(54) 发明名称

使用虚拟分车道线的车道偏离警告方法和系统

(57) 摘要

本发明涉及车道偏离报警系统和方法，该系统和方法使用通过利用车道宽度信息生成的虚拟分车道线，该车道宽度信息即使当根据行车过程中出现的天气、照明、路面情况等难以检测分车道线时也允许使用之前检测的分车道线计算，由此允许基于虚拟分车道线向驾驶员提供车道偏离报警。
1. 一种车辆的车道偏离报警系统，包括：
 用于生成图像的照相机单元；
 图像处理单元，其用于从所述图像生成检测到的分车道线，并且当所述检测到的分车道线没有被生成或者被错误生成时，生成虚拟分车道线；和
 报警单元，其用于根据所述车辆正在从行车道偏离的判定向所述车辆的乘客发出报警，所述判定基于所述检测到的分车道线和所述虚拟分车道线做出。
2. 如权利要求1所述的车道偏离报警系统，其中所述图像处理单元包括：
 虚拟分车道线生成模块，其用于在与左分车道线和右分车道线之间隔所述车道宽度的相对侧上生成所述虚拟分车道线；和
 车道偏离确定模块，其用于基于所述检测到的分车道线和所述虚拟分车道线之一确定所述车辆是否正在从所述行车道偏离。
3. 如权利要求1所述的车道偏离报警系统，其中所述图像处理单元包括：
 车道检测模块，其用于从所述图像生成所述检测到的分车道线；
 车道检测确定模块，其用于确定是否满足于预设车道条件生成所述检测到的分车道线；和
 车道宽度计算模块，其用于使用关于满足所述预设条件的所述检测到的分车道线的信息计算所述车道的所述宽度。
4. 如权利要求3所述的车道偏离报警系统，其中所述车道宽度计算模块使用所述左分车道线和所述右分车道线相对而言的消失点确定路面和所述照相机之间的俯仰角，使用所述俯仰角计算每像素距离，并且将所述车道宽度设置为通过将所述每像素距离乘以与所述车道宽度相对应的像素数而获得的值。
5. 如权利要求3所述的车道偏离报警系统，其中所述车道检测确定模块考虑所述设置的车道宽度是否持续参考时间或更长，所述左分车道线和所述右分车道线是否都被检测到，以及每一个检测到的分车道线的斜率是否等于或大于参考值，来确定是否已检测到分车道线。
6. 一种车道偏离报警方法，包括：
 生成检测到的分车道线；
 确定是否所述检测到的分车道线满足于预设车道条件而被检测到；
 如果确定所述分车道线没有被检测到或者被错误地检测到，则在与左分车道线和右分车道线之一间隔车道宽度的相对侧上生成虚拟分车道线；
 确定车辆是否正在从行车道偏离；和
 如果确定所述车辆正在从行车道偏离，则生成报警信号。
7. 如权利要求6所述的车道偏离报警方法，其中基于所述检测到的分车道线和所述虚拟分车道线之一确定车辆是否正在从行车道偏离。
8. 如权利要求6所述的车道偏离报警方法，还包括将所述报警信号传输到报警单元。
9. 如权利要求6所述的车道偏离报警方法，其中确定所述分车道线是否已被检测到包括如果确定所述分车道线已被检测到则设置所述车道宽度。
10. 如权利要求9所述的车道偏离报警方法，其中所述车道宽度以以下方式设置：使用所述左分车道线和所述右分车道线相对而言的消失点确定路面和照相机之间的俯仰角，使
用所述俯仰角计算每像素距离，并且将所述车道宽度设置为通过将所述每像素距离乘以与所述车道宽度相对应的像素数而获得的值。

11. 如权利要求6所述的车道偏离报警方法，其中考虑所述设置的车道宽度是否持续参考时间或更长，所述左分车道线和所述右分车道线两者是否都被检测到，以及每一条检测到的分车道线的斜率是否等于或大于参考值，来执行确定所述分车道线是否已被检测到。

12. 一种车辆的车道偏离报警系统，包括：
用于生成图像的照相机单元；
图像处理单元；和
报警单元，其用于根据所述车辆正在从行驶车道偏离的判定向所述车辆的乘客发出报警。

