wo 2014/028115 A1 |1 I} NN RO A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

20 February 2014 (20.02.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/028115 A1l

(51) International Patent Classification: 92121 (US). CASCAVAL, Gheorghe, C.; 5775 More-
GO6F 9/445 (2006.01) GO6F 17/30 (2006.01) house Drive, San Diego, California 92121 (US).
(21) International Application Number: (74) Agent: COLE, Nicholas, Albert; 5775 Morehouse Drive,
PCT/US2013/046099 San Diego, CA 92121 (US).

(22) International Filing Date: (81) Designated States (uniess otherwise indicated, for every
17 June 2013 (17.06.2013) kind of national protection available): AE, AG, AL, AM,
25) Filing L . Enalish AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(25) Filing Language: nglis BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
61/683,999 16 August 2012 (16.08.2012) us MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI; NO, NZ,
61/684,594 17 August 2012 (17.08.2012) us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
13/722,066 20 December 2012 (20.12.2012) us SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(71) Applicant: QUALCOMM INCORPORATED [US/US]; TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Attn: International IP Administration, 5775 Morehouse (g4) Designated States (unless otherwise indicated, for every
Drive, San Diego, California 92121 (US). kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: WEBER, Michael; 5775 Morehouse Drive, GM, KE, LR, LS, MW, MZ, NA, RW, 8D, SL, SZ, TZ,

San Diego, California 92121 (US). RESHADI, Mo-
hammed, H.; 5775 Morchose Drive, San Diego, California

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: PRE-PROCESSING OF SCRIPTS IN WEB BROWSERS

552

[
o
=]

User Interface

®

URL Events

(57) Abstract: The aspects include browser systems and methods of
loading/rendering a webpage by processing the web document (HTML page)
in parallel. A scanner process scans the web document, identifies scripts, and
initiates the downloading of the scripts. As the scripts are downloaded, an
HTML parser generates an identifier for each script and the sends the scripts

554 5?6
—L v - \

and associated identifiers to a script engine. The script engine parses, ana-

Resource Manager
562

Prefelching

563

HTML Pre-Scanning

Iw
&
&

035 Soanming 71500
Pre-Feiching
| JavaScript Scannmg/[is7

L Pre-Fetching

Per-Page DOM Engine
570

HTML
Parsing

571

564] HTML Code g
Image Decoding | JavaScript Styling
L Parsing |

Timers Events

oli

CSS Parsing

S

——
JS Code Layout Tree
558 560
?)] 3
Per-Page JavaScript Engine Rendering Engine
578 580 532 584

| Execution | |Compllauon|

| Layout | | Render

® ©6

OO

FIG. 5

lyzes, compiles, and otherwise prepares the scripts for execution in an order
that may be ditferent than the execution order of the scripts.

WO 2014/028115 A1 |IWAIT 00T A0 0O O

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

GW, KM, ML, MR, NE, SN, TD, TG).
Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

WO 2014/028115 PCT/US2013/046099

PRE-PROCESSING OF SCRIPTS IN WEB BROWSERS

RELATED PATENT APPLICATIONS

[0001] This application claims the benefit of priority to U.S. Provisional Patent
Application Serial No.: 61/684,594 entitled “Pre-Processing of Scripts in Web
Browsers” filed August 17, 2012 and U.S. Provisional Patent Application Serial
No.: 61/683,999 entitled “Pre-Processing of Scripts in Web Browsers” filed August

16, 2012, the entire contents of both of which are hereby incorporated by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to methods, systems, and devices for rendering
HTML documents in a web browser, and more particularly to methods of

parallelizing web browser operations.

BACKGROUND

[0003] Wireless communication technologies and mobile electronic devices (e.g.,
cellular phones, tablets, laptops, etc.) have grown in popularity and use over the past
several years. To keep pace with increased consumer demands, mobile electronic
devices have become more feature rich, and now commonly include multiple
processors, system-on-chips (SoCs), and other resources that allow mobile device
users to execute complex and power intensive software applications (e.g., web
browsers, video streaming applications, etc.) on their mobile devices. Due to these
and other improvements, smartphones and tablet computers have grown in
popularity, and are replacing laptops and desktop machines as the platform of choice

for many users.

[0004] Mobile device users can now accomplish many their daily tasks with ease
and convenience by accessing the Internet via browser applications on their mobile

device. As mobile devices continue to grow in popularity, web browsers that are

WO 2014/028115 PCT/US2013/046099

able to better utilize the multiprocessing capabilities of the modern mobile devices

will be desirable to consumers.

SUMMARY

[0005] The various aspects include methods of preparing scripts included in an
HTML document, which may include scanning the HTML document to discover a
plurality of scripts, sending the plurality of scripts to a script engine, parsing the
HTML document while the script engine prepares the plurality of scripts for
execution, identifying a next script to be executed from the plurality of scripts,
sending information corresponding to the identified next script to be executed to the
script engine, suspending the parsing of the HTML document, receiving a
notification indicating that the identified next script to be executed has been
executed, and resuming the parsing of the HTML document in response to receiving
the notification. In an aspect, sending information corresponding to the identified
next script to be executed to the script engine may include sending the identified

next script to be executed to the script engine.

[0006] In an aspect, the method may include generating an identifier for each of the
plurality of scripts. In a further aspect, sending the plurality of scripts to a script
engine may include sending the plurality of scripts and identifiers to the script
engine, and sending information corresponding to the identified next script to be
executed to the script engine may include sending the identifier of the next script to
be executed to the script engine. In a further aspect, generating an identifier for each
of the plurality of scripts may include associating at least one script with a uniform
resource identifier (URI). In a further aspect, generating an identifier for each of the
plurality of scripts may include generating a signature for at least one script. In a
further aspect, generating an identifier for each of the plurality of scripts may

include generating at least one identifier that may include text of at least one script.

WO 2014/028115 PCT/US2013/046099

[0007] In a further aspect, scanning an HTML document to discover a plurality of
scripts may include scanning the HTML document in a first processor, and parsing
the HTML document while the script engine prepares the plurality of scripts for
execution may include parsing the HTML document in a second processor. In a
further aspect, scanning an HTML document to discover a plurality of scripts may
include scanning the HTML document by a first process executing in a processor,
and parsing the HTML document while the script engine prepares the plurality of
scripts for execution may include parsing the HTML document by a second process

executing in the processor.

[0008] In a further aspect, parsing the HTML document while the script engine
prepares the plurality of scripts for execution may include parsing the HTML
document while the script engine parses, analyzes, and compiles a first script in
parallel with the script engine parsing, analyzing, and compiling a second script. In
a further aspect, parsing the HTML document while the script engine prepares the
plurality of scripts for execution may include parsing the HTML document while the
script engine prepares the plurality of scripts for execution in a preparation order
that is different from an execution order in which the plurality of scripts are
executed. In a further aspect, identifying a next script to be executed from the
plurality of scripts may include identifying the next script to be executed based on a

defined execution order.

[0009] Further aspects include a computing device that may include means for
scanning an HTML document to discover a plurality of scripts, means for sending
the plurality of scripts to a script engine, means for parsing the HTML document
while the script engine prepares the plurality of scripts for execution, means for
identifying a next script to be executed from the plurality of scripts, means for
sending information corresponding to the identified next script to be executed to the
script engine, means for suspending the parsing of the HTML document, means for

receiving a notification indicating that the identified next script to be executed has

WO 2014/028115 PCT/US2013/046099

been executed, and means for resuming the parsing of the HTML document in

response to receiving the notification.

[0010] In an aspect, means for sending information corresponding to the identified
next script to be executed to the script engine may include means for sending the
identified next script to be executed to the script engine. In a further aspect, the
computing device may include means for generating an identifier for each of the
plurality of scripts. In a further aspect, means for sending the plurality of scripts to a
script engine may include means for sending the plurality of scripts and identifiers to
the script engine, and means for sending information corresponding to the identified
next script to be executed to the script engine may include means for sending the
identifier of the next script to be executed to the script engine. In a further aspect,
means for generating an identifier for each of the plurality of scripts may include
means for associating at least one script with a uniform resource identifier (URI). In
a further aspect, means for generating an identifier for each of the plurality of scripts
may include means for generating a signature for at least one script. In a further
aspect, means for generating an identifier for each of the plurality of scripts may
include means for generating at least one identifier that may include text of at least

one script.

[0011] In a further aspect, means for scanning an HTML document to discover a
plurality of scripts may include means for scanning the HTML document in a first
processor, and means for parsing the HTML document while the script engine
prepares the plurality of scripts for execution may include means for parsing the
HTML document in a second processor. In a further aspect, means for scanning an
HTML document to discover a plurality of scripts may include means for scanning
the HTML document by a first process executing in a processor, and means for
parsing the HTML document while the script engine prepares the plurality of scripts
for execution may include means for parsing the HTML document by a second

process executing in the processor.

WO 2014/028115 PCT/US2013/046099

[0012] In a further aspect, means for parsing the HTML document while the script
engine prepares the plurality of scripts for execution may include means for parsing
the HTML document while the script engine parses, analyzes, and compiles a first
script in parallel with the script engine parsing, analyzing, and compiling a second
script. In a further aspect, means for parsing the HTML document while the script
engine prepares the plurality of scripts for execution may include means for parsing
the HTML document while the script engine prepares the plurality of scripts for
execution in a preparation order that is different from an execution order in which
the plurality of scripts are executed. In a further aspect, means for identifying a next
script to be executed from the plurality of scripts may include means for identifying

the next script to be executed based on a defined execution order.

[0013] Further aspects include a computing device that may include a processor
configured with processor-executable instructions to perform operations that may
include scanning an HTML document to discover a plurality of scripts, sending the
plurality of scripts to a script engine, parsing the HTML document while the script
engine prepares the plurality of scripts for execution, identifying a next script to be
executed from the plurality of scripts, sending information corresponding to the
identified next script to be executed to the script engine, suspending the parsing of
the HTML document, receiving a notification indicating that the identified next
script to be executed has been executed, and resuming the parsing of the HTML

document in response to receiving the notification.

[0014] In an aspect, the processor may be configured with processor-executable
instructions to perform operations such that sending information corresponding to
the identified next script to be executed to the script engine may include sending the
identified next script to be executed to the script engine. In a further aspect, in
which the processor may be configured with processor-executable instructions to

perform operations further including generating an identifier for each of the plurality

WO 2014/028115 PCT/US2013/046099

of scripts, and in which the processor may be configured with processor-executable
instructions to perform operations such that sending the plurality of scripts to a
script engine may include sending the plurality of scripts and identifiers to the script
engine, and sending information corresponding to the identified next script to be
executed to the script engine may include sending the identifier of the next script to

be executed to the script engine.

[0015] In a further aspect, the processor may be configured with processor-
executable instructions to perform operations such that generating an identifier for
each of the plurality of scripts may include associating at least one script with a
uniform resource identifier (URI). In a further aspect, the processor may be
configured with processor-executable instructions to perform operations such that
generating an identifier for each of the plurality of scripts may include generating a
signature for at least one script. In a further aspect, the processor may be configured
with processor-executable instructions to perform operations such that generating an
identifier for each of the plurality of scripts may include generating at least one

identifier that may include text of at least one script.

[0016] In a further aspect, the processor may be configured with processor-
executable instructions to perform operations such that scanning an HTML
document to discover a plurality of scripts may include scanning the HTML
document by a first process executing in a processor, and parsing the HTML
document while the script engine prepares the plurality of scripts for execution may
include parsing the HTML document by a second process executing in the
processor. In a further aspect, the processor may be configured with processor-
executable instructions to perform operations such that preparing the plurality of
scripts for execution may include the second process parsing, analyzing, and
compiling a first script in parallel with parsing, analyzing, and compiling a second

script.

WO 2014/028115 PCT/US2013/046099

[0017] In a further aspect, the processor may be configured with processor-
executable instructions to perform operations such that parsing the HTML document
while the script engine prepares the plurality of scripts for execution in parallel may
include parsing the HTML document while the script engine prepares the plurality
of scripts for execution in a preparation order that is different from an execution
order in which the plurality of scripts are executed. In a further aspect, the processor
may be configured with processor-executable instructions to perform operations
such that identifying a next script to be executed from the plurality of scripts may

include identifying the next script to be executed based on a defined execution order.

[0018] Further aspects include a non-transitory computer readable storage medium
having stored thereon processor-executable software instructions configured to
cause a processor to perform operations for preparing scripts included in an HTML
document, the operations including scanning the HTML document to discover a
plurality of scripts, sending the plurality of scripts to a script engine, parsing the
HTML document while the script engine prepares the plurality of scripts for
execution, identifying a next script to be executed from the plurality of scripts,
sending information corresponding to the identified next script to be executed to the
script engine, suspending the parsing of the HTML document, receiving a
notification indicating that the identified next script to be executed has been
executed, and resuming the parsing of the HTML document in response to receiving
the notification. In an aspect, the stored processor-executable software instructions
may be configured to cause a processor to perform operations such that sending
information corresponding to the identified next script to be executed to the script
engine may include sending the identified next script to be executed to the script

engine.

[0019] In a further aspect, the stored processor-executable software instructions
may be configured to cause a processor to perform operations including generating

an identifier for each of the plurality of scripts, and in which the stored processor-

WO 2014/028115 PCT/US2013/046099

executable software instructions may be configured to cause a processor to perform
operations such that sending the plurality of scripts to a script engine may include
sending the plurality of scripts and identifiers to the script engine, and sending
information corresponding to the identified next script to be executed to the script
engine may include sending the identifier of the next script to be executed to the
script engine. In a further aspect, the stored processor-executable software
instructions may be configured to cause a processor to perform operations such that
generating an identifier for each of the plurality of scripts may include associating at

least one script with a uniform resource identifier (URI).

[0020] In a further aspect, the stored processor-executable software instructions may
be configured to cause a processor to perform operations such that generating an
identifier for each of the plurality of scripts may include generating a signature for at
least one script. In a further aspect, the stored processor-executable software
instructions may be configured to cause a processor to perform operations such that
generating an identifier for each of the plurality of scripts may include generating at

least one identifier that may include text of at least one script.

[0021] In a further aspect, the stored processor-executable software instructions may
be configured to cause a processor to perform operations such that scanning an
HTML document to discover a plurality of scripts may include scanning the HTML
document by a first process executing in a processor, and parsing the HTML
document while the script engine prepares the plurality of scripts for execution may
include parsing the HTML document by a second process executing in the
processor. In a further aspect, the stored processor-executable software instructions
may be configured to cause a processor to perform operations such that preparing
the plurality of scripts for execution may include the second process parsing,
analyzing, and compiling a first script in parallel with parsing, analyzing, and

compiling a second script.

WO 2014/028115 PCT/US2013/046099

[0022] In a further aspect, the stored processor-executable software instructions may
be configured to cause a processor to perform operations such that parsing the
HTML document while the script engine prepares the plurality of scripts for
execution in parallel may include parsing the HTML document while the script
engine prepares the plurality of scripts for execution in a preparation order that is
different from an execution order in which the plurality of scripts are executed. In a
further aspect, the stored processor-executable software instructions may be
configured to cause a processor to perform operations such that identifying a next
script to be executed from the plurality of scripts may include identifying the next

script to be executed based on a defined execution order.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] The accompanying drawings, which are incorporated herein and constitute
part of this specification, illustrate exemplary aspects of the invention. Together
with the general description given above and the detailed description given below,
the drawings serve to explain features of the invention not to limit the disclosed

aspects.

[0024] FIG. 1 is a component block diagram illustrating an example system-on-chip
(SOC) architecture that may be used in computing devices implementing the various

aspects.

[0025] FIG. 2 is a function block diagram illustrating an example multicore

processor architecture that may be used to implement the various aspects.

[0026] FIG. 3A is a process flow diagram illustrating an aspect browser method for

rending an HTML document.

[0027] FIG. 3B is a function and process flow diagram illustrating example logical
components, information flows, operations, and transformations in an aspect

browser system.

WO 2014/028115 PCT/US2013/046099

10

[0028] FIG. 4 is a function block diagram illustrating example logical components,
functional components, information flows, and subsystems in an aspect browser

system.

[0029] FIG. 5 is a function block diagram illustrating aspect browser system

implementing a parallel browser infrastructure in accordance with an aspect.

[0030] FIG. 6 is a process flow diagram illustrating an aspect browser method of
processing an HTML document to discover and pre-fetch resources in advance of

the page loading/rendering operations.

[0031] FIG. 7A is a process flow diagram illustrating an aspect browser method of
using speculation techniques and heuristics to predict the usage of document

resources.

[0032] FIG. 7B is a process flow diagram illustrating an aspect browser method of

speculatively pre-fetching resources in parallel.

[0033] FIG. 7C is a process flow diagram illustrating an aspect browser method of

preprocessing scripts in parallel.

[0034] FIG. 8 is a process flow diagram illustrating an aspect browser method of

processing pre-fetched resources.

[0035] FIG. 9 is a function block diagram illustrating example functional

components in CSS engine suitable for use with the various aspects.

[0036] FIG. 10 is a process flow diagram illustrating an aspect styling method for

performing rule matching and cascading operations on several nodes in parallel.

[0037] FIG. 11A is an illustration of an example document object model (DOM)

tree suitable for use in various aspects.

[0038] FIG. 11B is an illustration of a task directed acyclic graph (DAG)
corresponding to the DOM tree illustrated in FIG. 11A.

