发明名称

一种穿戴式手功能康复机器人及其控制系统

摘要

本发明公开一种可穿戴式手功能康复机器人，主要用于辅助因脑中风、脑外伤、脊椎损伤以及周围神经损伤导致手运动功能障碍的患者在社区或者家庭中重复进行运动功能康复训练。该机器人系统通过检测患者多通道表面肌电信号提取患者主动运动意向，并结合角度和力传感器测量的数据得到患肢状态，机器人在此基础上采用智能控制算法通过气动肌肉收缩辅助患者进行康复训练。本康复机器人具有多个自由度，辅助患者进行多关节复合运动，并且将康复过程中多传感器数据信息融合用于康复效果评估，还通过使用计算机上康复治疗虚拟环境来提高患者的主动性与训练兴趣。本发明结构简单，运动灵活，安全可靠，能够实现患者运动功能的康复训练，而且符合人手的生理结构特点，穿戴更加舒适。
1、一种穿戴式手功能康复机器人，其特征在于：

第一，第二气动肌肉（11、4）的进气端均与机械手臂（1）后端相连；

机械手臂（1）前部安装有支撑滑轮架（26），支撑滑轮（13）和第一压轮（14）安装在支撑滑轮架（26）上，支撑滑轮架（26）前方安装有指关节转动副（18、19）；指关节转动副（18、19）前上方安装换向滑轮（15）和第二压轮（16），下方安装可旋转的指托支架（21），在指托支架（21）上安装有拉杆（17）和分指托（22）；拉杆（17）上固定有刚性细绳（12），细绳穿过换向滑轮（15）和第二压轮（16）的间隙再穿过支撑滑轮（13）和第一压轮（14）的间隙，与第一气动肌肉（11）的封闭端连接；

指关节转动副（18、19）前下方安装有紧贴手指背部的手指压片（24）；

指关节转动副（18、19）与手指压片（24）之间安装滑轨（25）。

机械手臂（1）的前方一侧安装有第一拇指套（2）和第二拇指套（3），拇指支架（5）的一端与机械手臂相连，中部和第二气动肌肉（4）的封闭端相连，另一端与第二拇指套（3）相连。

2、一种权利要求1所述手功能康复机器人的控制系统，其特征在于：

它包括控制器（100）、A/D 采集卡（200）、信号预处理电路（300）、力传感器（400）、角度传感器（500）和电磁比例阀（600）；

力传感器（400）包括第一力传感器（9）和第二力传感器（10），第一力传感器（9）的一端固定在机械手臂（1）后端，另一端连接第一气动肌肉（11）的进气端，第二力传感器（10）的一端固定在机械手臂（1）的后端，另一端与第二气动肌肉（4）的进气端相连；

角度传感器（500）包括第一角度传感器（6）、第二角度传感器（20）和第三角度传感器（23）；第二角度传感器（6）安装在拇指支架（5）旋转轴处，第一角度传感器（20）安装在指关节转动副（18）、（19）的旋转轴处，第二角度传感器（23）安装在指托支架（21）旋转处；
电磁比例阀（600）与第一、第二气动肌肉（11）、（4）的进气端相连；
信号预处理电路（300）与角度传感器（500）和力传感器（400）相连，
将传感器信号进行放大滤波后，通过 A/D 采集卡（200）发送给控制器（100）；
控制器（100）接收包括关节角度和气动肌肉拉力的数据，通过电磁比例阀（600）控制第一、第二气动肌肉（11）、（4）的收缩。

3、根据权利要求 2 所述的控制系统，其特征在于：该系统还包括串接的表面肌电信电极（700）和肌电放大器（800），肌电放大器（800）的另一端依次通过信号预处理电路（300）和 A/D 采集卡（200）与控制器（100）相连，使用时，表面肌电信电极（700）与第一、第二气动肌肉（11、4）接触。

4、根据权利要求 2 或 3 所述的控制系统，其特征在于：该系统还包括与控制器相连的计算机（900）。
一种穿戴式手功能康复机器人及其控制系统

技术领域

本发明属于康复机器人技术，具体一种穿戴式手功能康复机器人及其控制系统。该机器人采用气动肌肉驱动、能够辅助患者进行患手多关节复合运动功能训练。本发明采用基于生物肌电生物反馈的智能控制，可对康复效果进行定量评估，采用增强现实技术充分发挥患者的主观能动性。