13. 如权利要求12所述的车辆的车道偏离报警系统，其中所述图像处理单元用于从所述图像生成检测到的分车道线，并且当所述检测到的分车道线没有被生成或被错误地生成时生成虚拟分车道线。

14. 如权利要求12所述的车辆的车道偏离报警系统，其中所述报警单元根据所述车辆正在从行驶车道偏离的判定向所述车辆的乘客发出报警，所述判定基于所述检测到的分车道线和所述虚拟分车道线做出。

15. 如权利要求12所述的车道偏离报警系统，其中所述图像处理单元包括：
虚拟分车道线生成模块，其用于在与左分车道线和右分车道线之一间隔所述车道的宽度的相对侧上生成所述虚拟分车道线；和
车道偏离确定模块，其用于基于所述检测到的分车道线和所述虚拟分车道线之一，确定所述车辆是否正在从所述行驶车道偏离。
使用虚拟分车道线的车道偏离报警方法和系统

[0001] 相关申请的交叉引用

[0002] 本申请根据 35U.S.C § 119(a) 要求于 2009 年 3 月 18 日提交的韩国申请第 10-2009-0022943 号的优先权，其全部公通过引用结合于此。

技术领域

[0003] 本发明一般涉及车辆，更特别地，涉及适用于车辆的车道偏离报警系统。

背景技术

[0004] 多种用于安全行驶的系统已经被开发出，或被应用于最新生产的车辆。例如，这些系统之一是在车辆由于驾驶员的粗心驾驶而偏离车道时适当地向驾驶员提供报警的车道偏离报警系统。

[0005] 可以适当地将车道偏离报警系统的类型分为使用优选位于内镜附近的照相机的配置；使用优选位于行李箱上的后照相机的配置；使用优选安装在车底车辆上的光学传感器的车道检测配置等等。目前正被开发的多数车道偏离报警系统采用使用优选位于内镜附近的照相机的配置。

[0006] 因为这样的车道偏离报警系统使用照相机以适当地检测车道，所以车道检测的性能可能根据在车辆行驶过程中出现的例如天气、照明和路面情况等而有很大程度上的变化。例如，如图 1A 所示，右分车道线 1 可能由于路面上的灰尘或由于隧道中或国道上的车道的老化而不能被检测到。另外，如图 1B 或 1C 所示，在许多情况下，与实际行车道相连的车道的分车道线 3 或者护栏 5 的边缘，而不是实际行车道的分车道线 2 或 4，可能被错误地检测为分车道线。另外，例如，如图 1D 所示，在特定实例中，分车道线被护栏的阴影 6 遮挡而不能被正确检测。

[0007] 在某种程度中，仅使用一个照相机即可适当地检测从车道的偏离，同时适当地提供报警；然而，当车辆在分车道线不能被适当地检测的道路上行驶时，不能适当地提供报警，因此，由于不能确定检测到的分车道线是否准确，则可能频繁给出错误的报警。

[0008] 在本背景技术部分中公开的上述信息仅用于增强对本发明的背景技术的理解，并且因此它可以包含不形成在本领域未本领域普通技术人员所知的现有技术的信息。

发明内容

[0009] 一方面，本发明提供了一种车道偏离报警方法和系统，因为当一条分车道线不能被适当地检测到或当分车道被错误地检测时，基于虚拟分车道线的概念，通过使用预测的虚拟分车道线提供报警，所以该方法和系统具有适当地增强的性能。

[0010] 根据本发明的一个优选方面，提供了一种车道偏离报警系统，优选地包括用于适当地生成图像的照相机单元，用于从该图像中适当地生成检测到的分车道线并且当检测到的分车道线没有生成或错误生成时适当地生成虚拟分车道线的图像处理单元，和用于根据适当地基于检测到的分车道线和虚拟分车道线而做出的车辆偏离行车道的判断向车辆的
乘客提供适当的报警的报警单元。[0011] 优选地，图像处理单元可包括用于适当地在与左分车道线和右分车道线之一间隔车道宽度的相对侧上生成虚拟分车道线的虚拟分车道生成模块，和用于优选地基于检测到的分车道线和虚拟分车道线之一确定车辆是否正偏离车道的车道偏离确定模块。

[0012] 优选地，图像处理单元可适当地包括用于从图像生成检测到的分车道线的车道检测模块，用于适当地确定是否已经满足于预设车道条件而生成检测到的分车道线的车道检测确定模块，和用于使用关于满足预设车道条件而检测到的分车道线的信息来适当地计算车道宽度的车道宽度计算模块。