WO 2014/028115 PCT/US2013/046099

11

[0039] FIG. 12 is a component block diagram of an example mobile device suitable

for use with the various aspects.

[0040] FIG. 13 is a component block diagram of an example server suitable for use

with various aspects.

[0041] FIG. 14 is a component block diagram of a lap top computer suitable for
implementing the various aspects.

DETAILED DESCRIPTION

[0042] The various aspects will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made to
particular examples and implementations are for illustrative purposes and are not

intended to limit the scope of the invention or the claims.

[0043] Web browsers are complex software applications that implement multiple
standards, need to support legacy behavior, and are highly dynamic and interactive.
Web browser designers generally aim to achieve an optimal mix of fast response
times for page loads (even in the presence of long network latencies), high
performance (e.g., to enable interactivity for web applications), and high user

interface responsiveness to provide a good user experience.

[0044] The various aspects provide web browsers, browser methods, and browser
systems configured to achieve fast response times, high performance, and high user
interface responsiveness via techniques that exploit the concurrency/parallelism

enabled by modern multiprocessor mobile device architectures.

[0045] Hyper-Text Markup Language (HTML) code may both embed JavaScript®
code (called “inline scripts™) and include links to JavaScript® code (called “external
scripts”). In order to correctly process an HTML document, both the inline and

external scripts are typically executed in a specific order defined by HTML

WO 2014/028115 PCT/US2013/046099

12

standards. That is, the standards require that the final execution order of the scripts

be maintained.

[0046] The various aspect methods and browsers may be configured to download,
parse, analyze, and compile scripts in parallel and/or out of order, and execute the

script in the final execution order required by standards.

[0047] Generally, not all of the scripts included (i.e., embedded or linked to) in an
HTML document are actually executed, and preparing all the scripts for execution in
advance may waste power and processing resources. Various aspects intelligently

select the scripts that are to be prepared for execution.

[0048] As multiple scripts are downloaded, parsed, analyzed, and compiled in
parallel, the order in which the scripts become ready for execution may be different
than the specific execution order defined by the HTML standards. If a script is not
ready to execute, but is the next script in the specific execution order defined by the
HTML standards, a browser may be required to wait until the script becomes ready
for execution before performing any additional processing of the HTML document.
Various aspects utilize this wait time to prepare other scripts or resources for
execution (which is not regulated by the HTML standards). Multiple scripts and

resources may be prepared in parallel and/or during the execution of other scripts.

[0049] The word “exemplary” is used herein to mean ‘“‘serving as an example,
instance, or illustration.” Any implementation described herein as “exemplary” is
not necessarily to be construed as preferred or advantageous over other

implementations.

[0050] The terms “mobile device,” and “computing device” are used
interchangeably herein to refer to any one or all of cellular telephones, smartphones,
personal or mobile multi-media players, personal data assistants (PDA’s), laptop
computers, tablet computers, smartbooks, palm-top computers, wireless electronic

mail receivers, multimedia Internet enabled cellular telephones, wireless gaming

WO 2014/028115 PCT/US2013/046099

13

controllers, and similar personal electronic devices which include a programmable
processor and a memory. While the various aspects are particularly useful in mobile
devices, such as cellular telephones, which may have limited processing power, the
aspects are generally useful in any computing device that executes scripts and/or

applications written in dynamic, scripting and/or markup languages.

[0051] The term ““system on chip” (SOC) is used herein to refer to a single
integrated circuit (IC) chip that contains multiple resources and/or processors
integrated on a single substrate. A single SOC may contain circuitry for digital,
analog, mixed-signal, and radio-frequency functions. A single SOC may also
include any number of general purpose and/or specialized processors (digital signal
processors, modem processors, video processors, etc.), memory blocks (e.g., ROM,
RAM, Flash, etc.), and resources (e.g., timers, voltage regulators, oscillators, etc.).
SOCs may also include software for controlling the integrated resources and

processors, as well as for controlling peripheral devices.

[0052] The term “multicore processor” is used herein to refer to a single integrated
circuit (IC) chip or chip package that contains two or more independent processing
cores (e.g., CPU cores) configured to read and execute program instructions. A
SOC may include multiple multicore processors, and each processor in an SOC may
be referred to as a core. The term “multiprocessor” is used herein to refer to a
system or device that includes two or more processing units configured to read and

gxecute program instructions.

99 ¢ 99 ¢

[0053] As used in this application, the terms “component,” “module,” “system,”

99 ¢

“engine,” “manager” and the like are intended to include a computer-related entity,
such as, but not limited to, hardware, firmware, a combination of hardware and
software, software, or software in execution, which are configured to perform
particular operations or functions. For example, a component may be, but is not

limited to, a process running on a processor, a processor, an object, an executable, a

WO 2014/028115 PCT/US2013/046099

14

thread of execution, a program, and/or a computer. By way of illustration, both an
application running on a computing device and the computing device may be
referred to as a component. One or more components may reside within a process
and/or thread of execution and a component may be localized on one processor or
core and/or distributed between two or more processors or cores. In addition, these
components may execute from various non-transitory computer readable media
having various instructions and/or data structures stored thereon. Components may
communicate by way of local and/or remote processes, function or procedure calls,
electronic signals, data packets, memory read/writes, and other known computer,

processor, and/or process related communication methodologies.

[0054] The term ““application programming interface” and its acronym “API” are
used generically in this application to refer to any software interface that may be
used by a first software component to communicate with a second software
component. An API may include specifications for routines, procedures, functions,
methods, data structures, object classes, and variables. An API may also include
facilities for mapping the API to features (syntactic or semantic) of another high-
level programming language. Such facilities and/or mappings may themselves be

APIs, and are known as “language bindings” or “bindings.”

[0055] The term “markup language” is used generically in this application to refer
to any programming language and/or system for annotating text such that a
processor may syntactically distinguish the annotations from the text. Examples of
markup languages include Scribe, Standard Generalized Markup Language (SGML),
Hyper-Text Markup Language (HTML), Extensible Markup Language (XML), and
Extensible Hyper-Text Markup Language (XHTML).

[0056] The terms “dynamic language” and “‘scripting language” are used generically
and interchangeably in this application to refer to any dynamic language, scripting

language, or to any language used to write programs (herein as ““scripts”) that are

WO 2014/028115 PCT/US2013/046099

15

interpreted and/or compiled at runtime. These terms may also refer to any language
that runs on a managed runtime and is dynamically compiled. Thus, for the
purposes of this application, usage of the terms “dynamic language” and ““scripting
language” in the description of the various aspects should not be construed as
limiting the claims to languages that are interpreted from source code or bytecode,
or to those that execute along with programs that are traditionally compiled into
native machine code. Examples of dynamic and scripting languages within the
scope of this application include, for example, JavaScript®, Perl, Python, and Ruby,

as well as other similar languages that may be developed in the future.

[0057] The terms “style sheet language” and “style language” are used generically
in this application to refer to any computer language that expresses the presentation
of structured documents so that the presentation style of the document may be
separated from the content of the document. An example of a style sheet language is
Cascading Style Sheets (CSS), which is typically used for describing the

presentation semantics of a document written in a markup language.

[0058] For ease of reference, throughout this application, HTML is used as an
exemplary markup language, CSS is used as an exemplary style sheet language, and
JavaScript® is used as an exemplary dynamic scripting language. However, it
should be noted that the use of HTML, CSS, and JavaScript® in this application is
only for purposes of illustration, and should not be construed to limit the scope of

the claims to a particular language unless expressly recited by the claims.

[0059] HTML is a markup language that implements the ISO/IEC 15445 standard.
HTML may be characterized as a set of markup tags (e.g., annotations) used to
describe web pages so that they can be displayed by a software application, such as a
web browser. HTML allows for the creation of structured documents by denoting
structural semantics for text, such as headings, paragraphs, lists, links, quotes, and

other items.

WO 2014/028115 PCT/US2013/046099

16

[0060] JavaScript® is a dynamic, weakly typed, object-oriented scripting language
that implements the ECMAScript language standard (standardized by ECMA
International in the ECMA-262 specification) and/or the ISO/IEC 16262 standard.
JavaScript® enables programmatic access to computational objects within a host

environment, such as web browsers executing on a mobile device processor.

[0061] Cascading Style Sheets (CSS) is a style language used to describe the look
and formatting of web sites, and is intended to be used to separate the presentation
of a document from its content. Each style sheet may include an ordered collection
of rules with the following format: selector {propertyl: value; . . . propertyn:
value; }. As an example, the following CSS code tells the browser to render all
<cite> elements whose direct ancestor is a <p> element using a white foreground
over a red background: p > cite { color: white; background-color: red; }. It is not

uncommon for websites to include tens of thousand of such rules.

[0062] HTML may embed and/or include links to JavaScript® code capable of
affecting the behavior and/or presentation of the containing HTML page. The
embedded/linked JavaScript® code may also generate additional HTML code,
which can be inserted into the containing HTML page (i.e., the HTML code in
which the JavaScript® is embedded). JavaScript® may be used to embed functions
into HTML code such that the functions interact with, and manipulate, the document
object model (DOM) of the HTML page. DOM is a language-independent
convention for representing and interacting with objects in HTML, and allows the
JavaScript® code to have access to, and manipulate, the containing HTML page. A
DOM tree is typically generated as part of rendering a web page to identify the
components, relative structure, relationships, and behavior of the respective

components that define the page.

[0063] HTML can include (e.g., embed and/or link to) CSS code. CSS code

specified as separate files may be stored on remote servers. Conventional CSS

WO 2014/028115 PCT/US2013/046099

17

processing engines (e.g., WebKit or Firefox) parse CSS sequentially in the main
browser thread and do not support a high degree of parallelism or concurrency. For
example, when CSS code is embedded into the HTML document, an HTML parser
cannot parse remaining portions of an HTML document until the CSS engine has
parsed the style elements in the HTML document’s header. When an HTML
document includes links to several CSS files, conventional CSS processing engines
will parse all the linked CSS files sequentially. For these and other reasons,
conventional CSS processing engines may cause severe slowdowns, especially in

the case of large CSS files (which is common).

[0064] The various aspect methods and browsers take advantage of the parallelism
available in modern mobile devices to improve the efficiency and speed of page-

loads, web applications, and network communications.

[0065] Various aspects may include browser methods of loading/rendering a
webpage by preprocessing the web document (HTML page) using
speculation/prediction techniques to identify the resources that are likely to be
required from an incomplete set of information, and requesting/pre-fetching the
resources that are determined to have a high probability of being required for proper
rending of the web document. Pre-fetching of these resources may enable the web
browser (and thus the mobile device) to better utilize the available bandwidth,

overlap the transfer latencies, and improve document load times.

[0066] In recent years, mobile electronic devices (e.g., cellular phones, tablets,
laptops, etc.) have become more feature rich, and now commonly include multiple
processors, system-on-chips (SoCs), multiple memories, and other resources that
allow mobile device users to execute complex and power intensive software
applications (e.g., web browsers, video streaming applications, etc.) on their mobile
devices. Due to these and other improvements, smartphones and tablet computers

have grown in popularity, and are replacing laptops and desktop machines as the

WO 2014/028115 PCT/US2013/046099

18

platform of choice for many users. Mobile device users can now accomplish many
their daily tasks with ease and convenience by accessing the Internet via a web

browser of their mobile device.

[0067] The various aspects provide browser methods and/or web browsers
configured to achieve fast response times, high performance, and high user interface
responsiveness by exploiting the concurrency/parallelism enabled by fast processors
and multiprocessor mobile device architectures, as well as use of speculative
processing and pre-fetching of resources, thereby hiding network latency and

improving the overall user experience.

[0068] Web browsers are complex applications that implement multiple standards,
need to support legacy behavior, and are highly dynamic and interactive. Web
browser designers generally aim to achieve an optimal mix of fast response times for
page loads (even in the presence of long network latencies), high performance (e.g.,
to enable interactivity for web applications), and high user interface responsiveness

(e.g., to provide a good user experience).

[0069] Exploiting concurrency in web browsers is a relatively new approach. Most
existing browsers (e.g., Firefox and the WebKit based Chrome and Safari browsers),
are fundamentally architected as sequential engines, using event driven models to
help with interactivity. Due to the large number of dependencies between mobile
device and/or browser subsystems (and because many existing data structures aren’t
thread safe) these existing solutions do not support a high degree of parallelism or

concurrency.

[0070] Chrome and the WebKit2 generate separate processes for each browser tab,
which provides some isolation between different web sites, but delegates the
responsibility of using multiple cores to the operating system. In addition, these
processes are heavyweight in terms of both memory and startup overhead. As such,

these solutions do not speed up individual page loads or improve the efficiency of

WO 2014/028115 PCT/US2013/046099

19

network communications, but simply support parallelism with respect to executing
multiple instances of the same application. Such tab-level parallelism doesn’t
address the needs of mobile browsers, where single-tab performance is often

inadequate and users don’t open many tabs at once.

[0071] The OP and OP2 browsers may generate a new collection of processes per
web page (called a “web instance”), and browser components (e.g., networking)
may run in different processes. However, these solutions, like all other existing
browser solutions, are still inherently sequential. For example, while a network
operation may be performed in a separate process as a parse operation, the network
process must still wait on a parse process (and vice versa) because each operation is
dependent on the other. That is, while OP and OP2 browsers allow for the use of
multiple processes or threads, these solutions do not achieve a high degree of
parallelism in rendering a webpage because they do not address the serial/sequential
nature of browser processing algorithms for downloading, processing, and rendering

webpages.

[0072] The various aspects include a high-performance web browser configured to
overcome the serial/sequential nature of existing browser processing algorithms,
utilize the multi-thread execution and parallel processing capabilities of high-speed
processors and multiprocessor mobile device architectures, and exploit parallelism
pervasively to improve browser performance, reduce network latency, and improve

the user experience for users of mobile devices.

[0073] The various aspects may be implemented on a number of single processor
and multiprocessor computer systems, including a system-on-chip (SOC). FIG. 1
illustrates an example system-on-chip (SOC) 100 architecture that may be used in
computing devices implementing the various aspects. The SOC 100 may include a
number of heterogeneous processors, such as a digital signal processor (DSP) 102, a

modem processor 104, a graphics processor 106, and an application processor 108.

WO 2014/028115 PCT/US2013/046099

20

The SOC 100 may also include one or more coprocessors 110 (e.g., vector co-
processor) connected to one or more of the heterogeneous processors 102, 104, 106,
108. Each processor 102, 104, 106, 108, 110 may include one or more cores, and
each processor/core may perform operations independent of the other
processors/cores. For example, the SOC 100 may include a processor that executes
a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc.) and a processor

that executes a second type of operating system (e.g., Microsoft Windows 8).

[0074] The SOC 100 may also include analog circuitry and custom circuitry 114 for
managing sensor data, analog-to-digital conversions, wireless data transmissions,
and for performing other specialized operations, such as processing encoded audio
and video signals for rendering in a web browser. The SOC 100 may further include
system components and resources 116, such as voltage regulators, oscillators, phase-
locked loops, peripheral bridges, data controllers, memory controllers, system
controllers, access ports, timers, and other similar components used to support the
processors and software clients (e.g., a web browser) running on a computing

device.

[0075] The system components and resources 116 and/or custom circuitry 114 may
include circuitry to interface with peripheral devices, such as cameras, electronic
displays, wireless communication devices, external memory chips, etc. The
processors 102, 104, 106, 108 may be interconnected to one or more memory
elements 112, system components and resources 116, and custom circuitry 114 via
an interconnection/bus module 124, which may include an array of reconfigurable
logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc.).
Communications may be provided by advanced interconnects, such as high

performance networks-on chip (NoCs).

[0076] The SOC 100 may further include an input/output module (not illustrated)

for communicating with resources external to the SOC, such as a clock 118 and a

WO 2014/028115 PCT/US2013/046099

21

voltage regulator 120. Resources external to the SOC (e.g., clock 118, voltage
regulator 120) may be shared by two or more of the internal SOC processors/cores
(e.g., a DSP 102, a modem processor 104, a graphics processor 106, an applications

processor 108, etc.).

[0077] In addition to the SOC 100 discussed above, the various aspects may be
implemented in a wide variety of computing systems, which may include a single

processor, multiple processors, multicore processors, or any combination thereof.

[0078] FIG. 2 illustrates an example multicore processor architecture that may be
used to implement the various aspects. The multicore processor 202 may include
two or more independent processing cores 204, 206, 230, 232 in close proximity
(e.g., on a single substrate, die, integrated chip, etc.). The proximity of the
processing cores 204, 206, 230, 232 allows memory to operate at a much higher
frequency/clock-rate than is possible if the signals have to travel off-chip.
Moreover, the proximity of the processing cores 204, 206, 230, 232 allows for the
sharing of on-chip memory and resources (e.g., voltage rail), as well as for more

coordinated cooperation between cores.

[0079] The multicore processor 202 may include a multi-level cache that includes
Level 1 (L1) caches 212, 214, 238, 240 and Level 2 (L2) caches 216, 226, 242. The
multicore processor 202 may also include a bus/interconnect interface 218, a main
memory 220, and an input/output module 222. The L2 caches 216, 226, 242 may be
larger (and slower) than the L1 caches 212, 214, 238, 240, but smaller (and
substantially faster) than a main memory unit 220. Each processing core 204, 206,
230, 232 may include a processing unit 208, 210, 234, 236 that has private access to
an L1 cache 212, 214, 238, 240. The processing cores 204, 206, 230, 232 may share
access to an L2 cache (e.g., L2 cache 242) or may have access to an independent 1.2

cache (e.g., L2 cache 216, 226).