背景技术

近年脊椎损伤、脑外伤和中风等中枢神经系统损伤患者显著增加，上肢和手功能障碍是最常见的主要问题之一，患手功能恢复关系到患者的预后和生活质量。研究显示，90%神经学上的恢复出现在脑卒中后三个月内，康复介入得越早，功能恢复的可能性就越大，预后也越好。中枢神经系统具有高度的可塑性，实验表明，特定的功能训练在此过程中必不可少。众多的康复训练一般是按照神经发育的规律，先从肩关节开始，逐渐过渡到肘关节、腕关节和手指功能训练，等到肩、肘、腕的关节功能恢复后再进行手功能训练往往已错过最佳康复治疗时间。因此，手部康复的重复功能训练应与上肢同时进行，以便有效利用发病后早期这段最佳治疗时间。越复杂的功能越难恢复，而人手多进行精细运动，神经支配复杂，运动功能障碍患者最容易“废用”的是手的运动功能，因此早期诱发手指功能训练对于患者运动功能的最终恢复十分重要。

临床上肢残疾患者的手功能障碍往往表现为屈曲挛缩，手的屈肌力量占优势，指间关节和掌指关节伸展困难，丧失握持、侧捏、对掌及对指等精细运动功能，因此痉挛是早期手功能训练的主要问题，康复治疗主要采取被动抑制痉挛的方法。目前临床上治疗师为病人进行康复训练时，手把手地对患者进行一对一的训练，活动患手的各关节，不仅训练效率和训练强度难以保证，训练效果受到治疗师水平的影响，而且缺乏评价训练参数。
和康复效果关系的客观数据，难以对训练参数进行优化以获得最佳治疗方案。

中国专利 200420019014.X 公开一种智能手部康复训练器，用于手指运动功能有待恢复的患者进行康复训练，它包括控制系统、电机驱动装置、五根柔索、五对传动软轴和五套手指运动机构。该装置结构简单，操作方便，成本低廉，可供患者自主地进行康复训练。

该装置的缺点是没有充分考虑人类肢体的特殊复杂性，从而使康复运动形式单一，自由度少，机构缺乏柔顺性，而且不能实现训练效果评估，也没有引入增强现实技术。

中国专利 200520020314.4 公开一种脑血管病人用的气压式康复手套，主要由气囊、阀门、充气装置等组成，对气囊进行规律性的充气和放气，达到辅助手部多关节进行被动伸屈运动的目的。

这种气压式康复手套尽管柔顺适合穿戴，但没有引入机器人技术，不算是一个智能康复系统，不能获取康复过程中的参数，不仅不能实现康复效果的评估，而且病人只是被动的接受康复训练，训练过程枯燥。

中国专利 200410009465.X 公开一种手腕及手指关节运动康复训练机器人，包括上位机、机器人固定卡具、手托、调速驱动装置、角度检测机构和各种用途的训练手柄，可针对不同的目的，设计控制方案，辅助偏瘫患者进行腕手关节的康复训练。

该装置的缺点是驱动执行机构不具柔顺性，不适合穿戴，也未引入生物反馈和增强现实技术提高患者主动参与康复训练的积极性。

发明内容

本发明的目的在于提供穿戴式手功能康复机器人，该机器人可辅助患手完成抓握、对掌和对指等动作，有效减轻水肿，避免肢体痉挛及非麻痹性肌肉萎缩，使运动尽可能达到协调和随意，提高活动自由度，使肢体功能得到好的恢复，缩短康复疗程，降低治疗费用；本发明还提供了该机器人的控制系统。
本发明提供的穿戴式手功能康复机器人，其特征在于：第一、第二气动肌肉的进气端均与机械手臂后端相连；

机械手臂前部安装有支撑滑轮架，支撑滑轮和第一压轮安装在支撑滑轮架上，支撑滑轮架前方安装有掌指关节转动副；掌指关节转动副前上方安装换向滑轮和第二压轮，下方安装可旋转的指托支架，在指托支架上安装有拉杆和分指托；拉杆上固定有刚性细绳，细绳穿过换向滑轮和第二压轮的间隙再穿过支撑滑轮和第一压轮的间隙，与第一气动肌肉的封闭端连接；掌指关节转动副前下方安装有紧贴手指背部的手指压片；掌指关节转动副与手指压片之间安装滑轨；

机械手臂的前方一侧安装有第一拇指套和第二拇指套，拇指支架的一端与机械手臂相连，中部和第二气动肌肉的封闭端相连，另一端与第二拇指套相连。

本发明提供的手功能康复机器人的控制系统，包括控制器、A/D 采集卡、信号预处理电路、力传感器、角度传感器和电磁比例阀；

力传感器包括第一力传感器和第二力传感器，第一力传感器的一端与固定在机械手臂后端，另一端连接第一气动肌肉的进气端，第二力传感器的一端也固定在机械手臂后端，另一端与第二气动肌肉的进气端相连；

角度传感器包括第一角度传感器、第二角度传感器和第三角度传感器；第三角度传感器安装在拇指支架旋转轴处，第一角度传感器安装在掌指关节转动副的旋转轴处，第二角度传感器安装在指托支架旋转处；