[0013] 优选地，车道宽度计算模块可使用左分车道线和右分车道线适当地相互相交的消失点确定路面与照相机之间的一个适当的俯仰角，使用该俯仰角计算每像素距离，并且将车道宽度设置为通过将与车道宽度相对应的像素数目乘以每像素距离而获得的值。

[0014] 优选地，车道检测确定模块可考虑设置的车道宽度是否持续一定参考时间或更长、是否已经适当地检测到左分车道线和右分车道线两者、以及每一条检测到的分车道线的斜率是否等于或大于参考值来适当地确定是否已检测到分车道线。

[0015] 根据本发明的实现以上目的的另一方面，优选地提供一种车道偏离报警方法，包括生成检测到的分车道线，确定检测到的分车道线是否已满足于预设的车道条件而被适当地检测到，如果确定检测到的分车道线已被适当地检测到或已被错误地检测，则在与左分车道线和右分车道线之一间隔车道宽度的相对侧上生成虚拟分车道线，基于检测到的分车道线和虚拟分车道线之一确定车辆是否偏离行车道，以及如果确定车辆偏离了行车道，则生成适当的报警信号并且优选地将报警信号传输到报警单元。

[0016] 优选地，确定分车道线是否已被适当地检测到包括如果确定分车道线已被适当地检测到则设置车道宽度。

[0017] 优选地，车道宽度可以以下方式设置：使用左分车道线和右分车道线适当地相互相交的消失点适当地确定路面与照相机之间的俯仰角，使用该俯仰角计算每像素距离，并且将车道宽度设置为通过将与车道宽度相对应的像素数目乘以每像素距离而获得的值。

[0018] 优选地，对于分车道线是否已被适当地检测到的确定是考虑到设置的车道宽度是否持续一定参考时间或更长、左分车道线和右分车道线两者是否都已经被适当地检测到，以及每一条检测到的分车道线的斜率是否等于或大于参考值来执行的。

[0019] 可以理解，此处使用的术语“车辆”或“车辆的”或其他类似术语包括一般机动车（诸如包括运动型多功能车（SUV）、公共汽车、卡车、各种商用车辆的载客汽车），包括多种小船和船只的水运工具，以及飞行器等等，并且包括混合动力车、电动车、插电混合电动车、氢能源车和其他可替换的燃料车（例如从石油以外的资源获得的燃料）。

[0020] 如此处所述，混合动力车是具有两种或更多能源的车辆，例如汽油能源和电能源。

[0021] 本发明的上述特征和优点将从包括在其中并形成本说明书的一部分的附图中以及从以下与附图共同用于以实例的方式解释本发明的原理的详细的说明中变得明显或者被更为详细地阐述。

附图说明

[0022] 本发明的上述和其他目的、特征和优点将从以下结合附图的详细描述被更加清楚
地理解，在附图中：
[0023] 图1A至1D是显示出检测到的分车道线的图像以描述常规方法的问题的视图；
[0024] 图2是显示出根据本发明的优选实施方式的车道偏离报警系统的结构的框图；
[0025] 图3是由根据本发明的另一优选实施方式的车道分离报警系统执行的方法的第一流程图；
[0026] 图4是显示出其上显示出基于车道检测结果的坐标图的典型检测到的分车道线的图像的视图；
[0027] 图5是由根据本发明的一个实施方式的车道偏离报警系统执行的典型方法的第二流程图；
[0028] 图6A和6B是显示出根据本发明的一个实施方式的使用消失点的位置确定照相机的俯仰角的典型方法的示意图；
[0029] 图7A和7B是显示出多帧（frame）的分车道线的x截距以及与x截距相对应的车道宽度的列表；
[0030] 图8A和8B是显示出根据本发明的优选实施方式的多帧的分车道线的x截距和与x截距相对应的车道宽度的列表；
[0031] 图9A至9C是根据本发明的另一优选实施方式的显示出多帧的分车道线的x截距的列表，和显示出其上显示有虚拟分车道线的检测到的分车道线的图像的视图，并且
[0032] 图10A至10C是显示出车道偏离确定方法的示意图。