WO 2014/028115 PCT/US2013/046099

22

[0080] The L1 and L2 caches may be used to store data frequently accessed by the
processing units, whereas the main memory 220 may be used to store larger files
and data units being accessed by the processing cores 204, 206, 230, 232. The
multicore processor 202 may be configured so that the processing cores 204, 206,
230, 232 seek data from memory in order, first querying the L1 cache, then L2
cache, and then the main memory if the information is not stored in the caches. If
the information is not stored in the caches or the main memory 220, multicore
processor 202 may seek information from an external memory and/or a hard disk

memory 224.

[0081] The processing cores 204, 206, 230, 232 may communicate with each other
via the bus/interconnect interface 218. Each processing core 204, 206, 230, 232
may have exclusive control over some resources and share other resources with the

other cores.

[0082] The processing cores 204, 206, 230, 232 may be identical to one another, be
heterogeneous, and/or implement different specialized functions. Thus, processing
cores 204, 2006, 230, 232 need not be symmetric, either from the operating system
perspective (e.g., may execute different operating systems) or from the hardware

perspective (e.g., may implement different instruction sets/architectures).

[0083] Multiprocessor hardware designs, such as those discussed above with
reference to FIGs. 1 and 2, may include multiple processing cores of different
capabilities inside the same package, often on the same piece of silicon. Symmetric
multiprocessing hardware includes two or more identical processors connected to a
single shared main memory that are controlled by a single operating system.
Asymmetric or “loosely-coupled” multiprocessing hardware may include two or
more heterogeneous processors/cores that may each be controlled by an independent

operating system and connected to one or more shared memories/resources.

WO 2014/028115 PCT/US2013/046099

23

[0084] FIG. 3A illustrates an aspect browser method 300 of loading and rendering
an HTML document. In block 302, a web browser component may receive a user
input requesting the loading of an HTML document located at a particular uniform
resource locator (URL). In block 304, the web browser component may request the
HTML document from a web server located at the URL via well known hypertext
transfer protocol (HTTP) messages communicated via the Internet. In block 306,
the web browser component may receive the HTML document from a web server
located at the URL. In block 308, the web browser component may parse the
received HTML document to identify/discover external resources (images, audio,

CSS, etc.) referenced in the HTML file.

[0085] In block 310, the web browser component may request the identified
external resources from network servers where the resources are maintained, which
may include the server that provided the HTML document or any other server
accessible via the Internet. In block 312, the web browser component may receive
the requested external resources from the network server. In determination block
314, the web browser component may determine whether any of the received

resources reference other external resources.

[0086] When the web browser component determines that the received resources
reference other external resources (i.e., determination block 314 = “Yes”), the web
browser may request/receive those other/additional external resources referenced by
newly received resources in blocks 310-314. These operations may be repeatedly

preformed until all referenced external resources have been downloaded.

[0087] When the web browser determines that the received resources do not
reference any additional external resources (i.e., determination block 314 = “No”),
in block 316, the web browser may analyze the received external resources to

determine the resources that are required to properly render the webpage. In block

WO 2014/028115 PCT/US2013/046099

24

318, the web browser may render the webpage using the required download

resources.

[0088] FIG. 3B illustrates example logical components, information flows,
operations, and transformations in an aspect browser system 350. The browser
system 350 may be a software application/module configured to cause a processor to
perform various operations for retrieving information and/or resources from the
Internet and rendering webpages on an electronic display of a computing device

(e.g., a mobile device).

[0089] The browser system 350 may include a scripting component 362 configured
to interact with the web page at various stages and/or during various operations (e.g.,
during and after the page load operations, etc.) to provide interactivity with external
modules 380. The external modules 380 may include user I/O modules (e.g., mouse,
keyboard, etc.) and/or application modules (e.g., plug-ins, GPS, etc.). In an aspect,
the scripting 362 component may include a JavaScript® engine configured to

compile and/or execute JavaScript® code.

[0090] In block 354, the browser system 350 may perform a fetch operation to
request/receive programming instructions 356 from a server in the Web 352 (e.g.,
via HTTP). In block 358, the browser system 350 may translate/decode the received
programming instructions 356 to generate HTML code 360. The generated HTML
360 code may include (i.e., embed or include references to) JavaScript® code, the
execution of which may generate additional HTML code for insertion into the
containing HTML page (e.g., the HTML code in which the JavaScript® is included).
Such generated HTML code may affect the behavior and/or presentation of the
HTML page. The generated HTML 360 code may also include style sheets and/or
CSS code.

[0091] In block 364, the browser system 350 may parse the HTML 360 code (and

embedded/referenced JavaScript® code) to generate a document object model

WO 2014/028115 PCT/US2013/046099

25

(DOM) 366 of the HTML document. The DOM 366 may represent the contents,
relationships, styles, and positions of various objects in the HTML code.
Communications between browser “passes” and components may occur via the
DOM 366. A “browser pass” may be a thread, process, or application associated
with a single iteration through relevant portions of the HTML document. In an

embodiment, a browser pass may be a “work item.”

[0092] As mentioned above, JavaScript® code may be embedded in HTML code,
and at the same time, generate additional HTML code to be inserted into the
containing HTML page. To enable the insertion of code (and to ensure proper
order) two different processes may be required to interpret, parse, and execute the
JavaScript® code and the containing HTML code. Thus, in an aspect, the parse

operations of block 364 may be performed by multiple processes or applications.

[0093] In block 368, the browser system 350 may perform style operations to
generate a modified DOM tree 370 by, for example, applying one or more style
sheets (e.g., CSS) to the HTML document and/or to the generated DOM 366 tree.

[0094] In block 372, the browser system 350 may “‘solve” the page layout 374 by
performing layout operations. In an aspect, the layout operations may be performed
so that the page layout is solved incrementally as additional content necessary to
display the page becomes available (e.g., is downloaded, processed, and/or added to

the DOM).

[0095] In block 376, the browser system 350 may perform render operations to
display content 378 of the HTML document on an electronic display of a computing

device.

[0096] The various aspects modify the underlying serial nature of existing browser
processing algorithms. Various aspects may include a dynamic and concurrent
browser system that supports a high degree of parallelism and/or concurrency.

Various aspects may exploit concurrency at multiple levels. Various aspects may

WO 2014/028115 PCT/US2013/046099

26

perform parallel algorithms for individual browser passes to speed up processing
and/or executions times of various browser components and/or operations. Various

aspects may overlap browser passes to speed up total execution time.

[0097] FIGs. 4 and 5 illustrate example components, information flows, and
subsystems in an aspect browser system 500 suitable for exploiting concurrency at

multiple levels in accordance with various aspects.

[0100] FIG. 4 illustrates a browser system 500 that includes a fetch manager
component 502, a DOM dispatcher component 504, an HTML parser component
506, an HTML pre-scanner component 508, an image decode component 510, a
CSS engine component 512, a JavaScript® engine component 514, a layout and
rendering engine component 516, and a user interface component 518. In an aspect,
the browser system 500 may also include a sandboxed JavaScript® engine
component 530. Each of these components 502-530 may be a software module
(e.g., a process running on a processor, a thread of execution, a thread pool, a
program, etc.). In various aspects, any or all of the components 502-530 may utilize
a thread library (e.g., Pthreads, etc.) or a parallel task library (e.g., Intel Thread
Building Blocks, Cilk, etc.) to support concurrency.

[0101] In an aspect, the browser system 500 components 502-518, 530 may be

loosely coupled and configured to support concurrency.

[0102] The fetch manager component 502 may be configured to fetch resources
from the network, perform cache management for fetched resources, and provide
notifications for the arrival of data from the network to other browser components.
In an aspect, the fetch manager component 502 may be configured to fetch resources
in the order in which they appear in the HTML document (i.e., without imposing
any priorities). In another aspect, the fetch manager component 502 may be
configured to assign priorities and/or fetch resources based on pre-assigned

priorities.

WO 2014/028115 PCT/US2013/046099

27

[0103] The DOM dispatcher component 504 may be configured to schedule DOM
updates, serialize access to the DOM tree, and manage the interaction between the
various browser components. The other subsystems (i.e., the rest of the browser
infrastructure) may dispatch work items (also called “DOM dispatcher work items”)
into a concurrent DOM dispatcher queue. The DOM dispatcher component 504
may be configured to pull the work items from the DOM dispatcher queue, and
process the work items one at a time. In various aspects, the work items may
include browser passes and/or events (e.g., timer events, events from the user

interface, etc.).

[0104] The HTML parser component 506 may be configured to receive incoming
(e.g., partial, etc.) data chunks of an HTML document (e.g., via DOM dispatcher
work items, etc.), and construct a DOM tree by executing an HTML parsing
algorithm (e.g., an HTMLYS parsing algorithm, etc.). The HTML parser component
506 may add external resources referenced in the HTML document to a fetch
manager queue accessible to the fetch manager component 502. The HTML parser
component 506 may also initiate execution of JavaScript® code by calling the
JavaScript® engine component 514 at appropriate times during the parsing

operations.

[0105] The HTML pre-scanner component S08 may be configured to scan the
HTML document to quickly determine the external resources that are
requested/required by the HTML document. The HTML pre-scanner component
508 may task (e.g., via a notification, memory write operation, etc.) the fetch
manager component 502 to begin downloading the external resources and/or

performing further processing based on the external resources.

[0106] The image decoder component 510 may be configured to decode images.

For example, when the fetch manager component 502 has received the complete

WO 2014/028115 PCT/US2013/046099

28

data for an image, it may hand off the image to the image decoder component 510,

which may then decode the image for later use.

[0107] The CSS engine component 512 may be configured to calculate the look
and feel of the DOM elements for use in later stages (e.g., the layout and rendering
stages). Similar to the image decoding operations discussed above, the fetch
manager component 502 may hand off CSS style sheets to the CSS engine for

parsing and for discovering new resources to be requested.

[0108] In an aspect, the CSS engine component 512 may include a CSS resource
pre-fetcher component 520, CSS parser component 522, and a DOM styler
component 524. The CSS resource pre-fetcher component 520 may perform CSS
scanning and/or pre-fetching operations, which may include scanning a CSS
document to quickly determine what external resources are requested/required by
the CSS document. In an aspect, the CSS resource pre-fetcher component 520 may
task the fetch manager component 502 to begin downloading the external resources

and/or performing further processing based on the external resources.

[0109] The CSS parser component 522 may be configured to read CSS code and
create a collection of data structures (e.g., CSS rules) in memory. The DOM styler
component 524 may be configured to use the data structures created by the CSS
parser component 522 to determine the style of the nodes in the DOM tree. For each
node, the CSS engine component 512 may perform rule matching operations to find
the rules whose selectors match the node. Such rule matching operations may return
many (and sometimes conflicting) rules per node. In various aspects, the CSS
engine 512 may be configured to use cascading operations to assign weights to rules

and choose the rules with the greatest weight.

[0110] The JavaScript® engine component 514 may be configured to compile and
execute JavaScript® code. The fetch manager 502 may download JavaScript®

scripts and send them to the JavaScript® engine component 514 to be compiled.

WO 2014/028115 PCT/US2013/046099

29

The HTML parser 506 and/or the DOM dispatcher 504 may request that the

JavaScript® engine component 514 execute scripts.

[0111] The JavaScript® engine component 514 may include a thread pool for
compilation tasks/operations, and may be configured to compile multiple scripts
(JavaScript® code) in parallel. Due to JavaScript® semantics, in an aspect, the
execution of scripts may be performed sequentially in the main engine thread. In an
aspect, the JavaScript® engine component 514 may be configured so that, when the
HTML parser 506 or the DOM dispatcher 504 (e.g., for user interface events)
requests the JavaScript® engine component 514 to execute a script that has not been
compiled, the JavaScript® engine component 514 automatically initiates
compilation of the scripts and waits for the results of the compilation before

attempting to execute the requested script.

[0112] In various aspects, the JavaScript® engine component 514 may include a
light compiler 526 and a full compiler 528 (e.g., to support adaptive compilation and
execution of the JavaScript® code). The light compiler 526 may be configured to
generate executable code for infrequently reused JavaScript® code and/or optimized
for page load. The full compiler 528 may be configured to generate higher quality
code for heavily reused JavaScript® code and/or optimized for interactivity and web
applications. In various aspects, the slower code generation of the full compiler 528
may be amortized between multiple runs of the reused code. Compared to the light
compiler 526, the full compiler 528 may achieve significant speedup for iterative
web applications. For example, using the full compiler 528, an N-body simulation

web application may run faster by a factor of six.

[0113] The sandboxed JavaScript® engine component 530 may be an isolated
JavaScript® engine that is separate from the primary JavaScript® engine component
514. The sandboxed JavaScript® engine component 530 may include all the

components, features, and functionality JavaScript® engine component 514.

WO 2014/028115 PCT/US2013/046099

30

[0114] The layout and rendering engine component 516 may be configured to
transform the styled DOM tree into a viewable web page. In an aspect, the layout
and rendering engine component 516 may be configured to reflect changes to the
DOM and/or CSS style sheets on the electronic display of the mobile device so that
the user can view and interact with an updated HTML document. The changes to
the DOM and/or CSS may be due to the fetch manager component 502 delivering
new resources, the HTML parser component 506 updating the DOM, as a result of a

JavaScript® engine component 514 computation, etc.

[0115] In an aspect, the layout and rendering engine 516 may be configured to take
a snapshot of the DOM information and perform the layout and/or render operations
asynchronously. In another aspect, the layout and rendering engine 516 may be
configured to invoke layout and/or render operations synchronously (e.g., when

JavaScript® makes use of APIs that query layout information).

[0116] The user interface component 518 may be configured to manage
interactions between the browser system 500 and a mobile device user. The user
interface component 518 component may translate user interactions (e.g., touching a
link on the electronic display of a mobile device) into function/method calls (e.g.,
Java Native Interface or “JNI” method calls) that create work items for placement in

the DOM dispatcher queue.

[0117] In an aspect, all the above-mentioned components 502-518, 530 may
instantiated once for each webpage. In another aspect, the fetch manager component
502 and the layout and rendering engine component 516 may be global, whereas the
other components (e.g., 504, 506, 508, 510, 512, 514, and 518) may instantiated

once for each webpage or HTML document.

[0118] FIG. 5 illustrates example subsystems and information flows in the aspect
browser system 500 discussed above. Specifically, FIG. 5 illustrates that the

browser system 500 may include a user interface subsystem 552, a resource manager

WO 2014/028115 PCT/US2013/046099

31

subsystem 554, a per-page DOM engine subsystem 556, a per-page JavaScript®

engine subsystem 558, and a rendering engine subsystem 560.

[0119] Each of the subsystems 555-560 may be loosely coupled and configured to
support concurrency. The subsystems 552-560 may be implemented as software
modules (e.g., a process running on a processor, a thread of execution, a program,
etc.). The operations of the subsystems 552-560 may be performed by one or more
of the components discussed above with reference to FIG. 4 and/or on any single or

multiprocessor computing system.

[0120] In an aspect, the resource manager subsystem 554 and rendering engine
subsystem 560 may be instantiated once (e.g., may be global), and the per-page
DOM engine subsystem 556 and the per-page JavaScript® engine subsystem 558

may be instantiated once for each webpage or HTML document.

[0121] The user interface subsystem 552 may be configured to perform various
operations for managing user interactions with the browser system 550, including
translating user interactions (e.g., touching a link on the electronic display of a
mobile device) into function/method calls that create work items for placement in a
DOM dispatcher queue, detecting and/or sending events to the correct instance of
the per-page JavaScript® engine subsystem 558, and/or sending uniform resource
locator (URL)/uniform resource identifier (URI) information to the resource

manager subsystem 554 (e.g., via a memory write operation, function call, etc.).

[0122] The resource manager subsystem 554 may be configured to perform pre-
fetching operations 562, HTML pre-scanning operations 563, image decoding
operations 564, CSS scanning/pre-fetching operations 566, and JavaScript
scanning/pre-fetching operations 567. By way of example, these operations may be
performed by the fetch manager 502, the HTML pre-scanner 508, the image decoder
510, the CSS engine 512, and/or the JavaScript engine 514, 530 components, or by

any combination of the components discussed above with reference to FIG. 4.

WO 2014/028115 PCT/US2013/046099

32

[0123] The pre-fetching operations 562 may include requesting/receiving resources
and/or programming instructions from a web server corresponding to the URL/URI,
translating or decoding the received programming instructions to generate HTML,
and sending the generated HTML code to the correct instance of the per-page

JavaScript® engine subsystem 558 (e.g., via a memory write operation, etc.).

[0124] The generated HTML code may embed and/or reference JavaScript® code,
CSS code, images, and various other resources. Resources most commonly
referenced in an HTML document are images, CSS style sheets, and JavaScript®
sources. Style sheets and JavaScript® sources may also reference further external
resources. In an aspect, the generated HTML code may be scanned so that all
references identified by the HTML document (including the embedded or referenced
style sheets and JavaScript® sources) may be fetched in advance (e.g., as part of the

pre-fetching operations 562).

