOY = }aaS BWOY; ‘ SSaIpPE leua” ssausng = SSaJppe e ssauisng; ‘ suoyd™ssauisng
= auoyd sseusng Xej”ssaulsnq = Xej ssauisng; * Ayunod sseuisnd = A1unod”ssauisng: ¢ apoa” ejsod sseuisng = 8poa[ejsod ssauisng;

" oje}s ssauisng = ojejs ssauisnd: ‘ fyo”ssauisng = Ao ssausng: £]001)S SSAUISNA = §)0aN)S SSAUISNG; ‘ Z108NS” SSaUIsng =
geals - SSAUISTG: * Joal)S” SSaUISNq = Joal)S” SSAUISNG: * UOJESO) = Uojeao: * ajy_qol = oy qof: sopusB = Japusb: Aepupiq = Aepypig;
*XUJns = Xins: * aeU”Se| = SLueu Je]: * SWEU S|ppIW = SLLUBU S[PPILL: ¢ SLBU JSIY = SUIBU JSA: S} = O[): ¢ SWRU N = LBy [n):

* aweyAedsip = oweuAedsip: * junod ejepdn = junco™ejepdn: * pi”uosiad = piuosiad:,=10819S ,INYL=TOSS] IS TV, =pereadays)
WISTVH,=I0ISBINS] ,3STVH,=BAJoReS| IS T4 =Iounsias| ,3S Tv4,=nusLigngsey ,uosiad,=Wwoid ,}8z},=ueyo pus 1osjag>
<,Apesy,=snjejg , JTHM LS, =edA1juswelels
801 1, =USXOLHEIS 3G VA, =ONOBIGIIS] o} =ICHVIUSPU)} J=UoNOLPU3 INNINOD Y3= snieision3),=fpog ajyp>-
< __masws:m__-ym@m | papoddnsun,=snielg
NOILONNATIVO LS,=odAjusuieie)s ,| 80} =UsYoL1EIS (PI00OYI9910S'NOSHd, = UoneaoT ‘(| * smoypeinbay) TINNA = SMoypalnbay
(0 LSWSI (TINNAI = LSIS1),=stejolueled S TV,=0M50IaUlS]| 35TV~ TOSSEH WL0} h=Ua¥oLpu3 ,TOSuIBag,=}usuodiog uoounJjens
<,0,=USYO LB} ,0,=Us}0 pu3 ,80In0G, =UOJJBILISSE]]) 80IN0S> -
<, SUOIjEI[08(],=UONBILISSE]Y) SOqELBAS -
<, Suofele|ae(,=uoeatsse|) siejsLieleds +

WO ﬁ093367

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Int jonal Application No

PCT/US 02/14933

A. CLASSIFICATION QF 4U4BJECT MATTER

IPC 7 GO6F9

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X SNEED H M: "Reverse engineering as a 1-5,7-9,
bridge to CASE" 11-13,
COMPUTER-AIDED SOFTWARE ENGINEERING, 1995. 15,16
PROCEEDINGS., SEVENTH INTERNATIONAL
WORKSHOP ON TORONTO, ONT., CANADA 10-14
JULY 1995, LOS ALAMITOS, CA, USA,IEEE
COMPUT. SOC, US,
10 July 1995 (1995-07-10), pages 304-317,
XP010146616
ISBN: 0-8186-7078-9
page 305, column 2, line 7 - line 27
Y page 305, column 2, 1ine 7 - line 27 2,6,10,
14

y -~

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Speciat categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0Q document referring to an oral disclosure, use, exhibition or
other means

*P" document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
metr]ns, 3uch combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the intetnational search

18 September 2002

Date of mailing of the international search report

17/10/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Skomorowski, M

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Int onal Application No

PCT/US 02/14933

C.{Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

Y MASIERO P C ET AL: "Legacy systems
reengineering using software patterns"
COMPUTER SCIENCE SOCIETY, 1999.
PROCEEDINGS. SCCC ’99. XIX INTERNATIONAL
CONFERENCE OF THE CHILEAN TALCA, CHILE
11-13 NOV. 1999, LOS ALAMITOS, CA,
USA,IEEE COMPUT. SOC, US,

11 November 1999 (1999-11-11), pages
160-169, XP010365295
ISBN: 0-7695-0296-2
page 161, column 1, 1ine 1 -page 162,
column 1, Tine 3

X GONZALEZ N A ET AL: "Migrating software

from procedural to object-oriented
architecture"

SYSTEMS, MAN, AND CYBERNETICS, 1998. 1998
IEEE INTERNATIONAL CONFERENCE ON SAN
DIEGO, CA, USA 11-14 OCT. 1998, NEW YORK,
NY, USA,IEEE, US,

11 October 1998 (1998-10-11), pages
4872-4877, XP010311248

ISBN: 0-7803-4778-1
page 4874, 1ine 4 - Tine 33
X SNEED H M: "Migration of procedurally

: oriented COBOL programs in an
object-oriented architecture"
SOFTWARE MAINTENANCE, 1992. PROCEERDINGS.,
CONFERENCE ON ORLANDO, FL, USA 9-12 NOV.
1992, LOS ALAMITOS, CA, USA,IEEE COMPUT.
SoC, US,

9 November 1992 (1992-11-09), pages
105-116, XP010030542

ISBN: 0-8186-2980-0
page 107, column 2, line 32 -page 111,
column 1, line 10

X JACOBSON I ET AL: "Re-engineering of old
systems to an object-oriented
architecture"

OOPSLA ’91. OBJECT—ORIENTED PROGRAMMING
SYSTEMS, LANGUAGES, AND APPLICATIONS,
PHOENIX, AZ, USA, 6-11 OCT. 1991,

vol. 26, no. 11, pages 340-350,
XP002213902

SIGPLAN Notices, Nov. 1991, USA

ISSN: 0362-1340

page 343, column 1, line 1 -page 347,
column 2, Tine 17

A WO 95 18409 A (REYNOLDS BRIAN ;OBIN
RAYMOND (GB)) 6 July 1995 (1995-07-06)
the whole document

2,6,10,
14

1-16

1-16

Form PCT/ISA/210 {continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Int’onal Application No

PCT/US 02/14933

..formation on patent family members

Patent document . Publication Patent family Publication
cited in search report date member(s) date
WO 9518409 A 06-07-1995 AU 1323395 A 17-07-1995
Wo 9518409 Al 06-07-1995

Form PCT/ISA/210 {patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