具体实施方式
[0033] 如此处所述，本发明包括车辆的车道偏离报警系统，其包含用于生成图像的照相机单元，图像处理单元；和用于根据车辆正在偏离行车道的判定向车辆的乘客单发出报警的报警单元。
[0034] 在一个实施方式中，图像处理单元用于从图像生成检测到的分车道线，并且当还没有生成或者错误生成检测到的分车道线时生成虚拟分车道线。
[0035] 在另一个实施方式中，报警单元根据车辆正在偏离行车道的判定向车辆的乘客给出报警，该判定基于检测到的分车道线和虚拟分车道线做出。
[0036] 在又一个实施方式中，图像处理单元包括用于在与左分车道线和右分车道线之一间隔车道宽度的相对侧上生成虚拟分车道线的虚拟分车道线生成模块，和用于基于检测到的分车道线和虚拟分车道线之一确定车辆是否正在偏离行车道的车辆偏离确定模块。
[0037] 本发明还特别描述了一种机动车辆，包括如在此处任何一个方面中描述的车辆偏离报警系统。
[0038] 本发明还特别描述了一种车辆偏离报警方法，包括生成检测到的分车道线，确定检测到的分车道线是否已满足于预设车道条件而被检测到，如果确定分车道线没有被检测到或者被错误检测到，则在与左分车道线和右分车道线之一间隔车道宽度的相对侧上生成虚拟分车道线，确定车辆是否正偏离行车道，和如果确定车辆正偏离行车道，则生成报警信号。
[0039] 在一个实施方式中，确定车辆是否正在偏离行车道的步骤是基于检测到的分车道线和虚拟分车道线之一进行的。
在又一个实施方式中，该方法包括：将报警信号传输到报警单元。

本发明还特别描述了如此处所述的任何一个方面中所述的车辆的车道偏离报警系统。

此后，将参照附图详细说明根据本发明的车道偏离报警系统的特定实施例，该车道偏离报警系统用于当车辆行驶过程中使用适当安装在车辆中的照相机检测车道并且当车辆从车道偏离时提供报警。

图 2 是显示出根据本发明的优选实施方式的车道偏离报警系统的结构的框图。另外，图 3 和 5 是显示出根据本发明的优选实施方式的车道偏离报警系统执行的典型方法的流程图。

参考图 2，根据本实施方式的车道偏离报警系统优选地包括照相机单元 200 和图像处理单元 240。照相机 200 优选地生成图像。在特定优选实施方式中，图像处理单元 240 生成的图像在行驶过程中适当以由照相机单元 200 生成的图像检测车道，并且当车辆偏离检测到的车道时适当地传输报警信号，并且如果车道的分车道线不能从照相机单元 200 生成的图像中被适当地检测到，或者如果从图像中检测到的分车道线不能适当地满足预设的车道条件，则优选地通过生成虚拟分车道线确定车辆正从车道偏离。

在其他优选实施方式中，车道偏离报警系统还可优选地包括图像接收单元 210，图像存储缓冲器 220，车道检测处理缓冲器 230 和报警单元 250。在优选实施方式中，图像接收单元 210 接收由照相机单元 200 生成的图像，并且初始图像存储缓冲器 220 以 RGB 或 YCrCb 格式适当地存储来自图像接收单元 210 的图像的初始图像信息。优选地，车道检测处理缓冲器 230 存储由图像处理单元 240 检测到的关于车道的信息，例如，关于图像中分车道线的位置和车道的宽度的信息。报警单元 250 优选地从图像处理单元 240 接收报警信号，并且驱动诸如蜂鸣器、灯、安全带等的各种报警装置。

在特定优选实施方式中，根据本发明的图像处理单元 240 优选地包括车道检测模块 241、车道检测处理模块 242 和车道宽度计算模块 243。优选地，车道检测模块 241 从照相机的图像中适当地检测分车道线。在又一个优选实施方式中，车道检测确定模块 242 基于由车道检测模块 241 对分车道线检测的结果，车道宽度的计算结果等，确定根据设置的车道条件，分车道线是否已被检测到或被错误地检测到。优选地，车道宽度计算模块 243 使用关于由车道检测模块 241 检测到的分车道线的信息适当地计算车道宽度，并且在车道检测处理缓冲器 230 中适当地存储关于车道宽度的信息。