[0125] The HTML pre-scanner operations 563 may include scanning the generated
HTML code to quickly discover requested/required external resources, and
informing a fetch manager and/or pre-fetcher that it may begin downloading the
external resources and/or performing further processing based on the discovered
external resources. In an aspect, the downloading of external resources may be
performed as part of the pre-fetching 562 operations discussed above. In an aspect,
the HTML pre-scanner operations 508 and the pre-fetching operations 562 may be

performed concurrently (e.g., in separate threads/processes).

[0126] The image decoding operations 564 operations may include decoding
images for later use by the rendering engine subsystem 560. The image decoding
operations 564 may be performed in response to determining that the complete data
set for an image has been downloaded (e.g., via a memory write operation
performed as part of the pre-fetching 562 operations, etc.) and/or in response to

receiving a notification (e.g., from a fetch manager 520 component). In an aspect,

WO 2014/028115 PCT/US2013/046099

33

the image decoding operations 564 may be performed concurrently with the HTML

pre-scanner operations 563 and the pre-fetching operations 562.

[0127] The CSS scanning/pre-fetching operations 566 may include scanning CSS
style sheets embedded in (or referenced by) the generated HTML code to quickly
discover requested/required external resources requested by the CSS style sheets. In
an aspect, the CSS scanning/pre-fetching operations 566 may include informing a
fetch manager and/or pre-fetcher that it may begin downloading the discovered
external resources. In an aspect, the CSS scanning/pre-fetching operations 566 may
include initiating the downloading of the discovered external resources. In an
aspect, the CSS scanning/pre-fetching operations 566 may be performed in the CSS
engine component 512 (e.g., by the CSS resource pre-fetcher 520) in response to the
fetch manager component 502 sending one or more CSS style sheets to the CSS
engine component 512. In an aspect, the CSS scanning/pre-fetching operations 566
may be performed concurrently with the image decoding operations 564, the HTML

pre-scanner operations 563, and the pre-fetching operations 562.

[0128] The per-page DOM engine subsystem 556 may be configured to perform
HTML parsing operations 568, CSS parsing operations 570, timer operations 572,
styling operations 574, and operations to manage events 576. In an aspect, the
operations of the per-page DOM engine subsystem 556 may be performed
concurrently with the operations of the other subsystems 552, 554, 558, 560.

[0129] The HTML parsing operations 568 may include parsing the received HTML
code, separating the HTML markup tags from the substantive content, and/or
generating a DOM of the received HTML code. The HTML parsing operations 568
may also include identifying external resources referenced in the HTML document
so that the identified external resources may be downloaded by the fetch manager
502 and/or as part of the pre-fetching operations 562. The HTML parsing

operations 568 may further include initiating execution of JavaScript® code (e.g., by

WO 2014/028115 PCT/US2013/046099

34

invoking the execution operation 578) during the parsing of the HTML code (e.g., as

JavaScript® is discovered, etc.).

[0130] The CSS parsing operations 570 and the styling operations 574 may include
applying one or more CSS style sheets to the generated DOM tree (or generating a
modified DOM tree based on CSS style sheets). In various aspects, any or all of the
HTML parsing operations 568, CSS parsing operations 570, and styling operations

574 may be performed concurrently.

[0131] The timer operations 572 may include managing or responding to events

and/or conditions relating to timers and/or timer classes (e.g., System.Timers).

[0132] The events operations 576 may include managing various events, such as
timer events and user interface events (e.g., an event generated in response to a user

touching a link on the electronic display of a mobile device).

[0133] The per-page JavaScript® engine subsystem 558 may be configured to
perform JavaScript® execution operations 578 and JavaScript® compilation

operations 580.

[0134] In various aspects, the per-page DOM engine subsystem 556 and/or the
resource manager subsystem 554 may be configured to send JavaScript® code
embedded in (or referenced by) the HTML code to the correct instance of the per-
page JavaScript® engine 558 for compilation and/or execution (i.e., via the
execution 578 and compilation 580 operations). In aspect, the JavaScript® engine
558 may update/modify the generated DOM tree based on the results of the

JavaScript® compilation and/or execution operations 578, 580.

[0135] The rendering engine subsystem 560 may be configured to perform layout
operations 582 and render operations 584. For example, the rendering engine
subsystem 560 may receive (e.g., via memory writes, calls, notifications, etc.) a
DOM tree and/or layout tree from the per page DOM engine subsystem 556, solve

the page layout (via the layout operation 582), and display the content on an

WO 2014/028115 PCT/US2013/046099

35

electronic display of a computing device (via the render operation 584). In an
aspect, performing layout operations 582 may include solving the page layout
incrementally as additional content becomes available (e.g., is downloaded,
processed, and/or added to the DOM tree) to the rendering engine subsystem 560.
In various aspects, any or all of the layout operations 582 and/or render operations

584 may be performed concurrently.

[0136] As discussed above with reference to FIGs. 4 and 5, the HTML parser 506
and/or the CSS parser 522 may discover external resources (images, audio, CSS,
JavaScript®, etc.) requested/required for rendering the HTML document and request
that the discovered resources be downloaded, such as via the fetch manager 502

and/or as part of the pre-fetch operations.

[0137] Mobile devices may experience high latency times when downloading
resources discovered in HTML and CSS code/content. For example, due to
idiosyncrasies in the HTMLS specification, an HTML parser must wait for a script
element (e.g., <script> blocks) to finish executing before it can continue parsing the
remaining portions of the HTML document. Thus, if a web page references an
external resource after a script element, the operation of fetching that resource
cannot be overlapped with the operation of waiting for script element to finish
execution. This often increases the time required to download and display a

webpage.

[0138] In various aspects, the browser system 500 may be configured to
speculatively parse ahead of the script elements to discover new resources without
waiting for the script element to finish execution. In these aspects, the browser
system 500 may be forced to discard some of the results of the speculative parsing
(e.g., when JavaScript® inserts new content into the DOM tree via the

document.write API, etc.).

WO 2014/028115 PCT/US2013/046099

36

[0139] In an aspect, the browser system 500 may be configured to perform
aggressive resource pre-fetching operations to discover the requested/required
resources as early as possible and request multiple resources to be
fetched/downloaded in parallel. In this manner, the various aspects may prevent the
browser system 500 from being forced to discard some of the results of speculative
parsing, and may mask network latencies, utilize more of the available bandwidth,

and reduce the overall time spent waiting for resources to arrive.

[0140] The browser system 500 may be configured to perform aggressive resource
pre-fetching operations, which may include speculative resource prefetching via
sandboxed execution. In various aspects, these aggressive resource pre-fetching
operations may performed as part of the HTML pre-scanning operations 563, CSS
pre-fetching operations 566, or both.

[0141] Referring to FIGs 4-5, the HTML pre-scanning operations 563 performed in
furtherance of the aggressive resource pre-fetching operations may include obtaining
all “id”, “class”, and/or “style” attributes in the HTML document, quickly
discovering external resources referenced in the HTML document, and triggering
the downloading of the discovered resources from the network. The HTML pre-
scanner 508 may “approximately parse” the HTML in order to discover resources,
without performing any of the substantive or computationally intensive processing
(e.g., construction the DOM tree) that is required from the HTML parser 506. By
forgoing these complex parsing operations, the HTML pre-scanning operations 563
may be performed concurrent with (and run ahead of) the HTML parsing operations

568, and do not have to wait for the script elements to finish execution.

[0142] In an aspect, network packets may be sent to the HTML pre-scanner 508
and the HTML parser 506 independently, as they arrive. In an aspect, the time spent

waiting for resources to arrive may be further reduced by performing HTML pre-

WO 2014/028115 PCT/US2013/046099

37

scanning operations 563 in parallel to the (non-speculative) HTML parsing 570

operations.

[0143] As discussed above, the web browser system 500 may include a CSS parser
522 configured to quickly scan a CSS document and a CSS resource pre-fetcher 520
configured to perform CSS pre-fetching operations. In an aspect, CSS style sheets
may be dispatched to a thread pool responsible for parsing CSS concurrently. If a
CSS rule contains further external resources, the CSS resource parser 520 may make
a decision regarding whether to initiate prefetching for the further external resources
based on the likelihood that they are actually referenced in the HTML document. In
an aspect, the CSS resource pre-fetcher 520 may be configured to download (or
initiate the downloading of) a specific range/number of referenced resources
(downloading too few resources may mean that more new resources will be
discovered by the DOM styler 524 when styling the DOM tree later on, which may

result in additional latencies).

[0144] Itis common practice among websites to reference many more resources
than are actually needed for any given document by, for example, using a site-wide
common style file. Downloading all included resources may consume excess
bandwidth and slow down page loading. In various aspects, the CSS parser 522 may
be configured to employ the “id” and ““class” attributes discovered by the HTML
pre-scanner 508 to determine whether a CSS rule is likely to be matched. If all of
the attribute values referenced in a CSS rule selector have been seen/evaluated by
the HTML pre-scanner 508, it may be determined that the rule is likely to match at
least one DOM tree element, and the browser system 500 may initiate the
downloading of the resources corresponding to the CSS rule. This “CSS rule”
heuristic is very effective, and wrong decisions do not have a significant negative
impact on the operations of the browser system 500. Missed resources may be
discovered during the DOM styling phase (via the DOM styler component 524) at

the cost of the latency required to download the resource.

WO 2014/028115 PCT/US2013/046099

38

[0145] In an aspect, the HTML pre-scanner 508 may be configured to identify
and/or discover resources that may be discovered without having to execute

JavaScript®.

[0146] As discussed above, mobile devices may experience high latency times
when downloading resources discovered in HTML and CSS code/content due to
idiosyncrasies in the HTMLS specification, such as the HTML parser being required
to wait for a script element (e.g., <script> blocks) to finish executing before it can
continue parsing. In addition, modern web documents (e.g., HTML pages, HTML
documents, etc.) may reference a large number of external resources, and each
external resource may include references to other external resources. For example,
HTML documents typically include references to various external resources, such as
images, audio, Cascading Style Sheets (CSS), and JavaScript®, and the referenced
resources (e.g., CSS, JavaScript®) may further include references to additional

external resources (e.g., images, audio, etc.).

[0147] The document load time (i.e., time from requesting a document until it is
ready to be displayed on screen) is dominated by input/output costs (e.g., network
transfers of needed resources). The minimal document load time needed to load all
required resources is constrained by the bandwidth of the connection between
resource storage and computing device. Also, transferring document resources to
the displaying device incurs a latency cost. Various aspects may be configured to
start resource transfers as early as possible to better utilize the available bandwidth,

overlap transfer latencies, and improve document load times.

[0148] As mentioned above, since not all of the referenced external resources are
required (or even used) to render a given webpage, recursively downloading all of
the referenced resources may waste a significant amount of bandwidth and power.
In addition, when any of the resources are not immediately available, the browser

must wait until it receives and analyzes those resources before the page can be

WO 2014/028115 PCT/US2013/046099

39

properly rendered. This increases the amount of time that is required to load and/or

render the webpage (e.g., document load time), and degrades the user experience.

[0149] Conventional solutions attempt to speed up rendering of web pages using
techniques such as caching portions of web pages in memory to reduce the
information that must be downloaded the next time the page is accessed. However,
using conventional solutions, a web browser cannot identify the external resources
that are required to render a web page for the first time without first analyzing the
entire document (i.e., webpage), requesting and receiving most (if not all) of the
resources referenced in the document and subdocuments, and analyzing the received
resources. Thus, using conventional solutions, the precise set of resources required
by the document cannot be determined until after the entire document has been fully

analyzed.

[0150] To overcome these limitations of existing solutions, various aspects may
utilize speculation/prediction techniques to identify resources required to render a

web page or document before the entire document has been analyzed.

[0151] Generally, speculatively predicting whether a resource is required (based on
an incomplete set of information) results in one of four possible outcomes: a true
positive; a true negative; a false positive; and a false negative. A true positive
outcome is when a resource was speculatively downloaded and was later actually
required. A true negative outcome is when the resource was not speculatively
downloaded but was not required. A false positive outcome is when a resource that
isn’t required is speculatively downloaded (which wastes bandwidth and energy)
and a false negative outcome is when the resource is not speculatively downloaded
but is required (thus there is nothing gained with respect to this resource from the

speculative preprocessing).

[0152] The true positive and true negative outcomes are beneficial and desired

because such decisions improve the user experience by reducing page load times.

WO 2014/028115 PCT/US2013/046099

40

However, false positive and false negative outcomes are disadvantageous. For
example, a false negative may result in a resource being requested during the
rendering of a document (e.g., HTML document), which may extending document
load times until the resources is available. Since the resource is not required for the
browser to properly render the document, it is a waste of computing and network

resources (bandwidth, processing, etc.).

[0153] Various aspects include web browser systems configured to perform
speculative resource downloading operations based on heuristics to maximize the
number of true positives and true negative while minimizing the number of false

positive and false negative download decisions.

[0154] FIG. 6 illustrates an aspect browser method 600 of processing an HTML
document to discover the external resources (images, audio, CSS, JavaScript®, etc.)
required for proper rendering of the webpage and pre-fetching the discovered
resources in advance of the page loading/rendering operations. The operations of
method 600 may be performed by a processor of a single or multiprocessor

computing system executing a suitably configured web browser.

[0155] Referring to FIG. 6, in block 602, a web browser may initiate or invoke a
scan operation (e.g., via the HTML pre-scanner 508, CSS engine 512, etc.) to scan
the HTML document and/or CSS documents for the structural information and/or to
discover resources. In an aspect, the scan operation may be performed as part of the
HTML pre-scanning operations 563. In an aspect, the scan operation may be
performed as part of the CSS scanning operations 566. In various aspects, the scan
operation may be executed concurrent with, and independent of, the HTML and CSS
parsing operations 568, 570. In various aspects, the scan operation may be

performed by a process, thread, application, a work item, and/or browser pass.

[0156] In block 604, the scan operation (e.g., HTML and/or CSS scanning

operation 563,566) may determine (i.e., predict, speculate) which of the discovered

WO 2014/028115 PCT/US2013/046099

41

resources are likely to be required. In block 606, the scan operation may issue
resource requests (e.g., via a memory write operation, etc.) to a browser fetch
component (e.g., to the fetch manager 502) to begin downloading resources
determined to have a high probability of being required. In an aspect, as part of
block 606, two or more resource requests may be issued (or sent) in parallel or
concurrently. In an aspect, each resources request may spawn a new process and/or
be processed by a different thread of execution. In block 608, the scan operation
may continue scanning the HTML document and/or CSS documents to discover
additional required resources. The operations in blocks 604-608 may be repeated
until all external resources are discovered and/or the entire HTML document is

scanned.

[0157] In block 610, the web browser may initiate or invoke a fetch operation (e.g.,
via the fetch manager 502) to download one or more resources identified by the

resource request (e.g., resource request issued by the scan operation in block 606).

[0158] In block 612, the web browser may scan the downloaded resources to
discover additional references to external resources. As part of block 612, the web
browser may initiate or invoke a new process or thread of execution to perform the
scanning operations. In an aspect, as part of block 612, the web browser may
initiate or invoke a CSS scanning operation 566. In an aspect, as part of block 612,

the web browser may initiate or invoke an HTML scanning operation 563.

[0159] In block 614, the web browser may determine (i.e., predict, speculate) the
discovered resources that are likely to be required based on scanning the
downloaded resources. In block 616, the web browser may issue additional
resources requests (e.g., via a memory write operations, etc.) to a browser fetch
component (e.g., to the fetch manager 502) to being downloading resources
determined to have a high probability of being required. In an aspect, each of these

additional resource requests may spawn other processes and/or may be processed by

WO 2014/028115 PCT/US2013/046099

42

a different process or thread of execution. The operations in blocks 610-616 may be
repeated until all external resources are discovered and/or downloaded. In an aspect,
the operations of blocks 602-608 may be performed in parallel with the operations in

blocks 610-616.

[0160] Unlike conventional HTML parsers, the scan operations discussed above
with reference to FIG. 6 do not perform error correction on the scanned HTML
document or execute encountered JavaScript® code. This enables the scan
operations to be performed quickly. Also, unlike conventional HTML parsers, the
scan operations discussed above may be executed in parallel or concurrently (e.g., in
independent threads or processes, etc.), which enables the various aspects to more
fully utilize multiprocessor architectures prevalent in modern computing devices.
Additionally, the scan processes discussed above may scan resources referenced in
the HTML document (e.g., CSS documents), which is also not performed in

conventional HTML parsers.

[0161] Generally, if a scan operation (e.g., HTML pre-scanning operations 563,
CSS scanning operations 566, etc.) only scans the structure of the HTML document,
it is likely to correctly speculate regarding the resources that are required (i.e.,
produce only true positives) unless, for example, there are structural errors in the
document (since the scanner does not perform error correction) or embedded
JavaScript® code in the document that makes alterations to the document as it is

parsed (since the scanner does not execute JavaScript®).

[0162] In an aspect, to maximize the number of true positives and true negatives,
the scan operations (e.g., HTML pre-scanning operations 563, CSS scanning
operations 566, etc.) may identify the resources that are likely to be required using

information obtained during the initial scan of the HTML document.