电磁比例阀与第一、第二气动肌肉的进气端相连；

信号预处理电路与角度传感器和力传感器相连，将传感器信号进行放大滤波后，通过 A/D 采集卡发送给控制器；

控制器接收包括关节角度和气动肌肉拉力的数据，通过电磁比例阀控制第一、第二气动肌肉的收缩。

本发明将机器人技术应用于患者的手运动功能康复，提供一种穿戴式手功能康复机器人，采用气动肌肉驱动，其独特的仿生性和柔顺性使机器
人的机械结构与人的肢体柔顺性更匹配，适于穿戴且安全舒适。具有多自由度，主要辅助手指的伸展，使患者最终完成手运动功能的重复训练。其轻便经济、易穿卸，尤其适于家庭和社区使用，既简化治疗师与患者“一对一”的繁重治疗过程，又可为患者提供有效的康复训练，具有改善康复效果和提高康复效率的潜力。

本发明还包括控制系统，采用基于肌电信号的生物反馈技术，将多传感器数据融合用于机器人的智能控制和康复效果评估，辅助患者完成患手多关节复合运动的重复功能训练，并采用增强现实技术构建康复治疗虚拟环境，提高患者参与康复训练的主动性和兴趣。机器人可记录详实的治疗数据，能提供客观、准确的治疗和评价参数，具有改善康复效果和提高康复效率的潜力。

附图说明

图 1 为穿戴式手功能康复机器人主视图；
图 2 为穿戴式手功能康复机器人俯视图；
图 3 为穿戴式手功能康复机器人仰视图。
图 4 为穿戴式手功能康复机器人控制系统的结构示意图；
图 5 为穿戴式手功能康复机器人的智能控制算法流程图；
图 6 为具有肌电生物反馈的穿戴式手功能康复机器人控制系统结构示意图；
图 7 为由计算机提供康复治疗虚拟环境的康复机器人控制系统结构示意图；

具体实施方式

下面结合附图和实例对本发明作进一步详细的说明。

如图 1 所示，穿戴式手功能康复机器人的结构为：

机械手臂 1 用于固定患者手臂与手腕，第一、第二固定器 7、8 均安装在机械手臂 1 后端，第一力传感器 9 和第二力传感器 10 用于测量气动肌肉的拉力，第一力传感器 9 的一端与第一固定器 7 相连，另一端连接第一气
动肌肉 11 的进气端，第二力传感器 10 的一端与第二固定器 8 相连，另一端与第二气动肌肉 4 的进气端相连。

机械手臂 1 前部安装支撑滑轮架 26，上面安装支撑滑轮 13 和第一压轮 14，支撑滑轮架 26 前方安装推杆关节转动副 18、19，其旋转轴处安装第一角度传感器 20，测量推杆关节旋转角度；推杆关节转动副 18、19 前上方安装换向滑轮 15 和第二压轮 16，下方安装可旋转的指托支架 21，在指托支架 21 上安装拉杆 17 和分指托 22，指托支架 21 旋转处安装第二角度传感器 23，测量指间关节伸展角度；拉杆 17 上固定两刚性细棒 12，细棒穿过换向滑轮 15 和第二压轮 16 的间隙再穿过支撑滑轮 13 和第一压轮 14 的间隙，与第一气动肌肉 11 的封闭端连接。推杆关节转动副 18、19 后下方安装手指压片 24 紧贴手指背部；推杆关节转动副 18、19 与手指压片 24 之间安装滑轨 25，在推杆关节转动过程中，手指压片 24 借助滑轨 25 滑动。

机械手臂 1 的右前方安装第一拇指套 2，第二拇指套 3 用于固定患手大拇指。拇指支架 5 一端固定在机械手臂 1 的右前方，中部与第二气动肌肉 4 的封闭端相连，另一端与第二拇指套 3 相连，第二气动肌肉 4 收缩牵动拇指支架 5 旋转，辅助患手实现拇指外展，拇指支架 5 旋转轴处安装第三角度传感器 6，用于测量拇指外展角度。

本发明为获得最佳康复效果，在辅助患者进行运动康复训练的过程中，机器人仅对患肢提供完成训练必需的最小驱动力，充分利用患肢的残余肌肉力，控制系统结构设计如图 4 所示，它包括控制器 100、A/D 采集卡 200、信号预处理电路 300、力传感器 400、角度传感器 500 和电磁比例阀 600。

力传感器 400 包括第一力传感器 9 和第二力传感器 10，分别监测第一气动肌肉 4 和第二气动肌肉 11 的拉力，不仅用于定量评价康复训练中患手的主动参与程度，而且能避免在痉挛状态下拉力过大致使患手肌肉损伤。