在另一个优选实施方式中，根据本发明的图像处理单元 240 可优选地包括虚拟分车道线生成模块 244。该虚拟分车道线生成模块 244 用于由车道检测模块 241 检测的分车道线适当地检测到的车辆是否正从车道偏离，并且如果车道检测模块 242 确定分车道线没有被适当地检测到或被错误地检测到，则基于由虚拟分车道线生成模块 244 生成的虚拟分车道线，适当地检测到车辆是否正从车道偏离。因此，在本发明的其他实施方式中，即使分车道线没有从照相机的图像中被检测到或被错误地检测到，也可以优选地基于虚拟分车道线检测到车辆是否正从车道偏离。
道线准确地确定车辆是否正从行车道偏离。

[0049] 在其他优选实施方式中，根据本发明的图像处理单元 240 还可包括报警确定模块 246，用于响应从车道偏离确定模块 245 接收的车道偏离确定信号适当地生成报警信号，并且适当地将报警信号传输到报警单元 250，由此在使用各种报警装置通知驾驶员车辆偏离车道时，根据情况，考虑到例如多功能开关信号、雨刷驱动信号等以及车道偏离确定信号而适当地确定报警的提供。

[0050] 例如，在特定优选实施方式中，车道偏离报警系统是被适当地配置成如下方式的系统，该系统在车辆于驾驶员没有意图变换车道时而偏离了车道的情况下发出报警，并且如果在应用方向指示灯后发生偏离，系统优选地将该车道偏离视为正常车道变换而不发出适当的报警。在此处所述的本发明的其他实施方式中，车道偏离报警系统的驱动开关适当地控制车道偏离报警系统功能的开 / 关操作，多功能开关适当地控制方向指示灯，而雨刷开关适当地控制车道偏离报警系统的操作，以防止由于大雨产生的分车道线的重复检测 / 不检测而造成的错误报警。优选地，组合仪表提供关于车道偏离报警系统适当地操作时的参考车速的信息，并且输出报警声音，而且响应从该单元输出的适当的报警信号显示报警指示信息。

[0051] 在其他优选实施方式中，参照图 2 和 3，当在步骤 S30 向车道偏离报警系统适当地供应电能时，处理进行到步骤 S32，在步骤 S32，如果车道偏离报警系统根据在步骤 S31 中其开关的设置而被设置为开状态，则车道检测模块 241 从照相机的图像中适当地检测分车道线。优选地，此时，可被实现成当车速超过特定等级，例如 40KPH 时，适当地开始分车道线的检测。

[0052] 在其他实施方式中，由车道检测模块 241 执行的分车道线的检测可被视为通过优选地对输入图像应用滤波算法而适当地提取形成道路上的发亮部分的分车道线的步骤。在特定优选实施方式中，为了检测分车道线，可以使用例如边缘滤波器、分车道线高亮滤波器等。优选地，边缘滤波器适当地配置成使用在图像坐标系统中 X 和 Y 方向上排列的像素的亮度差值检测组合图像边缘的部分。根据其他优选实施方式，分车道线高亮滤波器使用通过对较亮的分车道线进行比使用亮度均值的周围亮度更进一步地高亮来检测分车道线的方法。

[0053] 例如，在边缘滤波器的情况下，由于滤波后保留了多个余像，在特定情况下，需要相当大量的后处理。相反，在特定实施方式中，当优选地使用分车道线高亮滤波器时，与边缘滤波器相比，计算量被适当地减小，由此可以实现小型化。在本发明的其他特定实施方式中，边缘滤波器相对于分车道线高亮滤波器的优点在于，与分车道线高亮滤波器相比，即便当左分车道线适当地出现在护栏附近并且被阴影覆盖时，分车道线也能被清楚地检测到。然而，根据其他实施方式，当分车道线不清楚或者环境条件不适合时，两种滤波器都不能适当地检测到分车道线。

[0054] 优选地，当使用利用各种滤波算法提取的分车道线适当地检测出最终分车道线时，车道检测模块 241 提供关于分车道线的信息，例如，最终分车道线的端点。根据本发明的优选实施例，被使用以提供车道报警的算法可被适当地分类为两种方法。在一个实施方式中，第一方法适当地将关于检测到的分车道线的信息转化为顶视图坐标系统的信息，并且适当地检测与车道的偏离。在另一个实施方式中，第二方法适当地仅通过使用分车道线
的斜率和截距提供报警。