[0163] FIG. 7A illustrates an aspect browser method 700 of using speculation

techniques and heuristics to discover document resources for speculative

WO 2014/028115 PCT/US2013/046099

43

downloading. The document resources may include images, CSS files, JavaScript®
scripts, etc. The browser method 700 enables a HTML document scanner and a
plurality of CSS documents scanners to execute in parallel, intelligently identifies
the resources that are likely to be required, reduces the number of false negatives
that result from the speculative resource requests and/or pre-fetching operations. In
an aspect, the browser method 700 may utilize a heuristic (e.g., a “CSS rule”

heuristic) to minimize the number of false positives.

[0164] In block 702 of browser method 700, an HTML document scanner (e.g.,
HTML pre-scanner 508) may begin scanning a HTML document to discover
resources and obtain all URL/URIs, and HTML “id”, “class”, and/or “style”
attributes associated with (or mentioned by) HTML elements included the HTML
document. The HTML document scanner may be independent of, and/or execute in

parallel with, an HTML parser.

[0165] In block 704, the HTML document scanner may encounter an external
resource referenced by URL/URID’s and/or HTML elements included in the HTML
document. In block 706, the HTML document scanner may issue a request (e.g., to
a fetch manager) to download encountered resources referenced in the HTML
document. In an aspect, the HTML document scanner may be configured to invoke
the downloading and/or parsing of each encountered external CSS resource (e.g., as
the external resources are encountered by the scanner, etc.). In an aspect, the
downloading of an external CSS resource may cause a CSS document scanner (e.g.,

CSS engine 512, etc.) to begin scanning the CSS document.

[0166] In block 708, the HTML document scanner may encounter and/or collect
HTML id, class, and style attributes. In block 710, the HTML document scanner
may send the encountered/collected information (i.e., information pertaining to the

collected id, class, and style attributes) to a CSS document scanner. In an aspect,

WO 2014/028115 PCT/US2013/046099

44

sending the collected information may include sending every encountered and/or

identified HTML id, class, and style attribute to the CSS document scanner.

[0167] In block 712, the HTML document scanner may continue scanning the
HTML document to discover additional resources. In determination block 714, the
HTML document scanner may determine whether it has finished scanning the
HTML document. When the HTML document scanner determines that it has
finished scanning the HTML document (i.e., determination block 714 =“Yes™), in
block 716, the HTML document scanner may notify a CSS document scanner (e.g.,
CSS engine 512, a process performing the CSS scanning operations 566, etc.) that it
has finished scanning the HTML document (e.g., via a memory write operation,
method call, notification, etc.). When the HTML document scanner determines that
it has not yet finished scanning the HTML document (i.e., determination block 714
= “No”), in block 702, the HTML document scanner may continue scanning the

HTML document to discover additional resources.

[0168] In block 719 of browser method 700, the CSS document scanner may begin
scanning a CSS document for external resources. Initiation of a CSS document
scanner in block 719 may be triggered by availability of a CSS document obtained
by a fetch manager (e.g., in response to operations performed as part of block 706,
etc.). In an aspect, the scanning of CSS documents may be performed in parallel
with the scanning of the HTML document (e.g., operations in blocks 702-716).
Thus, the CSS document scanner may scan received CSS documents to identify
external resources referenced in those documents while the HTML document
scanner continues to scan the HTML document (e.g., identifying additional CSS
documents for download, etc.). Further, there may be multiple CSS document

scanners executing in parallel (e.g., when multiple CSS documents are downloaded).

[0169] In block 720, the CSS document scanner may receive information

pertaining to HTML 1d, class, and/or style attributes from the HTML document

WO 2014/028115 PCT/US2013/046099

45

scanner. In block 721, the CSS document scanner may determine whether the
received information marks or identifies a CSS rule and/or external resource
(associated with the received HTML id, class, and/or style attributes) as likely to be
required and/or used by the HTML document. In aspect, as part of block 721, the
CSS document scanner may determine whether every HTML id, class, and/or style
attribute associated with a CSS rule has already been encountered by the HTML

document scanner.

[0170] In determination block 722, the CSS document scanner may determine
whether the CSS rule and/or external resource (associated with the received HTML
id, class, and/or style attributes) is likely to be required and/or used by the HTML
document. In an aspect, as part of determination block 722, the CSS document
scanner may determine whether every URL/URI, and HTML id, class, and/or style

attribute mentioned by the HTML document has already been encountered.

[0171] When the CSS document scanner determines that the CSS rule and/or
external resource is likely to be required and/or used by the HTML document (i.e.,
determination block 722 = “Yes”), in block 724, the CSS document scanner may
immediately request the resources referenced by that CSS rule to be downloaded,
such as by performing a memory write operation and/or notifying the fetch manager

502.

[0172] In an aspect, the CSS document scanner may determine that the CSS rule
and/or external resource is likely to be required when it is determined that every
URL/URI, and HTML id, class, and/or style attribute, mentioned by the HTML

document has already been encountered.

[0173] When the CSS document scanner determines that the CSS rule and/or
external resource is not likely to be required and/or used by the HTML document
(i.e., determination block 722 = “No”), in block 723, the CSS document scanner

may store in memory information pertaining to the CSS rule (e.g., the received

WO 2014/028115 PCT/US2013/046099

46

HTML id, class, and/or style attributes) in a list of resource references. In block
725, the CSS document scanner may continue scanning the CSS document, if

necessary (e.g., when there are additional elements to be scanned/processed, etc.).

[0174] In block 726, the CSS document scanner may receive a notification from the
HTML document scanner indicating that the HTML document scanner has finished
scanning the HTML document. In block 727, the CSS document scanner may
retrieve information pertaining to a CSS rule from the list of resource references

stored in the memory and evaluate the retrieved information.

[0175] In determination block 728, the CSS document scanner may determine
whether the retrieved information marks/identifies a CSS rule and/or external
resource being required (or likely to be required) by the HTML document. In
aspect, as part of determination block 728, the CSS document scanner may
determine whether every HTML id, class, and/or style attribute associated with the
retrieved CSS rule has already been encountered and/or processed by the HTML

document scanner.

[0176] When the CSS document scanner determines that retrieved information
marks/identifies a CSS rule and/or external resource is likely to be required and/or
used by the HTML document (i.e., determination block 728= “Yes”), in block 729,
the CSS document scanner may request downloading of the resources corresponding
to that CSS rule. In this manner, the number of false negatives caused by scanning
the HTML document and the CSS documents at the same time may be minimized.
In addition, the various aspects may decrease document load times (and hence,
increase responsiveness) with little or no increase in data transfer costs, as well as
less power consumption due to reduced utilization of the processor and network

interface/radio.

[0177] Returning to FIG. 7A, when the CSS document scanner determines that

retrieved information does not mark or identify an external resource as being

WO 2014/028115 PCT/US2013/046099

47

required (or likely to be required) by the HTML document (i.e., determination block
728=“No”), in block 721, the CSS document scanner may retrieve the next rule
from memory. The operations of blocks 720-722 may be repeated until all the CSS

rules stored in the memory by the HTML document scanner have been evaluated.

[0178] In various aspects, more precise heuristics than the CSS rule described
above may be used by the HTML document scanner and/or CSS document scanner
to improve performance. For example, in an aspect, the HTML document scanner
may be configured to scan embedded JavaScript® code for URLs and/or commands
that could modify the HTML document. Similarly, in an aspect, the CSS document
scanner may be configured to record hierarchical information about the HTML tags
associated with each encountered ID, which may allow the CSS document scanner

to identify and reject more potential false positives.

[0179] In conventional browsers, the HTML parser is generally responsible for
identifying all of the external resources and requesting them from severs via the
network. As discussed above, when these resources are explicitly specified in the
HTML document, various aspects may pre-fetch these resources and issue the
request much earlier in the page load than conventional browsers. In addition,

various aspects may pre-fetch and/or process the resources in parallel.

[0180] Software developers are increasingly using scripts (e.g., JavaScript®
code®) to dynamically determine the resources that are going to be required for a
particular application-device combination (e.g., web browser-mobile device
combination). For example, scripts may evaluate various factors relating to the
client (e.g., browser) and computing device to identify the resources that are to be
downloaded. Such scripts may essentially build a URL dynamically for a resource
(e.g., images, CSS, other JavaScript®, etc.) based on the evaluated factors. Thus, an

HTML document may require resources that are not explicitly identified in the

WO 2014/028115 PCT/US2013/046099

48

HTML document, and which may only be determined by executing JavaScript®
code included in the HTML document.

[0181] Since the JavaScript® code may change the state, behavior, and/or
presentation of the containing HTML (and the HTML code itself), the HTML parser
is required to execute the encountered JavaScript® code (or scripts) sequentially
and/or by following ordering rules defined in the HTML specifications. For
example, when an HTML parser encounters a script tag (i.e., a <script> tag used to
define a client-side script, such as a JavaScript® script), the HTML parser has to
wait for the script to be downloaded and executed before it may continue parsing the
remaining portions of the HTML document. As a result, all resource requests may
be serialized (i.e., required to be performed one after the other) within the execution
of the JavaScript® script (i.e., JavaScript® code inside <script> tags). Also, it may
be more difficult for the HTML document scanning operations (e.g., HTML pre-
scanning operations 563, etc.) to statically predict the resources that are going to be

required for proper rendering the webpage.

[0182] Various aspects may overcome these and other limitations by speculatively
pre-fetching resources in a sandboxed JavaScript® engine 530, which enables the
browser system 500 to discover and download resources not explicitly requested in
the HTML document in parallel to other browser operations (e.g., HTML parsing)
and other resource requests. These aspects may also enable the browser system 500
to execute multiple JavaScript® scripts in parallel without unintentionally modifying

the browser state.

[0183] Various aspects may execute scripts (e.g., JavaScript® code) as soon as they
are discovered, in parallel with other browser operations (e.g., HTML pre-scanning
563, HTML parsing 568, etc.) and/or other scripts. In order to avoid interfering with
the normal processing of the webpage, the scripts may be executed in a sandboxed

JavaScript® engine 530 that is isolated and/or separated from the other browser

WO 2014/028115 PCT/US2013/046099

49

components (e.g., so as not to affect the operations of primary JavaScript® engine).
Executing the scripts in a sandboxed JavaScript® engine 530 prevents the system
from unintentionally modifying the browser state during the parallel execution of
scripts. In an aspect, each script may be executed in a separate instance (e.g.,

thread) of the sandboxed JavaScript® engine 530.

[0184] Various aspects may modify the API between the browser client and the
JavaScript® engine 530.

[0185] Generally, scripting engines (e.g., JavaScript® engine 514, 530, 558)
provide bindings (i.e., API for mapping languages) to the browser API (i.e.,
interface that enables the scripts to invoke browser operations) to invoke browser

operations (e.g., manipulating DOM, accessing network, etc.).

[0186] In an aspect, the JavaScript® engine 530 may monitor browser APIs that
request resources from the network. The JavaScript® engine 530 may modify the
bindings (or provide a separate set of bindings for the scripting engine) to cause the
resource requests to be redirected to a different browser component, such as a pre-
fetcher component. In this manner, the resource requests and/or collected
information may be passed directly to the pre-fetcher component for further

processing.

[0187] The sandboxed JavaScript® engine may scan through the JavaScript® code
and execute only select portions of code and/or select operations most relevant to
discovering external resources. Since the scanning operation is only concerned with
discovering resources that the script may request, the scanning operation is not
bound by the HTML specification rules, and does not have to run/execute all of the
encountered code. By not fully executing all of the encountered code, the
JavaScript® scanning operations may be performed quickly by the sandboxed

JavaScript® engine.

WO 2014/028115 PCT/US2013/046099

50

[0188] The sandboxed JavaScript® engine may apply heuristics to further speedup
the JavaScript® scanning operations. By way of example, such heuristics may
include limiting the total execution time (e.g., spend a maximum of 10ms per script
or operation, etc.), the number of loop iterations (e.g., only process the first 10
iterations of a loop, etc.), the recursion depth, the supported features, abstract

interpretation, etc.

[0189] Various aspects may limit the sizes of object and data structures (e.g., hash
tables, arrays etc.) to further speedup the JavaScript® scanning operations, since

such structures generally do not affect resource dependencies.

[0190] Software developers often use common patterns, frameworks, and/or
services (herein collectively “patterns”) in their code. Various aspects may detect
such commonalities/patterns in the code (e.g. during parse, analyze, compile, etc.)
and execute only the patterns (or portions of JavaScript® code identified by the
patterns) relevant to discovering resources. In an aspect, instead of full compliance
and conservative code generation, the sandboxed JavaScript® engine may be
configured to target the most common patterns (e.g., via aggressive compiler
optimizations). Patterns may be detected using a wide variety of known pattern
recognition techniques, such as detecting keywords in the code (which is a relatively
simple operation) and/or analyzing the structure of the page and/or script (which is

relatively complex operation).

[0191] FIG. 7B illustrates an aspect method 730 of speculatively pre-fetching
resources in parallel by parallel processing of scripts in a sandboxed JavaScript®
engine. The operations of method 730 may be performed in parallel with the other

browser operations discussed herein.

[0192] In block 732 of method 730, an HTML document scanner (e.g., HTML pre-
scanner 508) may begin scanning the HTML document for structural information

and/or to discover resources. In block 734, the HTML document scanner may

WO 2014/028115 PCT/US2013/046099

51

encounter a JavaScript® script, and send the encountered script (e.g., via a memory
write operation, a redirected resource request, modified bindings, etc.) to a
sandboxed JavaScript® engine to immediately execute the encountered script. In
block 732, the HTML document scanner may continue to scan the HTML document
for structural information and/or to discover resources. In an aspect, the HTML
document scanner may generate (or spawn) the sandboxed JavaScript® engine in

response to encountering the script.

[0193] In block 735, the sandboxed JavaScript® engine may begin scanning the
script to discover resources. In block 736, the sandboxed JavaScript® engine may
speculatively execute the script (or portions of JavaScript® code included in the
script). The speculative execution of the script may include executing only the
operations and/or portions of code most likely to be relevant to discovering external
resources. In various aspects, the speculative execution operations may be
performed in parallel with other browser operations (e.g., HTML pre-scanning 563,
HTML parsing 568, etc.) and/or in parallel with the execution of other scripts

(whether speculative or not).

[0194] In an aspect, the speculative execution of the script may include executing
only the portions of JavaScript® code that correspond to a pattern relevant to

discovering resources.

[0195] In an aspect, as part of block 736, the sandboxed JavaScript® engine may

perform the speculative execution of the JavaScript® code based on heuristics (e.g.,
to reduce execution time). Such heuristics may include limiting the total execution
time, number of loop iterations, recursion depth, supported features, and/or abstract

interpretation of the code.

[0196] In an aspect, as part of block 736, the sandboxed JavaScript® engine may
limit the sizes of data structures (e.g., hash tables, arrays etc.) generated from the

speculative execution of the script. Complete data structures may not result in

WO 2014/028115 PCT/US2013/046099

52

identifying further resources for downloading, so the processing time required to

fully generate/populate large data structure can be bypassed.

[0197] In block 738, the sandboxed JavaScript® engine may discover a resource
that is required in order to render the HTML document but that is not explicitly
requested in the HTML document. In block 740, the sandboxed JavaScript® engine
may inform (or spawn) a pre-fetcher to retrieve the discovered resource. In block
742, the sandboxed JavaScript® engine may discard the results of the processing

performed in block 736.

[0198] In block 744, the pre-fetcher may locate the resources discovered by the
sandboxed JavaScript® engine in block 738. In block 746, the pre-fetcher may
download the located resource. In block 748, the pre-fetcher may save the

downloaded resource to memory.

[0199] As discussed above, HTML code may both embed JavaScript® code (called
“inline scripts”) and include links to JavaScript® code (called “external scripts”). In
order to correctly process an HTML document, both the inline and external scripts

must be executed in a specific order defined by the HTML standards.

[0200] As multiple scripts are downloaded, parsed, analyzed, and compiled in
parallel, the order in which the scripts become ready for execution may be different
than the specific execution order defined by the HTML standards. If a script is not
ready to execute, but is the next script in the specific execution order defined by the
HTML standards, a browser may be required to wait until the script becomes ready
for execution before performing any additional processing of the HTML document.
Various aspects utilize this wait time to prepare other scripts or resources for
execution (which is not regulated by the HTML standards). Multiple scripts and

resources may be prepared in parallel and/or during the execution of other scripts.

[0201] In addition, not all of the scripts included (i.e., embedded or linked to) in an

HTML document are actually executed, and preparing all the scripts for execution in

WO 2014/028115 PCT/US2013/046099

53

advance may waste power and processing resources. Various aspects may

intelligently select the scripts that are to be prepared for execution.

[0202] By way of example, an HTML pre-fetcher may discover and download all
referenced scripts (out-of-order) and an HTML parser may later orchestrate their
execution in the correct order, and at the correct point in time of processing the

HTML document.

[0203] The final execution order of the scripts must generally be maintained.
However, all operations associated with downloading, parsing, analyzing, and

compiling the scripts may be performed in parallel and/or out of order.

[0204] In an aspect, scripts included in an HTML document may be prepared for
execution in parallel (i.e., with respect to each other) and out-of-order (i.e., with
respect to the specific execution order defined by the HTML standards). This may
be achieved by generating and/or associating a unique identifier and/or signature
with each script. Signatures may be based on the content of the script. Examples of
signatures and signing processes suitable for use in various aspects include file
offsets (for inline scripts), a message-digest algorithm (e.g., MD3), a secure hash
algorithm (SHA), URL of the script, URI of the script, browser cache keys, and/or

any of a variety of known signing processes.