角度传感器 500 包括第一角度传感器 6、第二角度传感器 20 和第三角度传感器 23，测量拇指外展角度、推杆关节旋转角度和指间关节旋转角度。

信号预处理电路 300 对角度传感器 500 和力传感器 400 的信号进行放大滤波后，控制器 100 通过 A/D 采集卡 200 采集角度传感器 500 和力传感器 400 的信号，获取人-机器人系统的运动特征参数和患手状态，在此基础上
上采取相应的智能控制策略，通过电磁比例阀 600 控制气动肌肉 4、11 收缩，辅助患者完成多关节复合运动功能训练。

由于气体的可压缩性，气动肌肉具有典型的非线性和迟滞性，难以进行精确的数学建模，因而机械手的运动学和动力学建模也具有非线性和不确定性，采用传统控制方法如 PID 很难找到合适的控制参数，同时在机器人控制中，由于其位姿、负载的多变性，需要不断调整控制参数。故本发明将智能控制应用于手功能康复机器人的控制器设计，消除和减弱因动力学建模不准确所带来的固有控制误差。手功能康复机器人控制系统的控制流程如图 5 所示，包括以下步骤：

（1）鼓励患者患手进行自主运动，角度传感器实时检测各关节的运动角度，并根据预设定的运动训练模式计算各关节最后达到目标的期望角度，即各关节的设定目标角度；

（2）判断患手各关节是否达到设定的目标角度；若未达到目标角度则流程结束；

（3）判断患者患手是否停止自主运动，若停止则通过电磁比例阀增加气动肌肉辅助力；

（4）利用角度传感器实时检测患手各关节的运动角度，若各关节达到设定的目标角度则流程结束；

（5）力传感器实时检测气动肌肉辅助力，结合角度传感器获取患者状态和运动特征，若患者处于高阻力（痉挛）状态则流程结束；

（6）判断患者自主运动是否停止，若停止则判断气动肌肉辅助力是否达到最大（饱和力），否则返回步骤（4）；

（7）若气动肌肉辅助力未饱和，则通过电磁比例阀增加气动肌肉辅助力，返回步骤（4）；若辅助力已饱和则完全靠患者自主运动达到各关节的设定目标角度，患手自主运动停止则流程结束。

优选的，本发明还可包括表面肌电（Surface Electromyogram，sEMG）电极 700 和 EMG 放大器 800，旨在提供一种基于肌电生物反馈技术（Electromyogram-based Biofeedback, EMGBF)的手功能康复机器人控制系统，如图 6 所示。使用时，sEMG 电极 700 粘贴在患者的手部或前臂，检测
患手运动功能康复训练过程中起主要作用的主动肌和拮抗肌的sEMG信号，经EMG放大器800全波整流放大后由A/D采集卡200输入控制器100，提取患者主动运动意愿和患手状态，用于机器人的智能控制和康复效果评价。

实验表明，主动运动意愿的存在对康复效果有重要的积极影响，本发明将以患者为中心建立新的反馈环，基于sEMG信号进一步研究和重视人脑主动意愿的应用，强化神经康复治疗中对运动神经系统的刺激和整合过程。基于EMG的生物信息反馈可加速运动功能的恢复，康复治疗后肌肉有进步时表现为肌电活动的波幅增加和频谱的改善，因此EMGBF在康复机器人控制系统中的应用比较广泛。但sEMG本身是一种较微弱的电信号，易受干扰影响，其幅度具有随机性，本发明对患手运动功能训练过程中起主要作用的主动肌和拮抗肌如指伸肌、指屈肌、掌长肌、小指展肌等的多通道sEMG进行时频分析，提取主要特征参数，对患者的手运动功能进行定量评价如肌肉主动力、运动持续时间、运动协调功能等，最大限度地给出防止肌肉痉挛以及智能控制决策分析所需的患肢状态参数。

优选的，本发明还可采用计算机900提供手功能康复治疗虚拟环境界面，连接于控制器100，如图7所示。控制器100将力传感器400输入的动力肌肉力、角度传感器500输入的关节角度、各关节的目标角度等参数传给计算机900，计算机900根据输入参数实现患手运动功能康复训练过程和康复效果的定量评价，包括拇指和其余四指末端的当前位置和运动轨迹、各关节运动的速度和平稳性、手指末端运动轨迹和目标轨迹的偏差、机器人辅助力的大小、功能训练任务是否成功完成等指标的评定，并利用增强现实技术反馈给患者，将计算机生成的虚拟场景和提示信息叠加到真实场景中实现对现实的增强，提供一种康复治疗虚拟环境，包括计算机虚拟游戏、训练开始和结束的提示、训练效果的视觉和听觉反馈。这种方式可以对人体提供给患者机械帮助的同时，将康复训练过程和康复效果的定量评价实时反馈给患者，并利用计算机游戏激发患者的训练兴趣，以克服当前康复训练中患者主动参与训练的积极性难以提高的问题。另外基于虚拟环境的康复训练还与网络相结合，具有远程康复机器人系统的优点。
图 5