[0055] 图 4 是显示出其中适当地显示有基于车道检测的结果的坐标图像的视图。图 4 中的车道检测的结果作为与右分车道线和左分车道线相对应的两条直线的坐标而被给出。根据本发明的实施方式，当二维 (2D) 平面中的图像坐标 (X,Y) 与典型 X 和 Y 坐标轴中坐标比相时，Y 轴的方向适当地彼此相反。另外，可以从图 4 看出，由于两条直线彼此相交，则右端点 (X2, Y2) 和左端点 (X4, Y4) 出现在相反方向上。优选地，执行车道偏离报警的算法可被适当地配置成如下方式提供报警，即基于分车道线的检测结果使用坐标获得左 / 右直线的斜率，从获得的斜率获得坐标值，例如截距值 (Y 值是优选地与帧的最低部分相对应的坐标值，例如 Y = 240)，并且当截距值落入报警范围中时提供适当的报警。

[0056] 在本发明的实施方式中，车道检测确定模块 242 执行在步骤 S33 至 S35 中适当确定分车道线是否已被车道检测模块 241 检测到或者被车道检测模块 241 错误地检测的步骤。例如，在特定实施方式中，分车道线是否已被检测到，可以优选地考虑在步骤 S33 中关于分车道线的信息是否连续，在步骤 S34 中左分车道线和右分车道线是否已被适当地检测到，以及在步骤 S35 中每一条检测到的分车道线的斜率是否等于或大于参考值而被确定。此外，在特定实施方式中，在步骤 S33 中的车道宽度在连续检测状态中突然增加的情况是分车道线被错误地检测的情况。根据特定的实施方式，这种情况可由例如确定车道宽度是否持续适当的参考时间或更长而被确认。另外，在步骤 S34 中，在分车道线中，在左 X 轴和右 X 轴上的交点存在显著变化的分车道线将被适当地认为是错误检测的分车道线。

[0057] 根据其他实施方式，如果车道检测确定模块 242 适当地确定在执行完步骤 S33 至 S35 中的分车道线确定步骤后分车道线被检测到，则处理优选地进行到步骤 S36，其中车道偏离确定模块 245 基于确定的分车道线适当地确定行驶车辆是否正在偏离车道。随后，根据其他实施例，如果确定车辆正在适当地从车道偏离，则处理进行到步骤 S37，其中指示偏离车道的报警信号被适当地生成并且被传输到报警单元 250。此时，根据其他优选实施例，也可以通过报警确定模块 246 结合基于雨刷驱动信号等的各种类型信息确定是否提供适当的车道偏离报警。

[0058] 在其他实施方式中，如果车道检测确定模块 242 适当地确定在执行步骤 S33 至 S35 的分车道线确定步骤后检测到分车道线，则处理优选地进行到图 5 的步骤 S50，其中在步骤 S50 至 S52 中车道宽度计算模块 243 适当地计算车道宽度或平均车道宽度。

[0059] 优选地，在步骤 S50，使用左和右分车道线的检测结果适当地计算道路与照相机之间的俯仰角。如图 6A 所示，根据路面与照相机 200 之间的俯仰角 θ 确定左和右分车道线适当地相互交叉的消失点，并计算车道宽度所需的参考值根据消失点的位置而改变。因此，在其他实施例中，当计算车道宽度时，优选地考虑照相机 200 的俯仰角 θ。

[0060] 根据其他实施方式，消失点的位置与俯仰角 θ 之间的关系以表格或函数的形式适当地设定，使得路面和照相机之间的俯仰角 θ 通过使用消失点的位置（即当两条分车道线被适当地检测到时可从分车道线的检测结果适当地获得的坐标值）而被优选地获得。在特定的典型实施方式中，可以从图 6B 中看出，当消失点的位置，特别是 Y 轴的坐标值大约为 78 像素、58 像素和 38 像素，照相机俯仰角 θ 可以被分别适当地确定为 5°、7° 和 9°。

[0061] 优选地，在如上所述适当地计算每一个俯仰角 θ 后，在步骤 S51 计算与俯仰角 θ
相对应的每象素距离。根据其他优选实施方式，可以适通过执行多次的模拟结果看到当例如
使用非线性二次函数等式（如等式（1）所示）时，适当地获得了最佳结果。然而，根据其他
实施方式，明显的是，可以使用超过二次的多项式函数以替换二次函数。