[0205] FIG. 7C illustrates an aspect browser method 750 of intelligently preparing
scripts included in an HTML document for parallel execution. The operations of
method 750 may be performed by a processor in parallel with the other browser

operations.

[0206] In block 752, an HTML scanner/pre-fetcher may scan an HTML document
for structural information and/or to discover resources (images, CSS, scripts, etc.).
In block 754, the HTML scanner/pre-fetcher may discover one or more scripts in an

HTML document, and inform an HTML parser (executing in parallel with the

WO 2014/028115 PCT/US2013/046099

54

HTML scanner) of the discovered scripts. In block 756, the HTML scanner/pre-

fetcher may initiate the downloading of external scripts.

[0207] In block 758, the HTML parser may generate an identifier (or signature) for
each discovered script (both inline and external scripts) and/or associate each
discovered script with an identifier. In an aspect, the HTML parser may set the text
of the discovered script as its identifier. In an aspect, the HTML parser may
associate the URL/URI of external scripts with the external scripts (i.e., may set
their URL/URI as their signature), and perform a digest and/or hash algorithm to
compute signatures for the inline scripts. If the URL/URI of a script is not available,
not unique and/or otherwise does not uniquely identify a script, as part of block 758,

the HTML parser may generate and use a signature to identify that script.

[0208] In block 760, the HTML parser may send the scripts and their associated
identifiers or URL/URI to a JavaScript® engine executing in parallel with the
HTML parser (e.g., in a separate thread). In block 762, the HTML parser may
perform various HTML parser operations, such as parsing the HTML to discover

other scripts.

[0209] In block 772, the JavaScript® engine may receive the scripts and associated
identifiers, signatures, or URL/URI from the HTML parser. In block 774, the
JavaScript® engine may prepare (e.g., parse, analyze, and/or compile) the received
scripts for execution. The preparation operations may be performed out of order
and/or in parallel across all received scripts (i.e., multiple scripts may be prepared at
once). In an aspect, as part of block 774, the JavaScript® engine may employ
heuristics (e.g., via abstract interpretation) to detect the call graph without executing
code, identify the scripts (or functions) that are most likely to be executed based on
the call graph, and prepare for execution only scripts determined likely to be

executed. In block 776, the JavaScript® engine may associate information

WO 2014/028115 PCT/US2013/046099

55

generated during the preparation of a script (e.g., compiled code, etc.) with that

script’s identifier, signature or URL/URI.

[0210] In block 764, the HTML parser may identify the next script to be executed
(e.g., based on the execution order defined by the HTML standards). In block 766,
the HTML parser may send an identifier (e.g., text of the script, signature,
URL/URI, etc.) of the next script to be executed to the JavaScript® engine. In block
768, the HTML parser may wait of the result of the execution or a notification that
the script has been executed. In block 770, the HTML parser may continue

performing HTML parser operations.

[0211] In block 778, the JavaScript® engine may receive the identifier, signature,
or URL/URI from the HTML parser. In block 780, the JavaScript® engine may
identify the appropriate script based on the received identifier, signature or
URL/URI. In determination block 782, the JavaScript® engine may determine
whether the identified script is ready for immediate execution by, for example,
determining whether all of the parsing, analyzing, and compiling operations have
been performed for that script. If the JavaScript® engine determines that the script
is ready for immediate execution (i.e., determination block 782= “Yes”), in block
786, the JavaScript® engine may inform the HTML parser of the results of the

execution or that the execution is complete.

[0212] When it is determined that the script is not yet ready for immediate
execution (i.e., determination block 782= “No”), in block 784, the JavaScript®
engine may prepare the script for execution using conventional solutions. In block
786, the JavaScript® engine may execute the script in accordance with the specific
execution order defined by the HTML standards. In this manner, method 750
prepares the scripts included in an HTML document for execution in parallel (i.e.,

with respect to each other) and out-of-order (i.e., with respect to the specific

WO 2014/028115 PCT/US2013/046099

56

execution order defined by the HTML standards), and the scripts are executed in the

order defined by the standards.

[0213] FIG. 8 illustrates an aspect browser method 800 of processing pre-fetched
resources. In block 802, a web browser component (e.g., via the fetch manager 502)
may initiate the downloading of a discovered resource (e.g., an image), which may
be downloaded/fetched concurrently (or in parallel) with the performance of other
browser operations (e.g., HTML parsing, etc.). When all data associated with the
discovered resource is downloaded and/or received, in block 804, the downloaded
data (e.g., image data) may be sent to a thread pool for decoding. In an aspect, the

decoding operations may be performed concurrently with other browser operations.

[0214] In block 806, the downloaded data (e.g., image data) may be decoded. In
block 808, the decoded data may be added to a DOM dispatcher queue. In block
810, a DOM dispatcher component 504 may serialize updates to the DOM tree and
respective tree nodes (e.g., “img” tree node in the case of image data). In block 812,
the resource (e.g., image) may be removed from a processing list (e.g., list of

pending images).

[0215] FIG. 9 illustrates example components in a CSS engine 512 suitable for use
with the various aspects. The CSS engine 512 may be configured to perform three
main categories of operations: CSS resource prefetching operations 902, CSS

parsing operations 904, and DOM styling operations 906.

[0216] CSS parsing operations 904 may include reading the CSS code and creating
a collection of data structures (e.g., CSS rules) in memory. The CSS code may be
embedded in HTML or linked as separate files, and may be stored on different
servers. Traditional CSS engines (e.g., the ones in WebKit or Firefox) may parse
CSS sequentially in the main browser thread. Thus, if a page uses embedded CSS,
the HTML parser cannot parse the rest of the HTML document until the CSS engine

has parsed the style element in the document’s header. If a page uses several CSS

WO 2014/028115 PCT/US2013/046099

57

files, they will all be parsed sequentially, even though there may be underutilized
CPU cores. Such CSS parsing serialization (i.e., serial processing of CSS
documents) may cause severe slowdowns if the site uses large CSS files. The

various aspects may use asynchronous tasks to avoid CSS parsing serialization.

[0217] Referring to FIG. 9, the HTML parser 506 may be configured to spawn a
CSS parsing 570 task for each style element in the DOM tree during a page load
operation. Similarly, the fetch manager 502 may spawn a CSS parsing 570 task
whenever a new CSS file arrives. As a result, multiple CSS parsing 570 tasks may
execute concurrently with the HTML parser 506 and/or HTML parsing operations
568.

[0218] Because the total order of style sheets (CSS) and rules (CSS rules) may be a
key part of the styling operations 574, the browser system 500 may be configured to
ensure that the total order is the same, as if the all the style sheets (CSS) had been

parsed in the order in which the programmer intended.

[0219] In various aspects, each of the parsing tasks or parsing operations 568, 570
may receive a unique, sequential parser ID. The browser system 500 may then use

that ID to recreate the ordering of the style sheets in the document.

[0220] DOM styling operations 906 may enable the CSS engine 512 to use data
structures created by the CSS parser 522 to determine the style of the nodes in the
DOM tree. For each node, the CSS engine 512 may perform rule matching
operations to find all rules whose selectors match the node. Rule matching generally
returns many (and sometimes conflicting) rules per node. Using cascading, the CSS
engine 522 may assign weights to rules and choose the rules with the greatest

weight.

[0221] The last step in styling a node may include the DOM styling operations 906

creating a style data structure by using the rules selected by the cascading algorithm

WO 2014/028115 PCT/US2013/046099

58

and attaching it to the DOM. The rule matching and cascading operations may be

performed on several nodes in parallel, as long as certain dependencies are enforced.

[0222] The various aspects may respect/enforce existing HTML and JavaScript®
semantics during concurrent execution (or overlapping) of multiple browser
operations and/or passes. A DOM tree may be the main data structure used by all
browser passes. In various aspects, access to the DOM tree (which may be
constructed by the HTMLS parser) may be serialized to conform to the HTMLS5
specification. In addition, to allow for greater parallelism, each passes may be
provided access to a private concurrent data structure (i.e., in addition to the DOM

tree). In an aspect, this additional data structure may be a layout tree.

[0223] FIG. 10 illustrates an embodiment parallel DOM styling method 1000 in
which rule matching and cascading operations are performed on several nodes in
parallel. In block 1002, the CSS engine 512 may traverse the DOM tree and spawn
two different tasks per DOM node: a matching task, and a node styling task. In
block 1004, the matching task may perform rule matching and cascading operations
for the DOM node. In block 1006, the styling task may create the style data
structure that describes the DOM node. In block 1008, the styling task may attach
the style data structure to the DOM tree.

[0224] FIG. 11A illustrates an example DOM tree suitable for use in various
aspects. FIG. 11B illustrates an example task directed acyclic graph (DAG)
corresponding to the example DOM tree illustrated in FIG. 11A. Specifically, FIG.
11B illustrates how the matching tasks (represented as triangles) may be completely
independent of each other and of the styling tasks (represented as squares), whereas
the styling tasks are dependent on each other and the matching tasks. Generally,
parallel execution of the matching tasks is only limited by the number of processing

cores in the computing system.

WO 2014/028115 PCT/US2013/046099

59

[0225] As mentioned above, styling tasks may be dependent on each other and/or
the matching tasks. Each styling task may be required to satisfy two dependencies
before it can execute. First, a styling task may only execute after the matching task
working on the same node has completed execution. This is because the styling task
builds the style data structure using the rules selected by the matching task. Second,
a styling task working on a node may only execute after the styling task working on
the node’s parent has completed execution. This is because some of the node’s style
properties may inherit from its parent’s. For example, the CSS code p {color:
inherit} instructs the browser to render <p> nodes using the same foreground color

as their parents.

[0226] The rule matching operations performed by the matching tasks may be
expensive in terms of computation, power, latency, etc. For example, if the CSS
engine 512 needs to determine whether the rule “h1 p div {color:red}” applies to a
<div> element E, the matching algorithm may need to find if any of E’s ancestors is
a <p> element, and whether any of <p>’s ancestors is a <h1> element. This may
require walking up the DOM tree all the way to the root, which may be an expensive
operation. In addition, a typical website may require more than 400,000 of such

DOM tree walks.

[0227] To reduce the number of DOM tree walks, various aspects may include a
bloom filter that stores information about the ancestors of a DOM node. The bloom
filter may reduce the number of DOM tree walks to the root (A) by 90%, halving the

time spent in the styling algorithm.

[0228] A bloom filter may be a large data structure, and the CSS engine 512 may
be required to copy it for each styling task. Since copying costs may far outweigh
the performance gains, various aspects may use a smaller structure than a bloom
filter. This may improve browser performance by reducing the number of copy

operations and/or reducing the size of the elements copied.

WO 2014/028115 PCT/US2013/046099

60

[0229] As described above, various aspects may use element id and class attributes
to predict whether an image referenced in the CSS file should be prefetched. In an
aspect, these elements and attributes may be stored in a database that records how
many times each of them appears in the document. The HTML parser may also add

information to this database.

[0230] Before the rule matching algorithm starts, the CSS engine 512 may sort the
items in the database according to their frequency. The browser system 500 may
then assign a bit to each item in a bitmap data structure (referred to as “matching
bitmaps™). If the number of ids and classes is larger than the bitmap size, a single
bit may be assigned to multiple items. Since these bitmaps are small, they may be
copied many times without significantly impacting the performance of the

computing device.

[0231] During rule matching operations, each styling task may receive a matching
bitmap from its parent. The matching bitmap may record the ids, classes, and tags
of its ancestors. Styling tasks may use the matching bitmap to filter out rules that
could never match. Afterward, the styling tasks may add their node’s id, class, and
tag to it and send a copy to their descendants. On average, such matching bitmaps
avoid 90% of the walks to the root of the DOM tree, with only 0.024% of false

positives.

[0232] False positives may occur because matching bitmaps do not record the order
in which labels and ids are encountered. For example, to determine whether the rule
“h2 h1 p {color: red}” applies to a certain node <p>, and that the matching bitmap
indicates that both <h1> and <h2> are <p>’s ancestors, the browser system 500 may
be required to walk up the DOM tree to check whether <h2> is <h1>’s ancestor. If
that is not the case, then it is a false positive situation. Such false positives may not

cause the page to render incorrectly, but may waste CPU cycles.

WO 2014/028115 PCT/US2013/046099

61

[0233] In an aspect, layout and rendering operation, such as by a rendering engine
subsystem 560, may include performing computations that transform a styled DOM
into a bitmap image for display on the screen. The DOM and the CSS styles applied
to the bitmap image may be combined to form a new tree structure (called a layout
tree), in which each node represents a visual element on the web page. Each DOM
node may be translated into zero, one, or many layout tree nodes. The rendering
engine subsystem 560 may take a layout tree as input and compute the region of the
page that each element occupies. The style of each element may be viewed as a

constraint for layout (e.g., inline/block display, float, width, height, etc.).

[0234] The rendering engine subsystem 560 may traverse the layout tree and solve
the constraints (e.g., as part of the layout operations 582) to determine the final
width, height, and position of each element. The rendering engine subsystem 560
may also walk (e.g., as part of the rendering operations 584) over the layout tree
(which may be annotated with the results of the layout engine’s computations) and

draw it on the screen according to the rules of CSS.

[0235] Since the layout operations 582 and rendering operations 584 are closely
related and operate together in a pipeline fashion, in an aspect, they may be

performed by a single component, such as the layout and rendering engine 516.

[0236] In various aspects, the rendering engine subsystem 560 may be configured
to perform the layout operations 582 so that the CSS layout algorithm is performed
in four passes over the layout tree. In each pass, information may flow through the
tree in a more controlled way than in conventional approaches, exposing the

potential for parallelism in the layout process.

[0237] In an aspect, the rendering engine subsystem 560 may perform four passes
on the layout tree: a minimum or preferred width calculation pass, a width
calculation pass, a block-formatting context flow pass, and an absolute position

calculation.

WO 2014/028115 PCT/US2013/046099

62

[0238] The first pass (i.e., the minimum or preferred width calculation pass) may
be a bottom-up pass that propagates widths up the tree to assign a minimum width
and a preferred width to each element. By way of example, for a div element
containing a paragraph of text, the minimum width may be the width as a line break
placed after each word, and the preferred width may be the width without any line

breaks.

[0239] The second pass (i.e., the width calculation pass) may be a top-down pass
that calculates the final width of each element. Depending on the style of the
element, the final width may be derived from either its parent’s width, or the

minimum/preferred width.

[0240] During the third pass (i.e., the block-formatting context flow pass), each
element has a known width, and it its contents may be used to calculate its height.
By way of example, for a div element containing a paragraph of text, after the width
is determined, the text may be placed inside of it, and the height of each line may be
summed to find the total height of the div. The direction of propagation may be
complex. Elements whose contents are used to calculate its height may be referred
to as block-formatting contexts (BFCs). Whether an element is a block-formatting

context or not may be determined by its CSS style.

[0241] The block-formatting context elements in the DOM tree may form a logical
tree that may be overlaid onto the DOM. The block-formatting context overlay tree
may be walked bottom-up, and by the time the browser system 300 reaches the root
of the DOM tree, it will have laid out the whole webpage. At the end of this phase,
the browser system 500 will be informed of the height of all elements, as well as

their relative positions within the block-formatting context that contains them.

[0242] The fourth pass (i.e., the absolute position calculation pass) may be a top
down pass that uses the relative positions within each block-formatting context from

the prior pass to calculate the absolute position of each element on the page.

WO 2014/028115 PCT/US2013/046099

63

[0243] In an aspect, rendering may be achieved by walking the layout tree so that
background elements are visited before foreground elements. Various aspects may
draw each element into a graphics buffer in a manner consistent with its style, and
display the contents of the buffer on the screen (e.g., via the GUI). These rendering
operations may be computationally expensive because of the memory bandwidth
used by the compositing steps. Various aspects may be configured to reduce the
memory bandwidth required by each compositing step via parallelism or concurrent

execution of the various components/subsystems.

[0244] Generally, the performance of the layout and rendering operations are
important due to their impact on everything from page load times to the
responsiveness of the user interface. In addition, layout and rendering operations

compete for CPU cycles with other important tasks, like executing JavaScript®.

[0245] Along with sequential optimizations, various aspects may include both
coarse and fine-grained parallelism to improve the performance of the layout and
rendering engine. These two approaches may be complementary. At the coarse
level, an aspect browser may move as much work as possible out of the critical path
and into worker threads. At the fine level, the aspect browser may parallelize the

layout and rendering algorithms/methods.

[0246] In a conventional web browser, tasks that manipulate the DOM (e.g. parsing
or JavaScript®) never execute at the same time as layout and rendering tasks, which
ensures that the two do not interfere with each other. In contrast, various aspects
overlap these two types of tasks. As such, in various aspects, the layout tree may

not be updated every time the DOM changes.

[0247] Various aspects may separate (or keep separate) the layout tree and the
DOM. Updates to the layout tree may be performed as a batch operation at times
when layout and rendering operations would normally occur; often this is after a

parsing or JavaScript® execution task completes. Grouping the updates in this

WO 2014/028115 PCT/US2013/046099

64

manner may mean that that the browser system 500 may be required to maintain
additional state information to identify portions of the DOM that have changed, but
would avoid performing unnecessary work since the layout tree is not updated for

each intermediate state of the DOM.