[0062] 每像素距离 [mm/像素] = a \theta^2 + b \theta + c

[0063] 优选地，在等式（1）中，a,b 和 c 为任何系数，并且可基于使用俯仰角 \theta 作为变量
的多次模拟的结果，例如，通过获得多个俯仰角 \theta 的样本值和在该角度处的每像素距离，
被适当地设置为具有最小误差的最佳值。

[0064] 在其他实施方式中，在步骤 S52 中，当图像坐标系统上的一个像素的距离信息（每
像素距离）与在分车道线检测处理中检测到的左和右分车道线的 X 截距之差（例如在 \(Y =
24^0 \) 处可见之差）相乘时，可以适当地获得实际车道。

[0065] 优选地，根据本实施方式的车道宽度计算模块 243 可以适当地使用左和右分车道
线相交的消失点确定地面和照相机之间的俯仰角 \theta，使用俯仰角 \theta 计算每像素距离，
将车道宽度设置为通过将每像素距离与和车道宽度相对应的像素数相乘获得的值，并且在一
定距离处周期地更新该车道宽度的值。

[0066] 根据其他实施方式并且如图 7A 所示，图 7A 显示出相对于各帧的通过照相机的图
像中可以检测到的分车道线的 X 截距 71 与左分车道线的 X 截距 72 中的变化。图 7B 显示出
相对于各帧的车道宽度 73，车道宽度 73 适当地通过如图所示选择右分车道线的 X 截距
71 和左分车道线的 X 截距 72 之差乘以基于俯仰角 \theta 而适当确定的每像素距离而被确
定。根据其他实施方式并且如图 7A 和 7B 中所示，存在有突然出现变化了的间隔，并且这样
的间隔可被优选地视为分车道线没有被适当地检测或被错误地检测的情况。

[0067] 如上所述，在特定优选实施方式中，由车道宽度计算模块 243 通过在步骤 S52 中适
当地对每一帧计算车道宽度而生成的车道宽度可被用于随后生成虚拟分车道线。优选地，
适当地通过在对多帧计算的车道宽度上应用多种平均算法而计算得到的平均车道宽度可
被用于当分车道线没有被检测到或被错误地检测到时适当地生成虚拟分车道线。

[0068] 根据其他实施方式，当在步骤 S34 没有适当地将左和右分车道线都检测到时，则
在图 5 的步骤 S33 中确定是否仅检测到左分车道线。如果不检测仅适当地检测到左分车道
线时，则在步骤 S54 中确定是否仅适当地检测到右分车道线。优选地，如果不检测仅检测到
右分车道线，则在步骤 S55 中确定是否两条分车道线都没有被检测到。优选地，如果确定两
条分车道线都没有被检测到，处理在没有检测到分车道线的状态下终止。在其他实施方式
中，当仅左分车道线或右分车道线之一被适当地检测到，处理进行到步骤 S56，其中虚拟
分车道线生成模块 244 在与检测到的左或右分车道线间隔车道宽度的相对上适当地生成
虚拟分车道线。优选地，通过车道宽度计算模块 243 在步骤 S50 至 S52 适当地计算出的
车道宽度或平均车道宽度作为以上所使用的车道宽度。

[0069] 根据本发明的其他实施方式，即使不是所有分车道线都能直接通过照相机的图像
被检测到，也可以在图 3 的步骤 S36 中基于由虚拟分车道线生成模块 244 在步骤 S56 中生
成的虚拟分车道线来适当地确定行驶中的车辆是否正在偏离车道。

[0070] 根据其他实施方式，并且如图 8A 和 8B 以及图 9A 至 9C 中所示，图 8A 和 8B 及图
9A 至 9C 是显示出根据本发明的实施方式生成虚拟分车道线的实例的示意图。