[0248] Various aspects may update the layout tree when it is ready to do useful
work with the results. The layout tree may be a separate entity from the DOM. All
DOM changes may be performed without affecting the layout tree. Conversely the
rendering engine subsystem 560 does not need to access the DOM in any way once
the layout tree is updated. This enables parallelism, and also means that the layout
tree must duplicate certain information that would conventionally be stored only in
the DOM. In particular, the layout tree may contain direct references to text,

images, CSS styles, and HTML canvas elements.

[0249] Text and images may be immutable and shared with the DOM safely. CSS
styles may be logically immutable, but the amount of data in a CSS style object may
be too large (and/or they may be updated too frequently) to copy the entire object
every time. Thus, in an aspect, each style object may be divided internally into
many smaller sub-style objects. Shared sub-styles may be updated using a copy-on-
write approach. Unshared sub-styles may be updated in place. Accordingly,
copying a style object may only require creating a new style object that shares the
same sub-styles, which may be much cheaper. In addition, the sub-styles may be
grouped so that CSS properties that are updated together are in the same sub-style,
which may minimize sub-style copies when updates occur. This arrangement allows
the DOM, layout, and rendering components to reference the same CSS styles
without changes made in one place/component being visible to the others. A similar

copy-on-write approach may be used for HTML canvas elements.

[0250] The separation of the layout tree from the DOM tree enables the coarse-

grained parallelism in the rendering engine subsystem 560. When a web page is

WO 2014/028115 PCT/US2013/046099

65

ready to be displayed for the first time to the user, the browser system 500 may
create a work item that initializes the layout tree and hands it off to the rendering
engine subsystem 560 for processing. The separation of the layout and rendering
operations into different threads allows the rest of the browser system 500 to move
forward, such as JavaScript® can be executed, user interface (UI) events can be

processed, and CSS styling can be computed, etc.

[0251] When the rendering engine subsystem 560 finishes its tasks and displays the
page on the screen, it may submit a “LLR work item,” to update the layout tree, and
start the process all over again. Only the “LR work item” needs exclusive access to
the DOM, and once the tree is updated, the other operations may be performed in

parallel and/or asynchronously.

[0252] Certain JavaScript® DOM APIs (e.g., getComputedStyle and offsetTop)
may require information about the results that the layout algorithm computes. The
rendering engine subsystem 560 may be required to pause until the results are
available. If the rendering engine subsystem 560 performs the layout in the main
thread, it may duplicate computations being performed in the LR work item (or LR

thread), which may waste time and energy.

[0253] In an aspect, the rendering engine subsystem 560 may be configured to
remember whether the layout tree has up-to-date layout information. If so, a
synchronous layout request may be returned immediately. If not, the layout
operations may be performed in the LR thread as normal, and the rendering engine
subsystem 560 may be requested to notify the main thread when the layout process
is complete. This delivers the needed results as quickly as possible while preventing

duplicate work.

[0254] In addition to parallelism, another advantage of separating the layout tree
and the DOM is that the rendering engine subsystem 560 may be treated as a service

shared between web pages. Since layout trees don’t refer back to the DOM they

WO 2014/028115 PCT/US2013/046099

66

were constructed from, the same rendering engine subsystem 560 may manage all
layout trees, regardless of their source. This means that expensive, finite rendering
related resources like graphics buffers only need one instance in the entire browser

system 500.

[0255] Yet another advantage provided by the layout tree is added flexibility in
determining a user’s intent when the user interacts with a page that is changing
rapidly. For example, if a user clicks on a button that is being moved around the
screen by JavaScript®, there is a delay between JavaScript® changing the DOM and
the results appearing on the screen because layout and rendering operations take
time. By the time the user’s click is registered, the DOM may have been updated
and the box’s location from the browser’s perspective may have changed. Even if
the user’s mouse pointer is directly over the box, the attempt to click may not be
successful. However, because the layout tree is separate from the DOM, the browser
system 500 may have access to the current working tree and the last tree that was
displayed on the screen. This enables the browser system 500 to determine the
object that the user intended to click on based upon what they saw when they
clicked, and not the current state of the DOM, resulting in improved perceived

responsiveness and a better user experience.

[0256] The various aspects may be implemented on a variety of mobile computing
devices, an example of which is illustrated in FIG. 12. Specifically, FIG. 12 is a
system block diagram of a mobile transceiver device in the form of a
smartphone/cell phone 1200 suitable for use with any of the aspects. The cell phone
1200 may include a processor 1201 coupled to internal memory 1202, a display
1203, and to a speaker 1208. Additionally, the cell phone 1200 may include an
antenna 1204 for sending and receiving electromagnetic radiation that may be
connected to a wireless data link and/or cellular telephone transceiver 1205 coupled
to the processor 1201. Cell phones 1200 typically also include menu selection

buttons or rocker switches 1206 for receiving user inputs.

WO 2014/028115 PCT/US2013/046099

67

[0257] A typical cell phone 1200 also includes a sound encoding/decoding
(CODEC) circuit 1213 which digitizes sound received from a microphone into data
packets suitable for wireless transmission and decodes received sound data packets
to generate analog signals that are provided to the speaker 1208 to generate sound.
Also, one or more of the processor 1201, wireless transceiver 1205 and CODEC
1213 may include a digital signal processor (DSP) circuit (not shown separately).
The cell phone 1200 may further include a ZigBee transceiver (i.e., an IEEE
802.15.4 transceiver) 1213 for low-power short-range communications between
wireless devices, or other similar communication circuitry (e.g., circuitry

implementing the Bluetooth® or WiFi protocols, etc.).

[0258] Various aspects may be implemented on any of a variety of commercially
available server devices, such as the server 1300 illustrated in FIG. 13. Such a
server 1300 typically includes a processor 1301 coupled to volatile memory 1302
and a large capacity nonvolatile memory, such as a disk drive 1303. The server
1300 may also include a floppy disc drive, compact disc (CD) or DVD disc drive
1311 coupled to the processor 1301. The server 1300 may also include network
access ports 1306 coupled to the processor 1301 for establishing data connections
with a network 1305, such as a local area network coupled to other communication

system computers and servers.

[0259] Other forms of computing devices may also benefit from the various
aspects. Such computing devices typically include the components illustrated in
FIG. 14 which illustrates an example personal laptop computer 1400. Such a
personal computer 1400 generally includes a processor 1401 coupled to volatile
memory 1402 and a large capacity nonvolatile memory, such as a disk drive 1403.
The computer 1400 may also include a compact disc (CD) and/or DVD drive 1404
coupled to the processor 1401. The computer device 1400 may also include a
number of connector ports coupled to the processor 1401 for establishing data

connections or receiving external memory devices, such as a network connection

WO 2014/028115 PCT/US2013/046099

68

circuit 1405 for coupling the processor 1401 to a network. The computer 1400 may
further be coupled to a keyboard 1408, a pointing device such as a mouse 1410, and

a display 1409 as is well known in the computer arts.

[0260] The processors 1201, 1301, 1401 may be any programmable
microprocessor, microcomputer or multiple processor chip or chips that can be
configured by software instructions (applications) to perform a variety of functions,
including the functions of the various aspects described below. In some mobile
devices, multiple processors 1301 may be provided, such as one processor dedicated
to wireless communication functions and one processor dedicated to running other
applications. Typically, software applications may be stored in the internal memory
1202, 1302, 1303, 1402 before they are accessed and loaded into the processor 1201,
1301, 1401. The processor 1201, 1301, 1401 may include internal memory

sufficient to store the application software instructions.

[0261] The various aspects may be implemented in any number of single or multi-
processor systems. Generally, processes are executed on a processor in short time
slices so that it appears that multiple processes are running simultaneously on a
single processor. When a process is removed from a processor at the end of a time
slice, information pertaining to the current operating state of the process is stored in
memory so the process may seamlessly resume its operations when it returns to
execution on the processor. This operational state data may include the process’s
address space, stack space, virtual address space, register set image (e.g. program
counter, stack pointer, instruction register, program status word, etc.), accounting

information, permissions, access restrictions, and state information.

[0262] A process may spawn other processes, and the spawned process (i.e., a child
process) may inherit some of the permissions and access restrictions (i.e., context) of
the spawning process (i.e., the parent process). A process may be a heavy-weight

process that includes multiple lightweight processes or threads, which are processes

WO 2014/028115 PCT/US2013/046099

69

that share all or portions of their context (e.g., address space, stack, permissions
and/or access restrictions, etc.) with other processes/threads. Thus, a single process
may include multiple lightweight processes or threads that share, have access to,

and/or operate within a single context (i.e., the processor’s context).

[0263] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples and are not intended to require or imply
that the blocks of the various aspects must be performed in the order presented. As
will be appreciated by one of skill in the art the order of blocks in the foregoing

99 ¢

aspects may be performed in any order. Words such as “thereafter,” “then,” “next,”
etc. are not intended to limit the order of the blocks; these words are simply used to
guide the reader through the description of the methods. Further, any reference to

claim elements in the singular, for example, using the articles “a,” “an” or “the” is

not to be construed as limiting the element to the singular.

[0264] The various illustrative logical blocks, modules, circuits, and algorithm
blocks described in connection with the aspects disclosed herein may be
implemented as electronic hardware, computer software, or combinations of both.
To clearly illustrate this interchangeability of hardware and software, various
illustrative components, blocks, modules, circuits, and blocks have been described
above generally in terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the particular application and
design constraints imposed on the overall system. Skilled artisans may implement
the described functionality in varying ways for each particular application, but such
implementation decisions should not be interpreted as causing a departure from the

scope of the present invention.

[0265] The hardware used to implement the various illustrative logics, logical
blocks, modules, and circuits described in connection with the aspects disclosed

herein may be implemented or performed with a general purpose processor, a digital

WO 2014/028115 PCT/US2013/046099

70

signal processor (DSP), an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable logic device, discrete gate
or transistor logic, discrete hardware components, or any combination thereof
designed to perform the functions described herein. A general-purpose processor
may be a microprocessor, but, in the alternative, the processor may be any
conventional processor, controller, microcontroller, or state machine. A processor
may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or
more microprocessors in conjunction with a DSP core, or any other such
configuration. Alternatively, some blocks or methods may be performed by

circuitry that is specific to a given function.

[0266] In one or more exemplary aspects, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored as one or more instructions or
code on a non-transitory computer-readable medium or non-transitory processor-
readable medium. The steps of a method or algorithm disclosed herein may be
embodied in a processor-executable software module which may reside on a non-
transitory computer-readable or processor-readable storage medium. Non-transitory
computer-readable or processor-readable storage media may be any storage media
that may be accessed by a computer or a processor. By way of example but not
limitation, such non-transitory computer-readable or processor-readable media may
include RAM, ROM, EEPROM, FLLASH memory, CD-ROM or other optical disk
storage, magnetic disk storage or other magnetic storage devices, or any other
medium that may be used to store desired program code in the form of instructions
or data structures and that may be accessed by a computer. Disk and disc, as used
herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk, and blu-ray disc where disks usually reproduce data

magnetically, while discs reproduce data optically with lasers. Combinations of the

WO 2014/028115 PCT/US2013/046099

71

above are also included within the scope of non-transitory computer-readable and
processor-readable media. Additionally, the operations of a method or algorithm
may reside as one or any combination or set of codes and/or instructions on a non-
transitory processor-readable medium and/or computer-readable medium, which

may be incorporated into a computer program product.

[0267] The preceding description of the disclosed aspects is provided to enable any
person skilled in the art to make or use the present invention. Various modifications
to these aspects will be readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other aspects without departing from the
spirit or scope of the invention. Thus, the present invention is not intended to be
limited to the aspects shown herein but is to be accorded the widest scope consistent

with the following claims and the principles and novel features disclosed herein.

WO 2014/028115 PCT/US2013/046099

72

CLAIMS

What is claimed is:

1. A method of preparing scripts included in an HTML document, the method
comprising:

scanning the HTML document to discover a plurality of scripts;

sending the plurality of scripts to a script engine to be prepared for execution;

parsing the HTML document while the script engine prepares the plurality of
scripts for execution;

identifying a next script to be executed from the plurality of scripts;

sending information corresponding to the identified next script to be executed
to the script engine;

suspending the parsing of the HTML document;

receiving a notification indicating that the identified next script to be
executed has been executed; and

resuming the parsing of the HTML document in response to receiving the

notification.

2. The method of claim 1, wherein sending information corresponding to the
identified next script to be executed to the script engine comprises sending the

identified next script to be executed to the script engine.

3. The method of claim 1, further comprising generating an identifier for each of the
plurality of scripts, wherein:
sending the plurality of scripts to a script engine comprises sending the

plurality of scripts and identifiers to the script engine; and

WO 2014/028115 PCT/US2013/046099

73

sending information corresponding to the identified next script to be executed
to the script engine comprises sending the identifier of the next script to be executed

to the script engine.

4. The method of claim 3, wherein generating an identifier for each of the plurality
of scripts comprises associating at least one script with a uniform resource identifier

(URD).

5. The method of claim 3, wherein generating an identifier for each of the plurality

of scripts comprises generating a signature for at least one script.

6. The method of claim 3, wherein generating an identifier for each of the plurality
of scripts comprises generating at least one identifier that includes text of at least

one script.

7. The method of claim 1, wherein:

scanning an HTML document to discover a plurality of scripts comprises
scanning the HTML document in a first processor; and

parsing the HTML document while the script engine prepares the plurality of

scripts for execution comprises parsing the HTML document in a second processor.

8. The method of claim 1, wherein:
scanning an HTML document to discover a plurality of scripts comprises
scanning the HTML document by a first process executing in a processor; and
parsing the HTML document while the script engine prepares the plurality of
scripts for execution comprises parsing the HTML document by a second process

executing in the processor.

WO 2014/028115 PCT/US2013/046099

74

9. The method of claim 8, wherein parsing the HTML document while the script
engine prepares the plurality of scripts for execution comprises parsing the HTML
document while the script engine parses, analyzes, and compiles a first script in

parallel with the script engine parsing, analyzing, and compiling a second script.

10. The method of claim 1, wherein parsing the HTML document while the script
engine prepares the plurality of scripts for execution comprises parsing the HTML
document while the script engine prepares the plurality of scripts for execution in a
preparation order that is different from an execution order in which the plurality of

scripts are executed.

11. The method of claim 1, wherein identifying a next script to be executed from
the plurality of scripts comprises identifying the next script to be executed based on

a defined execution order.

12. A computing device, comprising:

means for scanning an HTML document to discover a plurality of scripts;

means for sending the plurality of scripts to a script engine to be prepared for
execution;

means for parsing the HTML document while the script engine prepares the
plurality of scripts for execution;

means for identifying a next script to be executed from the plurality of
scripts;

means for sending information corresponding to the identified next script to
be executed to the script engine;

means for suspending the parsing of the HTML document;

means for receiving a notification indicating that the identified next script to

be executed has been executed; and

WO 2014/028115 PCT/US2013/046099

75

means for resuming the parsing of the HTML document in response to

receiving the notification.

13. The computing device of claim 12, wherein means for sending information
corresponding to the identified next script to be executed to the script engine
comprises means for sending the identified next script to be executed to the script

engine.

14. The computing device of claim 12, further comprising means for generating an
identifier for each of the plurality of scripts, wherein:

means for sending the plurality of scripts to a script engine comprises means
for sending the plurality of scripts and identifiers to the script engine; and

means for sending information corresponding to the identified next script to
be executed to the script engine comprises means for sending the identifier of the

next script to be executed to the script engine.

15. The computing device of claim 14, wherein means for generating an identifier
for each of the plurality of scripts comprises means for associating at least one script

with a uniform resource identifier (URI).

16. The computing device of claim 14, wherein means for generating an identifier
for each of the plurality of scripts comprises means for generating a signature for at

least one script.

17. The computing device of claim 14, wherein means for generating an identifier
for each of the plurality of scripts comprises means for generating at least one

identifier that includes text of at least one script.

WO 2014/028115 PCT/US2013/046099

76

18. The computing device of claim 12, wherein:

means for scanning an HTML document to discover a plurality of scripts
comprises means for scanning the HTML document in a first processor; and

means for parsing the HTML document while the script engine prepares the
plurality of scripts for execution comprises means for parsing the HTML document

in a second processor.

19. The computing device of claim 12, wherein:

means for scanning an HTML document to discover a plurality of scripts
comprises means for scanning the HTML document by a first process executing in a
processor; and

means for parsing the HTML document while the script engine prepares the
plurality of scripts for execution comprises means for parsing the HTML document

by a second process executing in the processor.

20. The computing device of claim 19, wherein means for parsing the HTML
document while the script engine prepares the plurality of scripts for execution
comprises means for parsing the HTML document while the script engine parses,
analyzes, and compiles a first script in parallel with the script engine parsing,

analyzing, and compiling a second script.

21. The computing device of claim 12, wherein means for parsing the HTML
document while the script engine prepares the plurality of scripts for execution
comprises means for parsing the HTML document while the script engine prepares
the plurality of scripts for execution in a preparation order that is different from an

execution order in which the plurality of scripts are executed.

WO 2014/028115 PCT/US2013/046099

77

22. The computing device of claim 12, wherein means for identifying a next script
to be executed from the plurality of scripts comprises means for identifying the next

script to be executed based on a defined execution order.

23. A computing device, comprising:
a processor configured with processor-executable instructions to perform
operations comprising:
scanning an HTML document to discover a plurality of scripts to be
prepared for execution;
sending the plurality of scripts to a script engine;
parsing the HTML document while the script engine prepares the
plurality of scripts for execution;
identifying a next script to be executed from the plurality of scripts;
sending information corresponding to the identified next script to be
executed to the script engine;
suspending the parsing of the HTML document;
receiving a notification indicating that the identified next script to be
executed has been executed; and
resuming the parsing of the HTML document in response to receiving

the notification.

24. The computing device of claim 23, wherein the processor is configured with
processor-executable instructions to perform operations such that sending
information corresponding to the identified next script to be executed to the script
engine comprises sending the identified next script to be executed to the script

engine.

WO 2014/028115 PCT/US2013/046099

78

25. The computing device of claim 23,
wherein the processor is configured with processor-executable instructions to
perform operations further comprising generating an identifier for each of the
plurality of scripts, and
wherein the processor is configured with processor-executable instructions
such that:
sending the plurality of scripts to a script engine comprises sending the
plurality of scripts and identifiers to the script engine; and
sending information corresponding to the identified next script to be
executed to the script engine comprises sending the identifier of the next

script to be executed to the script engine.

26. The computing device of claim 25, wherein the processor is configured with
processor-executable instructions to perform operations such that generating an
identifier for each of the plurality of scripts comprises associating at least one script

with a uniform resource identifier (URI).

27. The computing device of claim 25, wherein the processor is configured with
processor-executable instructions to perform operations such that generating an
identifier for each of the plurality of scripts comprises generating a signature for at

least one script.

28. The computing device of claim 25, wherein the processor is configured with
processor-executable instructions to perform operations such that generating an
identifier for each of the plurality of scripts comprises generating at least one

identifier that includes text of at least one script.

WO 2014/028115 PCT/US2013/046099

79

29. The computing device of claim 23, wherein the processor is configured with
processor-executable instructions such that:
scanning an HTML document to discover a plurality of scripts comprises
scanning the HTML document by a first process executing in the processor; and
parsing the HTML document while the script engine prepares the plurality of
scripts for execution comprises parsing the HTML document by a second process

executing in the processor.

30. The computing device of claim 29, wherein the processor is configured with
processor-executable instructions to perform operations such that preparing the
plurality of scripts for execution comprises the second process parsing, analyzing,
and compiling a first script in parallel with parsing, analyzing, and compiling a

second script.

31. The computing device of claim 23, wherein the processor is configured with
processor-executable instructions to perform operations such that parsing the HTML
document while the script engine prepares the plurality of scripts for execution in
parallel comprises parsing the HTML document while the script engine prepares the
plurality of scripts for execution in a preparation order that is different from an

execution order in which the plurality of scripts are executed.

32. The computing device of claim 23, wherein the processor is configured with
processor-executable instructions to perform operations such that identifying a next
script to be executed from the plurality of scripts comprises identifying the next

script to be executed based on a defined execution order.

33. A non-transitory computer readable storage medium having stored thereon

processor-executable software instructions configured to cause a processor to

WO 2014/028115 PCT/US2013/046099

80

perform operations for preparing scripts included in an HTML document, the
operations comprising:

scanning the HTML document to discover a plurality of scripts to be prepared
for execution;

sending the plurality of scripts to a script engine;

parsing the HTML document while the script engine prepares the plurality of
scripts for execution;

identifying a next script to be executed from the plurality of scripts;

sending information corresponding to the identified next script to be executed
to the script engine;

suspending the parsing of the HTML document;

receiving a notification indicating that the identified next script to be
executed has been executed; and

resuming the parsing of the HTML document in response to receiving the

notification.

34. The non-transitory computer readable storage medium of claim 33, wherein the
stored processor-executable software instructions are configured to cause a
processor to perform operations such that sending information corresponding to the
identified next script to be executed to the script engine comprises sending the

identified next script to be executed to the script engine.

35. The non-transitory computer readable storage medium of claim 33,

wherein the stored processor-executable software instructions are configured
to cause a processor to perform operations further comprising generating an
identifier for each of the plurality of scripts, and

wherein the stored processor-executable software instructions are configured

to cause a processor to perform operations such that:

WO 2014/028115 PCT/US2013/046099

81

sending the plurality of scripts to a script engine comprises sending the
plurality of scripts and identifiers to the script engine; and

sending information corresponding to the identified next script to be
executed to the script engine comprises sending the identifier of the next

script to be executed to the script engine.

36. The non-transitory computer readable storage medium of claim 35, wherein the
stored processor-executable software instructions are configured to cause a
processor to perform operations such that generating an identifier for each of the
plurality of scripts comprises associating at least one script with a uniform resource

identifier (URI).

37. The non-transitory computer readable storage medium of claim 35, wherein the
stored processor-executable software instructions are configured to cause a
processor to perform operations such that generating an identifier for each of the

plurality of scripts comprises generating a signature for at least one script.

38. The non-transitory computer readable storage medium of claim 35, wherein the
stored processor-executable software instructions are configured to cause a
processor to perform operations such that generating an identifier for each of the
plurality of scripts comprises generating at least one identifier that includes text of at

least one script.

39. The non-transitory computer readable storage medium of claim 33, wherein the
stored processor-executable software instructions are configured to cause a
processor to perform operations such that:

scanning an HTML document to discover a plurality of scripts comprises

scanning the HTML document by a first process; and

WO 2014/028115 PCT/US2013/046099

82

parsing the HTML document while the script engine prepares the plurality of

scripts for execution comprises parsing the HTML document by a second process.

40. The non-transitory computer readable storage medium of claim 39, wherein the
stored processor-executable software instructions are configured to cause a
processor to perform operations such that preparing the plurality of scripts for
execution comprises the second process parsing, analyzing, and compiling a first

script in parallel with parsing, analyzing, and compiling a second script.

41. The non-transitory computer readable storage medium of claim 33, wherein the
stored processor-executable software instructions are configured to cause a
processor to perform operations such that parsing the HTML document while the
script engine prepares the plurality of scripts for execution in parallel comprises
parsing the HTML document while the script engine prepares the plurality of scripts
for execution in a preparation order that is different from an execution order in

which the plurality of scripts are executed.

42. The non-transitory computer readable storage medium of claim 33, wherein the
stored processor-executable software instructions are configured to cause a
processor to perform operations such that identifying a next script to be executed
from the plurality of scripts comprises identifying the next script to be executed

based on a defined execution order.

WO 2014/028115 1/16 PCT/US2013/046099

‘yO

104 106 108 110
3\ \ \ \
Modem Graphics Applications
Processor Processor Processor [¢ 7| CoProcessor

S S
[T T 1

System
- , Analog and

Circuitry Resources

/ / / /

/ / / A V4

102 112 114 116

Y
o oo~ qotese

FIG. 1

WO 2014/028115

2(32

2/16

PCT/US2013/046099

(Core 2

Processing Unit

L1 Cache

[Core 3

~— 232

Processing Unit

L1 Cache

242 “‘(L2 Cache)
A
204 ~Core 0 Y | (Core 1 — 206
208 1 Processing Unit Processing Unit {1210
212 L1 Cache L1 Cache - 214
216~ L2Cache) (L2Cache)-226
I y

218\—(

Bus/Interconnect Interface

:

¢

220 ~

Main Memory

Input / Output
Module

~ 222

224

External Memory
/ Hard Disk

FIG. 2

WO 2014/028115 3/16 PCT/US2013/046099

Receive User Input Requesting HTML Document

302 ~ Located at a URL

v

304 ~ Request HTML Document
from a Server Located at the URL

v

306 ~ Receive HTML Document
from a Server Located at the URL

v

Parse HTML to Discover External Resources
308 ~ (e.g., images, audio, CSS, etc.) Referenced in
the Received HTML Document

v

310 ~ Request Discovered External Resources
from Network Server

v

312 ~ Receive Requested Resources
from Network Server

Do the

Received Resources Yes

314

300

"

Reference other External
Resources?

Analyze Received Resources to Determine Which Resources
are Required to Render the Page

316 ~

I

318 ~ Render Webpage Based on Resources Determined to be
Required

FIG. 3A

WO 2014/028115 PCT/US2013/046099
3{0‘
354 £ 352
i
Fetch 356
L)i
b[110100101001....]
358 362
’ 7
Decode, ... |« 360
L)
364 P[<html><head>...](—__>
)
Parse <
L boMm 366
> S
-
368 cripting
? 370
Style ¢)
DOM & CSS
L N
372
!
Layout | —
374
\.
C——1
356 C——— 1 |
338 380
Render |«
Mouse
L Keyboard
Touch
- —= HDD
oot e GPs
Plug-in

FIG. 3B

WO 2014/028115 5/16 PCT/US2013/046099

5(;0

r)

502 ~(Fetch Manager

504 ~(DOM Dispatcher

506 { HTML Parser

508 \—(HTML pre-scanner

510 { Image Decoder

CSS Engine

(CSS Resource Pre-fetcher)«- 520

512~ (CSS Parser)«- 522
(DOM Styler }/- 524

JavaScript Engine

514 ~ (Light Compiler },- 526
(Full Compiler }/- 528

518 \—(User Interface)
530 \—(Sandboxed JavaScript Engine)

FIG. 4

WO 2014/028115 6/16

PCT/US2013/046099
552
) 500
User Interface
URL Events
554 556
)
([N /f)
Resource Manager Per-Page DOM Engine
562 568 570
Prefetching - HTML })
. CSS Parsing
563 Parsing
HTML Pre-Scanning d
571 74
564] HTML Code _——— 58
Image Decoding -’ -; | JavaScript | Styling
| L Parsing.
CSS S ing / 566
canming £ 1~ 572 576
Pre-Fetching 1 .
Ii\vgsapt_sanmng_/[EES? Timers Events
L Pre-Fetching
1016, L J
- >
\.
JS Code Layout Tree
558 560
) ! 4
(f N 4 N
(Per-Page JavaScript Engine Rendering Engine
578 580 582 584
A S S S
Execution Compilation Layout Render
kkL IJJ L J

FIG. 5

WO 2014/028115

7/16

Scan HTML Document for
Structural Information
and/or to Discover
Resources

I

Determine Which of the
Discovered Resources
are Likely to be Required

I

PCT/US2013/046099

600

Issue Requests to
Download the Resources
Determined to be Most
Likely to be Required

Download Resources

I

'

Continue Scanning HTML
Document to Discover
Additional Resources

Scan Resources for
Structural Information
and/or to Discover
Additional Resources

)

602

604

606 619 |

508 612
614

¥

are Likely to be Required

Determine Which of the
Discovered Resources

616

'

Download the Resources

Issue Requests to

Determined to be Most
Likely to be Required

FIG. 6

L

WO 2014/028115

Y

HTML Scanner

Scan HTML Document
to Discover Resources

v

Encounter External
Resource Referenced
by HTML Document

v

Issue Request to
Download the
Encountered Resource

!

Encounter and/or
Collect HTML ID, Style
and/or Class Name
Mentioned in HTML
Document

Send Information
Pertaining to the HTML
ID, Style and/or Class
Name to CSS Scanner

v

Continue Scanning
HTML Document to
Discover Additional

v y

No

Resources
714
Yes 716
Z
Notify CSS
Document
Scanner

C

8/16

PCT/US2013/046099
CSS Scanner
702 719
Begin Scanning CSS
Document
+ 720
704 /
Receive Information
Pertaining to HTML ID,
Style and/or Class
Name
721
v J
706 Determine Whether
Received Information
Marks CSS as Likely to
be Used by HTML
Document
708
Is Rule Likely
to be Used?
710
724 723
) S /
Issue Request to Store the
I Download Resources .
CSS Rule in
Referenced by CSS)
a List
Rule
712 L)
725
J
Continue Scanning CSS Document
+ 726
Receive Notification from HTML
Scanner
+ 727
Retrieve CSS Rule from List and
Evaluate CSS Rule

Is Rule Likely
to be Used?

729

Request the Resources
Referenced by that CSS Rule

FIG. 7A

WO 2014/028115

Scanner

732
S

Scan HTML Document to
Discover Resources

734 l
g

Encounter JavaScript Script

)

Prefetcher
744

Locate Resource

v]
S

Download Resource

v]
§

Save Resource to Memory

9/16

FIG. 7B

PCT/US2013/046099

730

Sandboxed Engine

735
g

Begin Scanning JavaScript
Script

736 l
§

Speculatively Execute
Portions of the JavaScript
Code to Discover Resources

738 l
S

Discover Resource

o]
8

Issue Request to Download
Resource

742 l
S

Discard Results of Processing

WO 2014/028115 10/16

759 Scanner/Pre-fetcher

{
(> Scan HTML Document

754 l
Q

Discover Scripts

756 !
g

Initiate Downloading of External
Scripts

_ J

JavaScript Engine
772
<
Receive Scripts and Associated
Identifiers

774 l
S

In Parallel, Prepare the Received
Scripts for Execution

776 l
§

Associate Information Produced
in the Preparation of A Script with
its Identifier

778 l
S

Receive Identifier of Next Script
HTML Parser is to Execute

780 l
<

Identify Appropriate Script Based
on Received Identifier

82 Yes

Is
Identified Script Ready for
Execution?

No
784
g

766 l
§
Send JavaScript Execution
Engine Identifier of the

Prepare Identified Script
for Execution via
Conventional Solutions

Execute Script in
Accordance With
Execution Order

N

PCT/US2013/046099
750

x’

HTML Parser
758
{

Generate Identifier for Each
Script

760 l
S

Send Scripts and
Associated Identifiers to
JavaScript Engine

762 l
S

Perform HTML Parser
Operations

764 l
S

Identify Next Script to be
Executed

Next Script to be Executed

768 l
S

Wait for the Results of
Execution

770 l
s

Continue HTML Parser
Operations

FIG. 7C

WO 2014/028115 11/16 PCT/US2013/046099

800

Fetch Discovered Image Resource Concurrent with the
802—] Performance of Other Browser Operations (e.g., HTML
parsing, etc.)

l

Send Downloaded Resource Data to Thread Pool for
804 — Decoding Concurrent with the Performance of Other
Browser Operations

l

Decode Data Concurrent with the Performance of Other

806— Browser Operations
l

808 —+t Store Decoded Data in DOM Dispatch Queue
l

810—t Serialize Updates to DOM Tree
l

812 — Remove Resource From Processing List

FIG. 8

WO 2014/028115 12/16 PCT/US2013/046099

512

CSS Engine

CSS Resource Pre-fetching |~ 902

CSS Parsing — 904

DOM Styling - 906

FIG. 9

WO 2014/028115

13/16 PCT/US2013/046099

1000

1002

CSS Engine Traverses DOM Tree

v

1004 —

CSS Engine Spawns Two Different Tasks per DOM Node:
a Matching Task and a Node Styling Task

v

1006 —

Matching Task Performs Rule Matching and Cascading
Operations for the DOM Node and/or Selects Rule

v

1012 —

Styling Task Creates Style Data Structure that Describes
the DOM Node

v

1014 —

Styling Task Attaches Style Data Structure to the DOM
Tree

FIG. 10

WO 2014/028115 14/16 PCT/US2013/046099

FIG. 11A

7)
----- $ Task Dependence

A Matching Task

Styling Task

FIG. 11B

WO 2014/028115 15/16 PCT/US2013/046099
1200

1300 1305

1306/ 1302
130K Zre Pl 108

\
i

130317

FIG. 13

PCT/US2013/046099

16/16

WO 2014/028115

’|400<4

FIG. 14

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/046099

A. CLASSIFICATION OF SUBJECT MATTER
I

NV. GO6F9/445 GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2011/185271 Al (ACIICMEZ ONUR [US] ET 1-42
AL) 28 July 2011 (2011-07-28)
paragraph [0007] - paragraph [0009]
paragraph [0034]

paragraph [0066] - paragraph [0072]
A US 2011/173597 Al (CASCAVAL GHEORGHE CALIN 1-42
[US] ET AL) 14 July 2011 (2011-07-14)
paragraph [0003] - paragraph [0006]
paragraph [0024] - paragraph [0026]
paragraph [0045] - paragraph [0058]

A US 2012/110433 Al (PAN AIMIN [CN] ET AL) 1-42
3 May 2012 (2012-05-03)

abstract

paragraph [0013] - paragraph [0040]
paragraph [0047]

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

°ited.t°| establish the pul_r;_licdation date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
29 August 2013 05/09/2013
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040
éx%mq&smsme Jonsson, Svante

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/046099

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

paragraph [0002]
paragraph [0022]
paragraph [0031] - paragraph [0034]
paragraph [0060]

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2011/082984 Al (YUAN SONG [SE]) 4,15,26,
7 April 2011 (2011-04-07) 36

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/046099
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011185271 Al 28-07-2011 KR 20110087195 A 02-08-2011
US 2011185271 Al 28-07-2011
US 2011173597 Al 14-07-2011 CN 102741812 A 17-10-2012
EP 2524306 Al 21-11-2012
JP 2013516720 A 13-05-2013
KR 20120117859 A 24-10-2012
US 2011173597 Al 14-07-2011
WO 2011087993 Al 21-07-2011
US 2012110433 Al 03-05-2012 NONE
US 2011082984 Al 07-04-2011 EP 2486498 Al 15-08-2012
US 2011082984 Al 07-04-2011
WO 2011042360 Al 14-04-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - wo-search-report
	Page 102 - wo-search-report
	Page 103 - wo-search-report