[0071] 例如，图 8A 显示出相对于各帧的根据本发明的优选实施方式生成的虚拟右分车

道线的 x 截距 82 的变化，以及通过照相机的图像获得的右分车道线的 x 截距 81 和左分车道线的 x 截距 83 的变化。在其他实施方式中，图 8B 显示出相对于各帧的通过如上所述将右分车道线的 x 截距 81 与左分车道线的 x 截距 83 之差与基于仰角 0 度确定的每像素距离相乘而实际确定的车道宽度 85 中的变化，以及使用根据本发明的车道宽度测量结果和算法计算者计算的平均车道宽度 86 中的变化。优选地，如图 8A 和 8B 所示，存在有突然出现值的变化的间隔，但可以看出，这样的间隔可被视为分车道线没有被适当地检测到或者被错误地检测的情况，从而该间隔被基于左分车道线和平均车道宽度的计算的结果而得到的虚拟分车道线替代。

[0072] 根据其他优选实施方式，与图 8A 类似，图 9A 显示出相对于各帧的，根据本发明生成的虚拟右分车道线的 x 截距中的变化，以及通过照相机的图像获得的右分车道线的 x 截距的变化和左分车道线的 x 截距的变化。图 9B 和 9C 显示出虚拟分车道线根据此处所述的本发明的优选实施方式优选地生成的实例，并且假设分车道线在其中例如突然出现 x 截距值的变化并且适当地确定分车道线被错误地检测的一些间隔过程中被应用到屏幕中。例如，如图 9B 和 9C 中所示，即使在实际图像中没有适当地看到分车道线，也可以通过引入

[0073] 图 9B 显示出根据本发明的特定优选实施方式的虚拟分车道线，该虚拟分车道线通过在实际路面上的左分车道线被适当地检测而右分车道线被适当地擦除且不能被检测到的情况下使用平均车道宽度的概念来预测分车道线而生成。可以看到，右虚拟分车道线几乎与被擦除的分车道线的一部分相一致。根据其他实施方式，如图 9C 中的实例所示，图 9C 显示出在道路中间分界的护栏内的分车道线被错误地检测为分车道线的情况下，通过使用平均车道宽度的概念预测分车道线而优选地生成的虚拟分车道线。

[0074] 图 10A 至 10C 是显示出根据本发明的特定实施方式的优选的车道偏离确定方法的典型示意图。

[0075] 根据此处所述的本发明的优选实施方式，当左分车道线的检测结果获得的截距区域适当地出现在报警参考区域中时，车道偏离确定模块 245 优选地操作以向驾驶员报警车辆偏离车道的状况。优选地，同样应用将关于在图像中检测的分车道线的信息转换为坐标区域中的信息的逻辑方法。例如，当如图 10A 所示，在图像中适当地设置优选地与左报警区域和右报警区域相对应的报警参考区域，并且如图 10B 或 10C 所示，左分车道线适当地进入左报警区域或右分车道线适当地进入右报警区域时，这种情况被确定为从车道偏离，并且由此向驾驶员提供适当的报警。

[0076] 如上所述，本发明提供特定的优点，其中即使根据车辆行驶过程中出现的例如天气、照明、路面情况等难于检测分车道线时，也可以利用虚拟分车道线提供适当的车道偏离报警。

[0077] 根据本发明的特定实施方式，存在有可通过车道宽度的计算适当地生成虚拟分车道线的优点。

[0078] 此外，在其他实施方式中，存在以下优点，即当虚拟分车道线的概念被适当地应用于行驶汽车的图像上并且图像随后被适当地分析时，对于所有图像的检测速度的精确度大幅度提高。

[0079] 尽管本发明的优选实施方式用于示例的目的被公开，本领域的技术人员将认识到
在不偏离如所附权利要求公开的本发明的范围和精神下，可以有多种更改、添加和替换。
图 3

S30 使 LDMS 通电

S31 LDMS 开关开启？

是

当车辆速度 > 40KPH，

开始检测分车道线

S32

否

S33 检测到分车道线？

是

S34 检测到左和右分车道线两者？

是

S35 检测到的分车道线的斜率参考值？

否

S36 是

否

偏离车道？

是

生成车道偏离报警

S37

否

图 3
图4
图 5

图 6A

使用左/右分车道线的检测结果计算道路与照相机之间的俯仰角

使用俯仰角计算每像素距离

计算平均车道宽度

仅检测到左分车道线？

否

仅检测到右分车道线？

是

没有检测到分车道线

使用计算的平均车道宽度和相对的分车道线的检测结果生成虚拟分车道线

俯仰角（θ）

LDWS单元

200
图 9B

图 9C

图 10A

图 10B

图 10C